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Outlines

Introduction

Numerical modelling of compressible flows in variable cross section
ducts (1D)
m The standard Well-Balanced approach
m An alternative semi-discrete approach
m Inviscid 1D unsteady test case

Numerical modelling of compressible flows in porous media (3D)
m Integral formulation applied to implicit time scheme
m Space discretisation with obstacles
m Inviscid 2D steady test case

Conclusions and perspectives
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Computational Fluid Dynamics in Nuclear Power Plants

Few applications for safety or design
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Computational Fluid Dynamics in Nuclear Power Plants

Few applications for safety or design

Salle des machines
M)

Boron dilution scenarii

H? risk in reactor building
Pressurised thermal shock

) Soe
S EeDF Code_Saturne dev. team Flows in cluttered media [6/44] @WW



Intro 1D 3D Conclusions

Computational Fluid Dynamics in Nuclear Power Plants
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Computational Fluid Dynamics in Nuclear Power Plants

Few applications for safety or design
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Inhouse CFD code: Code_Saturne

development under Quality Insurance

open-source:
www.code-saturne.org

m Transparency

FEATURES f:enr

Description of Code_Satume
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Development of Code_Saturne at EDF

Multiphysics modules fused into Code_Saturne framework

Arbitrary Lagrangian Eulerian Electric Arc
(ALE) Lagrangian particle tracking
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applications
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1. J. Bonelle: Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations; PhD thesis, 2014.
2. P. Cantin and A. Ern: Vertex-Based Compatible Discrete Operator Schemes on Polyhedral Meshes for Advection-Diffusion Equations,

Comput. Methods Appl. Math. 2016
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Three scales of modelling

System scale

= 0D modelling

= global mass/mo-
mentum/energy
balances

m correlations

= the boilers, the
vessel, ...
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Introduction to porous modelling

Modelling fluid flows in large domains containing small obstacles
(so-called " porous” scale) in Pressurized Water Reactors components

m on reactor vessels or boilers
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Introduction to porous modelling

Modelling fluid flows in large domains containing small obstacles
(so-called " porous” scale) in Pressurized Water Reactors components

m on reactor vessels or boilers

m with major challenges on safety and design

m mainly performed with “porous” codes:  THYC! (EDF)
- FLICA2? (CEA) - CATHARES3 (CEA) - GENEPI*5 (CEA).

1. G. Le Coq, S. Aubry, J. Cahouet, P. Lequesne, G. Nicolas, S. Pastorini : Bulletin de la Direction des études et recherches - Electricité
de France, 1989

2. |. Toumi, A. Bergeron, D. Gallo, E. Royer, D. Caruge : Nuclear Engineering and Design, 2000

3. F. Barre, M. Bernard : Nuclear Engineering and Design, 1990

123011\2 Belliard : “Méthodes de décomposition de domaine et de frontiere immergée pour la simulation des composants nucléaires.” HDR

5. M. Grandotto-Biettoli “Simulation numérique des & i i dans les é ": HDR 2006
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Introduction to porous modelling

Modelling fluid flows in large domains containing small obstacles
(so-called " porous” scale) in Pressurized Water Reactors components

m on reactor vessels or boilers

m with major challenges on safety and design

m mainly performed with “porous” codes:  THYC! (EDF)
- FLICA2 (CEA) - CATHARES3 (CEA) - GENEPI*5 (CEA).

At least two fields of investigation seem mandatory:

Increase knowledge and propose new strategies to cope with flows in
obstructed domains, that degenerate in a meaningful way when the mesh size
tends to zero;

Propose relevant algorithms in order to tackle "low-Mach” number flows.

1. G. Le Coq, S. Aubry, J. Cahouet, P. Lequesne, G. Nicolas, S. Pastorini : Bulletin de la Direction des études et recherches - Electricité
de France, 1989

2. I. Toumi, A. Bergeron, D. Gallo, E. Royer, D. Caruge : Nuclear Engineering and Design, 2000

3. F. Barre, M. Bernard : Nuclear Engineering and Design, 1090

4. M. Belliard : "Méthodes de décomposition de domaine et de frontiere immergée pour la simulation des composants nucléaires.” HDR
2014

5. M. Grandotto-Biettoli “Simulation numérique des & i i dans les éch ": HDR 2006
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Context and objectives

m Modelling viscous incompressible or weakly compressible flows
in media cluttered with obstacles.

m Treat in the same formalism both fine scale simulations (CFD)
and porous simulations at component scale.

Remark: porous media differs from cluttered media of interest

“Usual” porous medium® Medium cluttered with obstacles

m Same ratio of fluid volume over total volume.

m But cluttered media of interest exhibit priviledged directions.

6. J. Bear : “Dynamics of fluids in porous media.” Courier Corporation 1972
& . . 5225,
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Overview

Numerical modelling of compressible flows in variable cross section
ducts (1D)
m The standard Well-Balanced approach
m An alternative semi-discrete approach
m Inviscid 1D unsteady test case
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Classical Well-Balanced approach...

Compute approximations of the one-dimensional set of PDE:
?5: 08 S
u
% + gx =0 s W W, ISR
0
8(;5 N Bu(EaJ; P)S —0

where p, u, P and S respectively stand for the density, the velocity, the pressure and
the cross-section, and setting: £ = p(u?/2 + ¢(P, p))).

Well-Balanced Finite Volume schemes use an interface condition between cells to
connect states between cells. The standard interface condition relies on the
preservation of Riemann invariants of the steady contact discontinuity.

6. J.-M. Greenberg, A. Y. Leroux, SIAM J. Numer. Anal., 1996 // 7. L. Gosse, M3AS, 2001 // 8. F. Bouchut 's book, Birkhauser, 2004
// 9. D. Kréner, M.D.Thanh , SIAM J. Numer. Anal., 2006 // 10. D. Kroner, P.G. LeFloch, M.D. Thanh, M2AN, 2008, among many
others....
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compared with the basic " numerical experiment” ...

vs standard WB 1D porous approach 1:

Full nD experiment with tubes
Simulation Results

2D computation
>
o
2
5
=
i

porous model

T T T Distance

The numerical solution preserves the total mass flux and total enthalpy
flux; however, the entropy is not! Thus the numerical solution can be

built, but is it physically relevant? Probably not!

Flows in cluttered media [15/44]
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compared with the basic " numerical experiment” ...

Full nD experiment with tubes vs standard WB 1D porous approach 1:
Simulation Results
2D computation
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2
=5
- porous model
T T T Distance

The numerical solution preserves the total mass flux and total enthalpy
flux; however, the entropy is not! Thus the numerical solution can be
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Something has been missed in the momentum equation (singular losses)
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compared with the basic " numerical experiment” ...

Full nD experiment with tubes vs standard WB 1D porous approach 1:

Simulation Results
2D computation
>
o
2
5
f=4
i
porous model
T T T Distance

The numerical solution preserves the total mass flux and total enthalpy
flux; however, the entropy is not! Thus the numerical solution can be

built, but is it physically relevant? Probably not!
Something has been missed in the momentum equation (singular losses)...

11. L. Girault, J.-M. Hérard, Int. J. Finite Volumes, 2010
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A semi-discrete approach

Start with 2D Euler equations to simulate some compressible flow :

dp

E + dIV(Q) =0 X Xipy

0

a_g + div (Qeu) +YP=0 ST s
OE . T

g + div (QH) =0 D

— Total energy :

E= ( 224 ¢(P, p))
— Mean momentum:  Q = pu,
E

P
— Total enthalpy : H= T

and integrate over time / space over fixed control volumes, using blue
lines for fluid/fluid interfaces. Hence we get:
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WB 1D+ test

A semi-discrete approach...

X3 it3
. ® . ire .
I*lr,',% i ;ri+%l+1 Si
eyT_)
€x

Natural integral formulation:

Q (:1+1_p’ =+

ng (Qn+1 n 4

Qfa (Ein+1 n +

J.
J.
J.

hi

-n) (xr,t)dldt =0

—\

¢+l
P

—\

¢+l

Q- n) H) (xr,t)dldt =0

—\

-n) u+ Pn) (x, t) dldt =

0

Q:p = 5,’ X h,‘ and F(:) = 8Qj’
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A naive explicit Finite Volume scheme

Xi—%- Xi+%
i—1 ri% i rji% i+1 |S
eyL %ﬁ
ex
hi
Finite Volume explicit scheme:
QF (P —pf)  + A (Qon))Ty=0
Jjev(i
QF QT —Q7) + A"y ((Q-nmu+Pn)Ty=0
Jjev(i)
QF (EF —E7) + A" ((Q-n)H)"Ty=0
Jjev(i)

where the numerical fluxes (V)"" have to be defined, and noting V(i) the

neighbouring cells for cell Q;, including mirror cells.
Flows in cluttered media [18/44]
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A naive explicit Finite Volume scheme...

One straighforward result: Xi-4 Xivd
The discrete flow remains 1D, if Pl —
the IC is such that: u, = 0. i-117, i\ Taivt s
Thus the scheme simply e[ 1 e
y J N
computes p, E, u, as follows: » '
hi

Mass balance :
Q7 (p7+1 - pln) + At" ((pux)y;/zr?il/z - (pux)yihl/zr;pfl/z) =0
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A naive explicit Finite Volume scheme...

One straighforward result: Xi-4 Xivd
The discrete flow remains 1D, if Py —
the IC is such that: u, = 0. ,_F P\ Taie|s
Thus the scheme simply eyL, Y _
computes p, E, u, as follows: » '

hi

Mass balance :
: b
Q7 (plﬁl - p?) +At" ((pux)y;/zr?il/z - (pux);,—l/zrj‘pfl/z) =0

Total energy balance :
Qf (E,»"“ - E,-") + AL ((pHuX),-"f1 2l e = (pHux)f;hl/zr?il/z) =0

[}
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Intro 1D 3D Conclusions WB 1D+ test

A naive explicit Finite Volume scheme...

One straighforward result: Xty 14
The discrete flow remains 1D, if o P
the IC is such that: u, = 0. ,_NT \ i\ %FT;%;H S
Thus the scheme simply eyL, —\ Pl
computes p, E, u, as follows: » '

hi

Mass balance :
Q7 (o = o) + A" (w1l oo — (o) o7 2) =0
Total energy balance :
Q7 (EI’HH - Efn) + At" ((pH”X),",ihl/zerp - (pH“X):‘]th/zr:il/z) =0
X-momentum balance (in the n, direction) :
Q7 ((pu )™ = () + A ((pu2 + PV o7 o — (o + PV T 0)
+ AP (Si-TEy,) - APy (ST

We only need to give some approximation of the pressure P~; at the walls.
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Intro 1D 3D Conclusions WB 1D+ test

Numerical results

We compare three distinct approaches:

A reference solution

which is obtained computing approximate solutions of the 2D Euler equations,
using a very fine mesh and an approximate Godunov scheme at fluid/fluid
interfaces (VFRoe-ncv'? scheme, with symmetrizing variable (u, P, s)).

The Well-Balanced scheme®3

with the standard interface condition, and using fine meshes;

12. T. Gallouét, J.-M. Hérard, N. Seguin: “On the use of symetrizing variables for vacuums.”, Calcolo 2003

13. D. Kréner, M.D.Thanh : “Numerical solutions to compressible flows in a nozzle with variable cross-section.” SIAM 2006

::eDF Code_Saturne dev. team Flows in cluttered media [20/44] @'




Intro 1D 3D Conclusions WB 1D+ test

Numerical results

We compare three distinct approaches:

A reference solution

which is obtained computing approximate solutions of the 2D Euler equations,
using a very fine mesh and an approximate Godunov scheme at fluid/fluid
interfaces (VFRoe-ncv'? scheme, with symmetrizing variable (u, P, s)).

The Well-Balanced scheme®3

with the standard interface condition, and using fine meshes;

The proposed 1D+ approach:

relying on the previous scheme, using coarse or fine meshes, an approximate
value of the wall pressure P*, using the mirror state technique, and:

m either the exact value provided by the Riemann solution,
m or almost the same, though substituting the multi-D approximation

"M; = %2 = 0" in the latter formula (P* = P;).

C

12. T. Gallouét, J.-M. Hérard, N. Seguin: “On the use of symetrizing variables for vacuums.”, Calcolo 2003

13. D. Kréner, M.D.Thanh : “Numerical solutions to compressible flows in a nozzle with variable cross-section.” SIAM 2006
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Intro 1D 3D Conclusions WB 1D+ test

Numerical results...

We consider the following basic unsteady flow in a pipe:

= Two uniform pipes with a sudden contraction (or
enlargement) : S(x < xs) =S;;  S(x > xs) = Sg, with four
distinct aspect ratios (S./Sgr);
m IC: two distinct states W, , Wgr on each side of x;c = 0.7,
using "gentle” Sod data:
] W[_ = (p[_, uy, PL) = (1,0, 105)
] WR = (pR, UR, PR) = (0125, 0, 104)
with perfect gas EOS (setting v = 7/5);
m Use 1D coarse or fine meshes (from 100 up to 10° uniform 1D
cells), and 0.64 x 10° cells for the 2D reference solution.

SLI w, W, ISR

0 0.7 0.8 1

¢
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Intro 1D 3D Conclusions WB 1D+ test

Numerical results...

Examine two cases among the 16 test cases below with different aspect
ratios and IC:

S, Sg W(t=0.,x<0.7) | W(t=0.x>0.7)
x < 0.8 x> 0.8 P u P P u P

cas 1 1 0.5 1 0 10° 0.125 | 0 10*
cas 2 1 0.01 1 0 10° 0.125 | 0 10*
cas 3 1 0.5 0.125 | 0 | 10* 1 0o | 10°
cas 4 1 0.01 0.125 | 0 10* 1 0 10°
cas 5 0.5 1 1 0o | 10° | 0125 | 0 | 10*
cas 6 0.01 1 1 0 10° 0.125 | 0 10*
cas 7 0.5 1 0.125 | 0o | 10* 1 0o | 10°
cas 8 0.01 1 0.125 | 0 | 10* 1 0 10°
cas 9 1 0.1 1 0o | 10° | 0125 | o | 10*
cas 10 1 0.9 1 0o | 10° | 0125 | 0 | 10*
cas 11 1 0.1 0.125 | 0 | 10* 1 0 | 10°
cas 12 1 0.9 0.125 | o | 10* 1 0o | 10°
cas 13 0.1 1 1 0| 10° | 0125 | 0 | 10*
cas 14 0.9 1 1 0o | 10° | 0125 | 0 | 10*
cas 15 0.1 1 0.125 | 0 | 10* 1 0 10°
cas 16 0.9 1 0.125 | 0 | 10* 1 0o | 10°

[ §
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Intro 1D 3D Conclusions WB 1D+ test

Numerical results...(test case 1: S, /Sgr = 2)

Density profile at time T = 1.5 x 1073 using CFL = 1/2.

1.0

0.9 |-

0.8 -

0.7 |-

0.6 -

P Multi-D reference approach -

640x640 cells |

“0.0 0.2

[ §
::eDF Code_Saturne dev. team
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Numerical results...(test case 1: S, /Sgr = 2)

Density profile at time T = 1.5 x 1073 using CFL = 1/2.

1.0

0.9 |-

0.8 -

0.7 |-

0.6 -

- - Well Balanced Rusanov scheme - 50000 cells
P Multi-D reference approach - 640x640 cells

“0.0 0.2 0.4 0.6 0.8
x (m)

4
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Numerical results...(test case 1: S, /Sgr = 2)

Density profile at time T = 1.5 x 1073 using CFL = 1/2.

1.0

0.8 -
0.7 |-

0.6 f- e G R

— 1D+ approach - exact Riemann sblution - 50000 cellé
- - Well Balanced Rusanov scheme - 50000 cells

0.9 f e o B e R EEE

P Multi-D reference approach - 640x640 cells
“0.0 0.2 0.4 0.6
x (m)

4
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Numerical results...(test case 1: S, /Sgr = 2)

Density profile at time T = 1.5 x 1073 using CFL = 1/2.

1.0

0.9 [
0.8 [
0.7 |
0.6 [
0.5 [
oa|™ 1D+ approach‘ - exact Riemann sblution - 50000 cellé

’ . 1D+ approach - P* = P; - 50000 cells

- - Well Balanced Rusanov scheme - 50000 cells

P Multi-D reference approach - 640x640 cells

“0.0 0.2 0.4 0.6 0.8 1.0

x (m)

4
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Numerical results...(test case 1: S, /Sgr = 2)

Density profile at time T = 1.5 x 1073 using CFL = 1/2.

1.0
0.9 |-
0.8 [
0.7
0.6 [
0.5 A
— 1D+ approach‘ - exact Riemann sblution - 50000 cellé
oal- 1D+ approach - P* = P; - 1000 cells
’ . 1D+ approach - P* = P; - 50000 cells
- - Well Balanced Rusanov scheme - 50000 cells :
P Multi-D reference approach - 640x640 cells |
“0.0 0.2 0.4 0.6 0.8 1.0

x (m)

4
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Intro 1D 3D Conclusions

WB 1D+ test

Numerical results...(test case 2: S;/Sg = 100)

Density profile at time T = 1.5 x 1073 using CFL = 1/2.

1.0

0.8
0.7
0.6
0.5
0.4
0.3

0.2

[
&, S EeDF

— 1D+ approach - exact Riemann solution - 50000 cells
- . 1D+ approach - P* = P; - 50000 cells
— Multi-D reference approach - 800X800 cells

“0.0

0.2 0.4 0.6

x (m)
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Intro 1D 3D Conclusions Time Space test

Overview

Numerical modelling of compressible flows in porous media (3D)
m Integral formulation applied to implicit time scheme
m Space discretisation with obstacles
m Inviscid 2D steady test case

Sboe
jSRRoRNE

[ §
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Intro 1D 3D Conclusions Time Space test

A semi-discrete approach

Some notations

Notations on an ordinary control volume ; with internal elements
= Q7 fluid sub-cell of ;.
P _ »
s Q7 = UQi,k total volume
k

occupied by the fluid.

m ¥ ., fluid interface ( “fluid
isk/jsk
passing” surface) between Q7
and Q*."k/.
Js

Ferrand M., Hérard J.-M., Lecoupanec E., Martin X: Une formulation intégrale implicite pour la modélisation
d’écoulements fluides en milieu encombré d'obstacles; EDF report H-183-2015-05276-FR, in French, 2015.
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Intro 1D 3D Conclusions Time Space test

A semi-discrete approach

Some notations

Notations on an ordinary control volume ; with internal elements
= Q7 fluid sub-cell of ;.
P _ »
m QF = UQi,k total volume
k

occupied by the fluid.

m ¥ ., fluid interface ( “fluid
isk/jsk
passing” surface) between Q7
and Q“.”k/.
Js

Characteristics of the internal elements (obstacles):
B Impermeable and steady.
m Typically plates or tubes.

m Totally or partially included in one control volume, or tangent to an interface
between two control volumes.

Ferrand M., Hérard J.-M., Lecoupanec E., Martin X: Une formulation intégrale implicite pour la modélisation
d’écoulements fluides en milieu encombré d'obstacles; EDF report H-183-2015-05276-FR, in French, 2015.

[ §
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Intro 1D 3D Conclusions Time Space test

Governing equations for inviscid flows

System of Euler equations for a compressible flow

% +div(Q) =0
9Q The state vector W(x,t) = (p, Q, E)t is
Bt +div(Q® Q/p) + VP =0 the conservative variable.

0
8+ div (QE+ P)/p) =0

[ §
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Governing equations for inviscid flows

System of Euler equations for a compressible flow

% +div(Q) =0
9Q The state vector W(x,t) = (p, Q, E)t is
Bt +div(Q® Q/p) + VP =0 the conservative variable.

0
8+ div (QE+ P)/p) =0

Mean value of W in the fluid sub-cell Q?"k at time t:

1
W, (t)= Qilcpk (/g«p W(x, t)dx)
i ik
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Intro 1D 3D Conclusions Time Space test

Governing equations for inviscid flows

System of Euler equations for a compressible flow

% +div(Q) =0
9Q The state vector W(x,t) = (p, Q, E)t is
Bt +div(Q® Q/p) + VP =0 the conservative variable.

0
8+ div (QE+ P)/p) =0

Mean value of W in the fluid sub-cell Q?"k at time t:

1
W, (t)= Qilcpk (/g«p W(x, t)dx)
i ik

Mean value of W in the control volume Q; at time t with Q7 = Zﬂfk:

k

W,-(t)=91¢< > W,-,k(t)ﬂfk)

i ke{1,N(i)}

[ §
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Intro 1D 3D Conclusions Time Space test

Integral form

Starting from the following consise form of the conservation laws (Euler system):
ow .
S Hdv (Ew) =0

Integration over a fluid sub-cell ka of a control volume 2; and over a time interval
[tl, tQ]:

/Q (Wis, )~ wix e ans [ (8 (Ew)) ama=o

) Soe
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Intro 1D 3D Conclusions Time Space test

Integral form

Starting from the following consise form of the conservation laws (Euler system):

L 1 aiv (Ew) =0

Integration over the boundary T x of Qf, (Green formula):

/ka (W(x, t2) — W(x,t1)) dQ + /: /ri,k (ﬂﬂ(x’ t)) - ﬂ> drdt =0

) Soe
S EeDF Code_Saturne dev. team Flows in cluttered media [28/44] @W"NE



Intro 1D 3D Conclusions Time Space test

Integral form

Starting from the following consise form of the conservation laws (Euler system):

L 1 aiv (Ew) =0

Integration over the boundary T x of Qf, (Green formula):

/ka (W(x,t2) — W(x,t1))dQ+ /tlfz /ri’k (é(ﬂ(x’ t)) .ﬂ) drdt =0

Splitting of the surface integral between fluid rfk and solid boundary 'Y, so that:

F,-,k = I’fk U F}":k

0= rj.fkm Ty

) Soe
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Intro 1D 3D Conclusions Time Space test

Integral form

Starting from the following consise form of the conservation laws (Euler system):

L 1 aiv (Ew) =0

And finally summing over the N(i) sub-cells of €;:

NG) [ty
QF (W) — Wi(n)) + ( E(W(x,t))-n dth)
) . z / / (E )

N(i)

' kz:; </t1 /m (ﬂﬂ(x» t)) 'ﬂ) dth) —0

Splitting of the surface integral between fluid rfk and solid boundary 'Y, so that:

F,-,k = I’fk @] F}":k

0= rjfjkm Ty

[ §
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Intro 1D 3D Conclusions Time Space test

Time scheme: mass balance step

Integration over space and time:

¢+l

/ (8—p + din) dQdt =0
tn Qe ot -

[ §
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Intro 1D 3D Conclusions Time Space test

Time scheme: mass balance step

Integration over space and time:

/ / ( + d|vQ> dQdt =0
tn Qe

Q?O(pn+1,— _pn)+Atn/Q*ﬂdr:0
r

¢+l
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Time scheme: mass balance step

Integration over space and time:

/ / ( + d|vQ> dQdt =0
tn Qe

Q?O(pn+1,— —p")+At"/Q*gdr:0
—_—— r

Sp

¢+l

Unsteady term linearisation:

‘;:eDF Code_Saturne dev. team Flows in cluttered media [29/44] @S)E%M



Intro 1D 3D Conclusions Time Space test

Time scheme: mass balance step

Integration over space and time:

/ / ( + d|vQ> dQdt =0
tn Qe

Q?G(pn+1,— —p")+At"/Q*gdr:0
—_—— r

¢+l

Sp
Unsteady term linearisation:
ap= P9 OP(s) |
op s Os |, ~~
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Intro 1D 3D Conclusions Time Space test

Time scheme: mass balance step

Integration over space and time:

/ / ( + d|vQ> dQdt =0
tn Qe

S(PTLT — P+ At"/o* ndl" =0
P

¢+l

& (cZ)

Unsteady term linearisation:

§P = (P, p")8p
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Time scheme: mass balance step

Integration over space and time:

/ / ( + d|vQ> dQdt =0
tn Qe

—(P"th= — P 4 At"/o* ndl =0

¢+l

& (cZ)

Unsteady term linearisation:

P
pn+1’_=Pn+6P=Pn+§
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Intro 1D 3D Conclusions Time Space test

Time scheme: mass balance step

Integration over space and time:

/ / ( + d|vQ> dQdt =0
tn Qe

(P™L= — P+ At"/ (Q"— At"VP" 1) .ndl =0
r

¢+l

I (C2)n

Unsteady term linearisation:

oP
pn+1,—=pn+6p=pn+_2
C

Convective mass flux computed with a simplified momentum balance:

Q* — Qn _ At"VPn+1’_

) Soe
‘;:GD‘ Code_Saturne dev. team Flows in cluttered media [29/44] @“’M



Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (1)

Tia/ia
. LIS M.
sz Q4 hi1

‘ 'SODE
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (1)

e
Q7

Q;

Ti1/)
By Q
Qi,l hj1

Splitting between fluid and solid boundary :

©
i

()"

1

(P — Py -|—At"/ Q*.ndl + At"
re

rw

Q" -ndl =0

[ §
< TEeDF
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (1)

e
Q7

Q;

Ti1/)
By Q
Qi,l hj1

Splitting between fluid and solid boundary :

@
i

1
: (Cz)"(P"H’_ — P") + At" /W Q" - ndl + At" /rw Q* - ndl =0
| S —
=0

[ §
< TEeDF

Code_Saturne dev. team
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (1)

e
Q7

Q;

Ti1/)
By Q
Qi,l hj1

Splitting between fluid and solid boundary :

Q'(2)

—(P™MLT — P")+At/ Q" - ndlr=0

[ §
< TEeDF

Code_Saturne dev. team
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (1)

e
Q7

Q;

Ti1/)
By Q
Qi,l hj1

Splitting between fluid and solid boundary :

@
i

1
()"

(Pn+1,7 —P" + Atn/ Q" - ndl — At" ZP”*lv* -ndl =0
re

re

[ §
< TEeDF
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Space scheme: mass balance step (1)

e
Q7

Q;

Ti1/)
By Q
Qi,l hj1

Splitting between fluid and solid boundary :

1
()"

@
i

(Pn+1,7 —P" + Atn/ Q" - ndl — At" ZP”*lv* -ndl =0
re

re

Evaluation of the 2 integrals over the fluid boundary:

[ §
< TEeDF

Code_Saturne dev. team
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (1)

T
L | v Q

. h%’
Q7 Q,-Yl hj1

Splitting between fluid and solid boundary :

: ( 2)n(P"+1 TP AL [ QT ndl - AL | VP pdl =0

Evaluation of the 2 integrals over the fluid boundary:
upw
/ Qndl = 3 Do AW ik ST
ke {1,N()} G,k V(i)

hj K

n
With: (0 )i k/sp0 = (0t (L= i) ) e migp i = 5 e

::EDF Code_Saturne dev. team Flows in cluttered media [30/44]
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (1)

Q by Tii/it Q
o, || ef b1
Splitting between fluid and solid boundary :
: . n(Pn+17 P")+Atn Q"-ng—At" an+1’7-ﬂdr:0
( ) re re

Evaluation of the 2 integrals over the fluid boundary:
upw
/ Qndl = 3 Do AW ik ST
ke {1,N()} G,k V(i)

h

n
With: (0" )i/ = (0t + (L= o) ) mygje o = Pt hy

S?
VP L pdl = ik/ik P —P; n+1,—
e ¥y S g
ke{1,N(i)} (j,k")e V(i)

::eDF Code_Saturne dev. team Flows in cluttered media [30/44] @?ﬁ%‘”f
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (2)

Positivity of the pressure P11~ and the density p"t1—
Writing of the mass balance under its matrix form : é X = B with

X = (Pl."ﬂ’_) , with A an M-matrix.
i€{1,Neens } -

Moreover, if Vi, |Aji| — 5, |Aj| >0, Alis inversible and A~! is positive.

) -
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (2)

Positivity of the pressure P"*1:~ and the density p"t1:—

Writing of the mass balance under its matrix form : é X = B with

X ()

) , with A an M-matrix.
i€{1,Neepis } -

Moreover, if Vi, |Aj| — Z#,- |Au| >0, Ais inversible and A~1 s positive.

CFL-like condition:

2 n
pici
QFf > At" Z Z Bik/j,k! <—;,i' ) (u” 'Q)i,k/j,k/sfk/j’k/

ke{1,N(i)} (,k")e V(i)

) Soe
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Intro 1D 3D Conclusions Time Space test

Space scheme: mass balance step (2)

Positivity of the pressure P"*1:~ and the density p"*1:—
Writing of the mass balance under its matrix form : é X = B with

X = (P,"“") , with A an M-matrix.
i€{1,Neepis } =

Moreover, if Vi, |Ajj| — 3, _; |Aj| >0, A'is inversible and A_! is positive.

2 n
PiC;
Qf >Aar" D Biksik ( P;I ) (U™ 1) ki S gjpr

ke{1,N(i)} (,k")e V(i)
w

Let be p7 > 0 and P/ > 0. If the CFL condition is verified, then Vi, Pl."“’f > 0.

Moreover, P;H'l’_ >0= p7+1’_ > 0.

J e
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Intro 1D 3D Conclusions Time Space test

Test case: flow in a channel cluttered with obstacles (1)

Description:

m 2D steady flow at low Mach number.
m Inviscid compressible fluid.

m Infinite channel partially cluttered with impermeable tubes.

S in Sout
— 5 —
M7in — h Sw 5 5 Wout
— 5 —
L/2

) Soe
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Test case: flow in a channel cluttered with obstacles (1)

Description:

m 2D steady flow at low Mach number.

m Inviscid compressible fluid.

m Infinite channel partially cluttered with impermeable tubes.

S in Sout
— 5 —
M7in — h Sw 5 5 Wout
— 5 —

2
The time step is driven by the CFL condition.
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Intro 1D 3D Conclusions Time Space test

Test case: flow in a channel cluttered with obstacles (1)

Description:
m 2D steady flow at low Mach number.

m Inviscid compressible fluid.
m Infinite channel partially cluttered with impermeable tubes.

Sout

Sin
— 5 —
M7in_> h Sw ] & Wout
— 5 —>
L/2

The time step is driven by the CFL condition.

Boundary conditions:
= Symmetry on bottom and top boundaries.

m Half Riemann problem solving at the inlet and outlet.

[ §
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Test case: flow in a channel cluttered with obstacles (2)

Structured orthogonal mesh adapted to the fluid domain :
24 x 5, 48 x 10, 96 x 20, 192 x 40, 384 x 80, and 768 x 160 cells

Figure: Adapted mesh composed of 24 x 5 cells

Structured orthogonal mesh with porous cells, not adapted
to the fluid domain : 24 x 6, 48 x 12, 96 x 24, 192 x 48 cells

e
——

Figure: Not adapted mesh composed of 24 x 6 cells

' 'SODE.
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Intro 1D 3D Conclusions Time Space test

Test case: flow in a channel cluttered with obstacles (3)

Steady flow, unidirectional at the infinite upstream and downstream:

(QS),‘" = (Qs)out
(QHS)in (QHS)out
((QU+P)S);, (QU+ P)S)gue + P 5w

with P the mean pressure at the inlet of the cluttered zone,
and S, = S;, — Sout the surface of the inlet of the cluttered zone.

Difference between upstream and downstream flux deduced from the conservation
laws:
_ |§in - (Sout + A)|

) = Tl T ouel T 12|

with € =(QS,QHS,(QU+ P)S) and A =(0.,0.,P*S,)
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Intro 1D 3D Conclusions Time Space test

Test case: flow in a channel cluttered with obstacles (4)

Difference between upstream and downstream flux:

Difference between left and right mass flux
Taking values on boundary faces
— e e
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Test case: flow in a channel cluttered with obstacles (4)

Difference between upstream and downstream flux:

Differrence between left and right enthalpy flux
Taking values on boundary faces
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Intro 1D 3D Conclusions Time Space test

Test case: flow in a channel cluttered with obstacles (4)

Difference between upstream and downstream flux:

Difference between left and right momentum flux
Taking values on boundary faces
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Intro 1D 3D Conclusions

Overview

Conclusions and perspectives
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Intro 1D 3D Conclusions

Conclusions

Approach based on:
e an integral formulation over ordinary control volumes,
e and an estimation of the pressure at fluid/solid interfaces.

Reliable method for the future:

e Objectives reached on coarse structured meshes (components
code scale),

e Adapted to the growing performances of computers,

e Convergence towards purely fluid simulation (" CFD" scale),

e Derived and tested with implicit and explicit schemes (not
presented here).

Approach implemented in Code_Saturne:

e for compressible flows,

e using implicit schemes based on Code_Saturne compressible
fractional step method.

]
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Intro 1D 3D Conclusions

Perspectives

in the starting thesis...

With different time schedules

m Propose a formulation to take correctly into account viscous
shear stress and turbulence at “components” scale and at
scales between the “components” and “CFD" ones.
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Intro 1D 3D Conclusions

Perspectives

in the starting thesis...

With different time schedules

m Propose a formulation to take correctly into account viscous
shear stress and turbulence at “components” scale and at
scales between the “components” and “CFD" ones.

Comparison with porous codes on validation cases of THYC.
Apply integral formulation to incompressible flow.

Implement a generic pre-processor for ordinary meshes.

Adapt the integral approach to multi-phase homogeneous
models.

[
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Ap. Time Space

Overview

Appendix
m Integral formulation applied to implicit time scheme
m Space discretisation with obstacles
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Ap. Time Space

Time scheme: momentum balance step

Integration over space and time :

¢+l

/ (ﬁ +div (u® Q) +2P) dfdt =0
Qe \ Ot -

tn
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Ap. Time Space

Time scheme: momentum balance step

Integration over space and time :

¢+l

/ <£ +div (1® Q) +ZP) dQdt =0
Qe \ Ot -

tn

Time scheme:

Q;p (Qn+1,— _Qn) +At"/g"+1’_ (Q*~ﬂ) dr+At"/P"+1’_ﬂdr =0
r r
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Ap. Time Space

Time scheme: momentum balance step

Integration over space and time :

¢+l

/ (ﬁ +div (u® Q) +ZP) dQdt =0
Qe \ Ot —

tn

Time scheme:

Qf (@™ - Q") + At"/g""'l’_ (Q*.n) dr + At"/P"+1’_gdr =0
r r

We obtain:

m The velocity u"1—.
= And Qn+1,f = y"+L= pn+L— (different from Q).
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Ap. Time Space

Time scheme: energy balance step

Integration over space and time :

¢+l

/Qv (?9_5 + div(u(E + P))) dQdt =0

tn
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Ap. Time Space

Time scheme: energy balance step

Integration over space and time :

¢+l

/Q«o (?9_5 + div(u(E + P))) dQdt =0

tl'l
Time scheme:

n+1,—
Q:.p(E"_H’_—En)—i-Atn/l(Q*-ﬂ) (E+P) dr = o
r— 14

[ §
‘;:eDF Code_Saturne dev. team Flows in cluttered media [42/44]



Ap. Time Space

Time scheme: energy balance step

Integration over space and time :

¢+l

/Q«v (?9_5 + div(u(E + P))) dQdt =0

tl'l
Time scheme:

n+1,—
Q:.P(E"+1’_—En)+At"/(Q*-Q) <E+P) dr = o
r P

Updates of the variables:

(psu, )™ = (p,u, E)™ ™

Entl 1
+1 +1 n+l +1 2\ n+1
Pt =P (p"t1, &™) where e” _F_E(H)

Positivity of the internal energy e"t1:~ is checked (stop with an error otherwise).
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Ap. Time Space

Space scheme: momentum balance step

Splitting between fluid and solid boundary:

Q;p (Qn‘*’l,* *Qn) + At"/ (H (Q* .ﬂ))n+l,f errAt"/ P"+1’_gdr
re

re

TN (g(g*~g))"+1’_dl’+At"/ P~ ndl = 0
rW

w

=0
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Ap. Time Space

Space scheme: momentum balance step

Splitting between fluid and solid boundary:

Q;p (Qn‘*’l,* _Qn) +  At" ‘/rw (H (9* .ﬂ))n+l,— dr+At"/ Pn+1’_gdr

re

+ A" [ (u(@*-n))"hTdr+at” [ PLTpdl =0
rW rW

=0

Evaluation of the three integrals:
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Ap. Time Space

Space scheme: momentum balance step

Splitting between fluid and solid boundary:

Q;p (Qn‘*’l,* *Qn) + At"/ (H (Q* .ﬂ))n+l,f errAt"/ P"+1’_gdr
re

re

+ A" [ (u(@*-n))"hTdr+at” [ PLTpdl =0
rW rW

Evaluation of the three integrals:

re (u (Q*~ﬂ))n+l’_ dr = Z Z (@ *'ﬂ)i,k/j,k’ (HHH’_);’,T;J',M ka/j,k/

ke{1,N()} (,k")e V(i)
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Ap. Time Space

Space scheme: momentum balance step

Splitting between fluid and solid boundary:

Q;p (Qn+1,f *Qn) + At"/ (H (Q* ,ﬂ))n+l,f errAt"/ P"+1’_gdr
re

re

+ A" [ (u(@*-n))"hTdr+at” [ PLTpdl =0
rW rW

Evaluation of the three integrals:

re (u (Q*~ﬂ))n+1’_ dr = Z Z (@ *'ﬂ)i,k/j,k’ (HHH’_)ZT;J',M ka/j,k/

ke{1,N()} (,k")e V(i)

_ - 1,—
/w P"+17 ﬂdr = Z Z (a,-,k/j,k/ Pl.n+1’ —+ (1 — oz,-,k/j,k/)Pj"+ )§;pk ',k’
i ke{L,N()} (k) E V(i)
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Ap. Time Space

Space scheme: momentum balance step

Splitting between fluid and solid boundary:

Q;p (Qn+1,f *Qn) + At"/ (H (Q* .ﬂ))n+l,f errAt"/ Pn+1’_gdr
re

re

+ A" [ (u(@*-n))"hTdr+at” [ PLTpdl =0
rW rW

Evaluation of the three integrals:

re (u (Q*ﬂ))nﬂ’_ dr = Z Z (@ *'Q)i,k/j,k’ (HnH’_);’,T;j,kf ka/j,k/

ke{1,N()} (,k")e V(i)

_ - 1,—
/rw Pl pdl = Z Z (O‘i,k/j,k’ PinH’ +(1- o‘i,k/J'J<’)Pjn+ )éipk j k!

ke{1,N()} G,k )eV(i)

+1,— _ +1,— _ +1,— ®
/rw P pdl = PRy TS = P! > Yo St
i wj

ke{1,N(i)} U,k )e V(i)
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Ap. Time Space

Space scheme: energy balance step

Splitting between fluid and solid boundary:

E P n+l,—
QF(E™HT —E™) + At”/ ((Q*ﬂ)L) dr
re \ P
n+1l,—
4 Atn/ ((Q*.H)EJrP) o
w \'T p

=0
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Ap. Time Space

Space scheme: energy balance step

Splitting between fluid and solid boundary:

E P n+l,—
QF(ETT B 4 At"/ ((Q*.Q)L) dr
re \ P

n+1l,—
4 Atn/ ((Q*.H)EJrP) o
w ' p

=0

Evaluation of the integral over the fluid boundary:

/r@ ((u-n)(E + P))™Ldr =

> (@ n) EVLNTT o
Q*-n). /i (7) s¢ .,
—  Tik/jk +1,— )., . ik/jk
ke{T,N()} .k E V(i) PR ik
Pn+1,— upw -
+ Z Z (Q 'ﬂ)i,k/j,k/ (p,,ﬂ,_ ) ) si,k/j,k’
ik/j k'

ke{1,N(i)} G,k")eV(i)
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