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Grégoire ALLAIRE CMAP, Ecole Polytechnique

Charles Dapogny (LJK, Grenoble), Pascal Frey (LJLL, UPMC),

François Jouve (LJLL, Paris 7 University), Georgios Michailidis

(SIMaP, Grenoble) + industrial partners

Workshop ”Industry and mathematics”, IHP, November

21-23, 2016.

RODIN project on shape and topology optimization G. Allaire



2

CONTENTS

1. Review of the level set method for shape and topology optimization.

2. Thickness constraints.

3. Uncertainties and linearized worst-case design.

4. A level set based mesh evolution method.

RODIN project on shape and topology optimization G. Allaire



3

-I- INTRODUCTION AND REVIEW

☞ Tremendous progresses were achieved on academic research about shape

and topology optimization.

☞ There are already many commercial softwares which are heavily used by

industry.

☞ Pending issues: manufacturability, robustness, geometric precision.
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✞

✝

☎

✆
Definition of structural optimization

Shape optimization : minimize an objective function over a set of

admissibles shapes Ω (including possible constraints)

inf
Ω∈Uad

J(Ω)

The objective function is evaluated through a partial differential equation

(state equation)

J(Ω) =

∫

Ω

j(uΩ) dx

where uΩ is the solution of

PDE(uΩ) = 0 in Ω

Topology optimization : the optimal topology is unknown.
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The art of structure is where to put the holes.

Robert Le Ricolais, architect and engineer, 1894-1977
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✞

✝

☎

✆
The model of linear elasticity

Shape Ω ⊂ R
d with free boundary Γ and fixed boundaries ΓD, ΓN .





− div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(
Ae(u)

)
n = g on ΓN

(
Ae(u)

)
n = 0 on Γ

☞ Applied load g : ΓN → R
d

☞ Displacement u : Ω → R
d

☞ Strain tensor e(u) = 1
2 (∇u+∇tu)

☞ Stress tensor σ = Ae(u), with A homog. isotropic elasticity tensor

Typical objective function: compliance

J(Ω) =

∫

ΓN

g · u dx,
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✞

✝

☎

✆
Admissible shapes

Γ

Γ

Γ

Γ

N

D

D

The shape optimization problem is inf
Ω∈Uad

J(Ω),

where the set of admissible shapes is typically

Uad =

{
Ω ⊂ D open set such that ΓD

⋃
ΓN ⊂ ∂Ω and

∫

Ω

dx = V0

}
,

with D ⊂ R
d, a given “working domain” and V0 a prescribed volume.
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✞

✝

☎

✆LEVEL SET METHOD

Main idea: coupling a front propagation algorithm with shape sensitivities

☞ Front propagation: level set algorithm of Osher and Sethian (JCP 1988).

☞ Shape capturing algorithm.

☞ Hadamard method for computing shape derivatives.

☞ Early references: Sethian and Wiegmann (JCP 2000), Osher and Santosa

(JCP 2001), Allaire, Jouve and Toader (CRAS 2002, JCP 2004, CMAME

2005), Wang, Wang and Guo (CMAME 2003).
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✞

✝

☎

✆FRONT PROPAGATION BY LEVEL SET

Shape capturing method on a fixed mesh of the “working domain” D.

A shape Ω is parametrized by a level set function





ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D

ψ(x) < 0 ⇔ x ∈ Ω

ψ(x) > 0 ⇔ x ∈ (D \ Ω)

Assume that the shape Ω(t) evolves in time t with a normal velocity V (t, x).

Then its motion is governed by the following Hamilton Jacobi equation

∂ψ

∂t
+ V |∇xψ| = 0 in D.
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✞

✝

☎

✆
Example of a level set function
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✞

✝

☎

✆
Advection velocity = shape gradient

The velocity V is deduced from the shape gradient of the objective function.

To compute this shape gradient we recall the well-known Hadamard’s method.

Let Ω0 be a reference domain. Shapes are parametrized by a vector field θ

Ω = ( Id + θ)Ω0 with θ ∈ C1(Rd;Rd).

x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω
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✞

✝

☎

✆
Shape derivative

Definition: the shape derivative of J(Ω) at Ω0 is the Fréchet differential of

θ → J
(
( Id + θ)Ω0

)
at 0.

Hadamard structure theorem: the shape derivative of J(Ω) can always be

written (in a distributional sense)

J ′(Ω0)(θ) =

∫

∂Ω0

θ(x) · n(x) j(x) ds

where j(x) is an integrand depending on the state u and an adjoint p.

We choose the velocity V = θ · n such that J ′(Ω0)(θ) ≤ 0.

Example: for the compliance, j(x) = −Ae(u) · e(u)
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✞

✝

☎

✆NUMERICAL ALGORITHM

1. Initialization of the level set function ψ0 (including holes).

2. Iteration until convergence for k ≥ 1:

(a) Compute the elastic displacement uk for the shape ψk.

Deduce the shape gradient = normal velocity = Vk

(b) Advect the shape with Vk (solving the Hamilton Jacobi equation) to

obtain a new shape ψk+1.

For numerical examples, see the web page:

http://www.cmap.polytechnique.fr/˜optopo/level en.html
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✞

✝

☎

✆
Examples of results with complex topologies
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-II- THICKNESS CONSTRAINTS

We (Allaire-Jouve-Michailidis) focus on thickness control because of

• manufacturability,

• uncertainty in the microscale (MEMS design),

• robust design (fatigue, buckling, etc.).

Previous works:

• Several approaches in the framework of the SIMP method to ensure

minimum length scale (Sigmund, Poulsen, Guest, etc.).

• In the level-set framework: Chen, Wang and Liu implictly control the

feature size by adding a ”line” energy term to the objective function ;

Alexandrov and Santosa kept a fixed topology by using offset sets.

• Many works in image processing.
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✞

✝

☎

✆
Signed-distance function

Definition. Let Ω ⊂ R
d be a bounded domain. The signed distance

function to Ω is the function R
d ∋ x 7→ dΩ(x) defined by :

dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω

0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ R
d \ Ω

where d(·, ∂Ω) is the usual Euclidean distance.
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✞

✝

☎

✆Constraint formulations

Maximum thickness.

Let dmax be the maximum allowed thickness. The constraint reads:

dΩ (x) ≥ −dmax/2 ∀x ∈ Ω

Minimum thickness

Let dmin be the minimum allowed thickness. The constraint reads:

dΩ (x− doffn (x)) ≤ 0 ∀x ∈ ∂Ω, ∀doff ∈ [0, dmin]

Remark: similar constraints for the thickness of holes.
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✞

✝

☎

✆Offset sets

For minimum thicknes we rely on the classical notion of offset sets of the

boundary of a shape, defined by

{x− doffn(x) such that x ∈ ∂Ω}
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✞

✝

☎

✆
Quadratic penalty method

We reformulate the pointwise constraint into a global one denoted by P (Ω).

Maximum thickness

P (Ω) =

∫

Ω

[
(dΩ(x) + dmax/2)

−
]2
dx

Minimum thickness

P (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (x− doffn (x)))

+
]2
dx ddoff

where f+ = max (f, 0) and f− = min (f, 0).

Then, we compute shape derivatives of the constraints.
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✞

✝

☎

✆NUMERICAL RESULTS

☞ All the geometrical computations (skeleton, offset, projection, etc.) are

standard and very cheap (compared to the elasticity analysis).

☞ All our numerical examples are for compliance minimization (except

otherwise mentioned).

☞ At convergence, the geometrical constraints are exactly satisfied.

☞ All results have bee obtained with our software developped in the finite

element code SYSTUS of ESI group.
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✞

✝

☎

✆
Maximum thickness (MBB, solution without constraint)
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✞

✝

☎

✆
Maximum thickness (solution with increasing constraint)
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✞

✝

☎

✆
Maximum thickness (3d Box)
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✞

✝

☎

✆
Minimum thickness (MBB beam)
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✞

✝

☎

✆
Minimum thickness (force inverter)
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✞

✝

☎

✆
Minimum thickness (3d)
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-III- UNCERTAINTIES AND WORST-CASE DESIGN

Uncertainties on:

☞ location, magnitude and orientation of the body forces or surface loads

☞ elastic material’s properties

☞ geometry of the shape

Crucial issue: optimal structures are so optimal for a given set of loads that

they cannot sustain a different load !
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✞

✝

☎

✆
Example: minimal weight and minimal compliance
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✞

✝

☎

✆
Optimal design with load uncertainties
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✄

✂

�

✁State of the art

☞ Probabilistic approach (Choi et al. 2007, Frangopol-Maute 2003, Kalsi et

al. 2001...)

• Monte-Carlo methods

• Polynomial chaos, Karhunen-Loève expansions...

• First-Order Reliability-based Methods (FORM)

☞ Worst case approach

• Robust compliance: Cherkaev-Cherkaeva (1999, 2003), de

Gournay-Allaire-Jouve (2008).

• Present work (Allaire-Dapogny).
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✞

✝

☎

✆
Worst case design

Example in the case of force uncertainties.

The force is the sum f + δ where f is known and δ is unknown.

The only information is the location of δ and its maximal magnitude m > 0

such that ‖δ‖ ≤ m.

We replace the standard objective function J(Ω, f + δ) by its worst case

version J (Ω, f).

Worst case design optimization problem:

min
Ω

J (Ω, f) = min
Ω

max
‖δ‖≤m

J(Ω, f + δ)
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✞

✝

☎

✆
ABSTRACT (AND FORMAL) SETTING

☞ Designs h ∈ H, perturbations δ ∈ P

☞ State equation A(h)u(h) = b

☞ Perturbed state equation A(h)u(h, δ) = b(δ)

☞ Worst case objective function

inf
h∈H



J (h) = sup

δ∈P
||δ||P≤m

J(u(h, δ))





☞ Assume that the perturbations are small, i.e., m << 1, and linearize

J (h) ≈ J̃ (h) = sup
δ∈P

||δ||P≤m

(
J(u(h)) +

dJ

du
(u(h))

∂u

∂δ
(h, 0)(δ)

)

☞ Introduce an adjoint, A(h)T p(h) = dJ
du

(u(h)),

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
db

dδ
(0) · p(h)

∣∣∣∣
∣∣∣∣
P∗
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✞

✝

☎

✆
First case: loading uncertainties.

Given load f ∈ L2(Rd)d. Unknown load δ ∈ L2(Rd)d with small norm

‖δ‖L2(Rd)d ≤ m. Solution uΩ,δ of





− div (Ae(uΩ,δ)) = f + δ in Ω

uΩ,δ = 0 on ΓD
(
Ae(uΩ,δ)

)
n = g on ΓN

(
Ae(uΩ,δ)

)
n = 0 on Γ

Many variants are possible (δ may be localized, or parallel to a fixed vector, or

restricted to ΓN , etc.)
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✞

✝

☎

✆
Second case: geometric uncertainties

Perturbed shapes (I + χV )(Ω), V ∈W 1,∞(Rd,Rd), ||V ||L∞(Rd)d≤ m.

χ is a smooth localizing function such that χ ≡ 0 on ΓD ∪ ΓN .
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✞

✝

☎

✆
Load uncertainties in geometric optimization (compliance)
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✞

✝

☎

✆
Geometric uncertainties in geometric optimization
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✞

✝

☎

✆
Geometric uncertainties (stress minimization)
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-IV- A MESH EVOLUTION METHOD

Main idea: rather than using a fixed (regular) mesh and capturing the shape

with a level set method, use a moving (simplicial) mesh, tracking the shape.
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✞

✝

☎

✆
Principle of the method (with C. Dapogny and P. Frey)

☞ The shape is exactly meshed at each optimization iteration.

☞ Only the interior mesh is used for the elasticity analysis: no erstaz

material in the holes.

☞ Use the full mesh (interior and exterior) to advect the shape’s boundary,

again using the level set algorithm.

Two key ingredients:

1. Advect a level set function on a simplicial mesh: characteristic algorithm

for a linearization of the Hamilton-Jacobi equation (J. Strain, JCP 1999).

2. Build a new simplicial mesh which contains the zero level set in its faces

(or edges in 2-d).
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✞

✝

☎

✆
Principle of the method

Before remeshing (left), after remeshing (right).

Yellow = interior mesh, green = exterior mesh, red line = zero level set.
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✞

✝

☎

✆
Some technical details about remeshing

Left: bad mesh incorporating the zero level set (easy part).

Right: nice mesh after local smoothing operations, split, swap, collapse of

edges, vertex relocation (hard part).
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✞

✝

☎

✆
Minimal compliance cantilever
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✞

✝

☎

✆
Minimal compliance bridge

RODIN project on shape and topology optimization G. Allaire



44

RODIN project on shape and topology optimization G. Allaire



45

✞

✝

☎

✆Conclusion
Three issues addressed in this talk:

1. Thickness constraints.

2. Uncertainties and linearized worst-case design.

3. A level set based mesh evolution method.

Other studies in the RODIN project:

☞ Second-order optimization algorithms (Jean-Léopold Vié).

☞ Contact and plasticity (Aymeric Maury).

☞ Composite panel optimization (Gabriel Delgado).

☞ Molding and casting constraints.

☞ Average and variance of optimal designs under random uncertainties.

☞ Export to CAD environment.

☞ Converting input and output files for other mechanical softwares.
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