
B. Després
(LJLL-

UPMC) and
IUF 2016, C.
Buet (CEA)

thanks to E.
Franck

(Inria/Stras-
bourg), T.

Leroy (CEA),
X. Valentin
(CEA), G.

Morel (PhD
CEA/LJLL)

Well-balanced schemes for Friedrichs systems
and related problems

B. Després (LJLL-UPMC) and IUF 2016, C. Buet (CEA)

thanks to E. Franck (Inria/Strasbourg), T. Leroy (CEA),
X. Valentin (CEA), G. Morel (PhD CEA/LJLL)

Support of CEA is acknowledged p. 1 / 34



Introduction

Reformulation

dim(V) = n

dim(V) = ∞
dim(V) < n

Trefftz
methods

Conclusion

Section 1

Introduction

IHP 2016 p. 2 / 34



Introduction

Reformulation

dim(V) = n

dim(V) = ∞
dim(V) < n

Trefftz
methods

Conclusion

Model reduction of kinetic equations

• Example : the Discrete Ordinates Method for approximation of transfer
yields

∂t I + µ∂x I = σ (< I > −I ) , I = I (x , t, µ), −1 ≤ µ < 1.

Approximate
I (x , t, µ) =

∑n
i=1 wi fi (x , t)δ(µ− µi ) +

∑n
i=1 wigi (x , t)δ(µ+ µi ).

Normalize U = (
√

diag(wi ) f ,
√

diag(wi ) g)t ∈ R2n, with
w = (

√
w1, . . . ,

√
wn,
√
w1, . . . ,

√
wn) ∈ R2n.

One gets the Sn model

∂tU +A∂xU = −σRU, A = At , R = −w⊗w + Id = R t ≥ 0.

It is a Friedrichs systems with large size and with relaxation.

Linearization of Fluid equations with relaxation (gravity, friction, . . .) yields
similar systems with non constant coefficients.
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A.P. regimes

Model problem= hyperbolic heat equation

It is representative of many radiation/neutron transport problems.

Pε :


∂tu + 1

ε
div v = 0,

∂tv + 1
ε
∇u = − σ

ε2 v.

The unknown is (u, v) ∈ R× R2.

The coefficient is σ > 0. The small parameter is 0 < ε ≤ 1.

For ε→ 0+, it admits the limit diffusion equation :

P0 : ∂tu −
1

σ
∆u = 0.

This problem is mixed hyperbolic/parabolic.
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Summary of the challenges

Address Friedrichs systems with relaxation

Large size

Change of type from hyperbolic to parabolic

Obtain Well-Balanced (WB) discrete schemes which respect
stationary solutions

U = {x 7→ U(x); ∂x(AU) = −RU} .

Obtain Asymptotic-Preserving (AP) discrete schemes with uniform
accuracy hyperbolic/parabolic.

Should work for highly distorted meshes with robust methods of low
degree : FV, P0, . . .(part I).

Discontinuous coefficients yield boundary layers (part II).
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Some references
- Larsen-Morel-Miller, Asymptotic solution of num. transport solutions in optical thick regimes 1987’.
- Cargo-LeRoux, A WB for a model of an atmosphere with gravity CRAS I 318 (1994)
- Greenberg-Leroux, A WB scheme for the numerical processing of source terms in hyp. eq., 1996.
- Audusse-Bouchut-Bristeau-Klein-Perthame, A fast and stable well-balanced scheme with hydrostatic
reconstruction for shallow water flows, (2004).
- Coquel-Godlewski. Asymptotic preserving scheme for Euler system with large friction, 2011.
- T. Muller and A. Pfeiffer, Well-balanced simulation of geophysical flows via the shallow water equations
with bottom topography : consistency and numerical computations, 2014.
- L. Gosse and G. Toscani, An AP WB scheme for the hyp. heat equations. CRAS I, 2002.
- S. Jin, AP schemes for multiscale kinetic and hyperbolic equations : a review, 2010.
- J.-L. Guermond, G. Kanshat, J.C. Ragusa, Discontinuous Galerkin methods for the radiative transport
equation, 2012
- Buet-Després-Franck Design of AP schemes for the hyp. heat equation on unstructured meshes, 2012.
- Buet-Després-Franck, AP Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation :
Application to Angular Models in Linear Transport, 2014.
- C. Berthon, M. Bessemoulin-Chatard, H. Mathis Numerical convergence rate for a diffusive limit of
hyperbolic systems : p-system with damping, 2016.
- C. Hauck, M. P. Laiu, R. G. McClarren, D. P. O’Leary, A. L. Tits, Positive filtered PN moment closures for
linear kinetic equations, (2016).
- PhD 2016 : Leroy, Guisset, Blachère, . . .

- Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced
schemes for sources, Frontiers in Mathematics series, 2004.
- L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws . . ., 2013.

Goal of this talk : for linear equations, address the structure of some of
these methods.
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Usual idea : plug sources in solvers+FV

Basic example : hyperbolic heat equation with FV scheme on regular grid{
∂tp + ∂xu = 0,
∂tu + ∂xp = −σu

The main point is to modify the fluxes (Riemann solvers) p∗
j+ 1

2
=

pj + pj+1

2
+
uj − uj+1

2
,

u∗
j+ 1

2
=

uj + uj+1

2
+
pj − pj+1

2
.

• Steady state approximation of Huang-Liu 1986, or Jin-Levermore 1996 : p∗
j+ 1

2
=

pj + pj+1

2
+(1− σ∆x/2)

uj − uj+1

2
,

u∗
j+ 1

2
=

uj + uj+1

2
+(1− σ∆x/2)

pj − pj+1

2
.

• Gosse-Toscani scheme 2002 : p∗∗
j+ 1

2
=

pj + pj+1

2
+

uj − uj+1

2
,

u∗∗
j+ 1

2
= M

(
uj+uj+1

2
+

pj − uj+1

2

)
, M = 1

1+σ∆x/2
.
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MultiD extension : xr is for nodes

Denote the corner normal njr = (cos θjr , sin θjr ).

x j

xr+1

xr−1

xr

Cell Ω j

Cell Ωk

l jrn jr

{
pjr − pj + (njr , ur − uj) + σ

ε
(xr − xj , ur ) = 0,∑

j ljrnjrpjr = 0.
sj

d
dt
pj + 1

ε

∑
r Cjr · ur = 0, Cjr = ljrnjr ,

sj
d
dt

uj + 1
ε

∑
r Cjrpjr = − 1

ε2 σ
∑

r Cjr ⊗ (xr − xj)ur .

Consistency of the RHS is from the identity
∑

r Cjr ⊗ (xr − xj) = Vj Id .

- in 1D, equal to the Gosse-Toscani scheme.

- equal to the scheme in Buet, D. Franck, Numerish Mathematik, 2012.
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Convergence analysis

• Performed on the problem{
∂tp + 1

ε
∇ · u = 0,

∂tu + 1
ε
∇p = − 1

ε

2
σu,

where σ > 0 is given and ε > 0 is a small parameter.
Next is the first 2D result of convergence.

Theorem (2D on general grids).
Additionally to being WB, the implicit scheme is AP with the error
estimate

‖ph − p, uh − u‖L2([0,T ]×Ω) ≤ C
(

∆t
1
2 + h

1
4

)
,

uniformly with respect to the small parameter ε ∈ (0, 1].

- Buet, D., Franck and Leroy, Proof of uniform convergence for a cell-centered AP discretization of the

hyperbolic heat equation on general meshes, Math. of Comp. 2016 online.
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Ilustration

1D : AP versus non AP. 2D non AP

2D : AP (ε = hτ ) versus
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Question

Even if the method to obtain WB-AP-FV based on modifications
of fluxes has huge successes, it is an a posteriori approach where
one one designs (dirty ?) fixes.
The same for many other works in the literature.

Can we understand the structure a priori ?

• Take ε = 1 for a while

∂tU + A∂x + B∂yU = −RU, U(t, x) ∈ Rn,

where x = (x , y) ∈ R2, and R = R t ≥ 0.

• The vectorial space of stationary states is

U = {x 7→ U(x); A∂xU + B∂yU = −RU} .

- Buet, D., The structure of well-balanced schemes for Friedrichs systems with linear relaxation. Appl. Math.

Comput. 272 (2016).
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Main idea : the dual equation

• The vectorial space of dual stationary states is

V =
{

x 7→ V (x); At∂xV + B t∂yV = R tU
}
.

Property : ∂t(U,V ) + ∂x(AU,V ) + ∂y (BU,V ) = 0.

• Pick up Vp ∈ V and define αp = (U,Vp) ∈ R

∂tαp + ∂x(AU,Vp) + ∂y (BU,Vp) = 0

One gets a conservation law ! !

a) Assemble the system of conservation laws for α = (αp).
b) Discretize the new system of conservation laws with a standard FV scheme.
c) Rewrite the new scheme for the original primal variable.
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Basic 1D example : det(A) 6= 0

Here dim(V) = n : one has

V ∈ V =⇒ ∂xV = A−1RV =⇒ V (x) = eA
−1RxV (0)

where eA
−1Rx is a matrix exponential. One gets

∂t
(
U, eA

−1RxV (0)
)

+ ∂x
(
AU, eA

−1RxV (0)
)

= 0, ∀V (0).

and

∂t

 P(x)U︸ ︷︷ ︸
new unknown

,V (0)

+ ∂x (P(x)AU,V (0)) = 0, ∀V (0)

Proposition : Define the change of unknown

α = P(x)U ⇐⇒ U = P−1(x)α, P(x) = eRA
−1x .

The new conservative system rewrites

∂tα + ∂x(Q(x)α) = 0, Q(x) = P(x)AP−1(x).
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Discretization with standard FV

• FV discretization of ∂tα + ∂xβ = 0

αn+1
j − αn

j

∆t
+
βn
j+ 1

2
− βn

j− 1
2

∆xj
= 0, β = Q(x)α,

where βn
j+ 1

2
is the flux at time step tn = n∆t.

The matrix Q(x) is similar to A

Q(x) = P(x)AP(x)−1.

• From the spectral decomposition

Aup = λpup, λp 6= 0,

the right and left spectral decompositions Q∗ = Q(x∗) = P(x∗)AP(x∗)−1

are {
Q(x∗)r∗p = λpr

∗
p , r∗p = P(x∗)up,

Qt(x∗)s∗p = λps
∗
p , s∗p = P(x∗)−tup.
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A simple Riemann solver

Standard Riemann solvers write
(
up,U

∗
j+ 1

2
− Uj

)
= 0, λp > 0,(

up,U
∗
j+ 1

2
− Uj+1

)
= 0, λp < 0.

One-state solvers : given by the well-posed linear system{ (
s∗p , β

∗ − βL
)

= 0, λp > 0,(
s∗p , β

∗ − βR
)

= 0, λp < 0.

It defines a first Riemann solver ϕ : Rn × Rn × R→ Rn

ϕ(βL, βR , x
∗) = β∗.
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The scheme with the one-state solver

The scheme writes

αn+1
j − αn

j

∆t
+
ϕ(βn

j , β
n
j+1, xj+ 1

2
)− ϕ(βn

j−1, β
n
j , xj− 1

2
)

∆xj
= 0

or

Un+1
j − Un

j

∆t
+ P(xj)

−1
ϕ(βn

j , β
n
j+1, xj+ 1

2
)− ϕ(βn

j−1, β
n
j , xj− 1

2
)

∆xj
= 0

Property : the scheme is WB.

Proof : If βj = β for all j , the solution is stationary.
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Local formulation

Un+1
j − Un

j

∆t
+ A

U∗
j+ 1

2
− U∗

j− 1
2

∆xj

+
P(xj)

−1P(xj+ 1
2
)− I

∆xj
AU∗j+ 1

2
+

I − P(xj)
−1P(xj− 1

2
)

∆xj
AU∗j− 1

2
= 0.

where the ”flux” U∗
j+ 1

2
is solution of the linear system

(
up,U

∗
j+ 1

2
− e−A−1R∆x+

j Uj

)
= 0, λp > 0,(

up,U
∗
j+ 1

2
− e−A−1R∆x−j+1Uj+1

)
= 0, λp < 0,

with ∆x±j = xj± 1
2
− xj .

Notice the compatible discretization of the sink.
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The two-states solver

Same principle but with upwinding of the eigenvectors{ (
sLp , β

∗∗ − βL
)

= 0, λp > 0,(
sRp , β

∗∗ − βR
)

= 0, λp < 0,

Theorem : Assume R ≥ 0. Then the family{
sLp
}
λp>0

∪
{
sRp
}
λp<0

is linearly independent.

It defines a second Riemann solver ψ : Rn × Rn × R× R→ Rn

ψ(βL, βR , xL, xR) = β∗∗

with similar properties.

IHP 2016 p. 17 / 34
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Schematic

Intermediate state

RL

R

Intermediate state

RL

N
L

N
R

Intermediate state

RL

N
L

N

The New-left and New-right states are modification of the initial Left and
Right states of the standard Riemann solver (top).

One-state=Jin-Levermore
Two-states=Gosse-Toscani.

When applied to Sn, our method gives back the Gosse scheme (2013), but
with a standard FV construction.
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MultiD : hyperbolic heat equation

• Assume σ > 0 is constant
∂tp +∂xu +∂yv = 0,
∂tu +∂xp = −σu,
∂tv +∂yp = −σv ,

Set α1 = p, α2 = σxp + u and α3 = σyp + v .
The system writes

∂t

 α1

α2

α3

+ ∂x

 m1

α1 + σxm1

σym1

+ ∂y

 m2

σxm2

1 + σym2

 = 0, (1)

where m1 = −σxα1 + α2 and m2 = −σyα1 + α3 . . .

Using a 2D corner-based FV scheme, one gets back the AP 2D scheme
discussed in the introduction.
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Degenerate case det(A) = 0

• Example : P1 radiation model coupled a linear temperature equation
∂tp +∂xu = τ(T − p),
∂tu +∂xp = −σu,
∂tT = τ(p − T ),

(2)

for which

A =

 0 1 0
1 0 0
0 0 0

 and R =

 τ 0 −τ
0 σ 0
−τ 0 τ

 .

Here dim(V) = 2 < 3 which indicates a degeneracy. One can write only
two conservation laws for

α1 = (U,V1) = p + T and α2 = (U,V2) = σx(p + T ) + u.

The previous theory does not make sense
and something must be done . . .
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Section 3

Trefftz methods
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Who is Trefftz ?

Seminal Trefftz contributions in numerical analysis (1926) have been
neglected in the numerical analysis community.

In modern language :
Trefftz = Special mixed formulations
= DG with non polynomial special basis functions = UWVF = . . ..

IHP 2016 p. 21 / 34
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Who is Trefftz ?

First ever proved error estimate for a clamped plate problem (similar to a posteriori estimate) ! ! ! ! !

From Hiptmair-Moiola-Perugia (15’)
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Formalization

Start from the space-time equations

∂tU +
d∑

i=1

Ai∂xiU + RU = f

in a domain Ω = D × [0,T ]. Split the domain Ω = ∪kΩk

T

X

t

A(n) = Ipnt +
∑d

i=1 Aini = A(n)t ∈ Rp×p, n = (nt , nx) ∈ Rd+1, nx ∈ Rd

Decompose in positive and negative parts A(n) = A+(n) + A−(n) with

A+(n) =
∑
λj>0

λj(n)rj(n)⊗ rj(n) A−(n) =
∑
λj<0

λj(n)rj(n)⊗ rj(n).
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Idea : space-time DG formulations

• Consider a discontinuous test function V = (Vk) ∈
∑

k H
1(Ωk)p with Vk

local solution of the adjoint equation

∂tVk +
d∑

i=1

Ai∂xiVk−RVk = 0, (x , t) ∈ Ωk .

• Consider continuity of sol. U at interfaces : ex. U ∈ H1(Ω)p.

• One can check : ∀V ∈ ⊕kH
1(Ωk)p one has that∑

k

∑
j<k

∫
Σkj

(Vk − Vj) · (A+
kjUk + A−kjUj)dσ

(
A±kj = A±(nkj)

)
−
∑

k

∫
Ωk

(
∂tVk +

d∑
i=1

Ai∂xiVk − RVk

)
· Udx

+
∑

k

∫
Σkk

V · AUdσ =
∑

k

∫
Ωk

V · fdΩ.

(3)

• In standard DG, one uses [V ] = Vj − Vk and {V } = 1
2

(Vj + Vk) : we
will not do that.

- huge literature on space-time DG : . . ., Claes Johnson, Thomée, . . .
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Rewriting as UWVF

• Instead set B(n) = 1√
2

(√
A+(n)−

√
−A−(n)

)
and

C(n) = 1√
2

(√
A+(n) +

√
−A−(n)

)
.

• Define X = ⊕k(B(nk) + C(nk))Uk ∈ V , V = ⊕kL
2(∂Ωk)p and a test

function Y = −⊕k (B(nk) + C(nk))Vk ∈ V .

Then one has the variational formulation posed on the skeleton

(X ,Y )V − (ΠX ,FY ) = (b,Y ) ∀Y ∈ V (4)

with Π the exchange operator on interfaces and F defined by FY =
⊕k(B(nk)− C(nk))Vk .

• Discrete formulations write
(Xh,Yh)V − (ΠXh,FYh) = (b,Yh) ∀Yh ∈ Vh ⊂ V .

- quite popular approach for time harmonic wave eq. : D. CRAS 1994, D.-Cessenat 1998, D.-Imbert-Gérard

2012, Hiptmair and al, Monk and al, Moiola 2016, . . .
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What is Vh

• One takes

Vh = ⊕k Span{Y i
k}1≤i≤m, Y i

k = (B(nk)− C(nk))W i
k ,

with W i
k an analytical solution of

∂tWk +
d∑

i=1

Ai∂xiWk − RWk = 0 (x , t) ∈ Ωk .

That is
Yh(x , t) =

∑
k

αi
kY

i
k(x , t)1∂Ωk (x , t).

• It is at first sight kind of a paradox that such basis functions represent
correctly

Xh =
∑
k

(B(nk)− C(nk))U|∂Ωk
1∂Ωk (x , t)

with

∂tU +
d∑

i=1

Ai∂xiWk + RWk = 0, (x , t) ∈ Ω.

- - here the stiffness reflects in the design of the basis functions.
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Interest of UWVF for numerical analysis

UWVF formulations are endowed with good a priori estimates. In a nutshell

• Set the norm ‖ · ‖ = ‖ · ‖L2(Skeleton)

• One has F ∈ L(V ) with the estimate ‖F‖ ≤ 1

• Set A = F ∗Π and Z = X − Xh

‖(I − A)Z‖2 +
(
‖Z‖2 − ‖ΠZ‖2

)
= ‖Z‖2 − 2(AZ ,Z) + ‖F ∗ΠZ‖2 +

(
‖Z‖2 − ‖ΠZ‖2

)
≤ 2 ((1− A)Z ,Z)

≤ 2 ((1− A)Z ,X − Xh)

≤ 2 ((1− A)Z ,X − Yh) ∀Yh ∈ Vh.

• Therefore ‖(I − A)Z‖ ≤ 2 infYh∈Vh ‖X − Yh‖ and

‖Z‖2 − ‖ΠZ‖2 ≤ 4 inf
Yh∈Vh

‖X − Yh‖2.
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Back to our problem

More precisely considering our space-time problem

‖X − Xh‖L2(Γtop) ≤ 2 inf
Yh∈Vh

‖X − Yh‖L2(Skeleton)

T

X

t

- need to compare with the literature : Moiola and al, Ern and Guermond, Hesthaven and Warburton, . . .
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Application to the telegraph equation

{
∂tp + ∂xu = 0,
∂tu + ∂xp = −σu,

V :

{
∂xu = 0,
∂xp = +σu,

⇐⇒ p = α + β(x − xG ), u =
1

σ
β.

It yields two basis functions par cell : (αk , βk) ∈ R2

dim(Vh) = 2#Ncell ≈
2

h2
.

Assume the solution (p, u) is smooth. Then

‖X − Xh‖L2(Γtop) ≤ 2
√

#Ncell maxk ‖X ε − Y ε
h ‖2

L2(∂Ωk )

≤ 2
√

2
h2 Ch3

≤ Ĉ
√
h.

The constant Ĉ is uniform with respect to h.

IHP 2016 p. 29 / 34



Introduction

Reformulation

dim(V) = n

dim(V) = ∞
dim(V) < n

Trefftz
methods

Conclusion

Numerics : ∂tp + 1
ε∂xu = 0, ∂tu + 1

ε∂xp = − σ
ε2u

Set a = σ∆x/(2ε) and
pn+1
k
−pnk

∆t
+ 1

2ε∆x
((1 + a)(uk+1 − uk−1)− pk+1 + 2pk − pk−1)n+1 = 0,

un+1
k
−unk

∆t
+ 1

2ε∆x
((1− a)(uk+1 − uk−1)

+(a2 − 1)(pk+1 + pk−1) + 2(1 + a)2pk
)n+1

= 0

2 stationary basis functions. Plots of x 7→ (pε, uε)(x ,Tend)

The scheme is AP (ask proof to G. Morel).
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2 versus 4 basis functions

Propagative solution : 2 basis functions (stationary in space) versus 4 basis
functions (2 additional time dependent functions)

The Trefftz-DG-UWVF (4 basis functions) is much more accurate than the
standard low order method.
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Numerical illustrations : 2D

Here we use Petrov-Galerkin : 3, 5, 7 basis functions

Order of convergence in dimension 2 in space (and 1 in time) : this is
characteristic of the gain of accuracy of UWVF.

order ≈ N − 1

2
, N = number of basis functions
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A more physical example (E. F.)

Neutrons propagate in a transparent/opaque medium σ = 1 or 10000, and
ε = 1. Implicit discretization (9 points stencil, good conditioning).

IHP 2016 p. 33 / 34



Introduction

Reformulation

dim(V) = n

dim(V) = ∞
dim(V) < n

Trefftz
methods

Conclusion

Conclusion

Dual equation techniques yield a powerful approach for discretization
of relaxation operators in Friedrichs systems.

First approach is rewriting equations as a new system of conservation
laws : it is well adapted to FV

Second approach is based on Trefftz/UWVF/DG philosophy : it
yields new AP schemes : new means 6= G.T. or J.L.

This is on going work.
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