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The PDEs

@ Hyperbolic system

Oru + Vf(u) =0, (X, t) € DxR;.
u(x,0) = ug(x), x € D.

D open polyhedral domain in RY.
f € CL(R™; R™*9), the flux.

ug, admissible initial data.

Periodic BCs or ug has compact support (to simplify BCs)
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Formulation of the problem

e 3 admissible set A s.t. for all (uj,u;) € A the 1D Riemann problem

u ifx<O0

Owv + Ox(nf(v)) =0, v(x,0) = {u if x>0

has a unique “entropy” solution u(uy,u,)(x, t) for all n € R9,

nlle =1

@ There exists an invariant set A C A, i.e.,

u(u,u)(x,t) €A, Vt>0,Vx €R, Vu,u, €A

@ A is convex.
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Hyperbolic systems

Formulation of the problem

Examples of invariant sets

@ Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985),
Chueh, Conley, Smoller (1973)).

@ Scalar conservation in RY: ‘ A=Jab], Va<beR ‘

o Euler: ‘ A={p>0,e>0,s>a}, VaeR ‘ where s is the specific entropy.

@ p-system (1D): etc. U = (v, u)T

[Ai={UeR xR|a< Ws(U) < Wi(U)< b}, Va<beR]

where Wi and W5 are the Riemann invariants

Wi(U) =u+ /oo V—=p'(s)ds, and Whr(U)=u— /oo v/ —p'(s)ds.
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FE space/Shape functions

® {Th}n>0 shape regular conforming mesh sequence
e {¥1,...,pn} positive + partition of unity
e Ex: P1, Q1, Bernstein polynomials (any degree)

o m; := [, p;dx, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

Un+1 _

: vy
m7t+/Dv. Z (f(u"))so, widx + Z dj(uy —uj) =o.

i
A
JEL(S, JEZ(S

@ How should we choose artificial viscosity d:??
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Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Introduce
&5 = [ w0Vl e

o Then )
U" - u?
mi—— " = > (~eyf(U)) + dU;) -
J
@ Observe that conservation implies Zj cj = 0, (partition of unity)

o We define df such that }_ dj =0, (conservation).

@ Rest of the talk applies to any method that can be formalized as above.
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Un+1

e > (e5+(F(U) = F(U) + df(U; + U))) .
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@ Observe that conservation implies ZJ- cj=0and Zj dé-’ =0.

Un+1

e > (e5+(F(U) = F(U) + df(U; + U))) .

@ Try to construct convex combination ...

urt =g + 22 D,,)+Z " (e (F(U) — 7U)) + d5(U; + U)))
J#i

U -T2+ 3 20t (2 +u>+2°5n~(f(u;)—f<u,-)>>
b ij
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Algorithm: Galerkin + First-order viscosity + Explicit Euler
o Observe that conservation implies -, c;j =0 and 3°; df! = 0.

Un+1

m,i — Z (c,, (F(U;) — F(U;)) + d2(U; + u,))

@ Try to construct convex combination ...

urt =g + 22 D,,)+Z " (e (F(U) — 7U)) + d5(U; + U)))
J#i

= U= o2 e + 30 2 ey <2 *””;Jn'“(”’)‘“”")))
ij

A M 7 M

o Introduce intermediate states U(U;, U;)

(Ui, U)) = S (U;+ U)) + g (T = (V).
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Algorithm: Galerkin + First-order viscosity + Explicit Euler

@ Now construct convex combination

20t
urtt = "(1722—&’ +Y_ =—dfu(u;,u;)
A i M

o Are the states U(U;, U;) good objects?




FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

o Define njj = c;i/||cjill,2 € RY, (unit vector).




FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

o Define njj = c;i/||cjill,2 € RY, (unit vector).

o fj;(U) := n;-f(U) is an hyperbolic flux by definition of hyperbolicity!




FE approximation

Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

o Define njj = c;i/||cjill,2 € RY, (unit vector).
o fj;(U) := n;-f(U) is an hyperbolic flux by definition of hyperbolicity!
@ Then

— 1 llciill 2
U(U;, Uj) := E(U’ +Uj) + 2;: (F;(U;) — ;(U))).
ij
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Lemma (GP (2015))

o Consider the fake 1D Riemann problem!

U, ifx<O0

v + Ox(nj-f(v)) =0, v(x,0) = {U- ifx>0
; .

o Let Amax(f,nj,U;, U;) be maximum wave speed in 1D Riemann problem

_ 1
® Then U(U;,U;) = [2, v(x,t)dx with fake time t = e ”sz , provided
2

C L
” 2ij||ne2 Amax(f njj, U;, U; ) - t)‘max(f’ Nijs ui, Uj) < 5

@ Define viscosity coefficient

d; = Amax(ﬂ n,-j,U,-,Uj)||c,-jH£27 _j 75 i
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Theorem (GP (2015))

Provided CFL condition, (1 — 24t |D;|) > 0.

i

o Local invariance: UMt € Con{U(U7,U") | j € Z(S)}-
@ Global invariance: The scheme preserves all the convex invariant sets.
(Let A be a convex invariant set, assume Ug € A, then U;’H € Aforalln>0.)
o Discrete entropy inequality for all the entropy pairs (1, q):
mj

R = n(UD) + [ T(Mai)eider 3 dyn(up) <o.

i#E€L(S)
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Approximation (time and space)

Is it new?

@ Loose extension of non-staggered Lax-Friedrichs to FE.

@ Similar results proved by Hoff (1979, 1985), Perthame-Shu (1996), Frid (2001)
in FV context and compressible Euler.

o Not aware of similar results for arbitrary hyperbolic systems and continuous FE.
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@ Let d >0 and e=|[f|lLipd

o Consider mollifiers ws and we

lt] <4,

ws(t) = 2551 <[t <25, we(x)i=Nlwe(x), x

0 otherwise,

= (x1,...

s Xd)-
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A priori error estimate for scalar equations: Definition of mollifiers

Let 6 > 0 and € = [|f||Lip d

o Consider mollifiers ws and we

= lt] <6,
wslt) = { 2l 6 < <25, we(n) = M we(x), xi= (a,eenxa).
0 otherwise,

@ Following Kruskov (1970), define

P(x,y,t,5) = we(x — y)ws(t —s), v(y,s) € Dx[0, T].

@ Following Cockburn Gremaud (1996,1998), define

Fs(t) = /Otwg(s) ds.
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A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-15))

Assume ug € BV(Q). Let up, : DX[0, T] — R be any approximate solution. Assume
that there is A\ a bounded functional on Lipschitz functions so that Vk € [Umin, Umax],
vy € WE(Dx[0, T]; RT):

i
- /0 /D (1T — klBeth + sgn(Th — K)(F(Th) — F(K))- V) dx
+ [|7n ((@h(T) — k)7_1'hll)(w7—h))||1g}1 — |7 ((@n(0) — k)ﬁhw('vah))ne}, < A®@),

where || - ||[}1 is the discrete L*-norm and | T — Ty| < vAt, |0 — oy < yAt, v >0 is a

uniform constant.
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A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-15))

Assume ug € BV(Q). Let up, : DX[0, T] — R be any approximate solution. Assume
that there is A\ a bounded functional on Lipschitz functions so that Vk € [Umin, Umax],

vy € WE(Dx[0, T]; RT):

i
- /0 /D (1T — klBeth + sgn(Th — K)(F(Th) — F(K))- V) dx
+ [|7n ((@h(T) — k)7_1'hll)(w7—h))||1g}1 — |7 ((@n(0) — k)ﬁhw('vah))ne}, < A®@),

where || - ||[}1 is the discrete L*-norm and | T — Ty| < vAt, |0 — oy < yAt, v >0 is a

uniform constant. Then the following estimate holds

() = 3 Tl < (e + Mluolayia +A)|

fot Jp N) dyds
Ts(t) ’

where \* := supo<,< 1

@ Generalization of results by Cockburn Gremaud (1996) and Bouchut, Perthame
(1998) based on Kruskov (1970), Kuznecov (1976).
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A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies = Convergence estimate.

Theorem (Guermond, Popov (2014-15))

Assume ug € BV and f Lipschitz. Let up be the first-order viscosity solution. Then
there is ¢y, uniform, such that the following holds if CFL< cp:

() lu(T) = un(T)ll oo (0, 1)) < ch? ifa priori BV estimate on up,.
(i) 1u(T) — un(T)| Loo (0, ;1) < ch# otherwise.

BV estimate is trivial in 1D (Harten’s lemma).
BV estimate can be proved in nD on special meshes.
Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)

First error estimates for explicit continuous FE method (as far as we know).
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@ Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing
paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker
(2005), Higueras (2005), etc.:

Remark on SSP

@ SSP is not about positivity, it is about convexity.

@ Let A be a convex set and assume that U — Sa¢(U) is an SSP scheme based on
Euler step U — Ep¢(U) for all At < Atg, then

(If Euler step Ea;(U) is invariant domain preserving in A)

then (SSP step Sa¢(U) is invariant domain preserving in A)

@ SSP methods preserve convex domains that are invariant for forward Euler time
stepping (It's all about convexity).




FE approximation

High-order extension

Higher-order in space: Entropy viscosity

@ Use entropy viscosity (or something else)




FE approximation

High-order extension

Higher-order in space: Entropy viscosity

@ Use entropy viscosity (or something else)

@ FCT or other limitation (work in progress)
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Strong explosion; ent. vis. sol. 1.5 million P, nodes

1=2.68259

(author: Murtazo Nazarov; 1.5 million P> nodes)




FE approximation

Mach 10 ramp, ent. vis. sol. 1.2 million P, nodes

(author: Murtazo Nazarov; 1.2 millions P nodes)

@
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ALE formulation

o Instead of tracking the characteristics (there are too many), we want to move the
mesh.

ALE formulation

o Let d : RIXR, — RY be a uniformly Lipschitz mapping
(R? 5 ¢ — ®(&,t) € RY invertible on [0, t*])

o Let va(x,t) = 9:®(®; !(x), t) Arbitrary Lagrangian Eulerian velocity

@ We are going to use vp to move the mesh.

The following holds in the distribution sense (in time) over [0, t*] for every function
Y € CQ(RY; R) (with the notation o(x, t) := P(®;1(x))):

O /Rd u(x, t)p(x, t) dx = /I;d V- (u®va — f(u))e(x, t) dx.
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Finite elements

Geometric Finite elements

Let (77,0)h>0 be a shape-regular sequence of matching meshes.
o Reference Lagrange finite element (R, Peeo, fgeo) for geometry

- , e .
o Lagrange nodes {ai}fe{l:nsgso} and Lagrange shape functions {6; eo}ie{lznfﬁo}

@ {a7}ic(1:1ee0} collection of all the Lagrange nodes in the mesh 7"
o j8%° : T7x{1:nf°} — {1:/8%°} geometric connectivity array




Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

o Let (77,0)h>0 be a shape-regular sequence of matching meshes.
o Reference Lagrange finite element (R, Peeo, fgeo) for geometry
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o Lagrange nodes {ai}fe{l:nsgso} and Lagrange shape functions {6; eo}ie{lznfﬁo}

{@7}ic1:1ee0y collection of all the Lagrange nodes in the mesh 7"

8% T'x{1:n5°} —> {1:/8%°} geometric connectivity array

@ Geometric transformation T¢ : K — K defined by

Ti(x) = Z ajngQO(i,K)a;geo (%)
ie{1:n5°°}

sh




Hyperbolic systems + ALE

Finite elements

Geometric Finite elements

o Let (77,0)h>0 be a shape-regular sequence of matching meshes.
o Reference Lagrange finite element (R, Peeo, fgeo) for geometry

- , e .
o Lagrange nodes {ai}fe{l:nsgso} and Lagrange shape functions {6; eo}ie{lznfﬁo}

{@7}ic1:1ee0y collection of all the Lagrange nodes in the mesh 7"

8% T'x{1:n5°} —> {1:/8%°} geometric connectivity array

@ Geometric transformation T¢ : K — K defined by

Ti(x) = Z ajngQO(i,K)a;geo (%)
ie{1:n5°°}

sh

= Mesh motion controlled by motion of Lagrange nodes
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Finite elements

Approximating Finite elements

o Reference finite element (K, P, %)}
o Shape functions ;(x) > 0, 2iciiing} 6;(x) =1
@ Finite element spaces
P(T7) :={ve CO(D";R); vikoTg € ﬁ, VK € T},
Pa(Ty) := [P(TY,
Pm(Ty") == [P(TR)]™-

® {¥/}icf1:/y global shape functions in P(7,").
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The algorithm

o Initialization: m% := [L 47 (x)dx upg := =Yiequny U949 € Prm(T2)
@ ALE velocity field given: w" = Zie{l:l} Wiyt € Py(T,),
@ Mesh motion:

n+1

al"™ =a] + Atw"(a;).
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Finite elements

The algorithm

o Initialization: m% := [L 47 (x)dx upg := =Yiequny U949 € Prm(T2)
@ ALE velocity field given: w" = Zie{l:l} Wiyt € Py(T,),

@ Mesh motion:

a’™l =al + Atw"(a’).

@ Mass update: (do not use m;1+1 = Iz 1/;[(’“ dx )

m! ™ = m? + At/ P (x)V-w"(x) dx.
SO

@ Update approximation field uz+1

n+1Un+1 nUn

S VD D
JEZ(S])

+ [ (2w - urownune )urm ax=o

je{1:1}
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Finite elements

Definition of d:?
o Consider flux g?(v) := f(v)—v®@ W7, j € {1:/}
@ Consider one-dimensional Riemann problem:

U? ifx<0
Oev + O(gl(v)nl) =0, (x,t) € RxRy, v(x,0) = {U; M
; :

@ Define dé? by

d :max()\max(gj,nU,U" )”C Il[2 Amax(g,, Jl’Un n)” Hﬂ) ‘

@ Note that

Amax(g], njj, U7, U7) = max(|AL(F, nf, U, U]) — W]-n;

Aw(F, u U?) — WY-ng)).
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Provided CFL condition, (1 — 245 D;|) > 0.
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U;’H € A for all n > 0. The scheme preserves all the convex invariant sets.
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Conservation and invariant domain property

Theorem (GPSY (2015))

@ The total mass Z,e{l:,} m?U7 is conserved.

Provided CFL condition, (1 — 2A—§|D,-,-|) >0.

o Local invariance: U™ € Conv{U(U?, u?) | Jj € Z(Si)}

@ Global invariance. Let A be a convex invariant set, assume Uy € A, then
U;’H € A for all n > 0. The scheme preserves all the convex invariant sets.

o Discrete entropy inequality for any entropy pair (1, q)

1
= (U —min(U7)) < - D din(Uy)

At JET(SP)

~ [v( 3 (@ - aupwyuse )u e a

JEZ(S])




Hyperbolic systems + ALE

Conservation and invariant domain property

Theorem (GPSY (2015))

@ The total mass Z,e{l:,} m?U7 is conserved.

Provided CFL condition, (1 — 2A—§|D,-,-|) >0.

o Local invariance: U™ € Conv{U(U?, u?) | Jj € Z(Si)}

@ Global invariance. Let A be a convex invariant set, assume Uy € A, then
U;’H € A for all n > 0. The scheme preserves all the convex invariant sets.

o Discrete entropy inequality for any entropy pair (1, q)

1
= (U —min(U7)) < - D din(Uy)

At JET(SP)

~ [v( 3 (@ - aupwyuse )u e a

JEZ(S])

Corollary (GPSY (2015))

The scheme preserves constant states (Discrete Global Conservation Law (DGCL))
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2D Burgers

ou+V-(3uB) =0, w(x)=1s, with B:=(1,1)T, S:=(0,1)

Figure: Burgers equation, 128 x 128 mesh. Left: Q; FEM with 25 contours; Center left: Final Q
mesh; Center right: P; FEM with 25 contours; Right: Final P; mesh.
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Nonconvex flux (KPP problem)

Oru+ VAf(u) =0, u(x)= 3.257rIleH[2<1 +0.25mw, with f(u) = (sin u,cos u)T

Figure: KPP problem, 128 x 128 mesh. Left: Q; FEM with 25 contours; Center left: Final Q
mesh; Center right: ’; FEM with 25 contours; Right: Final ’; mesh.
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o Compressible Euler, 2D Noh problem, v = %

o Initial data

po(x) = 1.0, wo(x) = ———Tc0, po(x)=10"".
lIxl¢2
Q1 Py
# dofs [2-norm LT-norm [2-norm LT-norm
961 | 2.60 - 1.44 - 2.89 - 1.71 -

3721 | 1.81 0.52 | 8.45E-01 | 0.77 || 2.21 0.39 1.09 0.64
14641 | 1.16 0.64 | 4.21E-01 | 1.01 1.42 0.64 | 5.15E-01 | 1.08
58081 | 7.66E-01 | 0.60 | 2.10E-01 | 0.99 || 9.39E-01 | 0.59 | 2.60E-01 | 0.99
231361 | 5.21E-01 | 0.56 | 1.06E-01 | 0.98 6.33E-01 | 0.57 | 1.28E-01 | 1.02

Table: Noh problem, convergence test, T = 0.6, CFL = 0.2
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Compressible Euler, 2D Noh problem, v = 2

3

Figure: Noh problem at t = 0.6, 9696 mesh. From left to right: density field with Q;
approximation (25 contour lines); mesh with QQ; approximation; density field with IP; approximation
(25 contour lines); mesh with P; approximation.
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Compressible Euler, 3D Noh problem, v = 3

Figure: Density cuts for the 3D Noh problem at t = 0.6.

Figure: 3D Noh problem at t = 0.6. 64 MPI tasks division.
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Maximum wave speed

How to compute local viscosity?

° d,? = 2)\max(f7 nijzuizuj)”cij‘lézv for j 76 i

@ Amax(f, njj, U;, U;) is max wave speed for Riemann problem




Maximum wave speed

Riemann fan for Euler, p = (v — 1)pe

1 Contact
A _
2
M
+
+
b W wg & A
L 5
%, 5>
ey o
e, &
%, &
A %y, ¥
1 ey
WL Wr
X

@ Structure of the Riemann problem (Lax (1957), Bressan (2000), Toro (2009)).
@ Waves 1 and 3 are genuinely nonlinear (either shock or rarefaction)
@ Wave 2 is linearly degenerate (contact)

o wi = (pr,ur,p), wi = (pf,u*,p*), wg = (pk, u*, p*), Wg = (pr, UR, PR),
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Maximum wave speed bound

Euler system, p = (v — 1)pe

@ Given the states U; and Ug, we have

1 1
* 1 2 * 1 2
N o= u—a (1+wi> < s = uptag (Hwi)
PL 2y PR 2y

where p* is the pressure of the intermediate state.

@ Then and define
>\ma><(UL7 UR) = max(|>\1|7 |>‘3|)
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Maximum wave speed bound

Euler system, p = (v — 1)pe

@ Given the states U; and Ug, we have

(NI

1
14 (PP = PR+ *PRHL)

< A3 = urtar (
PR 2y

*— 1
N o= u—a (1+wi>

pL 2y
where p* is the pressure of the intermediate state.

@ Then and define
>\ma><(UL7 UR) = max(|>\1|7 |>‘3|)

@ In practice we just need a good upper bound of p*: p* > p*. Then

Amax(UL, Ug) = max(|A1(p")1, [A3(P™))-
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Maximum wave speed bound

@ To avoid computing p*, it is a common practice to estimate Amax by
max(|u| + ar, |ur| + ar)
@ This estimate is inaccurate and can be wrong.
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Maximum wave speed bound

@ Counter-example 1: 1-wave and the 3-wave are both shocks Toro 2009, §4.3.3

oL

PR

uL

ur

pL

PR

5.99924

5.99242

19.5975

-6.19633

460.894

46.0950

® Amax & 12.25 but max(|uL| + a, |ur| + ar) = 29.97, large overestimation
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Maximum wave speed bound

@ Counter-example 2: 1-wave is a shock and the 3-wave is an expansion

PL PR uL Ur PL PR
0.01 | 1000 | O 0 0.01 | 1000

® Amax & 5.227 but max(|u| + ar, |ug| + ar) ~ 1.183, large underestimation
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Definition of 5*

o Let p* be the zero of ¢, then

2y

-1
- a, +ar — 5 (up — ur)
P -1 =1

-t -t
aLp; 7 + arpg 7

Lemma (GP (2016))

We have p* < p* in the physical range of v, 1 < v < %

@ p* is an upper bound on p*.

e min(pg, pr) < p* < p* (starting guess for cubic Newton alg., GP (2016))
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Continuous FE are easy to implement and parallelize.

Exa-scale computing will need simple, robust, methods.
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Convergence analysis, error estimates beyond first-order.

°
o Extension to DG.

@ Extension of BBZ to higher-order polynomials (order 3 and higher).
°

Extension of BBZ to systems (Shallow water, Euler).
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Conclusions

Continuous finite elements

@ Continuous FE are viable tools to solve hyperbolic systems.
@ Continuous FE are viable alternatives to DG and FV.
o Continuous FE are easy to implement and parallelize.

@ Exa-scale computing will need simple, robust, methods.

Current and future work

@ Convergence analysis, error estimates beyond first-order.

o Extension to DG.

@ Extension of BBZ to higher-order polynomials (order 3 and higher).
o Extension of BBZ to systems (Shallow water, Euler).

o Extension to equations with source terms (Radiative transport, Radiative
hydrodynamics).
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