An invariant domain preserving
FE technique for hyperbolic systems

Jean-Luc Guermond and Bojan Popov

Department of Mathematics
Texas A&M University

Advanced numerical methods:
Recent developments, analysis and applications
October 03-07, 2016
IHP, Paris

Acknowledgments

Collaborators:

Murtazo Nazarov (Uppsala University)

Vladimir Tomov (LLNL)

Young Yang (Penn State University)
Laura Saavedra (Universidad Politécnica de Madrid)

Support:

&y
ZAFOSR

IR FORCE OFFICE OF SCIENTIFIC RESEARCH

M Lawrence Livermore
National Laboratory

Hyperbolic systems

Hyperbolic systems

o Hyperbolic systems

‘

Hyperbolic systems

Hyperbolic systems

Hyperbolic systems

The PDEs

@ Hyperbolic system

Oru + Vf(u) =0, (X, t) € DxR;.
u(x,0) = ug(x), x € D.

Hyperbolic systems

Hyperbolic systems

The PDEs

@ Hyperbolic system

Oru + Vf(u) =0, (X, t) € DxR;.
u(x,0) = ug(x), x € D.

@ D open polyhedral domain in RY.

Hyperbolic systems

Hyperbolic systems

The PDEs

@ Hyperbolic system

Oru + Vf(u) =0, (X, t) € DxR;.
u(x,0) = ug(x), x € D.

@ D open polyhedral domain in RY.
o f € CL(R™;R™*9), the flux.

Hyperbolic systems

Hyperbolic systems

The PDEs

@ Hyperbolic system

Oru + Vf(u) =0, (X, t) € DxR;.
u(x,0) = ug(x), x € D.

@ D open polyhedral domain in RY.
o f € CL(R™;R™*9), the flux.

@ ug, admissible initial data.

Hyperbolic systems

Hyperbolic systems

The PDEs

@ Hyperbolic system

Oru + Vf(u) =0, (X, t) € DxR;.
u(x,0) = ug(x), x € D.

D open polyhedral domain in RY.
f € CL(R™; R™*9), the flux.

ug, admissible initial data.

Periodic BCs or ug has compact support (to simplify BCs)

Hyperbolic systems

Formulation of the problem

e 3 admissible set A s.t. for all (uj,u;) € A the 1D Riemann problem

u ifx<O0

Owv + Ox(nf(v)) =0, v(x,0) = {u if x>0

has a unique “entropy” solution u(uy,u,)(x, t) for all n € R9,

nlle =1

Hyperbolic systems

Formulation of the problem

e 3 admissible set A s.t. for all (uj,u;) € A the 1D Riemann problem

u ifx<O0

Owv + Ox(nf(v)) =0, v(x,0) = {u if x>0

has a unique “entropy” solution u(uy,u,)(x, t) for all n € R9,

nlle =1

@ There exists an invariant set A C A, i.e.,

u(u,u)(x,t) €A, Vt>0,Vx €R, Vu,u, €A

Hyperbolic systems

Formulation of the problem

e 3 admissible set A s.t. for all (uj,u;) € A the 1D Riemann problem

u ifx<O0

Owv + Ox(nf(v)) =0, v(x,0) = {u if x>0

has a unique “entropy” solution u(uy,u,)(x, t) for all n € R9,

nlle =1

@ There exists an invariant set A C A, i.e.,

u(u,u)(x,t) €A, Vt>0,Vx €R, Vu,u, €A

@ A is convex.

Hyperbolic systems

Formulation of the problem

Examples of invariant sets

@ Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985),
Chueh, Conley, Smoller (1973)).

Hyperbolic systems

Formulation of the problem

Examples of invariant sets

@ Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985),
Chueh, Conley, Smoller (1973)).

@ Scalar conservation in RY: ‘ A=Jab], Va<beR ‘

Hyperbolic systems

Formulation of the problem

Examples of invariant sets

@ Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985),
Chueh, Conley, Smoller (1973)).

@ Scalar conservation in RY: ‘ A=Jab], Va<beR ‘

@ Euler: |[A={p>0, e>0, s>a}, VaeR ‘ where s is the specific entropy.

Hyperbolic systems

Formulation of the problem

Examples of invariant sets

@ Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985),
Chueh, Conley, Smoller (1973)).

@ Scalar conservation in RY: ‘ A=Jab], Va<beR ‘

o Euler: ‘ A={p>0,e>0,s>a}, VaeR ‘ where s is the specific entropy.

@ p-system (1D): etc. U = (v, u)T

[Ai={UeR xR|a< Ws(U) < Wi(U)< b}, Va<beR]

where Wi and W5 are the Riemann invariants

Wi(U) =u+ /oo V—=p'(s)ds, and Whr(U)=u— /oo v/ —p'(s)ds.

FE approximation

FE approximation

e FE approximation

‘

Hyperbolic systems

FE approximation

Approximation (time and space)

FE space/Shape functions

® {Th}n>0 shape regular conforming mesh sequence

FE approximation

Approximation (time and space)

FE space/Shape functions

® {Th}n>0 shape regular conforming mesh sequence

e {¥1,...,pn} positive + partition of unity

FE approximation

Approximation (time and space)

FE space/Shape functions

® {Th}n>0 shape regular conforming mesh sequence
e {¥1,...,pn} positive + partition of unity

e Ex: P1, Q1, Bernstein polynomials (any degree)

FE approximation

Approximation (time and space)

FE space/Shape functions

{Th}r>0 shape regular conforming mesh sequence
{#1,...,pn} positive + partition of unity
Ex: P, Q1, Bernstein polynomials (any degree)

mj := [p @i dx, lumped mass matrix

FE approximation

Approximation (time and space)

FE space/Shape functions

® {Th}n>0 shape regular conforming mesh sequence
e {¥1,...,pn} positive + partition of unity
e Ex: P1, Q1, Bernstein polynomials (any degree)

o m; := [, p;dx, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

Un+1 _

: vy
m7t+/Dv. Z (f(u"))so, widx + Z dj(uy —uj) =o.

i
A
JEL(S, JEZ(S

FE approximation

Approximation (time and space)

FE space/Shape functions

® {Th}n>0 shape regular conforming mesh sequence
e {¥1,...,pn} positive + partition of unity
e Ex: P1, Q1, Bernstein polynomials (any degree)

o m; := [, p;dx, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

Un+1 _

: vy
m7t+/Dv. Z (f(u"))so, widx + Z dj(uy —uj) =o.

i
A
JEL(S, JEZ(S

@ How should we choose artificial viscosity d:??

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Introduce
&5 = [w0Vl e

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Introduce
&5 = [w0Vl e

o Then)
u" —ur
mi—— " = > (~eyf(U)) + dU;) -

J

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Introduce
&5 = [w0Vl e

o Then)
u" —ur
mi—— " = > (~eyf(U)) + dU;) -

J

@ Observe that conservation implies Zj cj = 0, (partition of unity)

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Introduce
&5 = [w0Vl e

o Then)
u" —ur
mi—— " = > (~eyf(U)) + dU;) -

J

@ Observe that conservation implies Zj cj = 0, (partition of unity)

o We define df such that }_ dj =0, (conservation).

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Introduce
&5 = [w0Vl e

o Then)
U" - u?
mi—— " = > (~eyf(U)) + dU;) -
J
@ Observe that conservation implies Zj cj = 0, (partition of unity)

o We define df such that }_ dj =0, (conservation).

@ Rest of the talk applies to any method that can be formalized as above.

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Observe that conservation implies ZJ- cj=0and Zj dé-’ =0.

Un+1

e > (e5+(F(U) = F(U) + df(U; + U))) .

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler
@ Observe that conservation implies ZJ- cj=0and Zj dé-’ =0.

Un+1

e > (e5+(F(U) = F(U) + df(U; + U))) .

@ Try to construct convex combination ...

urt =g + 22 D,,)+Z " (e (F(U) — 7U)) + d5(U; + U)))
J#i

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler
@ Observe that conservation implies ZJ- cj=0and Zj dé-’ =0.

Un+1

e > (e5+(F(U) = F(U) + df(U; + U))) .

@ Try to construct convex combination ...

urt =g + 22 D,,)+Z " (e (F(U) — 7U)) + d5(U; + U)))
J#i

U -T2+ 3 20t (2 +u>+2°5n~(f(u;)—f<u,-)>>
b ij

P J#i

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler
o Observe that conservation implies -, c;j =0 and 3°; df! = 0.

Un+1

m,i — Z (c,, (F(U;) — F(U;)) + d2(U; + u,))

@ Try to construct convex combination ...

urt =g + 22 D,,)+Z " (e (F(U) — 7U)) + d5(U; + U)))
J#i

= U= o2 e + 30 2 ey <2 *””;Jn'“(”’)‘“”")))
ij

A M 7 M

o Introduce intermediate states U(U;, U;)

(Ui, U)) = S (U;+ U)) + g (T = (V).

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Now construct convex combination

20t
urtt = "(1722—&’ +Y_ =—dfu(u;,u;)
A i M

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Now construct convex combination

20t
urtt = "(1722—&’ +Y_ =—dfu(u;,u;)
A i M

o Are the states U(U;, U;) good objects?

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

o Define njj = c;i/||cjill,2 € RY, (unit vector).

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

o Define njj = c;i/||cjill,2 € RY, (unit vector).

o fj;(U) := n;-f(U) is an hyperbolic flux by definition of hyperbolicity!

FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

o Define njj = c;i/||cjill,2 € RY, (unit vector).
o fj;(U) := n;-f(U) is an hyperbolic flux by definition of hyperbolicity!
@ Then

— 1 llciill 2
U(U;, Uj) := E(U’ +Uj) + 2;: (F;(U;) — ;(U))).
ij

FE approximation

Approximation (time and space)

Lemma (GP (2015))

o Consider the fake 1D Riemann problem!

U, ifx<O0

v + Ox(nj-f(v)) =0, v(x,0) = {U- ifx>0
; .

FE approximation

Approximation (time and space)

Lemma (GP (2015))

o Consider the fake 1D Riemann problem!

U, ifx<O0

v + Ox(nj-f(v)) =0, v(x,0) = {U- ifx>0
; .

o Let Amax(f,nj,U;, U;) be maximum wave speed in 1D Riemann problem

FE approximation

Approximation (time and space)

Lemma (GP (2015))

o Consider the fake 1D Riemann problem!

U, ifx<O0

v + Ox(nj-f(v)) =0, v(x,0) = {U- ifx>0
; .

o Let Amax(f,nj,U;, U;) be maximum wave speed in 1D Riemann problem

_ 1
® Then U(U;,U;) = [2, v(x,t)dx with fake time t = e ”sz , provided
2

C L
” 2ij||ne2 Amax(f njj, U;, U;) - t)‘max(f’ Nijs ui, Uj) < 5

FE approximation

Approximation (time and space)

Lemma (GP (2015))

o Consider the fake 1D Riemann problem!

U, ifx<O0

v + Ox(nj-f(v)) =0, v(x,0) = {U- ifx>0
; .

o Let Amax(f,nj,U;, U;) be maximum wave speed in 1D Riemann problem

_ 1
® Then U(U;,U;) = [2, v(x,t)dx with fake time t = e ”sz , provided
2

C L
” 2ij||ne2 Amax(f njj, U;, U;) - t)‘max(f’ Nijs ui, Uj) < 5

@ Define viscosity coefficient

d; = Amax(ﬂ n,-j,U,-,Uj)||c,-jH£27 _j 75 i

FE approximation

Approximation (time and space)

Theorem (GP (2015))

Provided CFL condition, (1 — 24t |D;|) > 0.
o Local invariance: UMt € Con{U(U7,U") | j € Z(S)}-

i

FE approximation

Approximation (time and space)

Theorem (GP (2015))

Provided CFL condition, (1 — 24t |D;|) > 0.

i

o Local invariance: UMt € Con{U(U7,U") | j € Z(S)}-

@ Global invariance: The scheme preserves all the convex invariant sets.

FE approximation

Approximation (time and space)

Theorem (GP (2015))

Provided CFL condition, (1 — 24t |D;|) > 0.
1

o Local invariance: UMt € Con{U(U7,U") | j € Z(S)}-

@ Global invariance: The scheme preserves all the convex invariant sets.
(Let A be a convex invariant set, assume Ug € A,

FE approximation

Approximation (time and space)

Theorem (GP (2015))

Provided CFL condition, (1 — 24t |D;|) > 0.
1

o Local invariance: UMt € Con{U(U7,U") | j € Z(S)}-

@ Global invariance: The scheme preserves all the convex invariant sets.
(Let A be a convex invariant set, assume Ug € A, then U;’H € A foralln>0.)

FE approximation

Approximation (time and space)

Theorem (GP (2015))

Provided CFL condition, (1 — 24t |D;|) > 0.

i

o Local invariance: UMt € Con{U(U7,U") | j € Z(S)}-
@ Global invariance: The scheme preserves all the convex invariant sets.
(Let A be a convex invariant set, assume Ug € A, then U;’H € Aforalln>0.)
o Discrete entropy inequality for all the entropy pairs (1, q):
mj

R = n(UD) + [T(Mai)eider 3 dyn(up) <o.

i#E€L(S)

FE approximation

Approximation (time and space)

Is it new?

@ Loose extension of non-staggered Lax-Friedrichs to FE.

FE approximation

Approximation (time and space)

Is it new?

@ Loose extension of non-staggered Lax-Friedrichs to FE.

@ Similar results proved by Hoff (1979, 1985), Perthame-Shu (1996), Frid (2001)
in FV context and compressible Euler.

FE approximation

Approximation (time and space)

Is it new?

@ Loose extension of non-staggered Lax-Friedrichs to FE.

@ Similar results proved by Hoff (1979, 1985), Perthame-Shu (1996), Frid (2001)
in FV context and compressible Euler.

o Not aware of similar results for arbitrary hyperbolic systems and continuous FE.

FE approximation

A priori error estimate for scalar equations: Definition of mollifiers

@ Let d >0 and e=|[f|lLipd

FE approximation

A priori error estimate for scalar equations

: Definition of mollifiers

@ Let d >0 and e=|[f|lLipd

o Consider mollifiers ws and we

lt] <4,

ws(t) = 2551 <[t <25, we(x)i=Nlwe(x), x

0 otherwise,

= (x1,...

s Xd)-

FE approximation

A priori error estimate for scalar equations: Definition of mollifiers

@ Let d >0 and e=|[f|lLipd

o Consider mollifiers ws and we

= lt] <6,
wslt) = { 2l 6 < <25, we(n) = M we(x), xi= (a,eenxa).
0 otherwise,

@ Following Kruskov (1970), define
P(x,y,t,5) = we(x — y)ws(t —s), v(y,s) € Dx[0, T].

FE approximation

A priori error estimate for scalar equations: Definition of mollifiers

Let 6 > 0 and € = [|f||Lip d

o Consider mollifiers ws and we

= lt] <6,
wslt) = { 2l 6 < <25, we(n) = M we(x), xi= (a,eenxa).
0 otherwise,

@ Following Kruskov (1970), define

P(x,y,t,5) = we(x — y)ws(t —s), v(y,s) € Dx[0, T].

@ Following Cockburn Gremaud (1996,1998), define

Fs(t) = /Otwg(s) ds.

FE approximation

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-15))

Assume ug € BV(Q). Let up, : DX[0, T] — R be any approximate solution. Assume
that there is A\ a bounded functional on Lipschitz functions so that Vk € [Umin, Umax],
vy € WE(Dx[0, T]; RT):

i
- /0 /D (1T — klBeth + sgn(Th — K)(F(Th) — F(K))- V) dx
+ [|7n ((@h(T) — k)7_1'hll)(w7—h))||1g}1 — |7 ((@n(0) — k)ﬁhw('vah))ne}, < A®@),

where || - ||[}1 is the discrete L*-norm and | T — Ty| < vAt, |0 — oy < yAt, v >0 is a

uniform constant.

FE approximation

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-15))

Assume ug € BV(Q). Let up, : DX[0, T] — R be any approximate solution. Assume
that there is A\ a bounded functional on Lipschitz functions so that Vk € [Umin, Umax],

vy € WE(Dx[0, T]; RT):

i
- /0 /D (1T — klBeth + sgn(Th — K)(F(Th) — F(K))- V) dx
+ [|7n ((@h(T) — k)7_1'hll)(w7—h))||1g}1 — |7 ((@n(0) — k)ﬁhw('vah))ne}, < A®@),

where || - ||[}1 is the discrete L*-norm and | T — Ty| < vAt, |0 — oy < yAt, v >0 is a

uniform constant. Then the following estimate holds

() = 3 Tl < (e + Mluolayia +A)|

fot Jp N) dyds
Ts(t) ’

where * := supo<,< 1

FE approximation

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-15))

Assume ug € BV(Q). Let up, : DX[0, T] — R be any approximate solution. Assume
that there is A\ a bounded functional on Lipschitz functions so that Vk € [Umin, Umax],

vy € WE(Dx[0, T]; RT):

i
- /0 /D (1T — klBeth + sgn(Th — K)(F(Th) — F(K))- V) dx
+ [|7n ((@h(T) — k)7_1'hll)(w7—h))||1g}1 — |7 ((@n(0) — k)ﬁhw('vah))ne}, < A®@),

where || - ||[}1 is the discrete L*-norm and | T — Ty| < vAt, |0 — oy < yAt, v >0 is a

uniform constant. Then the following estimate holds

() = 3 Tl < (e + Mluolayia +A)|

fot Jp N) dyds
Ts(t) ’

where * := supo<,< 1

@ Generalization of results by Cockburn Gremaud (1996) and Bouchut, Perthame
(1998) based on Kruskov (1970), Kuznecov (1976).

FE approximation

A priori error estimate for scalar equations

English transla

Control on all the Kruskov entropies = Convergence estimate.

FE approximation

A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies = Convergence estimate.

Theorem (Guermond, Popov (2014-15))

Assume ug € BV and f Lipschitz. Let up be the first-order viscosity solution. Then
there is ¢y, uniform, such that the following holds if CFL< cp:

() lu(T) = un(T)ll oo (0, 1)) < ch? ifa priori BV estimate on up,.
(i) 1u(T) — un(T)| Loo (0, ;1) < ch# otherwise.

FE approximation

A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies = Convergence estimate.

Theorem (Guermond, Popov (2014-15))

Assume ug € BV and f Lipschitz. Let up be the first-order viscosity solution. Then
there is ¢y, uniform, such that the following holds if CFL< cp:

() lu(T) = un(T)ll oo (0, 1)) < ch? ifa priori BV estimate on up,.
(i) 1u(T) — un(T)| Loo (0, ;1) < ch# otherwise.

@ BV estimate is trivial in 1D (Harten's lemma).

FE approximation

A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies = Convergence estimate.

Theorem (Guermond, Popov (2014-15))

Assume ug € BV and f Lipschitz. Let up be the first-order viscosity solution. Then
there is ¢y, uniform, such that the following holds if CFL< cp:

() lu(T) = un(T)ll oo (0, 1)) < ch? ifa priori BV estimate on up,.
(i) 1u(T) — un(T)| Loo (0, ;1) < ch# otherwise.

@ BV estimate is trivial in 1D (Harten's lemma).

@ BV estimate can be proved in nD on special meshes.

FE approximation

A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies = Convergence estimate.

Theorem (Guermond, Popov (2014-15))

Assume ug € BV and f Lipschitz. Let up be the first-order viscosity solution. Then
there is ¢y, uniform, such that the following holds if CFL< cp:

() lu(T) = un(T)ll oo (0, 1)) < ch? ifa priori BV estimate on up,.
(i) 1u(T) — un(T)| Loo (0, ;1) < ch# otherwise.

@ BV estimate is trivial in 1D (Harten's lemma).
@ BV estimate can be proved in nD on special meshes.

@ Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)

FE approximation

A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies = Convergence estimate.

Theorem (Guermond, Popov (2014-15))

Assume ug € BV and f Lipschitz. Let up be the first-order viscosity solution. Then
there is ¢y, uniform, such that the following holds if CFL< cp:

() lu(T) = un(T)ll oo (0, 1)) < ch? ifa priori BV estimate on up,.
(i) 1u(T) — un(T)| Loo (0, ;1) < ch# otherwise.

BV estimate is trivial in 1D (Harten’s lemma).
BV estimate can be proved in nD on special meshes.
Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)

First error estimates for explicit continuous FE method (as far as we know).

FE approximation

High-order extension

@ Use SSP method to get higher-order in time.

FE approximation

High-order extension

Higher-order in time

@ Use SSP method to get higher-order in time.

@ Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing
paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker
(2005), Higueras (2005), etc.:

FE approximation

High-order extension

Higher-order in time

@ Use SSP method to get higher-order in time.

@ Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing
paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker
(2005), Higueras (2005), etc.:

Remark on SSP

@ SSP is not about positivity,

FE approximation

High-order extension

Higher-order in time

@ Use SSP method to get higher-order in time.

@ Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing
paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker
(2005), Higueras (2005), etc.:

Remark on SSP

@ SSP is not about positivity, it is about convexity.

FE approximation

High-order extension

Higher-order in time

@ Use SSP method to get higher-order in time.

@ Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing
paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker
(2005), Higueras (2005), etc.:

Remark on SSP

@ SSP is not about positivity, it is about convexity.

@ Let A be a convex set and assume that U — Sa¢(U) is an SSP scheme based on
Euler step U —— Ea¢(U) for all At < Aty,

FE approximation

High-order extension

Higher-order in time

@ Use SSP method to get higher-order in time.

@ Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing
paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker
(2005), Higueras (2005), etc.:

Remark on SSP

@ SSP is not about positivity, it is about convexity.

@ Let A be a convex set and assume that U — Sa¢(U) is an SSP scheme based on
Euler step U — Ep¢(U) for all At < Atg, then

(If Euler step Ea;(U) is invariant domain preserving in A)

FE approximation

High-order extension

Higher-order in time

@ Use SSP method to get higher-order in time.

@ Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing
paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker
(2005), Higueras (2005), etc.:

Remark on SSP

@ SSP is not about positivity, it is about convexity.

@ Let A be a convex set and assume that U — Sa¢(U) is an SSP scheme based on
Euler step U — Ep¢(U) for all At < Atg, then

(If Euler step Ea;(U) is invariant domain preserving in A)

then (SSP step Sa¢(U) is invariant domain preserving in A)

FE approximation

High-order extension

Higher-order in time

@ Use SSP method to get higher-order in time.

@ Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing
paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker
(2005), Higueras (2005), etc.:

Remark on SSP

@ SSP is not about positivity, it is about convexity.

@ Let A be a convex set and assume that U — Sa¢(U) is an SSP scheme based on
Euler step U — Ep¢(U) for all At < Atg, then

(If Euler step Ea;(U) is invariant domain preserving in A)

then (SSP step Sa¢(U) is invariant domain preserving in A)

@ SSP methods preserve convex domains that are invariant for forward Euler time
stepping (It's all about convexity).

FE approximation

High-order extension

Higher-order in space: Entropy viscosity

@ Use entropy viscosity (or something else)

FE approximation

High-order extension

Higher-order in space: Entropy viscosity

@ Use entropy viscosity (or something else)

@ FCT or other limitation (work in progress)

FE approximation

Strong explosion; ent. vis. sol. 1.5 million P, nodes

1=2.68259

(author: Murtazo Nazarov; 1.5 million P> nodes)

FE approximation

Mach 10 ramp, ent. vis. sol. 1.2 million P, nodes

(author: Murtazo Nazarov; 1.2 millions P nodes)

@

Hyperbolic systems + ALE

Hyperbolic systems + ALE

e Hyperbolic systems + ALE

‘

Hyperbolic systems

Hyperbolic systems + ALE

ALE formulation

o Instead of tracking the characteristics (there are too many), we want to move the
mesh.

Hyperbolic systems + ALE

ALE formulation

o Instead of tracking the characteristics (there are too many), we want to move the
mesh.

ALE formulation

o Let d : RIXR, — RY be a uniformly Lipschitz mapping
(R? 5 ¢ — ®(&,t) € RY invertible on [0, t*])

Hyperbolic systems + ALE

ALE formulation

o Instead of tracking the characteristics (there are too many), we want to move the
mesh.

ALE formulation

o Let d : RIXR, — RY be a uniformly Lipschitz mapping
(R? 5 ¢ — ®(&,t) € RY invertible on [0, t*])

o Let va(x,t) = 9:®(®; !(x), t) Arbitrary Lagrangian Eulerian velocity

Hyperbolic systems + ALE

ALE formulation

o Instead of tracking the characteristics (there are too many), we want to move the
mesh.

ALE formulation

o Let d : RIXR, — RY be a uniformly Lipschitz mapping
(R? 5 ¢ — ®(&,t) € RY invertible on [0, t*])

o Let va(x,t) = 9:®(®; !(x), t) Arbitrary Lagrangian Eulerian velocity

@ We are going to use vp to move the mesh.

Hyperbolic systems + ALE

ALE formulation

o Instead of tracking the characteristics (there are too many), we want to move the
mesh.

ALE formulation

o Let d : RIXR, — RY be a uniformly Lipschitz mapping
(R? 5 ¢ — ®(&,t) € RY invertible on [0, t*])

o Let va(x,t) = 9:®(®; !(x), t) Arbitrary Lagrangian Eulerian velocity

@ We are going to use vp to move the mesh.

The following holds in the distribution sense (in time) over [0, t*] for every function
Y € CQ(RY; R) (with the notation o(x, t) := P(®;1(x))):

O /Rd u(x, t)p(x, t) dx = /I;d V- (u®va — f(u))e(x, t) dx.

Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

o Let (77,0)h>0 be a shape-regular sequence of matching meshes.

Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

o Let (77,0)h>0 be a shape-regular sequence of matching meshes.

o Reference Lagrange finite element (R, Peeo, fgeo) for geometry

Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

o Let (77,0)h>0 be a shape-regular sequence of matching meshes.
o Reference Lagrange finite element (R, Peeo, fgeo) for geometry

- , e .
o Lagrange nodes {ai}fe{l:nsgso} and Lagrange shape functions {6; eo}ie{lznfﬁo}

Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

Let (77,0)h>0 be a shape-regular sequence of matching meshes.
o Reference Lagrange finite element (R, Peeo, fgeo) for geometry

- , e .
o Lagrange nodes {ai}fe{l:nsgso} and Lagrange shape functions {6; eo}ie{lznfﬁo}

{@7}ic1:1ee0y collection of all the Lagrange nodes in the mesh 7"

Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

Let (77,0)h>0 be a shape-regular sequence of matching meshes.
o Reference Lagrange finite element (R, Peeo, fgeo) for geometry

- , e .
o Lagrange nodes {ai}fe{l:nsgso} and Lagrange shape functions {6; eo}ie{lznfﬁo}

@ {a7}ic(1:1ee0} collection of all the Lagrange nodes in the mesh 7"
o j8%° : T7x{1:nf°} — {1:/8%°} geometric connectivity array

Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

o Let (77,0)h>0 be a shape-regular sequence of matching meshes.
o Reference Lagrange finite element (R, Peeo, fgeo) for geometry

- , e .
o Lagrange nodes {ai}fe{l:nsgso} and Lagrange shape functions {6; eo}ie{lznfﬁo}

{@7}ic1:1ee0y collection of all the Lagrange nodes in the mesh 7"

8% T'x{1:n5°} —> {1:/8%°} geometric connectivity array

@ Geometric transformation T¢ : K — K defined by

Ti(x) = Z ajngQO(i,K)a;geo (%)
ie{1:n5°°}

sh

Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

o Let (77,0)h>0 be a shape-regular sequence of matching meshes.
o Reference Lagrange finite element (R, Peeo, fgeo) for geometry

- , e .
o Lagrange nodes {ai}fe{l:nsgso} and Lagrange shape functions {6; eo}ie{lznfﬁo}

{@7}ic1:1ee0y collection of all the Lagrange nodes in the mesh 7"

8% T'x{1:n5°} —> {1:/8%°} geometric connectivity array

@ Geometric transformation T¢ : K — K defined by

Ti(x) = Z ajngQO(i,K)a;geo (%)
ie{1:n5°°}

sh

= Mesh motion controlled by motion of Lagrange nodes

Hyperbolic systems + ALE

Finite elements

Approximating Finite elements

o Reference finite element (K, P, %)}

Hyperbolic systems + ALE

Finite elements

Approximating Finite elements

o Reference finite element (K, P, %)}

o Shape functions ;(x) > 0, 2iciiing} 6;(x) =1

Hyperbolic systems + ALE

Finite elements

Approximating Finite elements

o Reference finite element (K, P, %)}
o Shape functions ;(x) > 0, 2iciiing} 6;(x) =1
@ Finite element spaces
P(T7) :={ve CO(D";R); vikoTg € ﬁ, VK € T},
Pa(Ty) := [P(TY,
Pm(Ty") == [P(TR)]™-

Hyperbolic systems + ALE

Finite elements

Approximating Finite elements

o Reference finite element (K, P, %)}
o Shape functions ;(x) > 0, 2iciiing} 6;(x) =1
@ Finite element spaces
P(T7) :={ve CO(D";R); vikoTg € ﬁ, VK € T},
Pa(Ty) := [P(TY,
Pm(Ty") == [P(TR)]™-

® {¥/}icf1:/y global shape functions in P(7,").

Hyperbolic systems + ALE

Finite elements

The algorithm

o Initialization: m% := [L 47 (x)dx upg := Pieq1n U949 € Prm(T2)

Hyperbolic systems + ALE

Finite elements

The algorithm

o Initialization: m% := [L 47 (x)dx upg := =Yiequny U949 € Prm(T2)
@ ALE velocity field given: w" = Zie{l:l} Wiyt € Py(T,),

Hyperbolic systems + ALE

Finite elements

The algorithm

o Initialization: m% := [L 47 (x)dx upg := =Yiequny U949 € Prm(T2)
@ ALE velocity field given: w" = Zie{l:l} Wiyt € Py(T,),
@ Mesh motion:

n+1

al"™ =a] + Atw"(a;).

Hyperbolic systems + ALE

Finite elements

The algorithm

o Initialization: m% := [L 47 (x)dx upg := =Yiequny U949 € Prm(T2)
@ ALE velocity field given: w" = Zie{l:l} Wiyt € Py(T,),

@ Mesh motion:
a’™l =al + Atw"(a’).

Mass update: (do not use m;1+1 = Iz 1/;[(’“ dx 1)

m! ™ = m? + At/ P (x)V-w"(x) dx.
SO

Hyperbolic systems + ALE

Finite elements

The algorithm

o Initialization: m% := [L 47 (x)dx upg := =Yiequny U949 € Prm(T2)
@ ALE velocity field given: w" = Zie{l:l} Wiyt € Py(T,),

@ Mesh motion:

a’™l =al + Atw"(a’).

@ Mass update: (do not use m;1+1 = Iz 1/;[(’“ dx)

m! ™ = m? + At/ P (x)V-w"(x) dx.
SO

@ Update approximation field uz+1

n+1Un+1 nUn

S VD D
JEZ(S])

+ [(2w - urownune)urm ax=o

je{1:1}

Hyperbolic systems + ALE

Finite elements

Definition of d:?

o Consider flux g?(v) := f(v)—v®@ W7, j € {1:/}

Hyperbolic systems + ALE

Finite elements

Definition of d;
o Consider flux g?(v) := f(v)—v®@ W7, j € {1:/}

@ Consider one-dimensional Riemann problem:

U? ifx<0
Oev + O(gl(v)nl) =0, (x,t) € RxRy, v(x,0) = {U; M
; :

Hyperbolic systems + ALE

Finite elements

Definition of d;
o Consider flux g?(v) := f(v)—v®@ W7, j € {1:/}

@ Consider one-dimensional Riemann problem:

U? ifx<0
Oev + O(gl(v)nl) =0, (x,t) € RxRy, v(x,0) = {U; M
; :

@ Define dé? by

d :max()\max(gj,nU,U")”C Il[2 Amax(g,, Jl’Un n)” Hﬂ) ‘

Hyperbolic systems + ALE

Finite elements

Definition of d:?
o Consider flux g?(v) := f(v)—v®@ W7, j € {1:/}
@ Consider one-dimensional Riemann problem:

U? ifx<0
Oev + O(gl(v)nl) =0, (x,t) € RxRy, v(x,0) = {U; M
; :

@ Define dé? by

d :max()\max(gj,nU,U")”C Il[2 Amax(g,, Jl’Un n)” Hﬂ) ‘

@ Note that

Amax(g], njj, U7, U7) = max(|AL(F, nf, U, U]) — W]-n;

Aw(F, u U?) — WY-ng)).

Hyperbolic systems + ALE

Conservation and invariant domain property

Theorem (GPSY (2015))

@ The total mass Z,e{l:,} m?U7 is conserved.

Hyperbolic systems + ALE

Conservation and invariant domain property

Theorem (GPSY (2015))

@ The total mass Z,e{l:,} m?U7 is conserved.

Provided CFL condition, (1 — 245 D;|) > 0.

o Local invariance: UMt € Con{U(U7,U") | j € Z(S)}-

i

Hyperbolic systems + ALE

Conservation and invariant domain property

Theorem (GPSY (2015))

@ The total mass Z,e{l:,} m?U7 is conserved.

Provided CFL condition, (1 — 245 D;|) > 0.
o Local invariance: UMt € Con{U(U7,U") | j € Z(S)}-
@ Global invariance. Let A be a convex invariant set, assume Uy € A, then
U;’H € A for all n > 0. The scheme preserves all the convex invariant sets.

Hyperbolic systems + ALE

Conservation and invariant domain property

Theorem (GPSY (2015))

@ The total mass Z,e{l:,} m?U7 is conserved.

Provided CFL condition, (1 — 2A—§|D,-,-|) >0.

o Local invariance: U™ € Conv{U(U?, u?) | Jj € Z(Si)}

@ Global invariance. Let A be a convex invariant set, assume Uy € A, then
U;’H € A for all n > 0. The scheme preserves all the convex invariant sets.

o Discrete entropy inequality for any entropy pair (1, q)

1
= (U —min(U7)) < - D din(Uy)

At JET(SP)

~ [v(3 (@ - aupwyuse)u e a

JEZ(S])

Hyperbolic systems + ALE

Conservation and invariant domain property

Theorem (GPSY (2015))

@ The total mass Z,e{l:,} m?U7 is conserved.

Provided CFL condition, (1 — 2A—§|D,-,-|) >0.

o Local invariance: U™ € Conv{U(U?, u?) | Jj € Z(Si)}

@ Global invariance. Let A be a convex invariant set, assume Uy € A, then
U;’H € A for all n > 0. The scheme preserves all the convex invariant sets.

o Discrete entropy inequality for any entropy pair (1, q)

1
= (U —min(U7)) < - D din(Uy)

At JET(SP)

~ [v(3 (@ - aupwyuse)u e a

JEZ(S])

Corollary (GPSY (2015))

The scheme preserves constant states (Discrete Global Conservation Law (DGCL))

Hyperbolic systems + ALE

2D Burgers

ou+V-(3uB) =0, w(x)=1s, with B:=(1,1)T, S:=(0,1)

Figure: Burgers equation, 128 x 128 mesh. Left: Q; FEM with 25 contours; Center left: Final Q
mesh; Center right: P; FEM with 25 contours; Right: Final P; mesh.

Hyperbolic systems + ALE

Nonconvex flux (KPP problem)

Oru+ VAf(u) =0, u(x)= 3.257rIleH[2<1 +0.25mw, with f(u) = (sin u,cos u)T

Figure: KPP problem, 128 x 128 mesh. Left: Q; FEM with 25 contours; Center left: Final Q
mesh; Center right: ’; FEM with 25 contours; Right: Final ’; mesh.

Hyperbolic systems + ALE

o Compressible Euler, 2D Noh problem, v = %

Hyperbolic systems + ALE

o Compressible Euler, 2D Noh problem, v = %

o Initial data

po(x) = 1.0, wo(x) = ———Tc0, po(x)=10"".
lIxl¢2
Q1 Py
dofs [2-norm LT-norm [2-norm LT-norm
961 | 2.60 - 1.44 - 2.89 - 1.71 -

3721 | 1.81 0.52 | 8.45E-01 | 0.77 || 2.21 0.39 1.09 0.64
14641 | 1.16 0.64 | 4.21E-01 | 1.01 1.42 0.64 | 5.15E-01 | 1.08
58081 | 7.66E-01 | 0.60 | 2.10E-01 | 0.99 || 9.39E-01 | 0.59 | 2.60E-01 | 0.99
231361 | 5.21E-01 | 0.56 | 1.06E-01 | 0.98 6.33E-01 | 0.57 | 1.28E-01 | 1.02

Table: Noh problem, convergence test, T = 0.6, CFL = 0.2

Hyperbolic systems + ALE

Compressible Euler, 2D Noh problem, v = 2

3

Figure: Noh problem at t = 0.6, 9696 mesh. From left to right: density field with Q;
approximation (25 contour lines); mesh with QQ; approximation; density field with IP; approximation
(25 contour lines); mesh with P; approximation.

Hyperbolic systems + ALE

Compressible Euler, 3D Noh problem, v = 3

Figure: Density cuts for the 3D Noh problem at t = 0.6.

Figure: 3D Noh problem at t = 0.6. 64 MPI tasks division.

Maximum wave speed

Maximum wave speed

I 0 Maximum wave speed

Hyperbolic systems

Maximum wave speed

How to compute local viscosity?

° d,? = 2)\max(f7 nijzuizuj)”cij‘lézv for j 76 i

@ Amax(f, njj, U;, U;) is max wave speed for Riemann problem

Maximum wave speed

Riemann fan for Euler, p = (v — 1)pe

1 Contact
A _
2
M
+
+
b W wg & A
L 5
%, 5>
ey o
e, &
%, &
A %y, ¥
1 ey
WL Wr
X

@ Structure of the Riemann problem (Lax (1957), Bressan (2000), Toro (2009)).
@ Waves 1 and 3 are genuinely nonlinear (either shock or rarefaction)
@ Wave 2 is linearly degenerate (contact)

o wi = (pr,ur,p), wi = (pf,u*,p*), wg = (pk, u*, p*), Wg = (pr, UR, PR),

Maximum wave speed

Maximum wave speed bound

Euler system, p = (v — 1)pe

@ Given the states U; and Ug, we have

1 1
* 1 2 * 1 2
N o= u—a (1+wi> < s = uptag (Hwi)
PL 2y PR 2y

where p* is the pressure of the intermediate state.

@ Then and define
>\ma><(UL7 UR) = max(|>\1|7 |>‘3|)

Maximum wave speed

Maximum wave speed bound

Euler system, p = (v — 1)pe

@ Given the states U; and Ug, we have

(NI

1
14 (PP = PR+ *PRHL)

< A3 = urtar (
PR 2y

*— 1
N o= u—a (1+wi>

pL 2y
where p* is the pressure of the intermediate state.

@ Then and define
>\ma><(UL7 UR) = max(|>\1|7 |>‘3|)

@ In practice we just need a good upper bound of p*: p* > p*. Then

Amax(UL, Ug) = max(|A1(p")1, [A3(P™))-

Maximum wave speed

Maximum wave speed bound

@ To avoid computing p*, it is a common practice to estimate Amax by
max(|u| + ar, |ur| + ar)
@ This estimate is inaccurate and can be wrong.

Maximum wave speed

Maximum wave speed bound

@ Counter-example 1: 1-wave and the 3-wave are both shocks Toro 2009, §4.3.3

oL

PR

uL

ur

pL

PR

5.99924

5.99242

19.5975

-6.19633

460.894

46.0950

® Amax & 12.25 but max(|uL| + a, |ur| + ar) = 29.97, large overestimation

Maximum wave speed

Maximum wave speed bound

@ Counter-example 2: 1-wave is a shock and the 3-wave is an expansion

PL PR uL Ur PL PR
0.01 | 1000 | O 0 0.01 | 1000

® Amax & 5.227 but max(|u| + ar, |ug| + ar) ~ 1.183, large underestimation

Maximum wave speed

Definition of 5*

o Let p* be the zero of ¢, then

2y

-1
- a, +ar — 5 (up — ur)
P -1 =1

-t -t
aLp; 7 + arpg 7

Lemma (GP (2016))

We have p* < p* in the physical range of v, 1 < v < %

@ p* is an upper bound on p*.

e min(pg, pr) < p* < p* (starting guess for cubic Newton alg., GP (2016))

Maximum wave speed

Conclusions

Continuous finite elements

@ Continuous FE are viable tools to solve hyperbolic systems.

Maximum wave speed

Conclusions

Continuous finite elements

@ Continuous FE are viable tools to solve hyperbolic systems.

@ Continuous FE are viable alternatives to DG and FV.

Maximum wave speed

Conclusions

Continuous finite elements

@ Continuous FE are viable tools to solve hyperbolic systems.
@ Continuous FE are viable alternatives to DG and FV.

o Continuous FE are easy to implement and parallelize.

Maximum wave speed

Conclusions

Continuous finite elements

Continuous FE are viable tools to solve hyperbolic systems.

°
@ Continuous FE are viable alternatives to DG and FV.
o Continuous FE are easy to implement and parallelize.
°

Exa-scale computing will need simple, robust, methods.

Maximum wave speed

Conclusions

Continuous finite elements

Continuous FE are viable tools to solve hyperbolic systems.

Continuous FE are viable alternatives to DG and FV.

Continuous FE are easy to implement and parallelize.

Exa-scale computing will need simple, robust, methods.

Current and future work

@ Convergence analysis, error estimates beyond first-order.

Maximum wave speed

Conclusions

Continuous finite elements

Continuous FE are viable tools to solve hyperbolic systems.
Continuous FE are viable alternatives to DG and FV.

Continuous FE are easy to implement and parallelize.

Exa-scale computing will need simple, robust, methods.

Current and future work

@ Convergence analysis, error estimates beyond first-order.

@ Extension to DG.

Maximum wave speed

Conclusions

Continuous finite elements

Continuous FE are viable tools to solve hyperbolic systems.
Continuous FE are viable alternatives to DG and FV.

Continuous FE are easy to implement and parallelize.

Exa-scale computing will need simple, robust, methods.

Current and future work

@ Convergence analysis, error estimates beyond first-order.
o Extension to DG.

@ Extension of BBZ to higher-order polynomials (order 3 and higher).

Maximum wave speed

Conclusions

Continuous finite elements

Continuous FE are viable tools to solve hyperbolic systems.
Continuous FE are viable alternatives to DG and FV.

Continuous FE are easy to implement and parallelize.

Exa-scale computing will need simple, robust, methods.
Current and future work
Convergence analysis, error estimates beyond first-order.

°
o Extension to DG.

@ Extension of BBZ to higher-order polynomials (order 3 and higher).
°

Extension of BBZ to systems (Shallow water, Euler).

Maximum wave speed

Conclusions

Continuous finite elements

@ Continuous FE are viable tools to solve hyperbolic systems.
@ Continuous FE are viable alternatives to DG and FV.
o Continuous FE are easy to implement and parallelize.

@ Exa-scale computing will need simple, robust, methods.

Current and future work

@ Convergence analysis, error estimates beyond first-order.

o Extension to DG.

@ Extension of BBZ to higher-order polynomials (order 3 and higher).
o Extension of BBZ to systems (Shallow water, Euler).

o Extension to equations with source terms (Radiative transport, Radiative
hydrodynamics).

	Hyperbolic systems
	FE approximation
	Hyperbolic systems + ALE
	Maximum wave speed

