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Part 1

Theory : high dimensions, parametric PDEs, sparse polynomial approximation



The curse of dimensionality

Consider a continuous function y 7→ u(y) with y ∈ [0, 1].
Sample at equispaced points.
Reconstruct, for example by piecewise linear interpolation.
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Error in terms of point spacing h > 0 : if u has C2 smoothness

‖u − R(u)‖L∞ ≤ C‖u ′′‖L∞h2.

Using piecewise polynomials of higher order, if u has Cm smoothness

‖u − R(u)‖L∞ ≤ C‖u(m)‖L∞hm.

In terms of the number of samples n ∼ h−1, the error is estimated by n−m.

In d dimensions : u(y) = u(y1, · · · , yd ) with y ∈ [0, 1]d . With a uniform sampling, we
still have

‖u − R(u)‖L∞ ≤ C
(

sup
|α|=m

‖∂αu‖L∞
)
hm,

but the number of samples is now n ∼ h−d , and the error estimate is in n−m/d .



Other sampling/reconstruction methods cannot do better

Can be explained by n-width

Let X be a normed space and K ⊂ X a compact set.

Linear n-width (Kolmogorov) :

dN (K)X := inf
dim(E)=n

max
u∈K

min
v∈E
‖u − v‖X .

Benchmark for linear approximation methods applied to the elements from K.

If X = L∞([0, 1]d ) and K is the unit ball of Cm([0, 1]d ) it is known that

cn−m/d ≤ dn(K)X ≤ Cn−m/d .

Upper bound : approximation by a specific method.

Lower bound : diversity in K.

Exponential growth in d of the needed complexity to reach a given accuracy.



Lower bound : idea of proof

For simplicity work in dimension d = 1, and with K the unit ball of C1 functions.

Pick ϕ ∈ C∞ compactly supported in ]0, 1[ with ϕ( 1
2
) = c > 0 and ‖ϕ‖C1 = 1.

We build a collection of functions in K by rescaling by a factor m and scrambling

ϕε =

m−1∑
k=0

εkm
−1ϕ(mx − k), ε = (ε0, . . . , εm−1), εj = ±1.

These functions have values cm−1εk at the m points xk = m−1(k + 1
2
).

Now we take m = n + 1. For any space such that dim(E ) = n, we consider

F := {(v(x0), . . . , v(xn)) : v ∈ E } ⊂ Rn+1.

Since dim(F ) ≤ n, there exists a vector g = (g0, . . . , gn) ∈ F⊥. Thus, for any v ∈ E ,∑n
k=0 v(xk )gk = 0, which means that v(xk ) has opposite sign to gk for at least one k.

Thus if we take ε such that εk = sign(gk ), it follows that for any v ∈ E , we have

‖v − ϕε‖L∞ ≥ sup
k

|v(xk ) − c(n + 1)−1εk | ≥ c(n + 1)−1.

which shows that dn(K)L∞ ≥ cn−1.

Same construction in dimension d and for Cm functions gives lower bound cn−m/d .



Non-linear methods cannot do better

Use a notion of nonlinear n-width (Alexandrov, DeVore-Howard-Micchelli).

Consider maps E : K 7→ Rn (encoding) and R : Rn 7→ X (reconstruction).

Introducing the distorsion of the pair (E ,R) over K

max
u∈K
‖u − R(E (u))‖X ,

we define the nonlinear n-width of K as

δn(K)X := inf
E ,R

max
u∈K
‖u − R(E (u))‖X ,

where the infimum is taken over all continuous maps (E ,R). Comparison with the
Kolmorgorov n-width : δn ≤ dn and sometimes substantially smaller.

If X = L∞([0, 1]d ) and K is the unit ball of Cm([0, 1]d ) it is known that

cn−m/d ≤ δn(K)X ≤ Cn−m/d .

Many other variants of n-widths exist (book by A. Pinkus).



Infinitely smooth functions

Nowak and Wozniakowski : if X = L∞([0, 1]d ) and

K := {u ∈ C∞([0, 1]d ) : ‖∂νu‖L∞ ≤ 1 for all ν}.

then, for the linear width,

min{n : dn(K)X ≤ 1/2} ≥ c2d/2.

High dimensional problems occur frequently :

PDE’s with solutions u(x , v , t) defined in phase space : d = 7.

Post-processing of numerical codes : u solver with imput parameters (y1, · · · , yd ).

Learning theory : u regression function of imput parameters (y1, · · · , yd )

In these applications d may be of the order up to 103.

Approximation of stochastic-parametric PDEs : d = +∞.

Smoothness properties of functions should be revisited by other means than Cm

classes, and appropriate approximation tools should be used.



Parametric/Stochastic PDEs

We are interested in PDE’s of the general form

D(u, y) = 0,

where D is a partial differential operator, u is the unknown and y = (yj )j=1,...,d is a
parameter vector of dimension d >> 1 or d =∞ ranging in some domain U.

We assume well-posedness of the solution in some Banach space V for every y ∈ U,

y 7→ u(y)

is the solution map from U to V .

Solution manifold M := {u(y) : y ∈ U} ⊂ V .

The parameters may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and quantification, risk assessment). In the second case
the solution u(y) is a V -valued random variable.

These applications often requires many queries of u(y), and therefore in principle
running many times a numerical solver.

Objective : economical numerical approximation of the map y 7→ u(y).

Related objectives : numerical approximation of scalar quantities of interest
y 7→ Q(y) = Q(u(y)), or of averaged quantities u = E(u(y)) or Q = E(Q(y)).



Guiding example : elliptic PDEs

We consider the steady state diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

set on a domain D ⊂ Rm, where f = f (x) ∈ L2(D) and a ∈ L∞(D)

Lax-Milgram lemma : assuming amin := minx∈D a(x) > 0, unique solution
u ∈ V = H1

0 (D) with

‖u‖V := ‖∇u‖L2(D) ≤
1

amin
‖f ‖V ′ .

Proof of the estimate : multiply equation by u and integrate

amin‖u‖2
V ≤

∫
D
a∇u · ∇u = −

∫
D
u div(a∇u) =

∫
D
uf ≤ ‖u‖V ‖f ‖V ′ .

We may extend this theory to the solution of the weak (or variational) formulation∫
D
a∇u · ∇v = 〈f , v〉, v ∈ V = H1

0 (D),

if f ∈ V ′ = H−1(D)



Parametrization

Assume diffusion coefficients in the form of an expansion

a = a(y) = a +
∑
j≥1

yjψj , y = (yj )j≥1 ∈ U,

with d >> 1 or d =∞ terms, where a and (ψj )j≥1 are functions from L∞,

Note that a(y) is a function for each given y . We may also write

a = a(x , y) = a(x) +
∑
j≥1

yjψj (x), x ∈ D, y ∈ U,

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x 7→ u(y , x) for each given y . We often
ommit the reference to the spatial variable.

Up to a change of variable, we assume that all yj range in [−1, 1], therefore

y ∈ U = [−1, 1]d or [−1, 1]N.

Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U

Then the solution map is bounded from U to V := H1
0 (D), that is, u ∈ L∞(U,V ) :

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U,



Example of parametrization : piecewise constant coefficients

Assume that a is piecewise constant over a partition {D1, . . . ,Dd } of D, and such that
on each Dj the value of a varies on [c − cj , c + cj ] for some c > 0 and 0 < cj < c.

Then a natural parametrization is

a(y) = a +

d∑
j=1

yjψj , a = c, ψj = cjχDj
,

with y = (yj )j=1,...,d ∈ U = [−1, 1]d .



Example of parametrization : Karhunen-Loeve representation

Assume a = (a(x))x∈D is a random process with average

a(x) = E(a(x)),

and covariance function

Ca(x , z) = E
(
ã(x)ã(z)

)
, ã := a − a, x , z ∈ D.

Define the integral operator by

Tv(x) =

∫
D
Ca(x , z)v(z)dz ,

self-adjoint, positive and compact in L2(D). Therefore it admits an L2 orthonormal
basis (ϕj )j≥1 of eigenfunctions, associated to eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0, such
that λn → 0 as n→ +∞.

Karhunen-Loeve (KL) decomposition (a.k.a. principal component analysis) :

a = a +
∑
j≥1

ξjϕj , ξj :=

∫
D
a(x)ϕj (x)dx .



Analogy : PCA for finite dimensional random vector

Let z = (z1, . . . , zd ) ∈ Rd be a d-dimentional random vector with average z = E(z)
and let x = z − x be its centered version. The covariance matrix

K = (E(xi , xj ))i,j=1,...,d ,

is symmetric and positive, since 〈Kv ,w〉 = E(〈x , v〉〈x ,w〉). Its eigenvectors form an
orthonormal basis (ϕ1, . . . , ϕd ), associated to eigenvalues λ1 ≥ · · · ≥ λd ≥ 0.

So we write x =
∑d

j=1 ξjϕj with ξj := 〈x , ϕj 〉, where

E(ξj ) = E(ξiξj ) = 0 if i 6= j , E(ξ2
j ) = λj .

This representation has an optimal property : with Vn = span{ϕ1, . . . , ϕn}, one has

E (‖PVnx‖
2) = λ1 + · · · + λn ≥ E (‖PWnx‖

2),

for all Wn of dimension n, or equivalently

E (‖x − PVnx‖
2) = λn+1 + · · · + λd ≤ E (‖x − PWnx‖

2).

Proof by induction : use Wn = Wn−1 ⊕⊥ Rψ with ψ ∈Wn ∩ V⊥n−1 of norm 1, so that

E (‖PWnx‖2) = E (‖PWn−1
x‖2) + E (|〈x , ψ〉|2) ≤ λ1 + · · · + λn−1 +

∑
j≥n λj |〈ψ,ϕj 〉|2

≤ λ1 + · · · + λn.



Properties of KL representation

The ξj are centered and decorelated scalar random variables, with

E(ξj ) = 0, E(ξiξj ) = 0 if j 6= i , E(|ξj |2) = λj .

If the random process a is bounded, then the variables ξj have bounded range
|ξj | ≤ cj , so that with yj := ξj/cj and ψj := cjϕj we may also write

a = a +
∑
j≥1

yjψj , y = (yj )j≥1 ∈ U = [−1, 1]N.

The KL representation is optimal for trunctation in mean-square L2(D)-error :

inf
dim(E)=J

E(‖ã − PE ã‖2
L2 ),

is attained by E = EJ := span{ψ1, . . . , ψJ } with

E(‖ã − PEJ ã‖
2
L2 ) = E

(
‖
∑
j>J

yjψj‖2
L2

)
=
∑
j>J

λj .

Case of a stationary process : Ca(x , z) = κ(x − z), that is T is a convolution operator.
If D is the m-dimensional 2π-periodic torus, the KL basis is of Fourier type

x 7→ ϕk (x) := (2π)−m/2e ikẋ , k ∈ Zm.



Model reduction

Objective : fast approximate computation of y 7→ u(y) for many queries of y .

Vehicle : separable (low rank) approximations of the form

u(x , y) ≈ un(x , y) :=
n∑

k=1

vk (x)φk (y),

where vk : D → R with vk ∈ V and φk : U → R. Equivalently

un(y) :=
n∑

k=1

vkφk (y) =
n∑

k=1

φk (y)vk ∈ Vn := span{v1, . . . , vn} ⊂ V , y ∈ U.

Thus we approximate simultaneously all solutions u(y) in the same n-dimensional
space Vn ⊂ V .

By the way, this is what we do when we use a finite element solver :

y 7→ uh(y) ∈ Vh ⊂ V .

So what’s new here ?

Accurate solutions may require Vh of very large dimension nh = dim(Vh) >> 1 and
each query y 7→ uh(y) is expensive.

We hope to achieve same order of accuracy n << nh by a choice of Vn adapted to the
parametric problem. In practice the functions v1, . . . , vn are typically picked from such
a finite element space Vh, so that un(y) ∈ Vh for all y but actually belongs to the
much smaller space Vn ⊂ Vh.



Measure of performance

1. Uniform sense
‖u − un‖L∞(U,V ) := sup

y∈U
‖u(y) − un(y)‖V ,

2. Mean-square sense, for some measure µ on U,

‖u − un‖2
L2(U,V ,µ)

:=

∫
U
‖u(y) − un(y)‖2

V dµ(y).

If µ is a probability measure, and y randomly distributed according to this measure,
we have

‖u − un‖2
L2(U,V ,µ)

= E(‖u(y) − un(y)‖2
V ).

Note that we always have

E(‖u(y) − un(y)‖2
V ) ≤ ‖u − un‖2

L∞(U,V ).

A “worst case” estimate is always above an “average” estimate.



Optimal spaces ?

Best n-dimensional space for approximation in the uniform sense : the space Fn one
that reaches the Kolmogorov n-width of the solution manifold in the V norm

dn = dn(M) := inf
dim(E)≤n

sup
v∈M

min
w∈E
‖v − w‖V = inf

dim(E)≤n
sup
y∈U

min
w∈E
‖u(y) − w‖V .

Best n-dimensional space for approximation in the mean-square sense : principal
component analysis in V (instead of L2 with KL basis). Consider an orthonormal basis
(ek )k≥1 of V and decompose

u(y) :=
∑
k≥1

uk (y)ek , uk (y) := 〈u(y), ek 〉V .

Introduce the infinite correlation matrix M = (E(ukul ))k,l≥1. It has eigenvalues
(λk )k≥1 and associated eigenvectors gk = (gk,l )l∈N which form an orthonormal basis
of `2(N). The best space is

Gn := span{v1, . . . , vn}, vk :=
∑
l≥1

gk,lel ,

and has performance

ε2
n := inf

dim(E)≤n
E
(

min
w∈E
‖u(y) − w‖2

V

)
=
∑
k>n

λk ≤ d2
n .



Realistic strategies

The optimal spaces Fn and Gn are usually out of reach. There are two main
computational approaches to realistically design the approximation un =

∑n
k=1 vkφk .

1. Expand formally the solution map y 7→ u(y) in a given “basis” (φk )k≥1 of high
dimensional functions

u(y) =
∑
k≥1

vkφk (y),

where vk ∈ V are viewed as the coefficients in this expansion.

Compute these coefficients for k = 1, . . . , n approximately by some numerical
procedure.

Main representative (this lecture) : Polynomial methods (the φk are multivariate
polynomials).

2. Compute first a “good” basis {v1, . . . , vn} and define Vn as their span. Then, for any
given instance y , compute un(y) ∈ Vn by a numerical method.

Main representative : Reduced Bases (RB) methods emulate the n-width spaces Fn for
uniform, or L∞(U,V ), approximation. Proper Orthogonal Decompositions (POD)
methods emulate the principal component spaces Gn for mean-square, or L2(U,V , µ),
approximation.



Remarks

In the second approach, the functions vk are typically computed in an heavy offline
stage, then for any given y , the computation of un(y) is done in a cheap online stage.

The first approach gives immediate access to the approximation un for all values of y
since the functions vk and φk are both precomputed offline, the online stage is then a
trivial recombination.

Other important distinction : intrusive versus non-intrusive methods. The latter are
based on post-processing individual solution instances

u(y i ), y i ∈ U, i = 1, . . . ,m.

They may benefit of a pre-existing numerical solver viewed as a blackbox and do not
necessarily require full knowledge of PDE model.

In practice, the vk are typically chosen in a discrete (finite element) space Vh ⊂ V ,
with nh = dim(Vh) >> n. Equivalently, we apply the above technique to the discrete
solution map y 7→ uh(y) ∈ Vh. The error may thus be decomposed into the finite
element discretization error and the model reduction error.



How to defeat the curse of dimensionality ?

The map y 7→ u(y) is high dimensional, or even infinite dimensional y = (yj )j≥1.

We are thus facing the curse of dimensionality when trying to approximate it with
conventional discretization tools in the y variable (Fourier series, finite elements).

A general function of d variable with m bounded derivatives cannot be approximated
in L∞ with rate better than n−m/d where n is the number of degrees of freedom.

A possible way out : exploit anisotropic features in the function y 7→ u(y).

The PDE is parametrized by a function a (diffusion coefficient, velocity, domain
boundary) and yj are the coordinates of a in a certain basis representation
a = a +

∑
j≥1 yjψj .

If the ψj decays as j → +∞ (for instance if a has some smoothness) then the variable
yj are less active for large j .

We shall see that in certain relevant instances, this mechanism allows to break the
curse of dimensionality by using suitable expansions : we obtain approximation rates
O(n−s ) that are independent of d in the sense that they hold when d =∞.

One key tool for obtaining such result is the concept of sparse approximation.



Sparsity

Small dimensional phenomenon in high dimensional context

Simple example : vector x = (x1, · · · , xN ) ∈ IRN representing a signal, image or
function, discretized with N >> 1.

The vector x is sparse if only few of its coordinates are non-zero.



How to quantify this ?

The set of n-sparse vectors

Σn := {x ∈ IRN ; #{i ; xi 6= 0} ≤ n}

As n gets smaller, x ∈ Σn gets sparser.

More realistic : a vector is quasi-sparse if only a few numerically significant coordinates
concentrate most of the information. How to measure this notion of concentration ?

Remarks :

A vector in Σn is characterized by n non-zero values and their n positions.

Intrinsically nonlinear concepts : x , y ∈ Σn does not imply x + y ∈ Σn.

Sparsity is often hidden, and revealed through an appropriate representation (change
of basis).

Example : representations of natural images in wavelet bases are quasi-sparse, and
therefore used in image compression standards (JPEG 2000)



Sparse approximation in `q spaces : fundamental lemma (Stechkin)

Consider sequences d = (dν)ν∈F in `q(F) where F is a countable index set.

Best n-term approximation : we seek to approximate d by a sequence supported on a
set of size n.

Best choice : dn defined by leaving dν unchanged for the n largest |dν| and setting the
others to 0.

Lemma : for 0 < p < q ≤∞, one has

d ∈ `p(F) =⇒ ‖d − dn‖`q ≤ C (n + 1)−s , s =
1

p
−

1

q
, C := ‖d‖`p .

Proof : introduce (d∗k )k≥1 the decreasing rearrangement of (|dν|)ν∈F , and combine

‖d − dn‖q`q =
∑
k>n

|d∗k |
q =
∑
k>n

|d∗k |
q−p |d∗k |

p ≤ Cp |d∗n+1|
q−p

with

(n + 1)|d∗n+1|
p ≤

n+1∑
k=1

|d∗k |
p ≤ Cp .

Note that a large value of s corresponds to a value p < 1 (non-convex spaces).



A sharp result : weak `p spaces

A sequence d = (dν)ν∈F belongs to w`p(F) if and only if

#{ν s.t. |dν| > η} ≤ Cη−p ,

or equivalently, the decreasing rearrangement (d∗k )k≥1 of (|dν|) satisfies

d∗k ≤ Ck−1/p .

The w`p quasi-norm can be defined by

‖d‖w`p := sup
k≥1

k1/pd∗k .

Obviously `p ⊂ w`p ⊂ `p+ε with strict inclusions.

Lemma : for 0 < p < q ≤∞, one has

d ∈ w`p(F) ⇐⇒ ‖d − dn‖`q ≤ C (n + 1)−s , s =
1

p
−

1

q
, C := ‖d‖`p .

Proof : we now write

‖d − dn‖q`q =
∑
k>n

|d∗k |
q ≤ ‖d‖qw`p

∑
k>n

k−q/p ≤ C‖d‖qw`pn
1−q/p

which gives the forward implication (converse is left as an exercise).



From sequence approximation to Banach space valued function approximation

If a V -valued u has an expansion of the form u(y) =
∑
ν∈F uνφν(y), in a given basis

(φν)ν∈F , we use Stechkin’s lemma to study the approximation of u by

un :=
∑
ν∈Λn

uνφν,

where Λn ⊂ F corresponds to the n-largest ‖uν‖V .

If supy∈U |φν(y)| = 1, then by triangle inequality

‖u − un‖L∞(U,V ) ≤
∑
ν/∈Λn

‖uνφν‖L∞(U,V ) =
∑
ν/∈Λn

‖uν‖V ,

If (φν)ν∈F is an orthonormal basis of L2(U, µ), then by Parseval equality

‖u − un‖2
L2(U,V ,µ)

=
∑
ν/∈Λn

‖uν‖2
V ,

For concrete choices of bases a relevant question is thus : what smoothness properties
of a function ensure that its coefficient sequence belongs to `p for small values of p ?

In the case of wavelet bases, such properties are characterized by Besov spaces.

In our present setting of high-dimensional functions y 7→ u(y) we shall rather use
tensor-product polynomial bases instead of wavelet bases. Sparsity properties will
follow to the anisotropic features of these functions.



Return to the main guiding example

Steady state diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

where f = f (x) ∈ L2(D) and the diffusion coefficients are given by

a = a(x , y) = a(x) +
∑
j≥1

yjψj (x),

where a and the (ψj )j≥1 are given functions and y ∈ U := [−1, 1]N. Uniform ellipticity
assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U.

Equivalent expression of (UEA) : ā ∈ L∞(D) and∑
j≥1

|ψj (x)| ≤ ā(x) − r , x ∈ D,

or ∥∥∥∥∥
∑

j≥1 |ψj |

a

∥∥∥∥∥
L∞(D)

≤ θ < 1.

Lax-Milgram : solution map is well-defined from U to V := H1
0 (D) with uniform bound

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U, where ‖v‖V := ‖∇v‖L2 .



Sparse polynomial approximations using Taylor series

We consider the expansion of u(y) =
∑
ν∈F tνyν, where

yν :=
∏
j≥1

y
νj
j and tν :=

1

ν!
∂νu|y=0 ∈ V with ν! :=

∏
j≥1

νj ! and 0! := 1.

where F is the set of all finitely supported sequences of integers (finitely many
νj 6= 0). The sequence (tν)ν∈F is indexed by countably many integers.

ν

1

ν3

2

ν

Objective : identify a set Λ ⊂ F with #(Λ) = n such that u is well approximated by
the partial expansion

uΛ(y) :=
∑
ν∈Λ

tνy
ν.



Best n-term approximation

A-priori choices for Λ have been proposed, e.g. (anisotropic) sparse grid defined by
restrictions of the type

∑
j αjνj ≤ A(n) or

∏
j (1 + βjνj ) ≤ B(n).

Instead we want to choose Λ optimally adapted to u. By triangle inequality we have

‖u − uΛ‖L∞(U,V ) = sup
y∈U
‖u(y) − uΛ(y)‖V ≤ sup

y∈U

∑
ν/∈Λ
‖tνyν‖V =

∑
ν/∈Λ
‖tν‖V

Best n-term approximation in `1(F) norm : use Λ = Λn index set of n largest ‖tν‖V .

Stechkin lemma : if (‖tν‖V )ν∈F ∈ `p(F) for some p < 1, then for this Λn,∑
ν/∈Λn

‖tν‖V ≤ Cn−s , s :=
1

p
− 1, C := ‖(‖tν‖V )‖`p .

Question : do we have (‖tν‖V )ν∈F ∈ `p(F) for some p < 1 ?



One main result

Theorem (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(‖ψj‖L∞ )j>0 ∈ `p(N) =⇒ (‖tν‖V )ν∈F ∈ `p(F).

Interpretations :
(i) The Taylor expansion of u(y) inherits the sparsity properties of the expansion of
a(y) into the ψj .

(ii) We approximate u(y) in L∞(U,V ) with algebraic rate O(n−s ) despite the curse of
(infinite) dimensionality, due to the fact that yj is less influencial as j gets large.

(iii) The solution manifold M := {u(y) ; y ∈ U} is uniformly well approximated by the
n-dimensional space Vn := span{tν : ν ∈ Λn}. Its n-width satisfies the bound

dn(M)V ≤ max
y∈U

dist(u(y),Vn)V ≤ max
y∈U
‖u(y) − uΛn (y)‖V ≤ Cn−s .

Such approximation rates cannot be proved for the usual a-priori choices of Λ.

Same result for more general linear equations Au = f with affine operator
dependance : A = A +

∑
j≥1 yjAj uniformly invertible over y ∈ U, and

(‖Aj‖V→W )j≥1 ∈ `p(N), as well as other models.



Idea of proof : extension to complex variable

Estimates on ‖tν‖V by complex analysis : extend u(y) to u(z) with z = (zj ) ∈ C|| IN.

Uniform ellipticity
∑

j≥1 |ψj | ≤ a − r implies that with a(z) = a +
∑

j≥1 zjψj ,

0 < r ≤ <(a(x , z)) ≤ |a(x , z)| ≤ 2R, x ∈ D,

for all z ∈ U := {|z | ≤ 1}N = ⊗j≥1{|zj | ≤ 1}.

Lax-Milgram theory applies : ‖u(z)‖V ≤ C0 =
‖f ‖V∗

r
for all z ∈ U .

The function u 7→ u(z) is holomorphic in each variable zj at any z ∈ U : its first
derivative ∂zj u(z) is the unique solution to∫

D
a(z)∇∂zj u(z) · ∇v = −

∫
D
ψj∇u(z) · ∇v , v ∈ V .

Note that ∇ is with respect to spatial variable x ∈ D.

Extended domains of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that
for some δ > 0 ∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

then u is holomorphic with uniform bound ‖u(z)‖ ≤ Cδ =
‖f ‖V∗
δ

in the polydisc

Uρ := ⊗j≥1{|zj | ≤ ρj },

If δ < r , we can take ρj > 1.



Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫
|z ′|=b

u(z ′)

z − z ′
dz ′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

This yields exponential convergence rate b−n = exp(−cn) of Taylor series for 1-d
holomorphic functions. Curse of dimensionality : in d dimension, this yields
sub-exponential rate exp(−cn1/d ) where n is the number of retained terms.

Recursive application of this to all variables zj such that νj 6= 0, with b = ρj gives

‖∂νu|z=0‖V ≤ Cδν!
∏
j≥1

ρ
−νj
j ,

and thus
‖tν‖V ≤ Cδ

∏
j≥1

ρ
−νj
j = Cδρ

−ν,

for any sequence ρ = (ρj )j≥1 such that∑
j≥1

ρj |ψj (x)| ≤ a(x) − δ.



Optimization

Since ρ is not fixed we have

‖tν‖V ≤ Cδ inf
{
ρ−ν : ρ s.t.

∑
j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D
}
.

We do not know the general solution to this problem, except in particular case, for
example when the ψj have disjoint supports.

Instead design a particular choice ρ = ρ(ν) satisfying the constraint with δ = r/2, for
which we prove that

(‖ψj‖L∞ )j≥1 ∈ `p(N) =⇒ (ρ(ν)−ν)ν∈F ∈ `p(F),

therefore proving the main theorem.



A simple case

Assume that the ψj have disjoint supports. Then we maximize separately the ρj so that∑
j≥1

ρj |ψj (x)| ≤ a(x) −
r

2
, x ∈ D,

which leads to

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
.

We have, with δ = r
2

,

‖tν‖V ≤ Cδρ
−ν = Cδb

ν,

where b = (bj ) and

bj := ρ
−1
j = max

x∈D

|ψj (x)|

a(x) − r
2

≤
‖ψj‖L∞
R − r

2

.

Therefore b ∈ `p(N). From (UEA), we have |ψj (x)| ≤ a(x) − r and thus ‖b‖`∞ < 1.

We finally observe that

b ∈ `p(N) and ‖b‖`∞ < 1 ⇐⇒ (bν)ν∈F ∈ `p(F).

Proof : factorize ∑
ν∈F

bpν =
∏
j≥1

∑
n≥0

bpnj =
∏
j≥1

1

1 − bpj
.



What about weak `p-spaces ?

Do we have a result of the type

b ∈ w`p(N) and ‖b‖`∞ < 1 ⇐⇒ (bν)ν∈F ∈ w`p(F) ?

Awnser : no related to results in number theory.

Take the typical sequence (bj ) = (j + 1)−1/p . so that b ∈ w`p(N) and ‖b‖`∞ < 1. We
want to know if #{ν ∈ F : bν ≥ η} ≤ Cη−p for all η > 0, or equivalently if

t(A) := #
{
ν ∈ F :

∏
j≥2

jνj ≤ A
}
≤ CA, A > 0.

The left side can be rewritten as t(A) =
∑bAc

n=2 f (n), where f (n) is the number of
possible multiplicative partitions (factorisatio numerorum) of n. Estimating f (n) and
t(A), is a problem in number theory (Canfield-Erdos-Pomerance). It is known that

t(A)

A
∼ exp

{
4
√

log(A)
√

2e log(log(A))
(1 + o(1))

} → +∞
Thus the result valid for `p spaces cannot be true for w`p spaces.



Improved summability results

One defect of the previous result is that it depends on the ψj only through ‖ψj‖L∞ ,
without taking their support into account.Improved results can be obtained, without
relying on complex variable, by better exploiting the specific structure of PDE.

Recursive formula for the Taylor coefficients : with ej = (0, . . . , 0, 1, 0, . . . ) the
Kroeneker sequence of index j , the coefficient tν is solution to∫

D
ā∇tν∇v = −

∑
j : νj 6=0

∫
D
ψj∇tν−ej∇v , v ∈ V .

We introduce the quantities

dν :=

∫
D
a|∇tν|2 and dν,j :=

∫
D
|ψj | |∇tν|2.

Recall that (UEA) implies that

∥∥∥∥∑
j≥1 |ψj |

a

∥∥∥∥
L∞(D)

≤ θ < 1. In particular

∑
j≥1

dν,j ≤ θdν.

We use here the equivalent norm ‖v‖2
V :=

∫
D a|∇v |2.

Lemma : under (UEA), one has
∑
ν∈F dν =

∑
ν∈F ‖tν‖2

V <∞.



Proof

Taking v = tν in the recursion gives

dν =

∫
D
a|∇tν|2 = −

∑
j : νj 6=0

∫
D
ψj∇tν−ej∇tν.

Apply Young’s inequality on the right side gives

dν ≤
∑

j : νj 6=0

(1

2

∫
D
|ψj | |∇tν|2 +

1

2

∫
D
|ψj | |∇tν−ej |

2
)
=

1

2

∑
j : νj 6=0

dν,j +
1

2

∑
j : νj 6=0

dν−ej ,j .

The first sum is bounded by θdν, therefore(
1 −

θ

2

)
dν ≤

1

2

∑
j : νj 6=0

dν−ej ,j .

Now summing over all |ν| = k gives(
1 −

θ

2

) ∑
|ν|=k

dν ≤
1

2

∑
|ν|=k

∑
j : νj 6=0

dν−ej ,j =
1

2

∑
|ν|=k−1

∑
j≥1

dν,j ≤
θ

2

∑
|ν|=k−1

dν.

Therefore
∑

|ν|=k dν ≤ κ
∑

|ν|=k−1 dν with κ := θ
2−θ

< 1, and thus
∑
ν∈F dν <∞.



Rescaling

Now let ρ = (ρj )j≥1 be any sequence with ρj > 1 such that
∑

j≥1 ρj |ψj | ≤ a − δ for

some δ > 0, or equivalently such that

∥∥∥∥∑
j≥1 ρj |ψj |

a

∥∥∥∥
L∞(D)

≤ θ < 1.

Consider the rescaled solution map ũ(y) = u(ρy) where ρy := (ρjyj )j≥1 which is the
solution of the same problem as u with ψj replaced by ρjψj .

Since (UEA) holds for for these rescaled functions, the previous lemma shows that∑
ν∈F
‖t̃ν‖2

V <∞,
where

t̃ν :=
1

ν!
∂νũ(0) =

1

ν!
ρν∂νu(0) = ρνtν.

This therefore gives the weighted `2 estimate∑
ν∈F

(ρν‖tν‖V )2 ≤ C <∞.
In particular, we retrieve the estimate ‖tν‖V ≤ Cρ−ν that was obtained by the
complex variable approach, however the above estimate is stronger.



An alternate summability result

Applying Hölder’s inequality gives∑
ν∈F
‖tν‖pV ≤

(∑
ν∈F

(ρν‖tν‖V )2
)p/2(∑

ν∈F
ρ−qν

)1−p/2
,

with q = 2p
2−p

> p, or equivalently 1
q
= 1

p
− 1

2
.

The sum in second factor is finite provided that (ρ−1
j )j≥1 ∈ `q . Therefore, the

following result holds.

Theorem (Bachmayr-Cohen-Migliorati, 2015) : Let p and q be such that 1
q
= 1

p
− 1

2
.

Assume that there exists a sequence ρ = (ρj )j≥1 of numbers larger than 1 such that∑
j≥1

ρj |ψj | ≤ a − δ,

for some δ > 0 and
(ρ−1

j )j≥1 ∈ `q .

Then (‖tν‖V )ν∈F ∈ `p(F).

The above conditions ensuring `p summability of (‖tν‖V )ν∈F are significantly weaker
than those in the first summability theorem especially for locally supported ψj .



Disjoint supports

Assume that the ψj have disjoint supports.

Then with δ = r
2

, we choose

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
> 1.

so that
∑

j≥1 ρj |ψj | ≤ a − δ holds.

We have

bj := ρ
−1
j =

|ψj (x)|

a(x) − r
2

≤
‖ψj‖L∞
R − r

2

.

Thus in this case, our result gives for any 0 < q <∞,

(‖ψj‖L∞ )j≥1 ∈ `q(N) =⇒ (‖tν‖V )ν∈F ∈ `p(F),

with 1
q
= 1

p
− 1

2
.

Similar improved results if the ψj have supports with limited overlap, such as wavelets.

No improvement in the case of globally supported functions, such as typical KL bases.



Other models

Model 1 : same PDE but no affine dependence, e.g. a(x , y) = a(x) + (
∑

j≥0 yjψj (x))
2.

Assuming that a(x) ≥ r > 0 guarantees ellipticity uniformly over y ∈ U.

Model 2 : similar problems + non-linearities, e.g.

g(u) − div(a∇u) = f on D = D(y) u|∂D = 0,

with same assumptions on a and f . Well-posedness in V = H1
0 (D) for all f ∈ V ′ is

ensured for certain nonlinearities, e.g. g(u) = u3 of u5 in dimension m = 3 (V ⊂ L6).

Model 3 : PDE’s on domains with parametrized boundaries, e.g.

−∆v = f on D = Dy u|∂D = 0.

where the boundary of Dy is parametrized by y , e.g.

Dy := {(x1, x2) ∈ R2 : 0 < x1 < 1 and 0 < x2 < b(x1, y)},

where b = b(x , y) = b(x) +
∑

j yjψj (x) satisfies 0 < r < b(x , y) < R. We transport

this problem on the reference domain [0, 1]2 and study

u(y) := v(y) ◦ φy , φy : [0, 1]2 → Dy , φy (x1, x2) := (x1, x2b(x1, y)).

which satisfies a diffusion equation with coefficient a = a(x , y) non-affine in y .



Polynomial approximation for these models

In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc U = ⊗j≥1{|zj | ≤ 1}. For this reason,Taylor series are not expected to
converge.

Instead we consider the tensorized Legendre expansion

u(y) =
∑
ν∈F

vνLν(y),

where Lν(y) :=
∏

j≥1 Lνj (yj ) and (Lk )k≥0 are the Legendre polynomials normalized in

L2
(
[−1, 1], dt

2

)
.

Thus (Lν)ν∈F is an orthonormal basis for L2(U,V , µ) where µ := ⊗j≥1
dyj
2

is the
uniform probability measure and we have

vν =

∫
U
u(y)Lν(y)dµ(y).

We also consider the L∞-normalized Legendre polynomials Pk = (1 + 2k)−1/2Lk and
their tensorized version Pν, so

u(y) =
∑
ν∈F

wνPν(y),

where wν :=
(∏

j≥1(1 + νj )
1/2
)
vν.



Main result

Theorem (Chkifa-Cohen-Schwab, 2013) : For models 0, 1, 2 and 3, and for any p < 1,

(‖ψj‖X )j>0 ∈ `p(N) =⇒ (‖vν‖V )ν∈F and (‖wν‖V )ν∈F ∈ `p(F).

with X = L∞ for models 0, 1, 2, and X = W 1,∞ for model 3.

By the same application of Stechkin’s argument as for Taylor expansions, best n-term
truncations for the L∞ normalized expansion converge rate O(n−s ) in L∞(U,V )
where s = 1

p
− 1.

Best n-term truncations for the L2 normalized expansion converge with rate O(n−r ) in
L2U,V , µ) where r = 1

p
− 1

2
.

In the particular case of our guiding example, model 0, we can obtain improved
summability results for Legendre expansions, similar to Taylor expansions.

Key ingredient in the proof of the above theorem : estimates of Legendre coefficients
for holomorphic functions in a “small” complex neighbourhood of U.



Taylor vs Legendre expansions

In one variable :

- If u is holomorphic in an open neighbourhood of the disc {|z | ≤ b} and bounded by
M on this disc, then the n-th Taylor coefficient of u is bounded by

|tn | :=

∣∣∣∣∣u(n)(0)n!

∣∣∣∣∣ ≤ Mb−n

- If u is holomorphic in an open neighbourhood of the domain Eb limited by the ellipse
of semi axes of length (b + b−1)/2 and (b − b−1)/2, for some b > 1, and bounded by
M on this domain, then the n-th Legendre coefficent wn of u is bounded by

|wn | ≤ Mb−n(1 + 2n)φ(b), φ(b) :=
πb

b − 1

b

10−1

b−b

10−1

2

b+b
−1

2

−1



A general assumption for sparsity of Legendre expansions

We say that the solution to a parametric PDE D(u, y) = 0 satisfies the
(p, ε)-holomorphy property if and only if there exist a sequence (cj )j≥1 ∈ `p(N), a
constant ε > 0 and C0 > 0, such that : for any sequence ρ = (ρj )j≥1 such that ρj > 1
and ∑

j≥1

(ρj − 1)cj ≤ ε,

the solution map has a complex extension

z 7→ u(z),

of the solution map that is holomorphic with respect to each variable on a domain of
the form Oρ = ⊗j≥1Oρj where Oρj is an open neigbourhood of the elliptical domain
Eρj , with bound

sup
z∈Eρ

‖u(z)‖V ≤ C0,

where Eρ = ⊗j≥1Eρj .

Under such an assumption, one has (up to additional harmless factors) an estimate of
the form

‖wν‖V ≤ C0 inf
{
ρ−ν ; ρ s.t.

∑
j≥1

(ρj − 1)cj ≤ ε
}
,

allowing us to prove that (‖wν‖V )ν∈F ∈ `p(F).



A general framework for establishing the (p, ε)-holomorphy assumption

Assume a general problem of the form

P(u, a) = 0,

with a = a(y) = a +
∑

j≥1 yjψj , where

P : V × X →W ,

with V ,X ,W a triplet of complex Banach spaces, and a and ψj are functions in X .

Theorem (Chkifa-Cohen-Schwab, 2013) : assume that

(i) The problem is well posed for all a ∈ Q = a(U) with solution u(y) = u(a(y)) ∈ V .

(ii) The map P is differentiable (holomorphic) from X × V to W .

(iii) For any a ∈ Q, the differential ∂uP(u(a), a) is an isomorphism from V to W

(iv) One has (‖ψj‖X )j≥1 in `p(N) for some 0 < p < 1,

Then, for ε > 0 small enough, the (p, ε)-holomorphy property holds.



Idea of proof

Based on the holomorphic Banach valued version of the implicit function theorem (see
e.g. Dieudonné).

1. For any a ∈ Q = {a(y) : y ∈ U} we can find a εa > 0 such that the map a→ u(a)
has an holomorphic extension on the ball B(a, εa) := {ã ∈ X : ‖ã − a‖X < εa}.

2. Using the decay properties of the ‖ψj‖X , we find that Q is compact in X . It can be
covered by a finite union of balls B(ai , εai ), for i = 1, . . . ,M.

3. Thus a→ u(a) has an holomorphic extension on a complex neighbourhood N of Q
of the form

N = ∪Mi=1B(ai , εai ).

4. For ε small enough, one proves that if
∑

j≥1(ρj − 1)cj ≤ ε with cj := ‖ψj‖L then

with Oρ = ⊗j≥1Oρj where Ob := {z ∈ C : dist(z , [−1, 1])C ≤ b − 1} is a
neighborhood of Eb, one has

z ∈ Oρ =⇒ a(z) ∈ N .

This gives holomorphy of z 7→ a(z) 7→ u(z) = u(a(z)) in each variable for z ∈ Oρ.



Lognormal coefficients

We assume diffusion coefficients are given by

a = exp(b),

with b a random function defined by an affine expansion of the form

b = b(y) =
∑
j≥1

yjψj ,

where (ψj ) is a given family of functions from L∞(D) and y = (yj )j≥1 a sequence of
i.i.d. standard Gaussians N (0, 1) variables.

Thus y ranges in U = RN equipped with the probabilistic structure (U,B(U), γ) where
B(U) is the cylindrical Borel Σ-algebra and γ the tensorized Gaussian measure.

Commonly used stochastic model for diffusion in porous media.

The solution u(y) is well defined in V for those y ∈ U such that b(y) ∈ L∞(D), with

‖u(y)‖V ≤
1

amin(y)
‖f ‖V ′ ≤ exp(‖b(y)‖L∞ )‖f ‖V ′ .



Affine Gaussian representations

Given a centered Gaussian process (b(x))x∈D with covariance function
Cb(x , z) = E(b(x)b(z)), one frequently consider the Karhunen-Loeve expansion,

b =
∑
j≥1

ξjϕj ,

where ξj are i.i.d. N (0, σ2
j ) and (ϕj )j≥1 are L2(D)-orthonormal, and normalize

ψj = σjϕj and yj = σ
−1
j ξj ,

so that b =
∑

j≥1 yjψj . However, other representations may be relevant.

Example : b the Brownian bridge on D = [0, 1] defined by Cb(x , z) := min{x , z} − xz.

1. Normalized KL : ψj (x) =
√

2
πj

sin(πjx).

2. Levy-Ciesielski representation : uses Schauder basis (primitives of Haar system)

ψl,k (x) := 2−l/2ψ(2lx − k), k = 0, . . . , 2l − 1, l ≥ 0, ψ(x) :=
1

2
(1 − |2x − 1|)+.

Then with coarse to fine ordering ψj = ψl,k for j = 2l + k, one has b =
∑

j≥1 yjψj .



Main theoretical questions

1. Integrability : under which conditions is y 7→ u(y) Bochner measurable with values
in V and satifies for 0 ≤ k <∞.

‖u‖k
Lk (U,V ,γ)

= E(‖u(y)‖kV ) <∞,
In view of ‖u(y)‖V ≤ exp(‖b(y)‖L∞ )‖f ‖V ′ , this holds if E(exp(k‖b(y)‖L∞ ) <∞.

2. Approximability : if u ∈ L2(U,V , γ), consider the multivariate Hermite expansion

u =
∑
ν∈F

uνHν, Hν(y) :=
∏
j≥1

Hνj (yj ) and uν :=

∫
U
u(y)Hν(y)dγ(y)

where F is the set of finitely supported integer sequences ν = (νj )j≥1.

Best n-term approximation : un =
∑
ν∈Λn

uνHν, with Λn indices of n largest ‖uν‖V .

Stechkin lemma : if (‖uν‖V )ν∈F ∈ `p(F) for some 0 < p < 2 then

‖u − un‖L2(U,V ,γ) ≤ Cn−s , s :=
1

p
−

1

2
, C := ‖(‖uν‖V )ν∈F‖`p



Existing results

Integrability : sufficient conditions for u ∈ Lk (U,V , γ) for all 0 ≤ k <∞ are known.

1. Smoothness : Cb ∈ Cα(D × D) for some α > 0 (Charrier).

2. Summability :
∑

j≥1 ‖ψj‖L∞ <∞ (Schwab-Gittelson-Hoang)

3.
∑

j≥1 ‖ψj‖2−δ
L∞ ‖ψj‖δCα <∞ for some 0 < δ < 1 (Dashti-Stuart)

Approximability : first available result is as follows.

Theorem (Hoang-Schwab, 2014) : for any 0 < p ≤ 1, if (j‖ψj‖L∞ ) ∈ `p(N) then
(‖uν‖V ) ∈ `p(F).

Remarks :

The condition (j‖ψj‖L∞ ) ∈ `p(N) is strong, compared to L2-integrability conditions.

It typically imposes high order of smoothness of the covariance function.

For example it is not satified by KL or Schauder representation of Brownian bridge.

Condition based on ‖ψj‖L∞ . Can we better exploit the support properties ?



Improved summability result

Theorem (Bachmayr-Cohen-DeVore-Migliorati, 2015) :

Let 0 < p < 2 and define q := q(p) = 2p
2−p

> p (or equivalently 1
q
= 1

p
− 1

2
).

Assume that there exists a positive sequence ρ = (ρj )j≥1 such that

(ρ−1
j )j≥1 ∈ `q(N) and sup

x∈D

∑
j≥1

ρj |ψj (x)| <∞.
Then y 7→ u(y) is measurable and belongs Lk (U,V , γ) for all 0 ≤ k <∞ and

(‖uν‖V )ν∈F ∈ `p(F).

Remarks :

Similar result for the Taylor and Legendre coefficients for the affine parametric model
a(y) = a +

∑
j≥1 yjψj however by different arguments.

Proof is rather specific to the linear diffusion equation (yet extensions possible).

The above conditions for `p summability of (‖uν‖V )ν∈F are weaker than `p

summability of (j‖ψj‖L∞ )j≥1 especially for locally supported ψj .



The case of the Brownian bridge

KL representation :

Globally supported functions ψj (x) =
√

2
πj

sin(πjx).

The decay of (‖ψj‖L∞ )j≥1 is not sufficient to apply our results.

No provable approximability by best n-term Hermite series.

Schauder representation :

Wavelet type functions with decay in scale ‖ψλ‖L∞ ∼ 2−l/2.

This allows to apply our result ρλ = 2βl , for any β < 1
2

.

Our result imply that (‖uν‖V )ν∈F ∈ `p(F) for any p such that 1
2
> 1

p
− 1

2
.

In particular, best n-term Hermite approximations satisfy

‖u − uΛn‖L2(U,V ,γ) ≤ Cn−s , s =
1

p
−

1

2
<

1

2
.



Representations of gaussian processes

Objective : for general gaussian processes b, identify an “optimal” representation for
solving the approximation problem.

By analogy with the Brownian bridge, one expect a wavelet type basis.

Existing work in this direction : Cieceslki-Kerkycharian-Roynette,
Benassi-Jaffard-Roux, Kerkyacharian-Ogawa-Petrushev-Picard.

Luschgy-Pages : b =
∑

j≥1 yjψj with yj i.i.d. N (0, 1) iff (ψj )j≥1 is a tight frame for the
reproducing kernel Hilbert space H defined by the covariance function of the process.

Matérn processes : covariance given by K (x , x ′) = k(x − x ′) with

k(x) =
21−ν

Γ(ν)

(√
2ν|x |

λ

)ν
Kν

(√
2ν|x |

λ

)
,

where ν, λ > 0 and Kν is the modified Bessel function of the second kind. One has

k̂(ω) = cν,λ

(
ν

2π2λ2
+ |ω|2

)−(ν+d/2)

, cν,λ :=
Γ(ν + d/2)(2ν)ν

π2ν+d/2Γ(ν)λ2ν
.

The associated RKHS is H ∼ Hr (D) with r = ν + d/2.



Matern wavelets

Bachmayr-Cohen-Migliorati (2016) : construction of expansions into wavelets type
frames satisfying the expected decay 2−νl with scale level. These expansions lead to
better approximations than KL expansions which have decay j−r/d but global support.

Example : λ = 1, ν = 1
2
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Main ingredient in the proof of the main result

1. Relate Hermite coefficients uν and partial derivatives ∂µu. Base on 1-d Rodrigues

formula : Hn(t) =
(−1)n√

n!

g(n)(t)
g(t)

, where g(t) := (2π)−1/2 exp(−t2/2). After some

computation this leads to weighted `2 identity for any sequence ρ := (ρj )j≥1.

∑
‖µ‖`∞≤r

ρ2µ

µ!

∫
U
‖∂µu(y)‖2

V dγ(y) =
∑
ν∈F

bν‖uν‖2
V ,

where bν :=
∑
‖µ‖`∞≤r

(ν
µ

)
ρ2µ.

2. Prove finiteness of left hand side
∑
‖µ‖`∞≤r

ρ2µ

µ!

∫
U ‖∂

µu(y)‖2
V dγ(y) when

sup
x∈D

∑
j≥1

ρj |ψj (x)| =: K < Cr := r−1/2ln 2.

Use PDE :
∫
D a(y)∇∂µu(y) · ∇v = −

∑
ν≤µ, ν6=µ

(µ
ν

) ∫
D ψ

µ−νa(y)∇∂νu(y) · ∇v .

3. Derive `p estimate by mean of Hölder’s inequality :(∑
ν∈F
‖uν‖pV

)1/p
≤
(∑
ν∈F

bν‖uν‖2
V

)1/2(∑
ν∈F

b
−q/2
ν

)1/q
.

We prove that the second factor is finite if (ρ−1
j )j≥1 ∈ `q(N) and r such that 2

r+1
< p.



Conclusions

The curse of dimensionality can be “defeated” by exploiting both smoothness and
anisotropy in the different variables.

For certain models, this can be achieved by sparse polynomial approximations.

The way we parametrize the problem, or represent its solution, is crucial.



Part 2

Algorithms : Galerkin, power series, sparse interpolation and least-squares



From approximation results to numerical methods

The results so far are approximation results. They say that for several models of
parametric PDEs, the solution map y 7→ u(y) can be accurately approximate (with
rate n−s for some s > 0) by multivariate polynomials having n terms.

These polynomials are computed by best n-term truncation of Taylor or Legendre or
Hermite series, but this is not feasible in practical numercial methods.

Problem 1 : the best n-term index sets Λn are computationally out of reach. Their
identification would require the knowledge of all coefficients in the expansion.

Objective : identify non-optimal yet good sets Λn.

Problem 2 : the exact polynomial coefficients tν (or vν, wν, uν) of u for the indices
ν ∈ Λn cannot be computed exactly.

Objective : numerical strategy for approximately computing polynomial coefficients.



Numerical methods : strategies to build the sets Λn

(i) Non-adaptive, based on the available a-priori estimates for the ‖tν‖V (or ‖vν‖V ,
‖wν‖V , ‖uν‖V ). Take Λn to be the set corresponding to the n largest such estimates.

(ii) Adaptive, based on a-posteriori information gained in the computation
Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn · · · .

ν
2

ν
1



Adaptive vs non-adaptive

Adaptive methods are known to converge better than non-adaptive ones, but their
analysis is more difficult.

A test case for linear-affine model in dimension d = 64 : comparison between the
approximation performance with Λn given by standard choices {supνj ≤ k} (black) or
{
∑
νj ≤ k} (purple) and by anisotropic choices based on a-priori bounds (blue) or

adaptively generated (green).
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Highest polynomial degree for Λ1000 with different choices : 1, 2, 162 and 114.



Downward closed index sets

For adaptive algorithms it is critical that the index chosen sets are downward closed

ν ∈ Λ and µ ≤ ν =⇒ µ ∈ Λ,

where µ ≤ ν means that µj ≤ νj for all j ≥ 1.

Such sets are also called lower sets. This property does not generally holds for the sets
corresponding to the n largest estimates, however the same convergence rates as
proved in the approximation theorems, can be proved when imposing such a structure.

If Λ is downward closed, we consider the polynomial space

PΛ = span{y → yν : ν ∈ Λ} = span{Lν : ν ∈ Λ} = span{Hν : ν ∈ Λ}

and its V -valued version

VΛ := {
∑
ν∈Λ

vνy
ν : vν ∈ V } = V ⊗ PΛ.

After having selected Λn we search for a computable approximation of u in VΛn .



Spatial discretization

Note that dim(VΛn ) =∞. In practice we use VΛn,h = Vh ⊗ PΛn which has dimension

ntot = dim(VΛn,h) = dim(Vh) dim(PΛn ) = nhn <∞.
This amount in applying polynomial approximation to the approximate solution map
y 7→ uh(y) ∈ Vh, defined e.g. by the Galerkin method∫

D
∇a(y)uh(y)∇vh =

∫
D
fvh, vh ∈ Vh,

Total approximation error estimate e.g. in L∞
εtot = min

v∈VΛn,h

‖u − v‖L∞ ≤ εn + εh,

where

εn = min
v∈VΛn,h

‖uh − v‖L∞(U,Vh)
and εh = sup

y∈U
‖u(y) − uh(y)‖V .

By the same sparsity analysis as for the exact solution map we obtain estimates of the
form εn ≤ Cn−s . The spatial error is controlled provided that u(y) has additional

spatial smoothness : εh ≤ Cht ≤ Cn
−t/m
h if u ∈ L∞(U,H1+t(D)) and D ⊂ Rm.

Balancing with nh ∼ n−ms/t , this leads to the estimate εtot ≤ Cn
− s

1+ms/t
tot .



Sharper analysis of spatial discretization

For a given truncated series, we could use different spatial resolution in the
discretization of each coefficients. For example, for the Taylor series, use∑

ν∈Λn

tν,hνy
ν, tν,hν ∈ Vhν .

The total number of degrees of freedom is now ntot =
∑
ν∈Λn

nhν ∼
∑
ν∈Λn

h−d
ν and

the total error is of the order εtot ≤ εn +
∑
ν∈Λn

εν, where

εn = min
v∈VΛn

‖u−v‖L∞(U,V ) ≤ Cn−s and εν = min
vh∈Vhν

‖tν−vh‖V ≤ Chtν‖tν‖H1+t .

The error analysis now relates to the sparsity of the sequence (‖tν‖H1+t )ν∈F .

Theorem (Cohen-DeVore-Schwab, 2011) : If (‖tν‖H1+t )ν∈F ∈ `p(F) for some p < 1,

then optimal tuning of the hν gives the total error εtot ≤ Cn− min{s, t
m
} with s = 1

p
− 1.

Theorem (Bachmayr-Cohen-Dinh-Schwab, 2016) : for the affine diffusion model, let p
and q be such that 1

q
= 1

p
− 1

2
. Assume that the domain D is smooth or convex and

that there exists a sequence ρ = (ρj )j≥1 of numbers larger than 1 such that∑
j≥1

ρj |ψj | ≤ a − δ and
∑
j≥1

ρj |∇ψj | <∞
for some δ > 0 and (ρ−1

j )j≥1 ∈ `q . Then (‖tν‖H2 )ν∈F ∈ `p(F).



Strategies to build the polynomial approximation : intrusive methods

1. Galerkin method : based on a space-parameter variational form (test the parametric
PDE on arbitrary y 7→ v(y) and integrate both in x and y). Example for model 0 :
find u ∈ L2(U,V , µ) such that for all v ∈ L2(U,V , µ),

A(u, v) :=

∫
U

∫
D
a(x , y)∇u(x , y)∇v(x , y)dxdµ(y) =

∫
U
〈f , v(y)〉dµ(y) =: L(v),

The problem is coercive in L2(U,V , µ). Galerkin formulation : find un ∈ VΛn such that

A(un, vn) = L(vn), vn ∈ VΛn .

Cea’s lemma gives error estimate

‖u − un‖L2(U,V ,µ) ≤ (R/r)1/2 min
v∈VΛn

‖u − v‖L2(U,V ,µ).

After space discretization, Galerkin problem in VΛn,h gives a (nnh)× (nnh) system.

Lognormal case : lack of coervivity, Galerkin method needs some massaging.

2. Exact computation of the Taylor coefficients ‖tν‖V , based on the recursive formula.

After space discretization, sequence of n systems of size nh × nh.

Adaptive algorithms with optimal theoretical guarantees exist for both method 1
(Gittelson-Schwab) and 2 (Chkifa-Cohen-DeVore-Schwab).

These methods apply to other models, however mainly confined to linear PDEs, with
affine parameter dependence.



Exact adaptive computation of the Taylor coefficients

With ej the Kroenecker sequence of index j ,∫
D
ā∇tν∇v = −

∑
j : νj 6=0

∫
D
ψj∇tν−ej∇v , v ∈ V .

If Λn is downward closed, this allows us to compute all tν by recursively solving n
boundary value problems, or nh × nh systems after space discretization in Vh.

Adaptive method : start with Λ1 = {0}. Given that we have computed Λk and the
(tν)ν∈Λk

we compute the tν for ν in the margin

M(Λk ) =Mk := {ν /∈ Λk ; ν − ej ∈ Λk for some j},

and build the new set by bulk search : choose Λk+1 = Λk ∪ Sk , with Sk ⊂Mk

smallest such that
∑
ν∈Sk ‖tν‖

2
V ≥ θ

∑
ν∈Mk

‖tν‖2
V , for a fixed θ ∈]0, 1[.

Key property (saturation) : under (UEA), for any lower set Λ there exists a constant
C such that ∑

ν/∈Λ
‖tν‖2

V ≤ C
∑

ν∈M(Λ)

‖tν‖2
V .

This guarantees `2 error reduction by fixed factor at each step k → k + 1.

In addition, can be proved to converge with optimal convergence rate #(Λk )
−s .



ν
2

ν
1



Test case in high dimension d = 64

Physical domain D = [0, 1]2 = ∪dj=1Dj .

Diffusion coefficients a(x , y) = 1 +
∑d

j=1 yj

(
0.9
j2

)
χDj

. Thus U = [−1, 1]64.

Adaptive search of Λ implemented in C++, spatial discretization by FreeFem++.

Comparison between the Λk generated by the adaptive algorithm (green) and
non-adaptive choices {supνj ≤ k} (black) or {

∑
νj ≤ k} (purple) or k largest a-priori

bounds on the ‖tν‖V (blue).
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Highest polynomial degree with #(Λ) = 1000 coefficients : 1, 2, 162 and 114.



Computation of the average solution

Assuming that y is uniformly distributed on U = [−1, 1]64, we compute the average
solution

ū = E(u),

either by the deterministic approach

ūΛ :=
∑
ν∈Λ

tνE(yν), E(yν) =
∏
j≥1

(∫1

−1
tνj

dt

2

)
=
∏
j≥1

1 + (−1)νj

2 + 2νj
,

or by the Monte Carlo approach ūn := 1
n

∑n
i=1 u(y

i ), where y1, · · · , yn are n
independent realization of y .
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Strategies to build the polynomial approximation : non-intrusive methods

Based on snapshots u(y i ) where y i ∈ U for i = 1, . . . ,m..

1. Pseudo spectral methods : computation of
∑
ν∈Λn

vνLν by quadrature

vν =

∫
U
u(y)Lν(y)dµ(y) ≈

m∑
i=1

wiu(y
i )Lν(y

i ).

2. Interpolation : with m = n = dim(PΛn ) search for un = IΛnu ∈ VΛn such that

un(y
i ) = u(y i ), i = 1, . . . , n.

3. Least-squares : with m ≥ n, search for un ∈ VΛn minimizing

m∑
i=1

‖u(y i ) − un(y
i )‖2

V .

4. Underdetermined least-squares : with m < n search for un ∈ VΛn minimizing

m∑
i=1

‖u(y i ) − un(y
i )‖2

V + π(un),

where π is a penalization functional. Compressed sensing : take for π the (weighted) `1

sum of V -norms of Legendre coefficients of un (promote sparse solutions).



Advantages of non-intrusive methods

Applicable to a broad range of models, in particular non-linear PDEs.

Adaptive algorithms seem to work well for the interpolation and least squares
approach, however with no theoretical guarantees.

Additional prescriptions for non-intrusive methods :

(i) Progressive : enrichment Λn → Λn+1 requires only one or a few new snapshots.

(ii) Stable : moderate growth with n of the norm of the reconstruction operator
(Lebesgue constant in the case of interpolation).

Main issue : how to best choose the point y i ?

In the following we focus on interpolation and least-squares, which we present for
simplicity for scalar valued functions (extension to V or Vh valued function is trivial).



Concepts from Information Based Complexity

We consider general recovery algorithms of the form

An(u) := An(u(y
1), . . . , u(yn)),

where An is a linear or non-linear map from Rn to a space of functions defined on U.

Non-adaptive algorithms : y1, . . . , yn are a-priorily chosen.

Adaptive algorithms : the choice of yk may depend on {u(y1), . . . , u(yk−1)}

We measure the error in a given norm : ‖u − An(u)‖X .

If X = L∞ no loss in imposing interpolation : An(u)(y i ) = u(y i ) for i = 1, . . . , n.

Optimal recovery performance over a class K ⊂ X (worst case scenario) :

en = en(K)X := inf
An,(y i )

sup
u∈K
‖u − An(u)‖X .

Objective : computationally feasible algorithm that perform almost as good as en.

Similar concepts developped for the tasks of integration and optimization.



Additional prescriptions

Nestedness : An+1 uses the same points as An and one new point yn+1

Stability : a small perturbation of u in X induces a small perturbation of An(u) in X

Universality : An is simultaneously near-optimal for a large range of model classes.

Curse of dimensionality

Example : X = L∞([−1, 1]d ) and K is the unit ball of Cm([−1, 1]d ), then

cn−m/d ≤ en(K)X ≤ Cn−m/d , n ≥ 0,

where c,C > 0 depend on (m, d).

Does adaptivity helps ?

Theorem (Bakhvalov, 1971) : If K is a convex symmetric set of X , there exist a near
best algorithm An which is non-adaptive and linear.

Yet in many practical applications, adaptivity appears to be very helpful, for instance
to detect sharp features or anisotropies in high dimension.

The relevant classes K are not well understood, especially in high dimensions. They
are expected to be non-convex.



A commonly used non-polynomial method : RKHS interpolation

Given a set of point {y1, . . . , yn}, there are infinitely many functions that admit the
values {u(y1), . . . , u(yn)} at these points.

Some a-priori information needs to be injected in order to make a choice. One way to
do this is through the minimization of a certain energy among all possible candidates.

Remark : in the univariate case, the piecewise linear and cubic spline interpolants on an
interval I minimize the elastic and torsion energies

∫
I |v
′|2 and

∫
I |v
′′|2, respectively.

Reproducing Kernel Hilbert Space (RKHS) : a Hilbert space of function H defined on
some domain U that is continuously embedded in the space of continuous function
C (U) (in our case U = [−1, 1]d or [−1, 1]N).

We assume that the space is rich enough such that for all {y1, . . . , yn} and values
{v1, . . . , vn} there exists v ∈ H such that v(y i ) = vi for i = 1, . . . , n.

Example : Sobolev space Hs (U) with s > d/2.

RKHS interpolation (Kimmeldorf-Wahba, 1971, Duchon, 1977) : define interpolant as

Inu = I{y1,...,yn}u := argmin
{
‖v‖H : v(y i ) = u(y i ), i = 1, . . . , n

}
.

This minimizer turns out to be easily computable.



The reproducing kernel

For any y ∈ U, there exists Ky ∈ H such that

〈Ky , v〉H = v(y), v ∈ H.

The functions (Ky )y∈U are complete in H. We define the reproducing kernel (RK) as

K (y , z) := 〈Ky ,Kz 〉H = Ky (z) = Kz (y)

The RK satisfies the positive definiteness property

n∑
i=1

n∑
j=1

K (y i , y j )cicj > 0, (c1, . . . , cn) 6= (0, . . . , 0), y1, . . . , yn ∈ U, n ≥ 0.

Conversly (Aronszajn, 1950), a function K satisfying this property generates a RKHS
H = HK defined as the closure of the linear combinations of the functions
Ky = K (y , ·) for the norm induced by the inner product 〈Ky ,Kz 〉H := K (y , z).

Radial basis functions (RBF) : if RK is of the form K (y , z) = k(|y − z |), the functions

Ky is the translate at y of the radial function z 7→ k(|z |) (e.g. Gaussian e−a|z|2 ).



Computation of the RKHS interpolation

It is then easily seen that the RKHS interpolation is of the form Inu =
∑n

j=1 cjKy j ,

where (c1, . . . , cn) is the unique solution to the system

n∑
j=1

K (y i , y j )cj = u(y i ), i = 1, . . . , n.

RKHS interpolation is formally equivalent to gaussian process interpolation which was
introduced in geostatistics engineering as Kriging (Matheron, 1978).

For a given positive definite kernel K we consider a centered gaussian process v with
covariance K (y , z) (reflects the uncertainty on the unknown u).

Then In can be defined as the conditional expectation

In(y) = E
(
v(y)

∣∣∣ v(y j ) = u(y j ), j = 1, . . . , n
)
.

It is also the best linear estimator Inu(y) =
∑n

j=1 aj (y)u(y
j ) minimizing among all

a1, . . . , an the mean square error E
(
|u(y) −

∑n
j=1 aju(y

j )|2
)



Adaptive strategies

The gaussian process interpretation leads to natural strategies for adaptive
algorithms :

1. Point selection : given y1, . . . , yn, choose yn+1 where E(|u(y) − Inu(y)|2) is largest.

2. Kernel adaptation : using cross-validation, for example with anisotropic gaussians

K (y , z) = Kb(y , z) = exp
(
−

d∑
j=1

bj |yj − zj |
2
)
, b = (b1, . . . , bd ),

find b which minimizes
∑n

i=1

∣∣∣u(y i ) − I{y1,...,yn}−{y i }u(y
i )
∣∣∣2

Not much is known on the analysis of these stragegies (need relevant model classes).

Works in arbitrarily high dimension, however costful in moderately large dimension due
to the two above non-convex optimization problems.

The system is always solvable but is often ill-conditionned.



Sparse polynomial interpolation

We want to use general multivariate polynomial spaces of the form

PΛ = span{y 7→ yν : ν = (νj )j≥1 ∈ Λ}, yν :=
∏
j≥1

y
νj
j .

We assume that Λ is a lower set :

ν ∈ Λ and µ ≤ ν =⇒ µ ∈ Λ.

ν

1

ν3

2

ν

Motivation : for relevant classes of functions u arising from parametric PDEs, there
exists sequences of lower sets (Λn)n≥0 such that for some s > 0,

min
v∈PΛn

‖u − v‖L∞(U) ≤ Cn−s .



Univariate nested interpolation

Let {t0, t1, t2 . . .}, be an infinite sequence of pairwise distinct points in [−1, 1] and let
Ik be the univariate interpolation operator on Pk associated to the section {t0, . . . , tk }.

Hierarchical (Newton) form :

Ik =

k∑
l=0

∆l , ∆l := Il − Il−1 and I−1 := 0.

Note that ∆kPl = 0 and ∆ku(tl ) = 0 for all l < k. Expansion in a hierarchical basis

∆lu = αlhl , αl := u(tl ) − Il−1u(tl ) and hl (t) =
l−1∏
j=0

t − tj

tl − tj
.

The choice of {t0, t1, t2 . . .} is important for stability. The usual choices, such as
Chebychev or Clemshaw-Curtis, are not section of a single infinite sequence.

Leja points : initialize with arbitrary t0, usually t0 = 1, then

tl := argmaxt∈[−1,1]

l−1∏
j=0

|t − tl |.

Note that this choice ensures ‖hl‖L∞ ≤ 1. Close to Fekete points argmax
∏

j 6=l |tj − tl |.



Tensorization

Tensorized grid : for any multi-index ν, we define the point

zν := (tν1 , tν2 , . . . ) ∈ U.

Tensorized operators : for any multi-index µ, we define

Iµ = ⊗j≥1Iµj and ∆µ := ⊗j≥1∆µj .

Iµ is the interpolation operator on the space of polynomials of degree µj in each yj

Pµ = PRµ , Rµ = {ν : ν ≤ µ},

associated to the grid of point

ΓRν := {zν : ν ∈ Rµ}.

Observe that

Iµ = ⊗j≥1

( µj∑
l=0

∆l

)
=
∑
ν≤µ

∆ν =
∑
ν∈Rµ

∆ν.



Sparsification

Theorem (Cohen-Chkifa-Schwab, 2013, Dyn-Floater, 2013, Kuntzmann, 1959) : if Λ is
any downward closed set, the grid

ΓΛ := {zν : ν ∈ Λ},

is unisolvent for PΛ = span{y 7→ yν : ν ∈ Λ} and the interpolant is given by

IΛ :=
∑
ν∈Λ

∆ν, ∆ν := ⊗j≥1∆νj .

Proof : ΓΛ has the right cardinality, it suffices to prove that IΛu(zµ) = u(zµ) for any
µ ∈ Λ. This follows from

IΛ = Iµ +
∑

ν∈Λ ν
µ

∆ν.

and observe that Iµu(zµ) = u(zµ) and ∆νu(zµ) = 0 if ν 
 µ.



Hierarchical computation

With the tensorized hierarchical basis Hν(y) =
∏

j≥1 hνj (yj ), we have

∆νu(y) = ανHν(y).

where the coefficients αν can be computed recursively.

Write Λ = Λn = {ν1, . . . , νn} where the enumeration is such that Λk = {ν1, . . . , νk } is
downward closed for all k = 1, . . . , n. Then

ανk = u(zνk ) − IΛk−1
u(zνk ).

Remark : the same general principles (tensorization, sparsification, hierarchical
computation) apply to any other systems such as trigonometric polynomials or
hierarchical piecewise linear finite elements.



Adaptive algorithms

Given Λ, we consider its set of neighbors N (Λ) consisting of those ν /∈ Λ such that
Λ ∪ {ν} is also downward closed.

Adaptive algorithm : given Λn, define Λn+1 := Λn ∪ {ν∗} with

ν∗ := argmax{‖∆νu‖L∞ : ν ∈ N (Λn)}.

ν
2

ν
1



Theoretical difficulties

The previous adaptive algorithm may fail to converge (in particular ∆νu = 0 for some
ν and ∆µu 6= 0 for a µ ≥ ν.

Behaves well in many practical situations.

More conservative variant : Use the above selection rule if n is even, and for odd n
choose ν∗ ∈ N (Λn) which was already contained in N(Λk ) for the smallest value of k.

Other variants : measure ∆νu in Lp norm, use |
∫
U ∆νu| (integration), or ν∗ ∈ N (Λn)

minimizing u(zν) (optimization)...



Robustness to dimension growth

We apply the adaptive interpolation algorithm to

u(y) :=
(

1 +

d∑
j=1

γjyj

)−1
, γj =

3

5j3
,

for different numbers d of variables.
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Robustness to noise

Same function u in dimension d = 16, with noisy samples (noise level = 10−2). using
adaptive interpolation based on different univariate sequences.
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Stability

We want to study the Lebesgue constant

LΛ := ‖IΛ‖L∞→L∞ = sup
u

‖IΛu‖L∞
‖u‖L∞

Useful for approximation since

‖u − IΛu‖L∞ ≤ ‖u − v‖L∞ + ‖IΛv − IΛu‖L∞ , v ∈ PΛ,

and thus
‖u − IΛu‖L∞ ≤ (1 + LΛ) min

v∈PΛ
‖u − v‖L∞

The following result relates LΛ to the univariate Lebesgue constant

Lk := ‖Ik‖L∞→L∞ = sup
u

‖Iku‖L∞
‖u‖L∞

Theorem (Chkifa-Cohen-Schwab, 2013) : if Lk ≤ (1 + k)a, then LΛ ≤ #(Λ)1+a.



Stability of univariate sequences

For Leja point, it is known (Taylor-Totik, 2008) that Lk is sub-exponential

lim
k→+∞L1/k

k = 1.

Numerical computation seems to indicate that

Lk ≤ 1 + k.

Clemshaw-Curtis points Ck = {cos(lπ/k) : l = 0, . . . , k} are dyadically nested :

C2j+1 ⊂ C2j+1+1.

For the values k = 2j+1 we know that Lk ∼ log(k).

Problem : how to fill in the intermediate values ?

Sequencial enumeration : disastrous behaviour of Lk .

Van der Corput enumeration : it can be proved (Chkifa, 2013) that

Lk ≤ (1 + k)2.

This is also the projection of the Leja point for the complex unit disc (R-Leja points).



Stability

Lebesgue constant for the Clemshaw-Curtis point with sequencial intermediate filling.
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Stability

The Lebesgue constant for the Leja points (red) and the R-Leja points (blue).

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

200

Number of points

L
eb

es
g
u

e 
co

n
st

a
n

t

 

 

Leja 

R−Leja



Error estimates

So with R-Leja points Lk ≤ (1 + k)2 and therefore LΛ ≤ #(Λ)3.

For relevant solution map of parametric PDEs, we know that there exists lower sets
(Λn)n≥1, such that

min
v∈VΛn

‖u − v‖L∞(U,V ) ≤ Cn−s .

Therefore, one first interpolation estimate is of the type

‖u − IΛnu‖L∞(U,V ) ≤ Cn−s+3,

which is uneffective if s < 3.

Better : use series, e.g. Taylor
∑
ν∈F tνyν and write

‖u − IΛu‖L∞(U,V ) = ‖
∑
ν∈F tνyν − IΛ(

∑
ν∈F tνyν)‖L∞(U,V )

= ‖
∑
ν/∈Λ IΛ(tνy

ν)‖L∞(U,V )

≤
∑
ν/∈Λ ‖tν‖V ‖IΛ(yν)‖L∞(U) =

∑
ν/∈Λ ‖tν‖V ‖IRν (yν)‖L∞(U)

≤
∑
ν/∈Λ aν‖tν‖V ,

with aν := LRν ≤
∏

j≥1(1 + νj )
2.

If we have estimates of the form ‖tν‖V ≤ Cρν for sequences (ρj )j≥1 satisfying the
admissibility constraint, the presence of the algebraic factor can be absorbed in the
analysis showing that (aν‖tν‖V )ν∈F ∈ `p(F) and so we finally obtain the same
convergence rate ‖u − IΛnu‖L∞(U,V ) ≤ Cn−s with s = 1

p
− 1 as for the Taylor series.



Comparison with kriging interpolation algorithms

Test case : y = (y1, y2, y3, y4, y5) shape parameters in the design of an airfoil and u(y)
is the lift to drag ratio (scalar quantity of interest) obtained by ONERA numerical
solver.
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Error curves in terms of number of points are comparable.

The CPU cost for sparse interpolation scales linearly with the number of points.

This contrasts with kriging methods which require solving ill-conditionned linear
systems of growing size + optimization of the parameters of a Gaussian kernel.



Least-squares methods

General context :

- Reconstruction of unknown function u : U → R from scattered measurements.

- Measurements ui = u(y i ) for i = 1, . . . ,m with y i ∈ U ⊂ Rd .

- Measurement are costly : one cannot afford to have m >> 1.

- Measurements could be noisy : ui = u(y i ) + ηi .

- The y i can be chosen by us or imposed, deterministic or random.

- Questions : how should we sample ? how should we reconstruct ?

Prior : approximability. Analysis of the PDE models shows that in both there exists
sequences of m dimensional linear spaces (Vn)n>0 such that the unknown function u is
well approximated by such spaces

en(u) := inf
v∈Vn

‖u − v‖ ≤ ε(n),

where ε(n) is a known bound (such as Cn−s) and where

‖v‖ := ‖v‖L2(U,ρ),

with ρ some probability measure on U.



Least-squares approximation

For a certain value of n ≤ m solve

π = Argminv∈Vn

1

m

n∑
i=1

|ui − v(y i )|2.

Widely used since its introduction by Gauss.

This is solved by taking a basis L1, . . . , Ln of Vn and searching π in the form
π =
∑n

j=1 cjLj . The vector c = (cj )
t is solution to the normal equations

Gc = a,

with a = (ak )
t = ( 1

m

∑m
i=1 u

iLk (y
i )) and G = (Gk,j ) = ( 1

m

∑m
i=1 Lk (y

i )Lj (y
i )).

The solution always exists and is unique if G is invertible.

When ui = u(xj ) this can be viewed as the orthogonal projection of u onto Vn in the
sense of the Hilbertian norm

‖v‖m :=
( 1

m

m∑
i=1

|v(y i )|2
)1/2

.



General questions

1. How accurate is the least square approximation ?

2. Stability with respect to data perturbations ?

3. How large should we take m compared to n ?

The parameter n should typically be thought as describing the level of regularization,
and its choice leads to a trade-off :

If n is small : high amount of regularization, which stabilizes the problem (for example,
if V1 is the space of constant function, n = 1 gives the average of the data). But the
spaces Vn have poor approximation properties.

If n is large : the spaces Vn have better approximation properties, but the least-square
approximation may become unstable and therefore unaccurate (the maximal value
m = n corresponds to the interpolation problem which might be unstable, e.g. if we
use polynomials with uniform distribution of the y i ).

How can we describe the optimal compromise ?

How does this depend on the distribution of the samples y i ?



A stochastic setting

The y i are assumed to be i.i.d. according to the probability measure ρ. over U.

We recall the L2(U, ρ) norm

‖v‖ :=
(∫

U
|v |2dρ

)1/2
.

The norm ‖v‖m :=
(

1
m

∑m
i=1 |v(y

i )|2
)1/2

may be thought as its empirical counterpart.

It is a stochastic quantity that depends on the draw, and one has E(‖v‖2
m) = ‖v‖2.

We want to compare the least-square approximation error ‖u − π‖ with the best
approximation error

en(u) := inf
v∈Vn

‖u − v‖,

We sometimes assume a known uniform bound ‖u‖L∞ ≤ M and consider the
truncated least-squares estimator

ũ := TMπ, TM (t) := sign(t)min{M, |t |}.



An important quantity

Let L1, . . . , Ln be an orthonormal basis of Vn for the L2(U, ρ) norm. We introduce

kn(y) =
n∑

j=1

|Lj (y)|
2,

which is the diagonal of the orthogonal projection kernel onto Vn, and also the inverse
of the Christoffel function φn(y) = inf{‖v‖2 : v ∈ Vn, v(y) = 1}. We define

Kn := ‖kn‖L∞ = sup
y∈U

n∑
j=1

|Lj (y)|
2.

Both are independent on the choice orthonormal basis : they only depend on (Vn, ρ).

One obvious bound is Kn ≤
∑n

j=1 ‖Lj‖2
L∞ . On the other hand, we have

Kn ≥
∫
U
(

n∑
j=1

|Lj (y)|
2)dρ =

n∑
j=1

‖Lj‖2 = n.

Equality holds for spaces with flat orthonormal bases such as trigonometric
polynomials on the Torus with uniform measure.

Remark : one can use other bases than (Lj ) to solve the least-squares problem.



Main results

Cohen-Davenport-Leviatan (JFoCM, 2013) : let r > 0 be arbitrary and let

κ = κ(r) := 1−log 2
2+2r

. Then, if Kn ≤ κ m
log m

, then the least-squares approximation is

(i) stable : with probability larger than 1 −m−r , for any data (ui )i=1,...,n

‖π‖2 ≤ 8
( 1

m

m∑
i=1

|ui |2
)
.

(ii) accurate : if ‖u‖L∞ ≤ M and ũ := TMπ with TM (t) := sign(t)min{M, |t |},

E(‖u − ũ‖2) ≤ (1 + ε(m))en(u)
2 + 8M2m−r .

where ε(m) := 4κ
log m

→ 0 as m→ +∞.

Chkifa-Cohen-Migliorati-Nobile-Tempone (M2AN, 2014) : we also have with
probability larger than 1 − 2m−r ,

‖u − π‖2 ≤ (1 +
√

2)en(u)
2∞, with en(u)∞ := inf

v∈Vn

‖u − v‖L∞ .



Interpretation

The condition Kn ≤ κ m
log m

describes the amount of regularization that is needed for

stabilizing the method.

It suggests to choose the largest value of n such that this condition holds.

Earlier results (Birgé-Massart, Baraud) : stability condition Kn ≤ κ
√

m
log m

.

Numerical experience suggest that our condition is optimal.

Links with results in Compressed Sensing (Rauhut) : a N ×m matrix Φ = (Lj (y
i ))

satisfies the RIP property of order k with high probability for m ≥ cMk(log m)3 log N
where M = maxj=1,...,N ‖Lj‖L∞ .



A simple example

U = [−1, 1] and Vn = Pn−1.

(i) Uniform distribution ρ = dt
2

: the Lj are normalized Legendre polynomials and

Kn =
∑n

j=1 |Lj (1)|
2 =
∑n

j=1(2j − 1) = n2. Best choice of n of the order of m1/2

(ii) Non-uniform distribution ρ = dt

π
√

1−t2
: the Lj are Chebychev polynomials and

Kn = 2n + 1. Best choice of n of the order of m.
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Example : u(x) = (1 + 25x2)−1. Left : approximation error as a function of n for
m = 200. Right : best value n as a function of m.

In this case, similar stability results can be obtained with deterministic sampling.

Remark : U = R with gaussian measures is not covered (Hermite polynomials).



Other examples

Local bases : Let Vn be the space of piecewise constant functions over a partition Pn

of U into n cells. An orthonormal basis is given by the functions ρ(T )−1/2χT .

If the partition is uniform with respect to ρ, i.e. ρ(T ) = 1
n

for all T ∈ Pn, then
Kn = n.

Trigonometric system : with ρ the uniform measure on a torus, since Lj is the complex
exponential, one has Kn = n.

Spectral spaces on Riemannian manifolds : let M be a compact Riemannian manifold
without boundary and let Vn be spanned by the m first eigenfunctions Lj of the
Laplace-Beltrami operator. Then under mild assumptions (doubling properties and
Poincaré inequalities), Kn = O(n) (estimation based on analysis of the Heat kernel in
Dirichlet spaces by Kerkyacharian and Petrushev).

Such spaces are therefore well suited for stable least-squares methods. Example :
spherical harmonics. Note that individually the eigenfunctions do not satisfy
‖Lj‖L∞ = O(1).



Key idea in the proof of main result

The stability is controlled by the deviation of the least-square matrix

G :=
( 1

m

m∑
i=1

Lk (y
i )Lj (y

i )
)
j,k=1,...,n

,

from the identity matrix I in spectral norm. We want to control, say with δ = 1
2

,

P(δ) = Pr{‖G − I‖2 ≥ δ},

where ‖ · ‖2 is the spectral norm. We show that if Kn ≤ κ(r) m
log m

then P( 1
2
) ≤ 2m−r .

We have G = 1
m

∑m
i=1 Yi , with Yi i.i.d. copies of the rank one random n × n matrix

Y = (Lk (y)Lj (y))j,k=1,...,n, with expectation E(Y) = I.

Matrix Chernoff bound (Ahlswede-Winter 2000, Tropp 2011) : if ‖Y‖2 ≤ K a.s.., then

Pr


∥∥∥∥∥ 1

m

m∑
i=1

Yi − E(Y)

∥∥∥∥∥
2

≥ δ

 ≤ 2n exp
(
−
mc(δ)

K

)
, c(δ) := δ + (1 − δ) log(1 − δ) > 0.

Here K = supy∈U
∑n

j=1 |Lj (y)|
2 = Kn, thus P( 1

2
) ≤ 2m−r if Kn ≤ κ(r) m

log m
.



The noisy case

Non parametric bounded regression model : (y i , ui ), i.i.d. copies of a variable (y , z).

Regression function u(y) = E(z |y).

We write ui = u(y i ) + ηi , with ηi copies of η = y − u(x) such that E(η) = 0.

We denote by σ2 := supy∈U E(|η|2|y) the noise variance.

Cohen-Davenport-Leviatan (JoFoCM, 2013) : Assume Kn ≤ κ m
log m

If ‖u‖L∞ ≤ M and

ũ := TMπ, then

E(‖u − ũ‖2) ≤ (1 + ε(m))en(u)
2 + 8M2m−r + 8σ2 n

m
.

A typical result on bounded regression with no assumption on Km (Van de Geer) :
assuming |z | ≤ M a.s.,

E(‖u − ũ‖2) ≤ C
(
en(u)

2 + max{M2, σ2}
n

m

)
.



Application to parametric PDE’s

With Λ ⊂ F , approximation by polynomial space

VΛ :=

∑
ν∈Λ

vνy
ν, vν ∈ V

 = V ⊗ PΛ,

with Λ a downward closed index set.

Under various conditions, we know that there exists downward closed sets
Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn . . . , with n := #(Λn) such that

inf
v∈VΛn

‖u − v‖L2(U,V ,ρ) ≤ Cn−s ,

with s robust with respect to the parametric dimension d .

We use Vn = VΛn and solve the least square problem

ũ := Argminv∈Vn

1

m

m∑
i=1

‖ui − v(y i )‖2
V ,

with ui = u(y i ) computed by a numerical solver for each sample y i ∈ U.

Chkifa-Cohen-Nobile-Tempone (M2AN, 2014) : with ρ = ⊗d ( dx
2
) the uniform

distribution over U, one has Kn ≤ n2 for all downward closed sets Λn such that
#(Λn) = n. Improvement to Kn ∼ nα with α := log 2

log 3
when using the tensor-product

Chebychev probability distribution.



Towards optimal sampling

For many relevant instances of approximation families (Vn)n>0 and measure ρ, the
quantity Kn behaves super-linearly in n leading to too much demanding conditions on
the number m of samples to guarantee stability and accuracy.

This can be overcome by weighted least-squares (Doostan 2014, Narayan 2015).

Introduce an auxiliary measure σ and weight function w ≥ 0 such that dρ = wdσ.

Take {y1, . . . , ym} i.i.d. with respect to σ and solve the weighted least-squares problem

π = Argminv∈Vn

1

m

m∑
i=1

w(y i )|ui − v(y i )|2,

The case w = 1 and σ = ρ gives the non-weighted least-squares, and the modified
discrete norm

‖v‖2
m :=

1

m

m∑
i=1

w(y i )|v(y i )|2,

is again an unbiased approximation of ‖v‖2 =
∫
U |v(y)|2dρ =

∫
U w(y)|v(y)|2dσ.

We want to pick the pair (σ,w) in order to optimize the approximation. The same
idea is used when performing importance sampling in Monte-Carlo method.



Convergence analysis

Based on kn,w (y) := w(y)
∑n

j=1 |Lj (y)|
2 = w(y)kn(y) and Kn,w := ‖kn,w‖L∞ ≥ n.

Cohen-Migliorati (2016) : if Kn,w ≤ κ m
log m

, then the weighted least-squares

approximation satisifie with probability larger than 1 − −r , for any data (ui )i=1,...,m

‖π‖2 ≤ 8
( 1

m

m∑
i=1

|ui |2
)
.

and if ‖u‖L∞ ≤ M and ũ := TMπ with TM (t) := sign(t)min{M, |t |},

E(‖u − ũ‖2) ≤ (1 + ε(m))en(u)
2 + 8M2m−r .

where ε(m) := 4κ
log m

→ 0 as m→ +∞. Also, with probability larger than 1 − 2m−r ,

‖u − π‖2 ≤ (1 +
√

2)en(u)
2∞, with en(u)∞ := inf

v∈Vn

‖u − v‖L∞ .

An optimal sampling method : take w(y) = wn(y) =
n

kn(y)
so that dσ = dσn = kn

n
dρ

is a probability measure and kn,w = n. Then, stability and optimal accuracy is achieved
by the weighted least-squares method under the minimal condition m

ln m
∼ n.

This approach allows to treat polynomial approximation on unbounded domains, for
example U = Rd or RN with Gaussian measure.



Conclusions

Adaptive algorithms with optimal theoretical guarantees are still to be developed, in
particular for non-intrusive approaches (interpolation, collocation, least-squares).

Main advantages of sparse interpolation methods over kriging : scalability and
stability. Advantages of kriging : points can be completely arbitrary.

General principle : hierarchical 1d system − > tensorization − > sparsification Open
question : 1d sequences with logarithmic growth Lebesgue constants

Weighted least-squares : the optimal pair (wn, σn) depends on n. This is a problem for
adaptive methods in which we may want to vary the value of n.

In certain simple cases, there exists explicit asymptotics for the Christoffel function
kn(y)−1 of the form n

kn
∼ w . This yields a near optimal pairs (w , σ) that do not

change with n. Example : polynomials Vn = Pn−1 on U = [−1, 1] and ρ a Jacobi
weight, take σ to be the equilibrium measure dt

2π
√

1−t2
.

Producing an i.i.d. sample with respect to the optimal pair (wn, σn) is not always
easily feasible, in particular in high dimension.

Deterministic counterpart to these results ? Error estimate in L∞ ? Is there an optimal
set of points ? Related work : magic points for interpolation (Maday-Patera).



Part 3

Reduced modeling/bases, data assimilation, parameter estimation



Reduced order modeling and n-width

Recall the benchmark of Kolmogorov n-width of the solution manifold

dn(M)V = inf
dim(E)=n

max
v∈M

min
w∈E
‖v − w‖V = inf

dim(E)=n
max
y∈U

min
w∈E
‖u(y) − w‖V .

Uniform approximation estimates of the solution map y 7→ u(y) by polynomial (or
other separable) expansions give an upper bound on n-width

dn(M)V ≤ min
v∈VΛn

‖u − v‖L∞(U,V ) ≤ Cn−s .

We do not know other approaches to estimate the n-width of the solution manifold by
above.

These estimates might very pessimistic in the sense that he actual n-width dn(M)V is
much smaller than the right side.

We do not have results proving lower bounds for the n-widths of solution manifolds.

It is desirable to have numerical reduced modeling methods that can provably perform
as good as the n-width benchmark.



Reduced bases (Maday, Patera)

Define a reduced modeling space Vn = span{u0, . . . , un−1}, where the ui are particular
instances (snapshots) from the solution manifold

ui = u(y i )

for some y0, . . . , yn−1 ∈ U.

Greedy selection : having selected u0, . . . , uk−1 ∈M, choose the next instance by

uk = argmax{‖u − PVk
u‖V : v ∈M},

where PE is the V -orthogonal projector onto E , or equivalently uk = u(yk ), with

yk = argmax{‖u(y) − PVk
u(y)‖V : y ∈ U}.

This algorithm is not realistic : ‖u(y) − PVk
u(y)‖V is unknown, however can be

estimate at moderate cost by a-posteriori error analysis. Therefore, one rather apply a
weak-greedy algorithm : uk such that

‖uk − PVk
uk‖V ≥ γmax{‖v − PVk

v‖V : v ∈M},

for some fixed 0 < γ < 1.



Comparison with n-width

Performance of reduced bases : σn(M)V := max{‖v − PVnv‖V : v ∈M}

Comparison with n-width : how does σn(M)V compares with dn(M)V ?

Theorem (Buffa-Maday-Patera-Prudhomme-Turinici, 2012) : σn(M)V ≤ n2ndn(M)V .

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2013) : for any n > 0
and ε > 0, there exists M such that σn(M)V ≥ (1 − ε)2ndn(M)V .

A more favorable comparison is possible in terms of convergence rates :

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2013) : For any s > 0
one has

sup
n≥1

nsdn(M)V <∞ =⇒ sup
n≥1

nsσn(M)V <∞,
and for any a > 0 there exists b > 0 such that

sup
n≥1

ean
s
dn(M)V <∞ =⇒ sup

n≥1
ebn

s
σn(M)V <∞.



A matrix reformulation

In order to prove the theorem, we introduce the functions {u∗0 , u
∗
1 , · · · } obtained by

applying Gram-Schmidt orthonormalization algorithm to the sequence {u0, u1, · · · }.
We consider the lower triangular matrix A = (ai,j )i,j≥0 defined by

ui =
i∑

j=0

ai,ju
∗
j .

This matrix satisfies two fundamental properties. Since
an,n = 〈un, u∗n 〉 = ‖un − PVnun‖V , we have

γσn ≤ |an,n | ≤ σn (P1),

where σn := σn(M)V . Since for m ≥ n we have ‖um − PVnum‖V ≤ σn, we have

m∑
j=n

a2
m,j ≤ σ

2
n (P2)

Conversly, for any matrix satisfying these two properties with (σn)n≥0 a non-increasing
sequence going to 0, there exists a compact set M in `2(N) (the lines of the matrix)
such that a realization the weak-greedy algorithm exactly leads to this matrix.



A key lemma

Note that since ui ∈M for all i , there exists a m dimensional space W of `2(N) such
that each row of A is approximated by W with accuracy dm := dm(M)V in `2(N ).

The same holds for any submatrix of A by restriction of W .

Lemma : let G = (gi,j ) be a K × K matrix with rows g1, . . . ,gK . If W is any m

dimensional subspace of RK for some 0 < m ≤ K , and P is the orthogonal projection
from RK onto W , then

det(G )2 ≤
( 1

m

K∑
i=1

‖Pgi‖2
`2

)m( 1

K −m

K∑
i=1

‖gi − Pgi‖2
`2

)K−m
.

We apply this lemma to K × K matrix G = (gi,j ) which is formed by the rows and
columns of A with indices N + 1, . . . ,N + K . By Property (P2), we obtain

‖Pgi‖`2 ≤ ‖gi‖`2 ≤ σN+1, i = 1, . . . ,K ,

We also have,
‖gi − Pgi‖`2 ≤ dm, i = 1, . . . ,K .

It follows that

γ2K
K∏
i=1

σ2
N+i ≤

K∏
i=1

a2
N+i,N+i = det(G )2 ≤

(K
m

)m( K

K −m

)K−m
σ2m
N+1d

2K−2m
m .



Application : exponential rates

We take N = 0, K = n and any 1 ≤ m < n. Using the monotonicity of (σn)n≥0 and
σ1 ≤ σ0 ≤ d0, we obtain

σ2n
n ≤

n∏
j=1

σ2
j ≤ γ

−2n
( n

m

)m( n

n −m

)n−m
d2n−2m
m d2m

0 .

Since x−x (1 − x)x−1 ≤ 2 for 0 < x < 1, it follows that

σn ≤
√

2γ−1d
m
n

0 min
1≤m<n

d
n−m
n

m , n ≥ 1,

and particular

σ2n ≤ γ−1
√

2d0dn.

From this, one easily derive

sup
n≥1

ean
s
dn(M)V <∞ =⇒ sup

n≥1
ebn

s
σn(M)V <∞.



Application : algebraic rates

We take N = K = n and any 1 ≤ m < n. Using the monotonicity of (σn)n≥0, we obtain

σ2n
2n ≤

2n∏
j=n+1

σ2
j ≤ γ

−2n
( n

m

)m( n

n −m

)n−m
σ2m
n d2n−2m

m .

In the case n = 2k and m = k we have for any positive integer k,

σ4k ≤
√

2γ−1
√
σ2kdk .

Assuming that dn ≤ C0n−s for all n ≥ 1 and d0 ≤ C0, we obtain by induction that for
all j ≥ 0 and n = 2j ,

σn = σ2j ≤ C2−sj ≤ n−s , C := 23s+1γ−2C0.

Indeed, the above obviously holds for j = 0 or 1 since for these values, we have
σ2j ≤ σ0 = d0 ≤ C0 ≤ C2−sj . Assuming its validity for some j ≥ 1, we find that

σ2j+1 ≤
√

2γ−1
√
σ2j d2j−1

≤ γ−12
3s
2
√

2CC02−s(j+1)

=
√
C
√

23s+1C0γ−22−s(j+1) = C2−s(j+1),

where we have used the definition of C . For values 2j < n < 2j+1, we obtain the
general result by writing

σn ≤ σ2j ≤ C2−sj ≤ 2sCn−s = C1n
−s .



Proof of the key lemma

Let G = (gi,j ) be a K × K matrix with rows g1, . . . ,gK , and let W be any m

dimensional subspace of RK for some 0 < m ≤ K with projector P. Take ϕ1, . . . , ϕm

any orthonormal basis for the space W and complete it into an orthonormal basis
ϕ1, . . . , ϕK for RK .

We denote by Φ the K × K orthogonal matrix whose j-th column is ϕj , then the
matrix C := GΦ has entries ci,j = 〈gi , ϕj 〉. We have

det(G )2 = det(C )2.

With cj the j-th column of C , the arithmetic-geometric mean inequality yields

m∏
j=1

‖cj‖2
`2 ≤

( 1

m

m∑
j=1

‖cj‖2
`2

)m
=
( 1

m

m∑
j=1

K∑
i=1

〈gi , ϕj 〉2
)m

=
( 1

m

K∑
i=1

‖Pgi‖2
`2

)m
.

Likewise, since ϕj is orthogonal to W when j > m,

K∏
j=m+1

‖cj‖2
`2 ≤

( 1

K −m

K∑
j=m+1

‖cj‖2
`2

)K−m
=
( 1

K −m

K∑
i=1

‖gi − Pgi‖2
`2

)K−m
.

We conclude by using Hadamard’s inequality, which gives

det(C )2 ≤
K∏
j=1

‖cj‖2
`2 ≤

( 1

m

K∑
i=1

‖Pgi‖2
`2

)m( 1

K −m

K∑
i=1

‖gi − Pgi‖2
`2

)K−m
.



Parametric PDEs and data assimilation

Parametric PDEs of the general form

P(u, y) = 0,

are used to describe many physical processes.

In some settings, we know the governing PDEs P but do not know the parameters y
of the solution we are trying to capture.

Example : groundwater modeling where the process is governed by

−div(a∇u) = f ,

with suitable boundary conditions and

a = a(y) = a +

d∑
j=1

yjψj , y = (yj )j=1,...,d ∈ P = [−1, 1]d .

The parameter vector y ∈ P describing the diffusion properties of the underground
could be unknown to us. So we make some local measurements by “drilling”.

How can we best combine these measurements with the model to reconstruct u(y) ?



Another example

Reconstruction of acoustic fields from recorded data (ANR project ECHANGE 2012).



Abstraction of the Problem (Maday-Patera-Penn-Yano)

Let M = {u(·, y) : y ∈ P} be the solution manifold of the parametric PDE.

We assume M to be compact in the solution (Hilbert) space V .

We wish to approximate an element u ∈M based on the knowledge of m observations

`i (u), i = 1, . . . ,m,

where the `i are linear forms on V .

The `i are imposed to us (or chosen by us within a given dictionnary D ⊂ V ′).

Questions :

What is the best algorithm for approximating u from this information ?

What is the best error we can achieve ?

Problems of this type are known as optimal recovery.



The model

We know that u lies on the solution manifold M. However, this manifold is complex
and its exact description is numerically out of reach.

Reduced modeling methods, e.g. reduced basis and polynomial chaos, allow us to
identify nested finite dimensional spaces Vk which approximate M up to known
tolerances εk .

V0 ⊂ V1 ⊂ · · · ⊂ Vn, dim(Vk ) = k.

such that

dist(u,Vk ) := min
w∈Vk

‖u − w‖V ≤ εk , k = 1, . . . , n, u ∈M,

or equivalently

sup
y∈P

dist(u(y),Vk ) ≤ εk , k = 1, . . . , n.

In the reduced basis method, the Vk are generated by snapshots {u(y1), . . . , u(yk )}
selected e.g. by greedy algorithms (Maday-Patera). Performance εk “nearly” as good
as that of ideal n-width spaces (Binev, AC, Dahmen, DeVore, Petrova, Wojtaszczyk) :

sup
k≥1

ksεk ≤ Cs sup
k≥1

ksdk , dk := dk (M) := inf
dim(V )=k

sup
u∈M

dist(u,V ).

So, a more friendly model is to replace the assumption u ∈M by these weaker but
better understood assumptions on approximability



Model meets data

We may write
`i (u) = 〈u, ωi 〉, i = 1, . . . ,m,

and define the measurement space

W := span{ω1, . . . , ωm}.

The measurement data determine w = PW u ∈W .

Model class : K determined by

V0 ⊂ V1 ⊂ · · · ⊂ Vn and ε0 ≥ ε1 ≥ · · · ≥ εn ≥ 0.

Two settings : one space

K := Kone := {u ∈ V : dist(u,Vn) ≤ εn},

or multi-space

K := Kmult := {u ∈ V : dist(u,Vk ) ≤ εk , k = 0, 1, . . . , n}.

Our knowledge about the function is thus that it belongs to

Kw := {u ∈ V : PW u = w } = K ∩Hw , Hw := {u : PW u = w }.



Algorithms

Given the data w = PW u we want to reconstruct an approximation ũ(w) to u.

Algorithm : computable map A : W → V giving the approximation ũ(w) = A(PW u).

Ambiguity : all elements u ∈ Kw are assigned the same approximation A(w).

Error of an algorithm A for an individual u :

EA(u) = ‖u − A(PW u)‖.

.
Performance of an algorithm A over the class Kw :

EA(Kw ) := sup
u∈Kw

‖u − A(PW u)‖.

Performance of an algorithm A over the class K :

EA(K) := sup
w∈W

sup
u∈Kw

‖u − A(PW u)‖.



Best algorithm

Best algorithm A∗ for the given model class K :

A∗ := argminAEA(K)

This algorithm is simple to describe : for any bounded set S ∈ V we define the
Chebyshev ball as the ball B(v∗,R∗) of minimal radius which contains S.

We say that v∗ is the Chebyshev center of S and R∗ = rad(S) its Chebyshev radius.

Then the best algorithm takes for A(w) = u∗(w) the Chebyshev center of Kw and has
performances

EA∗ (Kw ) = rad(Kw ),

and
EA∗ (K) = sup

w∈W
rad(Kw ).

The Chebychev center and radius of a general set are generally not easy to find.



The one space case

This case was studied by Maday-Patera-Penn-Yano (MPPY).

Their algorithm can be described as follows :

1. For the given data w ∈W , determine ũ(w) ∈ Hw = {u ∈ V : PW u = w } and
ṽ(w) ∈ Vn such that

‖ũ(w) − ṽ(w)‖ = min{‖u − v‖ : u ∈ Hw , v ∈ Vn} = dist(Hw ,Vn).

2. Define A(w) = ũ(w).

The analysis of this algorithm is based on the inf-sup constant

β(Vn,W ) := inf
v∈Vn

sup
w∈W

〈v ,w〉
‖v‖ ‖w‖

.

We mainly use the notation µ(Vn,W ) := β(Vn,W )−1.

Notice that µ(Vn,W ) = +∞ means that there are non-trivial v ∈ Vn ∩W⊥. So Kw=0

is an unbounded set and therefore EA(K) = EA(K0) = +∞ for any algorithm A.

This happens in particular if dim(Vn) > dim(W ).



Optimality of MPPY algorithm in the one space case

Our results :

The center of Chebyshev ball of Kw coincides with A(w) computed by the MPPY
algorithm.

Its radius is given by

R(Kw )
2 = µ(Vn,W )2

(
ε2
n − ‖ũ(w) − ṽ(w)‖2

)
.

Therefore A = A∗ is the best possible algorithm and its performance is

EA∗ (K) = µ(Vn,W )εn,

corresponding to the case w = 0 for which ũ(w) = ṽ(w) = 0.

Remarks : finding A∗(w) does not require the knowledge of εn.

KW is an ellipsoid : interstection of the cylinder K with affine space Hw .

MPPY also how to select the measurements in order to make µ(Vn,W ) small.



Optimized measurements ?

Given (Vn)n≥0 reduced model space we want to select the measurement functions
(ωi )i≥1 out of a dictionnary D (a set of norm 1 functions, complete in V ).

Objective : guarantee a lower bound on β(Vn,W ) with W = span{ω1, . . . , ωm} and
m = m(n) ≥ n not too large.

Evaluation of β(Vn,W ) requires SVD of an n ×m matrix and its maximization over
all possible choices of {ω1, . . . , ωm} is computationally intensive.

Observe that

β(Vn,W ) := inf
v∈Vn

sup
w∈W

〈v ,w〉
‖v‖ ‖w‖

= inf
v∈Vn,‖v‖=1

‖PW v‖.

Therefore β(Vn,W ) ≥ γ > 0 if and only if

sup
v∈Vn,‖v‖=1

‖v − PW v‖ ≤ δ :=
√

1 − γ2 < 1.

This leads to consider OMP-type algorithms selecting dictionnary elements for the
collective approximation of the elements of Vn (work in progress with Binev and Mula).



The multi-space case

Recall that

Kmult =

n⋂
j=0

Kj , Kj = {u : dist(u,Vj ) ≤ εj }.

and therefore

Kw = Kmult
w =

n⋂
j=0

Kj
w , Kj

w = Kj ∩Hw .

Thus, Kw is an intersection of ellipsoids.

Finding Chebyshev center and radius of an intersection of ellipsoids is NP hard.



The multi-space case

Recall that

Kmult =

n⋂
j=0

Kj , Kj = {u : dist(u,Vj ) ≤ εj }.

and therefore

Kw = Kmult
w =

n⋂
j=0

Kj
w , Kj

w = Kj ∩Hw .

Thus, Kw is an intersection of ellipsoids.

Finding Chebyshev center and radius of an intersection of ellipsoids is NP hard.



Our contribution to the multi-space case

A “poor man’s algorithm” : choose the best one space, giving thus the performance

EA(K) = min
k=0,...,n

µ(Vk ,W )εk .

Notice that µ(Vk ,W ) increases with k while εk decreases.

Simple examples (in 2d or 3d) show that rad(Kw ) can be arbitrarily smaller than the
above poor man’s estimate. Better algorithms are thus desirable.

1. Numerical :

We study an algorithm A that finds a point ũ(w) in the intersection Kw =
⋂n

j=0K
j
w .

Therefore, this algorithm is near optimal :

EA(Kw ) ≤ 2rad(Kw ) = 2EA∗ (Kw )

2. Theoretical :

We give computable a-priori bounds for the Chebyshev radius in the multi-space case.

These bounds are always smaller than poor man’s estimate, sometimes much smaller.



Algorithms for the multi-space case

Finding a point in the intersection of convex sets is a standard problem known as
convex feasability (see e.g. book by Patrick Combettes).

Standards methods are available. Here we discuss alternate projections.

Observation : If Kw is non-empty, it contains at least a point in the space
Ṽ := Vn +W . Therefore we may restrict ourself to this finite dimensional setting.

We use the orthogonal projections PKj and PHw onto the cylinders Kj and affine
space Hw . Both are trivial to compute using appropriate bases.

With u0 = 0, consider the sequence

uk+1 := PKnPKn−1
. . .PK0

PHw u
k .

Remarks :

(i) The nestedess V0 ⊂ V1 ⊂ · · · ⊂ Vn implies that uk ∈ K = Kmult =
⋂n

j=0K
j
w at

each iterations K.

(ii) Projection PS onto one convex set has the property that ‖PSv − w‖ ≤ ‖v − w‖
for all w ∈ S. This implies that

dist(uk+1,Kw ) ≤ dist(uk ,Kw ).



Convergence

Convergence of alternate projection always hold but can be arbitrarily slow.

Establishing convergence rate require some geometric properties, such as uniform
convexity. We do not have this, however we do have a restricted form :

If u1, u2 ∈ K with u1 − u2 ∈W⊥, then the ball centered at u0 = 1
2
(u1 + u2) with

radius r = c min{δ, δ2} where δ := ‖u1 − u2‖ is contained in K. The constant c
depends on the εj and µj := µ(Vj ,W ) for j = 0, . . . , n.
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Applications

We exploit the restricted convexity to prove the following :

Convergence rate : uk converges to a point in Kw with rate at worse O(k−1/2).

If Kw contains a point in the interior of K : exponential rate O(ρk ) with ρ < 1.

A posteriori estimate : for any v ∈ K, one has

dist(v ,Kw ) ≤ C max{dist(v ,Hw ), dist(v ,Hw )
1/2},

where C depends on the εj and µj := µ(Vj ,W ) for j = 0, . . . , n.

Can be applied to v = uk to get a stopping criterion.



Favorable bases

Theoretical analysis of the one-space and multi-space problem is facilitated by the
introduction of appropriate bases.

Let {φ1, . . . , φn} be an orthonormal system such that Vj = span{φ1, . . . , φj } for j ≤ n.

This basis is well adapted to describe the model : u =
∑n

j=1 αjφj + e with e ∈ V⊥n
belongs to K if and only if

n∑
k=j+1

α2
k + ‖e‖2 ≤ εj , j = 0, . . . , n.

Let {ω1, . . . , ωm} be an orthonormal basis of W , and introduce the cross-grammian

G := 〈ωi , φj 〉.

Applying SVD to G leads to new orthonormal bases {ω∗1 , . . . , ω
∗
m} and {φ∗1 , . . . , φ

∗
n } of

W and Vn such that :

〈ω∗i , φ
∗
j 〉 = siδi,j , 1 ≥ s1 ≥ s2 ≥ · · · ≥ sn ≥ 0.

PWφ
∗
j = sjω

∗
j , j = 1, . . . , n, and β(Vn,W ) = sn.



A-priori estimates

Favorable bases allow us to derive a-priori bound on rad(Kw ) in the multi-space case.

Such bound can be usee in giving a stoping criterion for the convex optimization
algorithm.

Let Λ = (λi,j ) be the change of basis matrix from (φj ) to (φ∗j ), and compute

θi =

n∑
j=1

|λi,j |εj−1.

Define k the largest integer such that
∑n

j=k s
2
j θ

2
j ≥ ε

2
n.

A priori bound : rad(Kw ) ≤ 2(ε2
n +
∑n

j=k θ
2
j )

1/2.

This bound can be much smaller than the poor man’s estimate minj=1,...,n µ(Vj ,W )εj .



Parameter estimation

The parameter to data map takes the form

y 7→ u(y) 7→ (`i (u(y))i=1,...,m.

We have discussed the optimal recovery of u(y) from the measured data
(`i (u(y))i=1,...,m.

Parameter estimation deals with the inverse problem of recovering y from such data.

We can address this problem by using the previous result on the recovery of u(y) and
try to identify y from u(y).

Example : diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

with y uniquely associated to the diffusion coefficient a = a(y).

For a fixed right side f , let us denote by ua ∈ V = H1
0 (D) the solution for a given a.

Question : can we identify a from ua in a stable manner ?

Here, stable identification means an estimate of the form ‖a − b‖X ≤ C‖ua − ub‖V in
some norm ‖ · ‖X and for any a and b in some class A.

The most natural class is A0 := {a ∈ L∞(D) : r < a < R} for some 0 < r < R <∞.



Some basic facts

1. Let Ta be the operator u 7→ div(a∇u) and Sa be its inverse from V ′ to V . Then,
one has

‖Ta − Tb‖V→V ′ = ‖a − b‖L∞ ,
and for all a, b ∈ A0, one has

r2‖Sa − Sb‖V ′→V ≤ ‖a − b‖L∞ ≤ R2‖Sa − Sb‖V ′→V .

In particular this means that there exist a right side f = f (a, b) such that

‖a − b‖L∞ ≤ R2‖ua − ub‖V

However this is not what we look for, since this f changes with (a, b).

2. There exists right sides f such that a 7→ ua is not injective : take a smooth v
compactly supported in D, and such that v is constant in a subdomain D̃ ⊂ D. For
any a and b that differ only on D̃, we have

f := −div(a∇v) = −div(b∇v),

and so v = ua = ub for this f .



Stable identifiability

The problem of identifying a from ua has been studied since the 1980’s e.g. by Falk,
Kohn and Lowe, Hoffman and Sprekel, typically with a boundary condition
a∇u · n = g and the additional assumption that ∇u does not vanish.

Bonito-Cohen-DeVore-Petrova-Welper (2016) : stable identifiability results for the
Dirichlet problem for certain type of right side f .

In both types of results,

(i) Additional smoothness assumptions required : a ∈ As := {a ∈ A0 : ‖a‖Hs ≤ M}.

(ii) We cannot control ‖a − b‖L∞ , instead we estimate ‖a − b‖L2 .

(iii) The control is not Lipschitz but Hölder continuous.

One sample result : with D a Lipschitz domain and f ∈ L∞(D) such that f (x) > c > 0
on D, then for all a, b ∈ A1

‖a − b‖L2 ≤ C‖ua − ub‖αV , with α =
1

6
.

Similar result with a, b ∈ As for some s > 1
2

, with smaller Hölder exponent α.

Univariate case : stable idendifiability for a, b ∈ A0 with (sharp) exponent α = 1
3

.



Conclusions

Reduced bases achieve “almost” the same performance as optimal spaces
corresponding to Kolmogorov n-width in the sense of preserving algebraic or
exponential convergence rates.

Can be used in the reconstruction of u(y) from uncomplete data : one-space (poor
man) and multi-space strategies.

Perspective : replace linear spaces Vn by non-linear (sparse) reduced models.

Open questions in parameter estimation : can we treat a ∈ As for any fixed s > 0 ?
What is the sharpest Hölder exponent in the dependence ua 7→ a ? In several
dimension is the map a 7→ ua injective on A0 ?


