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Introduction

Introduction
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-.’Ill Model reduction of kinetic equations

e Example : the Discrete Ordinates Method for approximation of transfer
yields

Introduction

Ol +poxl =o(<I>=1), I=I(xtpu), —-1<p<l.
Approximate
I(x, 8, ) = 320 wifi(x, 0)0(p — i) + 357, wigi(x, £)0(p + pi)-
Normalize U = (y/diag(w;) f, \/diag(w;) g)* € R*", with
W = (\/Wi, .« ey /Wiy /WL, - . oy /Wa) € R?™,

One gets the S, model
8 U+AdU = —0oRU, A=A R=-w@w+/ly=R">0.

It is a Friedrichs systems with large size and with relaxation.

Linearization of Fluid equations with relaxation (gravity, friction, ...) yields
similar systems with non constant coefficients.

I
IHP 2016 p.2/34



-.’Ill A.P. regimes

Introduction @ Model problem= hyperbolic heat equation
It is representative of many radiation/neutron transport problems.

Oru + %divv =0,
Pe .
O+ 1Vu=—-5v.

The unknown is (u,v) € R x R?.
The coefficient is o > 0. The small parameter is 0 < ¢ < 1.

@ For £ — 0T, it admits the limit diffusion equation :
. 1
P Oru— —Au=0.
o

@ This problem is mixed hyperbolic/parabolic.

I
IHP 2016 p.3/34



_Ijll Summary of the challenges

Address Friedrichs systems with relaxation

) @ Large size
inireduction @ Change of type from hyperbolic to parabolic
@ Obtain Well-Balanced (WB) discrete schemes which respect
stationary solutions
U ={x— U(x); 0«(AU)=—RU}.

@ Obtain Asymptotic-Preserving (AP) discrete schemes with uniform
accuracy hyperbolic/parabolic.

@ Should work for highly distorted meshes with robust methods of low
degree : FV, PO, .. .(part I).

@ Discontinuous coefficients yield boundary layers (part Il).

I
IHP 2016 p.4/34



Jil

Introduction

Some references

- Larsen-Morel-Miller, Asymptotic solution of num. transport solutions in optical thick regimes 1987".

- Cargo-LeRoux, A WB for a model of an atmosphere with gravity CRAS | 318 (1994)

- Greenberg-Leroux, A WB scheme for the numerical processing of source terms in hyp. eq., 1996.

- Audusse-Bouchut-Bristeau-Klein-Perthame, A fast and stable well-balanced scheme with hydrostatic
reconstruction for shallow water flows, (2004).

- Coquel-Godlewski. Asymptotic preserving scheme for Euler system with large friction, 2011.

- T. Muller and A. Pfeiffer, Well-balanced simulation of geophysical flows via the shallow water equations
with bottom topography : consistency and numerical computations, 2014.

- L. Gosse and G. Toscani, An AP WB scheme for the hyp. heat equations. CRAS 1, 2002.

- S. Jin, AP schemes for multiscale kinetic and hyperbolic equations : a review, 2010.

- J.-L. Guermond, G. Kanshat, J.C. Ragusa, Discontinuous Galerkin methods for the radiative transport
equation, 2012

- Buet-Després-Franck Design of AP schemes for the hyp. heat equation on unstructured meshes, 2012.

- Buet-Després-Franck, AP Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation :
Application to Angular Models in Linear Transport, 2014.

- C. Berthon, M. Bessemoulin-Chatard, H. Mathis Numerical convergence rate for a diffusive limit of
hyperbolic systems : p-system with damping, 2016.

- C. Hauck, M. P. Laiu, R. G. McClarren, D. P. O'Leary, A. L. Tits, Positive filtered PN moment closures for
linear kinetic equations, (2016).

- PhD 2016 : Leroy, Guisset, Blachere, ...

- Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced
schemes for sources, Frontiers in Mathematics series, 2004.
- L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws ..., 2013.

Goal of this talk : for linear equations, address the structure of some of
these methods.
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Introduction

Usual idea : plug sources in solvers+FV

Basic example : hyperbolic heat equation with FV scheme on regular grid

Op + Oxu =0,
Oru+ Oxp = —ou

The main point is to modify the fluxes (Riemann solvers)

P, = Pj + pj+1 p YT Y
Jt3 2 2

v _Ytun L PiT P
it 2 2

e Steady state approximation of Huang-Liu 1986, or Jin-Levermore 1996 :

Pl _Pitpn +<1_UAX/2)%’
. _ uituin Pj — Pj+1
Ui =5 +(1—0Ax/2)#.

e Gosse-Toscani scheme 2002 :

P, = Pi + Pi+1 | Uj — Uil

it3 2 2

ok Ujtujy1 Pi — Uj+1 _ 1
Uil = M( 7 T > v M= 1557

I
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.’JLL MultiD extension : x, is for nodes

Denote the corner normal nj, = (cos 8;,sin ;).

Introduction

Pi. — P + (jr, ur — ;) + % (x, — xj,u,) =0,
Zj lirmgrpjr = 0.

d 1
SigPi+ 22, Cir-u =0, Cjr = linyr,

Sigwi+ 22, Cirpir = =503, Cir @ (x — x;)ur.
Consistency of the RHS is from the identity > Cj ® (x, — x;) = Vjla.

- in 1D, equal to the Gosse-Toscani scheme.

- equal to the scheme in Buet, D. Franck, Numerish Mathematik, 2012.

I
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JIL

Introduction

Convergence analysis

e Performed on the problem
op+iV-u =0,
{ o+ iVp = —é2au7
where o > 0 is given and € > 0 is a small parameter.

Next is the first 2D result of convergence.

Theorem (2D on general grids).
Additionally to being WB, the implicit scheme is AP with the error
estimate . .

lIpn = pyun — ul| 20, 11x) < € (At5 + hz) )

uniformly with respect to the small parameter ¢ € (0, 1].

- Buet, D., Franck and Leroy, Proof of uniform convergence for a cell-centered AP discretization of the

hyperbolic heat equation on general meshes, Math. of Comp. 2016 online.

IHP 2016
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.’JLL llustration

1D : AP versus non AP. 2D non AP

L1 Norm ——
L2 Norm

Introduction 2

10 100
Number of cells

2D : AP (e = h") versus

N

000
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Section 2

JIL

Reformulation

Reformulation
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.I.ILL Question

Even if the method to obtain WB-AP-FV based on modifications
of fluxes has huge successes, it is an a posteriori approach where
one one designs (dirty ?) fixes.

The same for many other works in the literature.

Reformulation

Can we understand the structure a priori ?

e Take ¢ = 1 for a while

0:U + Adc + BO,U =—RU, U(t,x) eR",
where x = (x,y) € R, and R=R"' > 0.
e The vectorial space of stationary states is

U={x— U®x); AdU+ Bd,U=—RU}.

- Buet, D., The structure of well-balanced schemes for Friedrichs systems with linear relaxation. Appl. Math.

Comput. 272 (2016).
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Main idea : the dual equation

e The vectorial space of dual stationary states is

V={x— V(x);, A0V +B'9V=RU}.

Reformulation

Property : 0:(U, V) + 0«(AU, V) +9,(BU, V) =0.

e Pick up V, € V and define a, = (U, V,) € R
Orap + Ox(AU, V) + 0,(BU, V,) =0

One gets a conservation law!!

a) Assemble the system of conservation laws for o = (cp).
b) Discretize the new system of conservation laws with a standard FV scheme.
c) Rewrite the new scheme for the original primal variable.

I
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_Ijll Basic 1D example : det(A) # 0

Here dim(V) = n : one has

VeV=—aV=A"'RV= V(x)=¢" V(0

-1 . - -
A" "R<is a matrix exponential. One gets

o (U, eA_lRXV(O)> vy (AU, AR V(O)) -0, VV(0).

where e
dim(V) = n

and

o PCYU ,V(0) | + 0. (P(x)AU, V(0)) =0, VV(0)
——

new unknown

Proposition : Define the change of unknown
—1
a=Px)U < U= P (x)a, P(x) =™ .
The new conservative system rewrites

O+ 0(Q(x)a) =0, Q(x) = P(x)AP ! (x).

IHP 2016
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Jil

dim(V) = n

Discretization with standard FV

e FV discretization of ;a4 0x8 =0
ot —af By =By

~ A =0 =0k

where ﬂjf:rl is the flux at time step t, = nAt.
2
The matrix Q(x) is similar to A

Q(x) = P(x)AP(x) .

e From the spectral decomposition
Aup = Apup,  Ap # 0,
the right and left spectral decompositions Q* = Q(x*) = P(x*)AP(x*)!

are
QUX")ry = Apry, 1, = P(x")up,
Q' (x)sy = Apsp,  sp = P(x*) "up.

I
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_Ijll A simple Riemann solver

Standard Riemann solvers write

dim(V) = o Up, UJ:% — UJ) =0, Ap >0,
U, Uy = Upsa) =0, Ay <0

One-state solvers : given by the well-posed linear system

5;75*_ﬂL):07 )‘P>07
s, 8" — Br) =0, Ap<O.

It defines a first Riemann solver ¢ : R" X R" x R — R"

@(BL?ﬂ:‘hX*) = /B*'

IHP 2016
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dim(V) = n

The scheme with the one-state solver

The scheme writes

Vo,

J

a’.’“ — Oéf i 90(61{7761n+17)<j+%) - ()0(/8]{1717 ;7))9'7
At Ax;

or

n+l _ gyn
YU o
At ! Ax;

Property : the scheme is WB.
Proof : If 5; = 8 for all j, the solution is stationary.

X 1 (p(ﬂfv/gfﬁ»hxjﬁ»%) - 90(/3;7175;7&;%) _

IHP 2016
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_!Ill Local formulation

ntl _yn U, -Ur,
Y Y Jta =3

dim(V) = n At +A Ax;
P(x)tP(x 1) — 1 I — P(x)"*P(x._1)
- LA L V) ’ =AU, =0
Ax; itz Ax; J=3

where the " flux” Uj;l is solution of the linear system
2

(Um v - o AR Uj) =0, Ap >0,
2
(upv Uy—e” RAN Uj+1) =0, A <0,

with Ax;™ = Gl = Xj-
Notice the compatible discretization of the sink.

IHP 2016
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_!Ill The two-states solver

Same principle but with upwinding of the eigenvectors

dim(V) = n { (5;1575** - 5L) =0, X >0,
(5575**_5R) :07 /\P<07

Theorem : Assume R > 0. Then the family
{sff}xpo U {55},\,,<0 is linearly independent.

It defines a second Riemann solver ¢ : R" x R" x R x R — R"

»(BL, Br,x,xr) = B~

with similar properties.

I
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-.’Ill Schematic

Intermediate state

dim(V) = n L 1 R
Intermediate state Intermediate state
NL NR
L R

The New-left and New-right states are modification of the initial Left and
Right states of the standard Riemann solver (top).

One-state=Jin-Levermore
Two-states=Gosse-Toscani.

When applied to S,, our method gives back the Gosse scheme (2013), but
with a standard FV construction.

I
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dim(V) = oo

MultiD : hyperbolic

e Assume o > 0 is constant

heat equation

Otp +0u +0,v =0,
atu +axp = —ou,
8tV —|—8yp = —0ov,
Set a1 = p, ap = oxp+ uand az = ogyp + v.
The system writes
e %1 m my
O | a | +0«| axtoxm |+, oxmy =0, (1)
a3 oym 14+ oyms
where m;y = —oxaq + a2 and my = —oyas +as ...

Using a 2D corner-based FV scheme, one gets back the AP 2D scheme

discussed in the introduction.

IHP 2016
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Jil

dim(V) < n

Degenerate case det(A) =0

e Example : P! radiation model coupled a linear temperature equation

Op  +0ku =7(T —p),

otu  +0xp = —ou, (2)
BtT :T(p—T),
for which
0 1 0 T 0 -7
A= 1 0 0 and R = 0 o O
0 0 O -7 0 7

Here dim(V) = 2 < 3 which indicates a degeneracy. One can write only
two conservation laws for

o =UW)=p+Tandar=(U,Vo)=0ox(p+ T) +u.

The previous theory does not make sense
and something must be done ...

I
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Section 3

Jil

Trefftz methods

Trefftz
methods
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JIL

dim(V)

dim(V) = oo

dim(V)

Trefftz
methods

Who is Trefftz?

Seminal Trefftz contributions in numerical analysis (1926) have been
neglected in the numerical analysis community.
In modern language :

Trefftz = Special mixed formulations
= DG with non polynomial special basis functions = UWVF = .. ..

I
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-.’Ill Who is Trefftz ?

Proceedings of the 2"¢ International Congress of Applied Mechanics
Zurich, 1926
pp 131 to 137

A counterpart to Ritz’s Method
by E. Trefftz, Dresden

The Ritz method solves partial differential equation boundary value problems using the mini-
Trefftz mum potential energy theorem. Obviously, the error of the approximate solution is the difference
methods between the strain energy of the exact mathematical model and that obtained using the Ritz trial

functions.

It is important to note that the Ritz method does not allow an error estimate or some sort of
error bounds since it yields only an upper bound to the true potential energy of the system. The
objective of this paper is to present an analogue to the Ritz method that produces a lower bound
to the potential energy. A combination of the Ritz method and the novel approach thus yields the

desired error bounds.

Comparing with finite and boundary elements, in 1997 Zienkiewicz [121] stated:
“...it seems without doubt that in the future Trefftz type elements will frequently
be encountered in general finite element codes... . It is the author’s belief that the
simple Trefftz approach will in the future displace much of the boundary type anal-
ysis with singular kernels.” While this prediction has not yet come true, in the last
years more and more work has been devoted to the formulation, the analysis and the
validation of these methods and substantial progress has been accomplished.

From Hiptmair-Moiola-Perugia (15’)

I
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-.’Ill Formalization

Start from the space-time equations

d
U+ > AdU+RU=Ff
i=1
in a domain Q = D x [0, T]. Split the domain Q = UxQ«

t

Trefftz
methods

X
A(n) = lpne + 27:1 Aini = A(n)" € RP*P n=(ng,ny) € R n e RY
Decompose in positive and negative parts A(n) = A™(n) + A~ (n) with

= > A )@ r(n) A™(n) =D N(n)ri(n) @ r(n).

Aj>0 ;<0

I
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Trefftz
methods

Idea : space-time DG formulations

e Consider a discontinuous test function V = (Vi) € >, H'(S)? with Vi
local solution of the adjoint equation

d
OVi+ Y Ad Vi—RVi =0, (x,t) € Q.

i=1

e Consider continuity of sol. U at interfaces : ex. U € H(Q)".

e One can check : YV € ®¢H*(Q%)” one has that

S Syer S, (Ve = Vi) - (A Ui+ AgUdo (Af = A% (ny))
d

. : (3)

kJQ, 1UX;

i=1
+5 Jy, VAUdo =X, [, V- Q.

e In standard DG, one uses [V] = V; — Vi and {V} = 1 (V; + Vi) : we
will not do that.

- huge literature on space-time DG : ..., Claes Johnson, Thomée, ...

I
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.I.ILL Rewriting as UWVF

e Instead set B(n) = % (\/A+(n) — \/—A—(n)) and
Cn) = & (VAT () + v=A=(n)).

o Define X = @x(B(nk) + C(nk))Uk € V, V = @k L?(0Q%)P and a test
function Y = — &, (B(nk) + C(nk))Vi € V.

Trefftz
methods Then one has the variational formulation posed on the skeleton

(X,Y)y — (NX,FY)=(b,Y) VY €EV (4)

with I1 the exchange operator on interfaces and F defined by FY =
®k(B(nk) — C(nk)) V.

e Discrete formulations write
(Xh, Yh)\/ — (HX},, FYh) = (b, Yh) VY,€e V, C V.

- quite popular approach for time harmonic wave eq. : D. CRAS 1994, D.-Cessenat 1998, D.-Imbert-Gérard
2012, Hiptmair and al, Monk and al, Moiola 2016, ...

I
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.’JLL What is V,,

e One takes
Vi = @ Span{Y{}1<i<m, Yi = (B(n) — C(nk)) Wi,
with W/ an analytical solution of
d
Wi+ > Ad Wi — RW, =0 (x,1) € Q.

i=1

Trefftz That iS ) )
methods Ya(x,t) = ok Yilx, t)1og, (x, t).
K
e |t is at first sight kind of a paradox that such basis functions represent
correctly
Xn = (B(n) = C(n)) Upog, Log, (x, t)
k
with

d
OU+ Y Aid Wi+ RW =0, (x,t) €Q.

i=1

- - here the stiffness reflects in the design of the basis functions.

I
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.’JLL Interest of UWVF for numerical analysis

UWVF formulations are endowed with good a priori estimates. In a nutshell

e Set the norm || ! H = H : HL2(5keleton)
e One has F € £(V) with the estimate ||F|| <1

eSet A=F"Mand Z =X — X,

Trefftz

I = Az + (1217 - Iz

=121 = 2(AZ, 2) + |F'nz|* + (1Z))* - InZ)])
<2((1-A)Z,2)
<2((1-A)Z,X — X»)
<2((1=A)Z,X =Y YYi€ Vi

e Therefore ||(/ — A)Z|| < 2infy,cy, | X — Y4|l and
IZ|I* = INZ|[* < 4 inf [IX — Yi|l".
Yh€V,

IHP 2016
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Back to our problem

JL More precisely considering our space-time problem

1X = Xblliz(roop) < 2 inf IX = Yallizgsiceteron)

At
|
|

T

Trefftz
methods

- need to compare with the literature : Moiola and al, Ern and Guermond, Hesthaven-and Warburton;-. ..
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.’JLL Application to the telegraph equation

(9tp + 3Xu = O7
Otu+ Oxp = —ou,

oxu=0, _ B __1
V: {Oxﬁ:+aﬂ, <~ p=a+ B(x—xc), u_UB.

) . . . 2
Treffts It yields two basis functions par cell : (ax, 8k) € R

methods 2
dlm(Vh) = 2#Ncell ~ p

Assume the solution (p, u) is smooth. Then

[X = Xalli2(ryoy) < 2\/#/Vce11 max [ X< = {122 50,

<2,/5ChH

< Cvh.

The constant C is uniform with respect to h.

I
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JIL

Trefftz
methods

Numerics : O:p + éﬁxu =0, Oru + gﬁxp = —5u

Set a = 0 Ax/(2¢) and

P —pl 4o (14 a)(ukr1 — Uk—1) — prsr + 2pk — pr—1)™™ =0

un+% un 2EAX + N + N ’
— 1

k At . +5:A% ((1 - a)(uk+1 - Uk—l)

+(22 = D) (prsr + pr1) + 21+ a)Ppi) " =0

o

rrrrrr

2 stationary basis functions. Plots of x — (p®, u®)(x, Tena)

The scheme is AP (ask proof to G. Morel).

I
IHP 2016 p. 30 / 34



.’JLL 2 versus 4 basis functions

Propagative solution : 2 basis functions (stationary in space) versus 4 basis
functions (2 additional time dependent functions)

05 T
“SpaceSolutionNoTimes0.1x
K €50.txt

: Time3200.1x
Trefftz 1
methods 03l A

The Trefftz-DG-UWVF (4 basis functions) is much more accurate than the
standard low order method.
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.’JLL Numerical illustrations : 2D

Here we use Petrov-Galerkin : 3, 5, 7 basis functions

Trefftz oo0ot
methods

Order of convergence in dimension 2 in space (and 1 in time) : this is
characteristic of the gain of accuracy of UWVF.

N-1
order &~ —5 N = number of basis functions

I
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A more physical example (E. F.)

Jl Neutrons propagate in a transparent/opaque medium o = 1 or 10000, and
e = 1. Implicit discretization (9 points stencil, good conditioning).

OOOO0O =
NEOO MRo

Trefftz
methods

0 02 04 06 08 1 0 02 04 06 08 1

08 i 08

- o [
0.4 . 0.4

- 0.2 - 02

e ———.* T ———
0 02 04 06 08 1 0 02 04 06 08 1
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.’JLL Conclusion

@ Dual equation techniques yield a powerful approach for discretization
of relaxation operators in Friedrichs systems.

@ First approach is rewriting equations as a new system of conservation
laws : it is well adapted to FV

@ Second approach is based on Trefftz/UWVF /DG philosophy : it
yields new AP schemes : new means # G.T. or J.L.

Conclusion

This is on going work.
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