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Abstract. — In these notes, we give first a brief account to the theory
of Lie groups. Then we consider the case of a smooth manifold with a
Lie group of symmetries. When the Lie group acts transitively (e.g. the
manifold is homogeneous), we study the (affine) invariant connections
on it. We end up with the particuler case of homogeneous spaces which
are the symmetric spaces of the non-compact type.

Résumé (Espaces symétriques de type non-compact : groupes
de Lie)

Dans ces notes, nous introduisons dans un premier les notions fon-
damentales sur les groupes de Lie. Nous abordons ensuite le cas d’une
variété différentiable munie d’un groupe de Lie de symétries. Lorsque
le groupe de Lie agit transitivement (i.e. la variété est homogène) nous
étudions les connexions (affines) invariantes par ce groupe. Finalement,
nous traitons le cas particulier des espaves symétriques de type non-
compact.
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1. Introduction

This note is meant to give an introduction to the subjects of Lie groups

and of equivariant connections on homogeneous spaces. The final goal

is the study of the Levi-Civita connection on a symmetric space of the

non-compact type. An introduction to the subject of “symmetric spaces”

from the point of view of differential geometry is given in the course by

J. Maubon [5].

2. Lie groups and Lie algebras: an overview

In this section, we review the basic notions concerning the Lie groups

and the Lie algebras. For a more complete exposition, the reader is

invited to consult standard textbooks, for example [1], [3] and [6].

Definition 2.1. — A Lie group G is a differentiable manifold(1)which

is also endowed with a group structure such that the mappings

G×G −→ G, (x, y) 7−→ xy multiplication

G −→ G, x 7−→ x−1 inversion

are smooth.

We can define in the same way the notion of a topological group: it is

a topological space(2) which is also endowed with a group structure such

that the ‘multiplication’ and ‘inversion’ mappings are continuous.

The most basic examples of Lie groups are (R,+), (C − {0},×), and

the general linear group GL(V ) of a finite dimensional (real or complex)

(1)All manifolds are assumed second countable in this text.
(2)Here “topological space” means Hausdorff and locally compact.
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vector space V . The classical groups like

SL(n,R) = {g ∈ GL(Rn), det(g) = 1},

O(n,R) = {g ∈ GL(Rn), tgg = Idn},

U(n) = {g ∈ GL(Cn), tgg = Idn},

O(p, q) = {g ∈ GL(Rp+q), tgIp,qg = Ip,q}, where Ip,q =

(
Idp 0

0 −Idq

)

Sp(R2n) = {g ∈ GL(R2n), tgJg = J}, where J =

(
0 −Idn

Idn 0

)

are all Lie groups. It can be proved by hand, or one can use an old

Theorem of E. Cartan.

Theorem 2.2. — Let G be a closed subgroup of GL(V ). Then G is

an embedded submanifold of GL(V ), and equipped with this differential

structure it is a Lie group.

The identity element of any group G will be denoted by e. We write

the tangent spaces of the Lie groups G,H,K at the identity element e

respectively as: g = TeG, h = TeH, k = TeK.

Example : The tangent spaces at the identity element of the Lie

groups GL(Rn), SL(n,R),O(n,R) are respectively

gl(Rn) = {endomorphisms of Rn},

sl(n,R) = {X ∈ gl(Rn), Tr(X) = 0},

o(n,R) = {X ∈ gl(Rn), tX +X = 0},

o(p, q) = {X ∈ gl(Rn), tXIdp,q + Idp,qX = 0}, where p+ q = n.

2.1. Group action. — A morphism φ : G → H of groups is by defi-

nition a map that preserves the product : φ(g1g2) = φ(g1)φ(g2).

Exercise 2.3. — Show that φ(e) = e and φ(g−1) = φ(g)−1.

Definition 2.4. — A (left) action of a group G on a set M is a mapping

(2.1) α : G×M −→M

such that α(e,m) = m, ∀m ∈ M , and α(g, α(h,m)) = α(gh,m) for all

m ∈M and g, h ∈ G.
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Let Bij(M) be the group of all bijective maps from M onto M . The

conditions on α are equivalent to saying that the map G→ Bij(M), g 7→
αg defined by αg(m) = α(g,m) is a group morphism.

If G is a Lie (resp. topological) group and M is a manifold (resp.

topological space), the action of G on M is said to be smooth (resp.

continuous) if the map (2.1) is smooth (resp. continuous). When the

notations are understood we will write g ·m, or simply gm, for α(g,m).

A representation of a group G on a real (resp. complex) vector space

V is a group morphism φ : G→ GL(V ) : the group G acts on V through

linear endomorphisms.

Notation : If φ : M → N is a smooth map between differentiable

manifolds, we denote by Tmφ : TmM → Tφ(m)N the differential of φ at

m ∈M .

2.2. Adjoint representation. — Let G be a Lie group and let g be

the tangent space of G at e. We consider the conjugation action of G on

itself, defined by

cg(h) = ghg−1, g, h ∈ G.

The mappings cg : G → G are smooth and cg(e) = e for all g ∈ G, so

one can consider the differential of cg at e

Ad(g) = Tecg : g → g.

Since cgh = cg◦ch we have Ad(gh) = Ad(g)◦Ad(h). That is, the mapping

(2.2) Ad : G −→ GL(g)

is a smooth group morphism which is called the adjoint representation

of G.

The next step is to consider the differential of the map Ad at e:

(2.3) ad = TeAd : g −→ gl(g).

This is the adjoint representation of g. In (2.3), the vector space gl(g)

denotes the vector space of all linear endomorphisms of g, and is equal

to the tangent space of GL(g) at the identity.

Lemma 2.5. — We have the fundamental relations

• ad(Ad(g)X) = Ad(g) ◦ ad(X) ◦ Ad(g)−1 for g ∈ G,X ∈ g.
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• ad(ad(Y )X) = ad(Y ) ◦ ad(X) − ad(X) ◦ ad(Y ) for X, Y ∈ g.

• ad(X)Y = −ad(Y )X for X, Y ∈ g.

Proof. — Since Ad is a group morphism we have Ad(ghg−1) = Ad(g) ◦

Ad(h)◦Ad(g)−1. If we differentiate this relation at h = e we get the first

point, and if we differentiate it at g = e we get the second one.

For the last point consider two smooth curves a(t), b(s) on G

with a(0) = b(0) = e, d
dt

[a(t)]t=0 = X, and d
dt

[b(t)]t=0 = Y .

We will now compute the second derivative ∂2f
∂t∂s

(0, 0) of the map

f(t, s) = a(t)b(s)a(t)−1b(s)−1. Since f(t, 0) = f(0, s) = e, the term
∂2f
∂t∂s

(0, 0) is defined in an intrinsic manner as an element of g. For

the first partial derivatives we get ∂f
∂t

(0, s) = X − Ad(b(s))X and
∂f
∂s

(t, 0) = Ad(a(t))Y − Y . So ∂2f
∂t∂s

(0, 0) = ad(X)Y = −ad(Y )X.

Definition 2.6. — If G is a Lie group, one defines a bilinear map,

[−,−]g : g× g → g by [X, Y ]g = ad(X)Y . It is the Lie bracket of g. The

vector space g equipped with [−,−]g is called the Lie algebra of G. We

have the fundamental relations

• anti-symmetry : [X, Y ]g = −[Y,X]g
• Jacobi identity : ad([Y,X]g) = ad(Y ) ◦ ad(X) − ad(X) ◦ ad(Y ).

On gl(g), a direct computation shows that [X, Y ]gl(g) = XY −Y X. So

the Jacobi identity can be rewritten as ad([X, Y ]g) = [ad(X), ad(Y )]gl(g)

or equivalently as

(2.4) [X, [Y, Z]g]g + [Y, [Z,X]g]g + [Z, [X, Y ]g]g = 0 for all X, Y, Z ∈ g.

Definition 2.7. — • A Lie algebra g is a real vector space equipped

with the antisymmetric bilinear map [−,−]g : g × g → g satisfying the

Jacobi identity.

• A linear map φ : g → h between two Lie algebras is a morphism of

Lie algebras if

(2.5) φ([X, Y ]g) = [φ(X), φ(Y )]h.

Remark 2.8. — We have defined the notion of a real Lie algebra. How-

ever, the definition goes through on any field k, in particular when k = C
we shall speak of complex Lie algebras. For example, if g is a real Lie
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algebra, the complexified vector space gC := g ⊗ C inherits a canonical

structure of complex Lie algebra.

The map ad : g → gl(g) is the typical example of a morphism of Lie

algebras. This example generalizes as follows.

Lemma 2.9. — Consider a smooth morphism Φ : G → H between two

Lie groups. Let φ : g → h be its differential at e. Then:

• The map φ is Φ-equivariant: φ ◦ Ad(g) = Ad(Φ(g)) ◦ φ.

• φ is a morphism of Lie algebras.

The proof works as in Lemma 2.5.

Example : If G is a closed subgroup of GL(V ), the inclusion g →֒

gl(V ) is a morphism of Lie algebras. In other words, if X, Y ∈ g then

[X, Y ]gl(V ) = XY − Y X belongs to g and corresponds to the Lie bracket

[X, Y ]g.

2.3. Vectors fields and Lie bracket. — Here we review a typical

example of Lie bracket : the one of vector fields.

Let M be a smooth manifold. We denote by Diff(M) the group formed

by the diffeomorphisms ofM , and by Vect(M) the vector space of smooth

vector fields. Even if Diff(M) is not a Lie group (it’s not finite dimen-

sional), many aspects discussed earlier apply here, with Vect(M) in the

role of the Lie algebra of Diff(M). If a(t) is a smooth curve in Diff(M)

passing through the identity at t = 0, the derivative V = d
dt

[a]t=0 is a

vector field on M .

The “adjoint” action of Diff(M) on Vect(M) is defined as follows. If

V = d
dt

[a]t=0 one takes Ad(g)V = d
dt

[g ◦ a ◦ g−1]t=0 for every g ∈ Diff(M).

The definition of Ad extends to any V ∈ Vect(M) through the following

expression

(2.6) Ad(g)V |m = Tg−1m(g)(Vg−1m), m ∈M.

We can now define the adjoint action by differentiating (2.6) at the iden-

tity. If W = d
dt

[b]t=0 and V ∈ Vect(M), we take

(2.7) ad(W )V |m =
d

dt

[
Tb(t)−1m(b(t))(Vb(t)−1m)

]
t=0

, m ∈M.
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If we take any textbook on differential geometry we see that ad(W )V =

−[W,V ], where [−,−] is the usual Lie bracket on Vect(M). To explain

why we get this minus sign, consider the group morphism

Φ : Diff(M) −→ Aut(C∞(M))(2.8)

g 7−→ g

defined by g · f(m) = f(g−1m) for f ∈ C∞(M). Here Aut(C∞(M)) is the

group of automorphisms of the algebra C∞(M). If b(t) is a smooth curve

in Aut(C∞(M)) passing through the identity at t = 0, the derivative

u = d
dt

[b]t=0 belongs to the vector space Der(C∞(M)) of derivations of

C∞(M): u : C∞(M) → C∞(M) is a linear map and u(fg) = u(f)g +

fu(g). So the Lie algebra of Aut(C∞(M)) has a natural identification

with Der(C∞(M)) equipped with the Lie bracket: [u, v]Der = u◦v−v ◦u,

for u, v ∈ Der(C∞(M)).

Let Vect(M)
∼
→ Der(C∞(M)), V 7→ Ṽ be the canonical identification

defined by Ṽ f(m) = 〈dfm, Vm〉 for f ∈ C∞(M) and V ∈ Vect(M).

For the differential at the identity of Φ we get

(2.9) dΦ(V ) = −Ṽ , for V ∈ Vect(M).

Since dΦ is an algebra morphism we have − ˜ad(V )W = [Ṽ , W̃ ]Der. Hence

we see that [V,W ] = −ad(V )W is the traditional Lie bracket on Vect(M)

defined by posing [̃V,W ] = Ṽ ◦ W̃ − Ṽ ◦ W̃ .

2.4. Group actions and Lie bracket. — Let M be a differentiable

manifold equipped with a smooth action of a Lie group G. We can

specialize (2.8) to a group morphism G → Aut(C∞(M)). Its differential

at the identity defines a map g → Der(C∞(M))
∼
→ Vect(M), X 7→ XM

by posing XM |m = d
dt

[a(t)−1 · m]t=0, m ∈ M . Here a(t) is a smooth

curve on G such that X = d
dt

[a]t=0. This mapping is a morphism of Lie

algebras:

(2.10) [X, Y ]M = [XM , YM ].

Example : Consider the actions of right and left translations R and

L of a Lie group G on itself:

(2.11) R(g)h = hg−1, L(g)h = gh for g, h ∈ G.
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Theses actions define vector fields XL, XR on G for any X ∈ g, and

(2.10) reads

[X, Y ]L = [XL, Y L], [X, Y ]R = [XR, Y R].

Theses equations can be used to define the Lie bracket on g. Consider

the subspaces V L = {XL, X ∈ g} and V R = {XR, X ∈ g} of Vect(G).

First we see that V L (resp. V R) coincides with the subspace of Vect(G)R

(resp. Vect(G)L) formed by the vector fields invariant by the R-action

of G (resp. by the L-action of G). Secondly we see that the subspaces

Vect(G)R and Vect(G)L are invariant under the Lie bracket of Vect(G).

Then for any X, Y ∈ g, the vector field [XL, Y L] belongs to Vect(G)R,

so there exists a unique [X, Y ] ∈ g such that [X, Y ]L = [XL, Y L].

2.5. Exponential map. — Consider the usual exponential map e :

gl(V ) → GL(V ): eA =
∑∞

k=0
Ak

k!
. We have the fundamental property

Proposition 2.10. — • For any A ∈ gl(V ), the map φA : R →

GL(V ), t 7→ etA is a smooth Lie group morphism with d
dt

[φA]t=0 = A.

• If φ : R → GL(V ) is a smooth Lie group morphism we have φ = φA

for A = d
dt

[φ]t=0.

Now, we will see that an exponential map enjoying the properties of

Proposition 2.10 exists on all Lie groups.

Let G be a Lie group with Lie algebra g. For any X ∈ g we consider

the vector field XR ∈ Vect(G) defined by XR|g = d
dt

[ga(t)]t=0, g ∈ G.

Here a(t) is a smooth curve on G such that X = d
dt

[a]t=0. The vector

fields XR are invariant under left translation, that is

(2.12) Tg(L(h))(XR
g ) = XR

hg, for g, h ∈ G.

We consider now the flow of the vector field XR. For any X ∈ g we

consider the differential equation

∂

∂t
φ(t, g) = XR(φ(t, g))(2.13)

φ(0, g) = g.

where t ∈ R belongs to an interval containing 0, and g ∈ G. Classical

results assert that for any g0 ∈ G (2.13) admits a unique solution φX de-

fined on ]−ε, ε[×U where ε > 0 is small enough and U is a neighborhood
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of g0. Since XR is invariant under the left translations we have

(2.14) φX(t, g) = gφX(t, e).

The map t → φX(t,−) is a 1-parameter subgroup of (local) diffeomor-

phisms of M : φX(t + s,m) = φX(t, φX(s,m)) for t, s small enough. Eq.

(2.14) gives then

(2.15) φX(t+ s, e) = φX(t, e)φX(s, e) for t, s small enough.

The map t 7→ φX(t, e) initially defined on an interval ] − ε, ε[ can be

extended on R thanks to (2.15). For any t ∈ R take ΦX(t, e) = φX( t
n
, e)n

where n is an integer large enough so that | t
n
| < ε. It is not difficult to

see that our definition make sense and that R → G, t 7→ ΦX(t, e) is a

Lie group morphism. Finally we have proved that the vector field XR is

complete: its flow is defined on R ×G.

Definition 2.11. — For each X ∈ g, the element expG(X) ∈ G is

defined as ΦX(1, e). The mapping g → G, X 7→ expG(X) is called the

exponential mapping from g into G.

Proposition 2.12. — a) expG(tX) = ΦX(t, e) for each t ∈ R.

b) expG : g → G is C∞ and Te expG is the identity map.

Proof. — Let s 6= 0 in R. The maps t → ΦX(t, e) and t → ΦsX(tX
s
, e)

are both solutions of the differential equation (2.13): so there are equal

and a) is proved by taking t = s. To prove b) consider the vector field

V on g × G defined by V (X, g) = (XR(g), 0). It is easy to see that the

flow ΦV of the vector field V satisfies ΦV (t, X, g) = (g expG(tX), X), for

(t, X, g) ∈ R×g×G. Since ΦV is smooth (a general property concerning

the flows), the exponential map is smooth.

Proposition 2.10 take now the following form.

Proposition 2.13. — If φ : R → G is a (C∞) one parameter subgroup,

we have φ(t) = expG(tX) with X = d
dt

[φ]t=0.

Proof. — If we differentiate the relation φ(t + s) = φ(t)φ(s) at s = 0,

we see that φ satisfies the differential equation (∗) d
dt

[φ]t = XR(φ(t)),

where X = d
dt

[φ]t=0. Since t → ΦX(t, e) is also solution of (∗), and

ΦX(0, e) = φ(0) = e, we have φ = ΦX(−, e).
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We give now some easy consequences of Proposition 2.13.

Proposition 2.14. — • If ρ : G → H is a morphism of Lie groups

and dρ : g → h is the corresponding morphism of Lie algebras, we have

expH ◦dρ = ρ ◦ expG.

• For Ad : G→ GL(g) we have Ad(expG(X)) = ead(X).

• expG : g → G is G-equivariant: expG(Ad(g)X) = g expG(X)g−1.

• If [X, Y ] = 0, then expG(X) expG(Y ) = expG(Y ) expG(X) =

expG(X + Y ).

Proof. — We use in each case the same kind of proof. We consider two

1-parameter subgroups Φ1(t) and Φ2(t). Then we verify that d
dt

[Φ1]t=0 =
d
dt

[Φ2]t=0, and from Proposition 2.13 we conclude that Φ1(t) = Φ2(t), ∀t ∈

R. The relation that we are looking for is Φ1(1) = Φ2(1).

For the first point, we take Φ1(t) = expH(tdρ(X)) and Φ2(t) = ρ ◦

expG(tX) : for the second point we take ρ = Ad, and for the third one

we take Φ1(t) = expG(tAd(g)X) and Φ2(t) = g expG(tX)g−1.

From the second and third points we have expG(X) expG(Y ) expG(−X) =

expG(ead(X)Y ). Hence expG(X) expG(Y ) expG(−X) = expG(Y )

if ad(X)Y = 0. We consider then the 1-parameter subgroups

Φ1(t) = expG(tX) expG(tY ) and Φ2(t) = expG(t(X + Y )) to prove

the second equality of the last point.

Exercise 2.15. — We consider the Lie group SL(2,R) with Lie algebra

sl(2,R) = {X ∈ End(R2), Tr(X) = 0}. Show that the image of the expo-

nential map exp : sl(2,R) → SL(2,R) is equal to {g ∈ SL(2,R), Tr(g) ≥

−2}.

Remark 2.16. — The map expG : g → G is in general not surjective.

Nevertheless the set U = expG(g) is a neighborhood of the identity, and

U = U−1. The subgroup of G generated by U , which is equal to ∪n≥1U
n,

is then a connected open subgroup of G. Hence ∪n≥1U
n is equal to the

connected component of the identity, usually denoted by Go.

Exercise 2.17. — For any Lie group G, show that expG(X) expG(Y ) =

expG(X + Y + 1
2
[X, Y ] + o(|X|2 + |Y |2)) in a neighborhood of (0, 0) ∈ g2.
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Afterward show that

lim
n→∞

(expG(X/n) expG(Y/n))n = expG(X + Y ) and

lim
n→∞

(expG(X/n) expG(Y/n) expG(−X/n) expG(−Y/n))n2

= exp([X, Y ]).

2.6. Lie subgroups and Lie subalgebras. — Before giving the pre-

cise definition of a Lie subgroup, we look at the infinitesimal side. A Lie

subalgebra of a Lie algebra g is a subspace h ⊂ g stable under the Lie

bracket : [X, Y ]g ∈ h whenever X, Y ∈ h.

We have a natural extension of Theorem 2.2.

Theorem 2.18. — Let H be a closed subgroup of a Lie group G. Then

H is an embedded submanifold of G, and equipped with this differential

structure it is a Lie group. The Lie algebra of H, which is equal to

h = {X ∈ g | expG(tX) ∈ H for all t ∈ R}, is a subalgebra of g.

Proof. — The two limits given in Exercise 2.17 show that h is a subal-

gebra of g (we use here the fact that H is closed). Let a be any supple-

mentary subspace of h in g: one shows that (exp(Y ) ∈ H) =⇒ (Y = e)

if Y ∈ a belongs to a small neighborhood of 0 in a. Now we consider the

map φ : h⊕a → G given by φ(X+Y ) = expG(X) expG(Y ). Since Teφ is

the identity map, φ defines a smooth diffeomorphism φ|V from a neigh-

borhood V of 0 ∈ g to a neighborhood W of e in G. If V is small enough

we see that φ maps V ∩ {Y = 0} onto W ∩H , hence H is a submanifold

near e. Near any point h ∈ H we use the map φh : h ⊕ a → G given by

φh(Z) = hφ(Z): we prove in the same way that H is a submanifold near

h. FinallyH is an embedded submanifold of G. We now look to the group

operations mG : G×G→ G (multiplication), iG : G→ G (inversion) and

their restrictions mG|H×H : H × H → G and iG|H : H → G which are

smooth maps. Here we are interested in the group operations mH and

iH of H . Since mG|H×H and iG|H are smooth we have the equivalence:

mH and iH are smooth ⇐⇒ mH and iH are continuous.

The fact that mH and iH are continuous follows easily from the fact that

mG|H×H and iG|H are continuous and that H is closed.

Theorem 2.18 has the following important corollary
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Corollary 2.19. — If φ : G → H is a continuous group morphism

between two Lie groups, then φ is smooth.

Proof. — Consider the graph L ⊂ G ×H of the map φ : L = {(g, h) ∈

G × H | h = φ(g)}. Since φ is continuous L is a closed subgroup of

G×H . Following Theorem 2.18, L is an embedded submanifold of G×H .

Consider now the morphism p1 : L → G (resp. p2 : L → H) which

is respectively the composition of the inclusion L →֒ G × H with the

projection G×H → G (resp. G×H → H): p1 and p2 are smooth, p1 is

bijective, and φ = p2 ◦ (p1)
−1. Since (p1)

−1 is smooth (see Exercise 2.24),

the map φ is smooth.

We have just seen the archetype of a Lie subgroup : a closed subgroup

of a Lie group. But this notion is too restrictive.

Definition 2.20. — (H, φ) is a Lie subgroup of a Lie group G if

• H is a Lie group,

• φ : H → G is a group morphism,

• φ : H → G is a one-to-one immersion.

In the next example we consider the 1-parameter Lie subgroups of

S1 × S1 : they are either closed or dense.

Example : Consider the group morphisms φα : R → S1×S1, φα(t) =

(eit, eiαt), defined for α ∈ R. Then :

• If α /∈ Q, Ker(φα) = 0 and (R, φα) is a Lie subgroup of S1×S1 which

is dense.

• If α ∈ Q, Ker(φα) 6= 0, and φα factorizes through a smooth mor-

phism φ̃α : S1 → S1 × S1. Here φα(R) is a closed subgroup of S1 × S1

diffeomorphic to the Lie subgroup (S1, φ̃α).

Let (H, φ) be a Lie subgroup of G, and let h, g be their respective

Lie algebras. Since φ is an immersion, the differential at the identity,

dφ : h → g, is an injective morphism of Lie algebras : h is isomorphic

with the subalgebra dφ(h) of g. In practice we often “forget” φ in our

notations, and speak of a Lie subgroup H ⊂ G with Lie subalgebra h ⊂ g.

We have to be careful : when H is not closed in G, the topology of H is

not the induced topology.

We state now the fundamental
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Theorem 2.21. — Let G be a Lie group with Lie algebra g, and let

h ⊂ g be a subalgebra. Then there exists a unique connected Lie subgroup

H of G with Lie algebra equal to h. Moreover H is generated by expG(h),

where expG is the exponential map of G.

The proof uses Frobenius Theorem (see [6][Theorem 3.19]). This The-

orem has an important corollary.

Corollary 2.22. — Let G, H be two connected Lie groups with Lie

algebras g and h. Let φ : g → h be a morphism of Lie algebras. If G is

simply connected there exists a (unique) Lie group morphism Φ : G→ H

such that dΦ = φ.

Proof. — Consider the graph l ⊂ g×h of the map φ : l := {(X, Y ) ∈ g×

h |φ(X) = Y }. Since φ is a morphism of Lie algebras l is a Lie subalgebra

of g × h. Let (L, ψ) be the connected Lie subgroup of G×H associated

with l. Consider now the morphism p1 : L→ G (resp. p2 : L→ H) which

equals respectively the composition of φ : L→ G×H with the projection

G × H → G (resp. G × H → H). The group morphism p2 : L → G is

onto with a discrete kernel since G is connected and dp2 : l → g is an

isomorphism. Hence p2 : L → G is a covering map (see Exercise 2.24).

Since G is simply connected, this covering map is a diffeomorphism. The

group morphism p1 ◦ (p2)
−1 : G→ H answers the question.

Example : The Lie group SU(2) is composed by the 2 × 2 complex

matrices of the form

(
α −β̄

β ᾱ

)
with |α|2 + |β|2 = 1. Hence SU(2) is

simply connected since it is diffeomorphic to the 3-dimensional sphere.

Since SU(2) is a maximal compact subgroup of SL(2,C), the Cartan

decomposition (see Section 3.1) tells us that SL(2,C) is also simply con-

nected.

A subset A of a topological space M is path-connected if any points

a, b ∈ A can be joined by a continuous path γ : [0, 1] → M with γ(t) ∈ A

for all t ∈ [0, 1]. Any connected Lie subgroup of a Lie group is path-

connected. We have the following characterization of the connected Lie

subgroups.
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Theorem 2.23. — Let G be a Lie group, and let H be a path-connected

subgroup of G. Then H is a Lie subgroup of G.

Exercise 2.24. — Let ρ : G→ H be a smooth morphism of Lie groups,

and let dρ : g → h be the corresponding morphism of Lie algebras.

• Show that Ker(ρ) := {g ∈ G | ρ(g) = e} is a closed (normal) subgroup

with Lie algebra Ker(dρ) := {X ∈ g | dρ(X) = 0}.
• If Ker(dρ) = 0, show that Ker(ρ) is discrete in G. If furthermore ρ

is onto, then show that ρ is a covering map.

• If ρ : G→ H is bijective, then show that ρ−1 is smooth.

2.7. Ideals. — A subalgebra h of a Lie algebra is called an ideal in g

if [X, Y ]g ∈ h whenever X ∈ h and Y ∈ g: in other words h is a stable

subspace of g under the endomorphism ad(Y ) for any Y ∈ g. A Lie

subgroup H of the Lie group G is a normal subgroup if gHg−1 ⊂ H for

all g ∈ G.

Proposition 2.25. — Let H be the connected Lie subgroup of G asso-

ciated with the subalgebra h of g. The following assertions are equivalent.

1) H is a normal subgroup of Go.

2) h is an ideal of g.

Proof. — 1) =⇒ 2). Let X ∈ h and g ∈ Go. For every t ∈ R, the

element g expG(tX)g−1 = expG(tAd(g)X) belongs to H : if we take the

derivative at t = 0 we get (∗) Ad(g)X ∈ h, ∀g ∈ Go. If we take the

differential of (∗) at g = e we have ad(Y )X ∈ h whenever X ∈ h and

Y ∈ g.

2) =⇒ 1). IfX ∈ h and Y ∈ g, we have expG(Y ) expG(X) expG(Y )−1 =

expG(eadYX) ∈ H . Since H is generated by expG(h), we have

expG(Y )H expG(Y )−1 ⊂ H for all Y ∈ g (see Remark 2.16 and Theo-

rem 2.21). Since expG(g) generates Go we have finally that gHg−1 ⊂ H

for all g ∈ Go.

Examples of Ideals : The center of g : Zg := {X ∈ g | [X, g] = 0}.

The commutator ideal [g, g]. The kernel ker(φ) of a morphism of Lie

algebras φ : g → h.
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We can associate to any Lie algebra g two sequences gi, g
i of ideals of

g. The commutator series of g is the non increasing sequence of ideals gi

with

(2.16) g0 = g and gi+1 = [gi, gi].

The lower central series of g is the non increasing sequence of ideals gi

with

(2.17) g0 = g and gi+1 = [g, gi].

Exercise 2.26. — Show that the gi, g
i are ideals of g.

Definition 2.27. — We say that g is

• solvable if gi = 0 for i large enough,

• nilpotent if gi = 0 for i large enough,

• abelian if [g, g] = 0.

Exercise 2.28. — Let V be a finite dimensional vector space, and let

{0} = V0 ⊂ V1 ⊂ · · ·Vn = V be a strictly increasing sequence of sub-

spaces. Let g be the Lie subalgebra of gl(V ) defined by g = {X ∈

gl(V ) |X(Vk+1) ⊂ Vk}.

• Show that the Lie algebra g is nilpotent.

• Suppose now that dimVk = k for any k = 0, . . . , n. Show then that

the Lie algebra h = {X ∈ gl(V ) |X(Vk) ⊂ Vk} is solvable.

Exercise 2.29. — For a group G, the subgroup generated by the com-

mutators ghg−1h−1, g, h ∈ G is the derived subgroup, and is denoted by

G′.

• Show that G′ is a normal subgroup of G.

• If G is a connected Lie group, show that G′ is the connected Lie

subgroup associated with the ideal [g, g].

Exercise 2.30. — • For any Lie group G, show that its center ZG :=

{g ∈ G | hg = hg ∀h ∈ G} is a closed normal subgroup with Lie algebra

Zg := {X ∈ g | [X, Y ] = 0, ∀Y ∈ g}.
• Show that a Lie algebra g is solvable if and only if [g, g] is solvable.

• Let h be the Lie algebra defined in Exercise 2.28. Show that [h, h] is

nilpotent, and that h is not nilpotent.
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2.8. Group actions and quotients. — Let M be a set equipped with

an action of a group G. For each m ∈M the G-orbit through m is defined

as the subset

(2.18) G ·m = {g ·m | g ∈ G}.

For each m ∈M , the stabilizer group at m is

(2.19) Gm = {g ∈ G | g ·m = m}.

The G-action is free if Gm = {e} for all m ∈ M . The G-action is

transitive if G · m = M for some m ∈ M . The set-theoretic quotient

M/G corresponds to the quotient of M by the equivalence relation m ∼

n⇐⇒ G ·m = G · n. Let π : M →M/G be the canonical projection.

Topological side : Suppose now that M is a topological space

equipped with a continuous action of a topological(3) group G. Note that

in this situation the stabilizers Gm are closed in G. We define for any

subsets A,B of M the set

GA,B = {g ∈ G | (g ·A) ∩B 6= ∅}.

Exercise 2.31. — Show that GA,B is closed in G when A,B are com-

pact in M .

We take on M/G the quotient topology: V ⊂ M/G is open if π−1(V)

is open in M . It is the smallest topology that makes π continuous.

Note that π : M → M/G is then an open map : if U is open in M ,

π−1(π(U)) = ∪g∈Gg ·U is also open in M , which means that π(U) is open

in M/G.

Definition 2.32. — The (topological) G-action on M is proper when

the subsets GA,B are compact in G whenever A,B are compact subsets of

M .

This definition of a proper action is equivalent to the condition that

the map ψ : G × M → M × M, (g,m) 7→ (g · m,m) is proper, i.e.

ψ−1(compact) = compact. Note that the action of a compact group is

always proper.

(3)Here again, the topological spaces are assumed Hausdorff and locally compact.
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Proposition 2.33. — If a topological space M is equipped with a proper

continuous action of a topological group G, the quotient topology is Haus-

dorff and locally compact.

The proof is left to the reader. The main result is the following

Theorem 2.34. — Let M be a manifold equipped with a smooth, proper

and free action of a Lie group. Then the quotient M/G equipped with the

quotient topology carries the structure of a smooth manifold. Moreover

the projection π : M → M/G is smooth, and any n ∈ M/G has an open

neighborhood U such that

π−1(U)
∼

−→ U ×G

m 7−→ (π(m), φU(m))

is a G-equivariant diffeomorphism. Here φU : π−1(U) → G is an equiv-

ariant map : φU(g ·m) = gφU(m).

For a proof see [1][Section 2.3].

Remark 2.35. — Suppose that G is a discrete group. For a proper and

free action of G on M we have: any m ∈ M has a neighborhood V such

that gV ∩ V = ∅ for every g ∈ G, g 6= e. Theorem 2.34 is true when G

is a discrete group. The quotient map π : M → M/G is then a covering

map.

The typical example we are interested in is the action by translation of

a closed subgroupH of a Lie groupG: the action of h ∈ H is G→ G, g 7→

gh−1. It is an easy exercise to see that this action is free and proper. The

quotient space G/H is a smooth manifold and the action of translation

g 7→ ag of G on itself descends to a smooth action of G on G/H . This

action being transitive, the manifolds G/H are thus ‘G-homogeneous’.

Stiefel manifolds, Grassmannians : Let V be a (real) vec-

tor space of dimension n. For any integer k ≤ n, let Hom(Rk, V )

be the vector space of homomorphisms equipped with the following

(smooth) GL(V ) × GL(Rk)-action: for (g, h) ∈ GL(V ) × GL(Rk) and

f ∈ Hom(Rk, V ), we take (g, h) · f(x) = g(f(h−1x)) for any x ∈ Rk. Let

Sk(V ) be the open subset of Hom(Rk, V ) formed by the one-to-one linear

map : we have a natural identification of Sk(V ) with the set of families
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{v1, . . . , vk} of linearly independent vectors of V . Moreover Sk(V ) is

stable under the GL(V ) × GL(Rk)-action : the GL(V )-action on Sk(V )

is transitive, and the GL(Rk)-action on Sk(V ) is free and proper. The

manifold Sk(V )/GL(Rk) admits a natural identification with the set

{E subspace of V | dimE = k}: it is the Grassmanian manifold Grk(V ).

On the other hand the action of GL(V ) on Grk(V ) is transitive so that

Grk(V ) ∼= GL(V )/H

where H is the closed Lie subgroup of GL(V ) that fixes a subspace E ⊂ V

of dimension k.

2.9. Adjoint group. — Let g be a (real) Lie algebra. The automor-

phism group of g is

(2.20) Aut(g) := {φ ∈ GL(g) |φ([X, Y ]) = [φ(X), φ(Y )], ∀X, Y ∈ g}.

It is a closed subgroup of GL(g) with Lie algebra equal to

(2.21)

Der(g) := {D ∈ gl(g) |D([X, Y ]) = [D(X), Y ] + [X,D(Y )], ∀X, Y ∈ g}.

The subspace Der(g) ⊂ gl(g) is called the set of derivations of g.

Thanks to the Jacobi identity we know that ad(X) ∈ Der(g) for all

X ∈ g. So the image of the adjoint map ad : g → gl(g), that we denote

ad(g), is a Lie subalgebra of Der(g).

Definition 2.36. — The adjoint group Ad(g) is the connected Lie sub-

group of Aut(g) associated to the Lie subalgebra of ad(g) ⊂ Der(g). As

an abstract group, it is the subgroup of Aut(g) generated by the elements

ead(X), X ∈ g.

Consider now a connected Lie group G, with Lie algebra g, and the

adjoint map Ad : G → GL(g). In this case, ead(X) = Ad(expG(X)) for

any X ∈ g, so the image of G by Ad is equal to the group Ad(g). If g ∈ G

belongs to the kernel of Ad, we have g expG(X)g−1 = expG(Ad(g)X) =

expG(X), so g commutes with any element of expG(g). But since G is

connected, expG(g) generates G. Finally we have proved that the kernel

of Ad is equal to the center ZG of the Lie group G.
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It is worth to keep in mind the following exact sequence of Lie groups

(2.22) 0 −→ ZG −→ G −→ Ad(g) −→ 0.

2.10. The Killing form. — We have already defined the notions of

solvable and nilpotent Lie algebra (see Def. 2.27). We have the following

“opposite” notion.

Definition 2.37. — Let g be a (real) Lie algebra.

• g is simple if g is not abelian and does not contain any ideal distinct

from {0} and g.

• g is semi-simple if g = g1 ⊕ · · · ⊕ gr where the gi’s are ideals of g

which are simple (as Lie algebras).

The following results derive directly from the definition and give a first

idea of the difference between “solvable” and “semi-simple”.

Exercise 2.38. — Let g be a (real) Lie algebra.

• Suppose that g is solvable. Show that [g, g] 6= g, and that g possesses

a non-zero abelian ideal.

• Suppose that g is semi-simple. Show that [g, g] = g, and show that g

does not possess non-zero abelian ideals : in particular the center Zg is

reduced to {0}.

In order to give the characterization of semi-simplicity we define the

Killing form of a Lie algebra g. It is the symmetric R-bilinear map

Bg : g × g → R defined by

(2.23) Bg(X, Y ) = Tr(ad(X)ad(Y )),

where Tr : gl(g) → R is the canonical trace map.

Proposition 2.39. — For φ ∈ Aut(g) and D ∈ Der(g) we have

• Bg(φ(X), φ(Y )) = Bg(X, Y ), and

• Bg(DX, Y ) +Bg(X,DY ) = 0 for all X, Y ∈ g.

• We have Bg([X,Z], Y ) = Bg(X, [Z, Y ]) for all X, Y, Z ∈ g.

Proof. — If φ is an automorphism of g, we have ad(φ(X)) = φ ◦ ad(X) ◦

φ−1 for all X ∈ g (see (2.20)). Then a) follows and b) comes from the

derivative of a) at φ = e. For c) take D = ad(Z) in b).
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We recall now the basic interaction between the Killing form and the

ideals of g. If h is an ideal of g, then

• the restriction of the Killing form of g on h × h is the Killing form

of h,

• the subspace h⊥ = {X ∈ g |Bg(X, h) = 0} is an ideal of g.

• the intersection h∩h⊥ is an ideal of g with a Killing form identically

equal to 0.

It was shown by E. Cartan that the Killing form gives a criterion for

semi-simplicity and solvability.

Theorem 2.40. — (Cartan’s Criterion for Semisimplicity) Let g be a

(real) Lie algebra. The following statements are equivalent

a) g is semi-simple,

b) the Killing form Bg is non degenerate,

c) g does not have non-zero abelian ideals.

The proof of Theorem 2.40 needs the following characterization of solv-

ability. The reader will find a proof of the following theorem in [3][Section

I].

Theorem 2.41. — (Cartan’s Criterion for Solvability) Let g be a (real)

Lie algebra. The following statements are equivalent

• g is solvable,

• Bg(g, [g, g]) = 0.

We will not prove Theorem 2.41, but only use the following easy con-

sequence.

Corollary 2.42. — If g is a (real) Lie algebra with Bg = 0, then [g, g] 6=

g.

Before giving a proof of Theorem 2.40 let us show how Corollary 2.42

gives the implication b) ⇒ a) in Theorem 2.41.

If g is a Lie algebra with Bg = 0, then Corollary 2.42 tells us that

g1 = [g, g] is an ideal of g distinct from g with Bg1 = 0. If g1 6= 0, we

iterate: g2 = [g1, g1] is an ideal of g1 distinct from g1 with Bg2 = 0. This

induction ends after a finite number of steps: let i ≥ 0 be such that

gi 6= 0 and gi+1 = 0. Then gi is an abelian ideal of g, and g is solvable.
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In the situation b) of Theorem 2.41, we have then that [g, g] is solvable,

so g is also solvable.

Proof. — Proof of Theorem 2.40 using Corollary 2.42

c) =⇒ b). The ideal g⊥ = {X ∈ g |Bg(X, g) = 0} of g has a zero Killing

form. If g⊥ 6= 0 we know from the preceding remark that there exists

i ≥ 0 such that (g⊥)i 6= 0 and (g⊥)i+1 = 0. We see easily that (g⊥)i

is also an ideal of g (and is abelian). This gives a contradiction, hence

g⊥ = 0: the Killing form Bg is non-degenerate.

b) =⇒ a). We suppose now that Bg is non-degenerate. It gives first that

g is not abelian. Then we use the following dichotomy:

i) either g does not have ideals different from {0} and g, hence g is

simple,

ii) either g have an ideal h different from {0} and g.

In case i) we have finished. In case ii), let us show that h ∩ h⊥ 6= 0

: since Bg is non-degenerate, it will imply that g = h ⊕ h⊥. If a :=

h ∩ h⊥ 6= 0, the Killing form on a is equal to zero. Following Corollary

2.42 there exists i ≥ 0 such that ai 6= 0 and ai+1 = 0. Moreover since a

is an ideal of g, ai is also an ideal of g. By considering a supplementary

F of ai in g, every endomorphism ad(X), X ∈ g, has as the following

matrix expression

ad(X) =

(
A B

0 D

)
,

with A : ai → ai, B : F → ai, and D : F → F . The zero term is due to

the fact that ai is an ideal of g. If Xo ∈ ai, then

ad(Xo) =

(
0 ∗

0 0

)
.

because ai is an abelian ideal. Finally for every X ∈ g,

ad(X)ad(Xo) =

(
0 ∗

0 0

)

and then Bg(X,Xo) = 0. It is a contradiction since Bg is non-degenerate.

So if h is an ideal different from {0} and g, we have the Bg-orthogonal

decomposition g = h⊕h⊥. Since Bg is non-degenerate we see that Bh and

Bh⊥ are non-degenerate, and we apply the dichotomy to the Lie algebras
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h and h⊥. After a finite number of steps we obtain a decomposition

g = g1 ⊕ . . .⊕ gr where the gk are simple ideals of g.

a) =⇒ c). Let pk : g → gk be the projections relatively to a decomposi-

tion g = g1⊕. . .⊕gr into simple ideals: the pk are Lie algebra morphisms.

If a is an abelian ideal of g, each pk(a) is an abelian ideal of gk which is

equal to {0} since gk is simple. It proves that a = 0.

Exercise 2.43. — • For the Lie algebra sl(n,R) show that Bsl(n,R)(X, Y ) =

2nTr(XY ). Conclude that sl(n,R) is a semi-simple Lie algebra.

• For the Lie algebra su(n) show that Bsu(n)(X, Y ) = 2nRe(Tr(XY )).

Conclude that su(n) is a semi-simple Lie algebra.

Exercise 2.44. — sl(n,R) is a simple Lie algebra.

Let (Ei,j)1≤i,j≤n be the canonical basis of gl(Rn). Consider a non-zero

ideal a of sl(n,R). Up to an exchange of a with a⊥ we can assume that

dim(a) ≥ n2−1
2

.

• Show that a possesses an element X which is not diagonal.

• Compute [[X,Ei,j ], Ei,j] and conclude that some Ei,j with i 6= j be-

longs to a.

• Show that Ek,l, Ek,k −El,l ∈ a when k 6= l. Conclude.

2.11. Complex Lie algebras. — We have worked out the notions

of solvable, nilpotent, simple and semi-simple real Lie algebras. The

definitions go through for Lie algebras defined over any field k, and all

results of Section 2.10 are still true for k = C.

Let h be a complex Lie algebra. The Killing form is here a symmetric

C-bilinear map Bh : h× h → C defined by (2.23), where Tr : glC(h) → C
is the trace defined on the C-linear endomorphism of h.

Theorem 2.40 is valid for the complex Lie algebras: a complex Lie

algebra is a direct sum of simple ideals if and only if its Killing form is

non-degenerate.

A useful tool is the complexification of real Lie algebras. If g is a real

Lie algebra, the complexified vector space gC := g⊗C carries a canonical

structure of complex Lie algebra. We see easily that the Killing forms

Bg and BgC
coincide on g:
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(2.24) BgC
(X, Y ) = Bg(X, Y ) for all X, Y ∈ g.

With (2.24) we see that a real Lie algebra g is semi-simple if and only

if the complex Lie algebra gC is semi-simple.

3. Semi-simple Lie groups

Definition 3.1. — A connected Lie group G is semi-simple (resp. sim-

ple) if its Lie algebra g is semi-simple (resp. simple).

If we use Theorem 2.40 and Proposition 2.25 we have the following

characterizations of a semi-simple Lie group, which will be used in the

lecture by J. Maubon (see Proposition 6.3).

Proposition 3.2. — A connected Lie group G is semi-simple if and

only if G does not contain non-trivial connected normal abelian Lie sub-

groups.

In particular the center ZG of a semi-simple Lie group is discrete. We

have the following refinement for the simple Lie groups.

Proposition 3.3. — A normal subgroup A of a (connected) simple Lie

group G which is not equal to G belongs to the center Z of G.

Proof. — Let Ao be subset of A defined as follows: a ∈ Ao if there exists

a continuous curve c(t) in A with c(0) = e and c(1) = a. Obviously Ao

is a path-connected subgroup of G, so according to Theorem 2.23 Ao is

a Lie subgroup of G. If c(t) is a continuous curve in A, gc(t)g−1 is also

a continuous curve in A for all g ∈ G, and then Ao is a normal subgroup

of G. From Proposition 2.25 we know that the Lie algebra of Ao is an

ideal of g, hence is equal to {0} since g is simple and A 6= G. We have

proved that Ao = {e}, which means that every continuous curve in A

is constant. For every a ∈ A and every continous curve γ(t) in G, the

continuous curve γ(t)aγ(t)−1 in A must be constant. It proves that A

belongs to the center of G.

We now come back to the exact sequence (2.22).
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Lemma 3.4. — If g is a semi-simple Lie algebra, the vector space of

derivations Der(g) is equal to ad(g).

Proof. — Let D be a derivation of g. Since Bg is non-degenerate there

exists a unique XD ∈ g such that Tr(Dad(Y )) = Bg(XD, Y ), for all

Y ∈ g. Now we compute

Bg([XD, Y ], Z]) = Bg(XD, [Y, Z]) = Tr(Dad([Y, Z]))

= Tr(D[ad(Y ), ad(Z)])

= Tr([D, ad(Y )]ad(Z)) (1)

= Tr(ad(DY )ad(Z)) (2)

= Bg(DY,Z).

(1) is a general fact about the trace: Tr(A[B,C]) = Tr([A,B]C) for any

A,B,C ∈ gl(g). (2) uses the definition of a derivation (see (2.21)). Using

now the non-degeneracy of Bg we get D = ad(XD).

The equality of Lie algebras ad(g) = Der(g) tells us that the adjoint

group is equal to the identity component of the automorphism group:

Ad(g) = Aut(g)o.

Lemma 3.5. — If G is a (connected) semi-simple Lie group, its center

ZG is discrete and the adjoint group Ad(g) has zero center.

Proof. — The center Z(G) is discrete because the semi-simple Lie alge-

bra g has zero center. Let Ad(g) be an element of the center of Ad(g):

we have

Ad(expG(X)) = Ad(g)Ad(expG(X))Ad(g)−1 = Ad(g expG(X)g−1)

= Ad(expG(Ad(g)X))

for any X ∈ g. So expG(−X) expG(Ad(g)X) ∈ Z(G), ∀X ∈ g. But since

Z(G) is discrete it implies that expG(X) = expG(Ad(g)X)), ∀X ∈ g : g

commutes with any element of expG(g). Since expG(g) generates G, we

have finally that g ∈ Z(G) and so Ad(g) = 1.

The important point here is that a (connected) semi-simple Lie group is

a central extension by a discrete subgroup of a quasi-algebraic group. The

Lie group Aut(g) is defined by a finite number of polynomial identities in
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GL(g) : it is an algebraic group. And Ad(g) is a connected component of

Aut(g) : it is a quasi-algebraic group. There is an important case where

the Lie algebra structure imposes some restriction on the center.

Theorem 3.6 (Weyl). — Let G be a connected Lie group such that Bg

is negative definite. Then G is a compact semi-simple Lie group and the

center ZG is finite.

There are many proofs, for example [2][Section II.6], [1][Section 3.9].

Here we only stress that the condition “Bg is negative definite” imposes

that Aut(g) is a compact subgroup of GL(g), hence Ad(g) is compact.

Now if we consider the exact sequence 0 → ZG → G → Ad(g) → 0 we

see that G is compact if and only if ZG is finite.

Definition 3.7. — A real Lie algebra is compact if its Killing form is

negative definite.

3.1. Cartan decomposition for subgroups of GL(Rn). — Let

Symn be the vector subspace of gl(Rn) formed by the symmetric endo-

morphisms, and let Sym+
n be the open subspace of Symn formed by the

positive definite symmetric endomorphisms. Consider the exponential

e : gl(Rn) → GL(Rn). We compute its differential.

Lemma 3.8. — For any X ∈ gl(Rn), the tangent map TXe : gl(Rn) →

gl(Rn) is equal to eX
(

1−e−ad(X)

ad(X)

)
. In particular, TXe is a singular map

if and only if the adjoint map ad(X) : gl(Rn) → gl(Rn) has a non-zero

eigenvalue belonging to 2iπZ.

Proof. — Consider the smooth functions F (s, t) = es(X+tY ), and f(s) =
∂F
∂t

(s, 0): we have f(0) = 0 and f(1) = TXe(Y ). If we differentiate F

first with respect to t, and after with respect to s, we find that f satisfies

the differential equation f ′(s) = Y esX +Xf(s) which is equivalent to

(e−sXf)′ = e−sXY e−sX = e−s ad(X)Y.

Finally we find f(1) = eX(
∫ 1

0
e−s ad(X)ds)Y .

It is an easy exercise to show that the exponential map realizes a one-

to-one map from Symn onto Sym+
n . The last Lemma tells us that TXe

is not singular for every X ∈ Symn. So we have proved the
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Lemma 3.9. — The exponential map A 7→ eA realizes a smooth diffeo-

morphism from Symn onto Sym+
n .

Let O(Rn) be the orthogonal group : k ∈ O(Rn) ⇐⇒ tkk = Id. Every

g ∈ GL(Rn) decomposes in a unique manner as g = kp where k ∈ O(Rn)

and p ∈ Sym+
n is the square root of tgg. The map (k, p) 7→ kp defines

a smooth diffeomorphism from O(Rn) × Sym+
n onto GL(Rn). If we use

Lemma 3.9, we get the following

Proposition 3.10 (Cartan decomposition). — The map

O(Rn) × Symn −→ GL(Rn)(3.25)

(k,X) 7−→ keX

is a smooth diffeomorphism.

We will now extend the Cartan decomposition to an algebraic(4) sub-

group G of GL(Rn) which is stable under the transpose map. In other

terms G is stable under the automorphism Θo : GL(Rn) → GL(Rn)

defined by

(3.26) Θo(g) = tg−1.

The classical groups like SL(n,R), O(p, q), Sp(R2n) fall into this cat-

egory. The Lie algebra g ⊂ gl(Rn) of G is stable under the transpose

map, so we have g = k ⊕ p where k = g ∩ o(n,R) and p = g ∩ Symn.

Lemma 3.11. — Let X ∈ Symn such that eX ∈ G. Then etX ∈ G for

every t ∈ R : in other words X ∈ p.

Proof. — The element eX can be diagonalized : there exist g ∈

GL(Rn) and a sequence of real numbers λ1, . . . , λn such that etX =

gDiag(etλ1 , . . . , etλn)g−1 for all t ∈ R (here Diag(etλ1 , . . . , etλn) is a

diagonal matrix). From the hypothesis we have that Diag(etλ1 , . . . , etλn)

belongs to the algebraic group g−1Gg when t ∈ Z. Now it is an easy fact

that for any polynomial in n variables P , if φ(t) = P (etλ1 , . . . , etλn) = 0

for all t ∈ Z, then φ is identically equal to 0. So we have proved that

etX ∈ G for every t ∈ R whenever eX ∈ G.

(4)i.e. defined by a finite number of polynomial equalities.
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Consider the Cartan decomposition g = keX of an element g ∈ G.

Since G is stable under the transpose map e2X = tgg ∈ G. From Lemma

3.11 we get that X ∈ p and k ∈ G ∩ O(Rn). Finally, if we restrict the

diffeomorphism 3.25 to the submanifold (G∩O(Rn))×p ⊂ O(Rn)×Symn

we get a diffeomorphism

(3.27) (G ∩ O(Rn)) × p
∼

−→ G.

Let K be the connected Lie subgroup of G associated with the subal-

gebra k: K is equal to the identity component of the compact Lie group

G∩O(Rn) hence K is compact. If we restrict the diffeomorphism (3.27)

to the identity component Go of G we get the diffeomorphism

(3.28) K × p
∼

−→ Go.

3.2. Cartan involutions. — We start again with the situation of a

closed subgroup G of GL(Rn) stable under the transpose map A 7→ tA.

Then the Lie algebra g ⊂ gl(Rn) of G is also stable under the transpose

map.

Proposition 3.12. — If the Lie algebra g has a center reduced to

0, then g is semi-simple. In particular, the bilinear map (X, Y ) 7→

Bg(X,
tY ) defines a scalar product on g. Moreover if we consider the

transpose map D 7→ tD on gl(g) defined by this scalar product, we have

ad(tX) = tad(X) for all X ∈ g.

Proof. — Consider the scalar product on g defined by (X, Y )g :=

Tr(tXY ) where Tr is the canonical trace on gl(Rn). With the help of

(−,−)g, we have a transpose map D 7→ TD on gl(g): (D(X), Y )g =

(X, TD(Y ))g for all X, Y ∈ g and D ∈ gl(g). A small computation

shows that Tad(X) = ad(tX), and then Bg(X,
tY ) = Tr′(ad(X) Tad(Y ))

defines a symmetric bilinear map on g × g (here Tr′ is the trace map on

gl(g)). If g has zero center then Bg(X,
tX) > 0 if X 6= 0. Let D 7→ tD

be the transpose map on gl(g) defined by this scalar product. We have

Bg(ad(X)Y, tZ) = −Bg(Y, [X,
tZ]) = Bg(Y,

t[tX,Z]) = Bg(Y,
t(ad(tX)Z)),

for all X, Y, Z ∈ g: in other terms ad(tX) = tad(X).
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Definition 3.13. — A linear map τ : g → g on a Lie algebra is an

involution if τ is an automorphism of the Lie algebra g and τ 2 = 1.

When τ is an involution of g, we define the bilinear map

(3.29) Bτ (X, Y ) := −Bg(X, τ(Y ))

which is symmetric. We have the decomposition

(3.30) g = gτ
1 ⊕ gτ

−1

where gτ
±1 = {X ∈ g | τ(X) = ±X}. Since τ ∈ Aut(g) we have

(3.31) [gτ
ε , g

τ
ε′] ⊂ gτ

εε′ for all ε, ε′ ∈ {1,−1},

and

(3.32) Bg(X, Y ) = 0 for all X ∈ gτ
1, Y ∈ gτ

−1.

The subspace(5) gτ is a sub-algebra of g, gτ
−1 is a module for gτ through

the adjoint action, and the subspace gτ and gτ
−1 are orthogonal with

respect to Bτ .

Definition 3.14. — An involution θ on a Lie algebra g is a Cartan

involution if the symmetric bilinear map Bθ defines a scalar product on

g.

Note that the existence of a Cartan involution implies the semi-

simplicity of the Lie algebra.

Example : θo(X) = −tX is an involution on the Lie algebra gl(Rn).

We prove in Proposition 3.12 that if a Lie subalgebra g ⊂ gl(Rn) is

stable under the transpose map and has zero center, then the linear map

θo restricted to g is a Cartan involution. It is the case, for example, of

the subalgebras sl(n,R) and o(p, q).

In the other direction, if a semi-simple Lie algebra g is equipped with

a Cartan involution θ, a small computation shows that

tad(X) = −ad(θ(X)), X ∈ g,

where A 7→ tA is the transpose map on gl(g) defined by the scalar product

Bθ. So the subalgebra ad(g) ⊂ gl(g), which is isomorphic to g, is stable

(5)From now on, we will just denote by gτ the subalgebra gτ
1 .
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under the transpose map. Conclusion : for a real Lie algebra g with zero

center, the following statements are equivalent :

• g can be realized as a subalgebra of matrices stable under the trans-

pose map,

• g is a semi-simple Lie algebra equipped with a Cartan involution.

In the next section, we will see that any real semi-simple Lie algebra

has a Cartan involution.

3.3. Compact real forms. — We have seen the notion of complexifi-

cation of a real Lie algebra. In the other direction, a complex Lie algebra

h can be considered as a real Lie algebra and we then denote it by hR.

The behaviour of the Killing form with respect to this operation is

(3.33) BhR(X, Y ) = 2 Re(Bh(X, Y )) for all X, Y ∈ h.

For a complex Lie algebra h, we speak of anti-linear involutions : these

are the involutions of hR which anti-commute with the complex multipli-

cation. If τ is an anti-linear involution of h then hτ
−1 = ihτ , i.e.

(3.34) h = hτ ⊕ ihτ .

Definition 3.15. — A real form of a complex Lie algebra h is a real

subalgebra a ⊂ hR such that h = a⊕ ia, i.e. aC ≃ h. A compact real form

of a complex Lie algebra is a real form which is a compact Lie algebra

(see Def. 3.7).

For any real form a of h, there exists a unique anti-linear involution

τ such that hτ = a. Equation (3.34) tells us that τ 7→ hτ is a one-to-

one correspondence between the anti-linear involutions of h and the real

forms of h. If a is a real form of a complex Lie algebra h, we have like in

(2.24) that

(3.35) Ba(X, Y ) = Bh(X, Y ) for all X, Y ∈ a.

In particular Bh takes real values on a × a.

Lemma 3.16. — Let θ be an anti-linear involution of a complex Lie

algebra h. θ is a Cartan involution of the real Lie algebra hR if and only

if hθ is a compact real form of h.
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Proof. — Consider the decomposition h = hθ ⊕ ihθ and X = a+ ib with

a, b ∈ hθ. We have

BhR(X, θ(X)) = 2(Bh(a, a) +Bh(b, b)) (1)

= 2(Bhθ(a, a) +Bhθ(b, b)) (2).

Relations (1) and (2) are consequences of (3.33) and (3.35). So we see

that −Bθ
hR is positive definite on hR if and only if the Killing form Bhθ is

negative definite.

Example : the Lie algebra sl(n,R) is a real form of sl(n,C). The

complex Lie algebra sl(n,C) has other real forms like

• su(n) = {X ∈ sl(n,C) | tX +X = 0},

• su(p, q) = {X ∈ sl(n,C) | tXIp,q + Ip,qX = 0}, where Ip,q =(
Idp 0

0 −Idq

)
.

Here the anti-linear involutions are respectively σ(X) = X, σa(X) =

−tX, and σb(X) = −Ip,q
tXIp,q. Among the real forms sl(n,R), su(n),

su(p, q) of sl(n,C), su(n) is the only one which is compact.

Let g be a real Lie algebra, and let σ be the anti-linear involution of

gC associated with the real form g. We have a one-to-one correspondence

(3.36) τ 7→ u(τ) := (gC)τ◦σ

between the set of involutions of g and the set of real forms of gC which

are σ-stable. If τ is an involution of g, we consider its C-linear extension

to gC (that we still denote by τ). The composite τ ◦ σ = σ ◦ τ is then an

anti-linear involution of gC which commutes with σ: hence the real form

u(τ) := (gC)τ◦σ is stable under σ. If a is a real form on gC defined by an

anti-linear involution ρ which commutes with σ, then σ ◦ ρ is a C-linear

involution on gC which commutes with σ: it is then the complexification

of an involution τ on g, and we have a = u(τ).

Proposition 3.17. — Let g be a real semi-simple Lie algebra. Let τ be

an involution of g and let u(τ) be the real form of gC defined by (3.36).

The following statements are equivalent:

• τ is a Cartan involution of g,

• u(τ) is a compact real form of gC (which is σ-stable).
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Proof. — If g = gτ ⊕gτ
−1 is the decomposition related to the eigenspaces

of τ then u(τ) = gτ ⊕ i gτ
−1. Take X = a + ib ∈ u(τ) with a ∈ gτ and

b ∈ gτ
−1. We have

Bu(τ)(X,X) = BgC
(X,X) (1)

= Bg(a, a) − Bg(b, b) (2)

= −Bτ
g(X̃, X̃),

where X̃ = a + b ∈ g. (1) is due to (3.35). In (2) we use (2.24) and

the fact that gτ and gτ
−1 are Bg-orthogonal. Then we see that Bu(τ) is

negative definite if and only if Bτ
g is positive definite.

Now we give a way to prove that a real semi-simple Lie algebra g has a

Cartan involution. Let gC be the complexification of g and let σ the anti-

linear involution of gC corresponding to the real form g. We know from

Proposition 3.17 that it is equivalent to seek for the σ-stable compact

real forms of gC. We use first the following fundamental fact.

Theorem 3.18. — Any complex semi-simple Lie algebra has a compact

real form.

A proof can be found in [3][Section 7.1]. The existence of a σ-stable

compact real form is given by the following

Lemma 3.19. — Let τ : gC → gC be an anti-linear involution corre-

sponding to a compact real form of gC. There exists φ ∈ Aut(gC) such

that the anti-linear involution φτφ−1 commutes with σ. Hence φτφ−1|g
is a Cartan involution of to g.

Proof. — The complex vector space gC is equipped with the hermitian

metric : (X, Y ) → BgC
(X, τ(Y )). It easy to check that τσ belongs to the

intersection

(3.37)

Aut(gC) ∩ {hermitian endomorphisms} = {φ ∈ Aut(gC) | τφτ = φ−1}

The map ρ = (τσ)2 is positive definite. Following Lemma 3.11, the

one parameter subgroup r ∈ R 7→ ρr belongs to the identity component

Aut(gC)o (since Aut(gC) is an algebraic subgroup of GL((gC)R)). We

leave as an exercise to check that ρr commutes with τσ for all r ∈ R.
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Since τρrτ = ρ−r (see (3.37)) it is easy to see that ρrτρ−r commutes with

σ if r = −1
4

.

3.4. Cartan decomposition on the group level. — Let G be a

connected semi-simple Lie group with Lie algebra g. Let θ be a Cartan

involution of g. So we have g = k ⊕ p where k = gθ is a subalgebra of g

and p = gθ
−1 is a k-module. Let K be the connected Lie subgroup of G

associated with k. This section is devoted to the proof of the following

Theorem 3.20. — (a) K is a closed subgroup of G

(b) the mapping K × p → G given by (k,X) 7→ k expG(X) is a diffeo-

morphism onto

(c) K contains the center Z of G

(d) K is compact if and only if Z is finite

(e) there exists a Lie group automorphism Θ of G, with Θ2 = 1 and

with differential θ

(f) the subgroup of G fixed by Θ is K.

Proof. — The Lie group Ĝ = Ad(g) which is equal to the image of G by

the adjoint action is the identity component of Aut(g). The Lie algebra

ĝ of Ĝ which is equal to the subspace of derivations Der(g) ⊂ gl(g)

is stable under the transpose map A 7→ tA on gl(g) associated with the

scalar product Bθ on g (since −tad(X) = ad(θ(X))). Since Ĝ is generated

by the elements ead(X), X ∈ g, Ĝ is stable under the group morphism

A 7→ tA−1. We have ĝ = k̂ ⊕ p̂ where k̂ = {A ∈ ĝ | tA = −A} and

p̂ = {A ∈ ĝ | tA = A}. We have of course ĝ = ad(g), k̂ = ad(k) and

p̂ = ad(p). Let K̂ be the compact Lie group equal to Ĝ ∩ O(g) : its

Lie algebra is k̂. Since Aut(g) is an algebraic subgroup of GL(g), (3.28)

applies here and gives the diffeomorphism

K̂ × p̂ −→ Ĝ(3.38)

(k, A) 7−→ keA.

We consider the closed Lie subgroup

K := Ad−1(K̂)

of G : its Lie algebra is k. By definition K contains the center Z =

Ad−1(Id) of G. If we take the pull-back of (3.38) through Ad : G → Ĝ
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we get the diffeomorphism

K × p −→ G(3.39)

(k,X) 7−→ k expG(X),

which proves that K is connected since G is connected : hence K is

the connected Lie subgroup of G associated with the Lie subalgebra k.

Finally Z belongs to K and K/Z ≃ K̂ is compact: the points (a), (b),

(c) and (d) are proved.

Let Θ : G → G defined by Θ(k expG(X)) = k expG(−X) for k ∈ K

and X ∈ p. We have obviously Θ2 = 1 and Ad(Θ(g)) = tAd(g)−1. If we

take g1, g2 in G we see that

Ad(Θ(g1g2)Θ(g2)
−1Θ(g1)

−1) =
(

t(Ad(g1)Ad(g2))
−1

) (
tAd(g2)

) (
tAd(g1)

)

= 1.

So Θ(g1g2)Θ(g2)
−1Θ(g1)

−1 ∈ Z for every g1, g2 in G. Since G is connected

and Z is discrete it gives Θ(g1g2)Θ(g2)
−1Θ(g1)

−1 = 1: (e) and (f) are

proved.

4. Invariant connections

A connection ∇ on the tangent bundle TM of a manifold M is a

differential linear operator

(4.40) ∇ : Γ(TM) −→ Γ(T∗M ⊗ TM)

satisfying Leibnitz’s rule: ∇(fs) = df⊗s+f∇s for every f ∈ C∞(M) and

s ∈ Γ(TM). Here Γ(−) denotes the space of sections of the corresponding

bundle. The contraction of ∇s by v ∈ Γ(TM) is a vector field on M

denoted ∇vs.

The torsion of a connection ∇ on TM is the (2, 1)-tensor T∇ defined

by

(4.41) T∇(u, v) = ∇uv −∇vu− [u, v],

for all vector fields u, v on M . The curvature of a connection ∇ on TM

is the (3, 1)-tensor R∇ defined by

(4.42) R∇(u, v) = [∇u,∇v] −∇[u,v],
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for all vector fields u, v on M . Here R∇(u, v) is a differential operator

acting on Γ(TM) which commutes with the multiplication by functions

on M : so it is defined by the action of an element of Γ(End(TM)). For

convenience we denote by R∇(u, v) ∈ Γ(End(TM)) this element. We

can specialize the curvature tensor R∇ at each m ∈ M : R∇
m(U, V ) ∈

End(TmM) for each U, V ∈ TmM .

4.1. Connections invariant under a group action. — Suppose

now that a Lie group G acts smoothly on a manifold M . The corre-

sponding action of G on the vector spaces C∞(M), Γ(TM) and Γ(T∗M)

is

g · f(m) = f(g−1m), m ∈M,

g · s(m) = Tg−1mg(s(g
−1m)), m ∈M,

and

g · ξ(m) = ξ(g−1m) ◦ Tmg
−1, m ∈ M,

for every f ∈ C∞(M), s ∈ Γ(TM)), ξ ∈ Γ(T∗M) and g ∈ G. Here we

denote by Tng the differential at n ∈ M of the smooth map m 7→ gm.

Note that the G-action is compatible with the canonical bracket 〈−,−〉 :

Γ(T∗M)×Γ(TM) → C∞(M): 〈g · ξ, g · s〉 = g · 〈ξ, s〉. We still denote by

g the action of g ∈ G on Γ(T∗M ⊗TM).

Definition 4.1. — A connection ∇ on the tangent bundle TM is G-

invariant if

(4.43) g∇g−1 = ∇, for every g ∈ G.

This condition is equivalent to asking that ∇g·v(g ·s) = g ·(∇vs) for every

vector fields s, v on M and g ∈ G.

For every X ∈ g, the differential of t → expG(tX) at t = 0 defines

linear operators on C∞(M), Γ(TM) and Γ(T∗M), all denoted by L(X).

For f ∈ C∞(M) and s ∈ Γ(M) we have L(X)f = XM(f) and L(X)s =

[XM , s] where XM is the vector field on M defined in Section 2.4. The

map X 7→ L(X) is a Lie algebra morphism :

(4.44) [L(X),L(Y )] = L([X, Y ]), for all X, Y ∈ g.
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Definition 4.2. — The moment of a G-invariant connection ∇ on TM

is the linear endomorphism of Γ(TM) defined by

(4.45) Λ(X) = L(X) −∇XM
, X ∈ g.

Since Λ(X), X ∈ g, commutes with the multiplication by functions

on M , we can and we will see Λ(X) as an element of Γ(End(TM)). The

invariance condition (4.43) tells us that the map Λ : g → Γ(End(TM))

is G-equivariant:

(4.46) Λ(Ad(g)Y ) = gΛ(Y )g−1, for every (g, Y ) ∈ G× g.

If we differentiate (4.46) at g = 1, we get

(4.47) Λ([X, Y ]) = [L(X),Λ(Y )], for every X, Y ∈ g.

We end this section by computing the values of the torsion and of the

curvature on vector fields generated by the G-action. A direct computa-

tion gives

(4.48) T∇(XM , YM) = [X, Y ]M − Λ(X)YM + Λ(Y )XM .

for every X, Y ∈ g. Now using (4.44) and (4.47) we have for the curvature

(4.49) R∇(XM , YM) = [Λ(X),Λ(Y )] − Λ([X, Y ]),

for every X, Y ∈ g.

4.2. Invariant Levi-Civita connections. — Suppose now that the

manifoldM carries a Riemannian structure invariant under the Lie group

G. The scalar product of two vector fields u, v will be denoted by (u, v).

The invariance condition says that the equality

(4.50) g · (u, v) = (g · u, g · v)

holds in C∞(M) for u, v ∈ Γ(TM) and g ∈ G. If we differentiate (4.50)

at g = e we get

(4.51) XM(u, v) = ([XM , u], v) + (u, [XM , v]).

Let ∇LC be the Levi-Civita connection on M relatively to the Rie-

mannian metric: it is the unique torsion free connection which preserves

the Riemannian metric. Since the Riemannian metric is G-invariant, the

connection g∇LCg−1 preserves also the Riemannian metric and is torsion
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free for every g ∈ G. Hence ∇LC is a G-invariant connection. Recall that

for u, v ∈ Γ(TM) the vector field ∇LC
u v is defined by the relations

(4.52)

2(∇LC
u v, w) = ([u, v], w)−([v, w], u)+([w, u], v)+u(v,w)+v(u,w)−w(u, v).

If we take u = XM and v = YM in the former relation we find with the

help of (4.51) that

(4.53) 2(∇LC
XM

YM , w) = ([X, Y ]M , w) − w(XM , YM).

So we have proved the

Proposition 4.3. — For any X, Y ∈ g we have

∇LC
XM

YM =
1

2

(
[X, Y ]M −

−−→
grad(XM , YM)

)
.

5. Invariant connections on homogeneous spaces

The main references for this section are [2] and [4].

5.1. Existence of invariant connections. — We work here with the

homogeneous space M = G/H where H is a closed subgroup with Lie

algebra h of a Lie group G. We denote by π : G→M the quotient map.

The quotient vector space g/h is equipped with the H-action induced by

the adjoint action. We consider the space G × g/h with the following

H-action: h · (g,X) = (gh−1,Ad(h)X). This action is proper and free

so the quotient G ×H g/h is a smooth manifold: the class of (g,X) in

G×H g/h is denoted by [g,X]. We use here the following G-equivariant

isomorphism

G×H g/h −→ TM(5.54)

[g,X] 7−→
d

dt
π(g expG(tX))|t=0.

Using (5.54) we have

Γ(TM)
∼

−→ (C∞(G) ⊗ g/h)H(5.55)

s 7→ s̃
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and

Γ(End(TM))
∼

−→ (C∞(G) ⊗ End(g/h))H(5.56)

A 7→ Ã.

For example, the vector fields XM , X ∈ g, give rise through the isomor-

phism (5.55) to the functions X̃M(g) = −Ad(g)−1X mod g/h.

Let ∇ be a G-invariant connection on the tangent bundle TM , and let

Λ : g → Γ(End(TM)) be the corresponding G-equivariant map defined

by (4.45). Let Λ̃ : g → (C∞(G) ⊗ End(g/h))H be the map Λ through

the identifications (5.56). The mapping Λ̃ is G-equivariant and each

Λ̃(X), X ∈ g is a H-equivariant map from G to End(g/h):

Λ̃(Ad(g)X)(g′) = Λ̃(X)(g−1g′)(5.57)

Λ̃(X)(gh−1) = Ad(h) ◦ Λ̃(X)(g) ◦ Ad(h)−1

for every g, g′ ∈ G, h ∈ H and X ∈ g.

Definition 5.1. — Let λ : g → End(g/h) be the map defined by λ(X) =

Λ̃(X)(e).

From (5.57), we see that λ is H-equivariant and determines completely

Λ :

(5.58) Λ̃(X)(g) = λ(Ad(g)−1X).

So we have proved that the G-invariant connection ∇ is uniquely de-

termined by the mapping λ : g → End(g/h).

Proposition 5.2. — (a) The linear map λ : g → End(g/h) is H-

equivariant, and when restricted to h, λ is equal to the adjoint ac-

tion.

(b) A linear map λ satisfying the conditions of (a) determines a unique

G-invariant connection on T(G/H).

Proof. — We have Λ(X) = L(X) − ∇XM
. So if XM(m) = 0 (6), we

have Λ(X)m = L(X)m as endomorphisms of TmM . When m = e ∈ M ,

XM(e) = 0 if and only if X ∈ h, and then the endomorphism L(X)e of

(6)
XM (m) = 0 if and only if m is fixed by the 1-parameter subgroup expG(RX).
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TeM = g/h is equal to ad(X). So λ(X) = ad(X) for all X ∈ h. The

first point is proved.

Let λ : g → End(g/h) be a linear map satisfying the conditions (a),

and let Λ : g → Γ(End(TM)) be the corresponding G-equivariant map

defined by λ : for g ∈M and X ∈ g the map Λ(X)g is

TgM −→ TgM

[ g,Y] 7−→ [g, λ(g−1X)Y ].

By definition we have Λ(X)g = L(X)g when XM(g) = 0. Finally we

define a G-invariant connection ∇ on TM by posing for any vector field

v, s on M and m ∈M :

(∇vs)|m = (L(X)s)|m − Λ(X)m(s|m),

where X ∈ g is chosen so that XM(m) = s|m.

Counter-example : Consider the homogeneous space(7) M =

SL(2,R)/H where

H = {

(
a b

0 a−1

)
| a, b ∈ R, a 6= 0}.

We are going to prove that the tangent bundle TM does not carry a

G-invariant connection. Consider the basis (e, f, g) of sl(2,R), where

e =

(
0 0

1 0

)
, f =

(
1 0

0 −1

)
, g =

(
0 1

0 0

)
.

We have [e, f ] = 2e, [g, f ] = −2g, and [e, g] = −f . Since the Lie algebra

of H is h := Rf ⊕ Rg, we use the identifications sl(2,R)/h ∼= Re and

End(sl(2,R)/h) ∼= R. For the induced adjoint action of h on Re we have :

âd(f) = −2 and âd(g) = 0. We are interested in a map λ : sl(2,R) → R
satisfying

• λ is H-equivariant, i.e. λ([X, Y ]) = 0 whenever X ∈ h.

• λ(X) = âd(X) for X ∈ h.

Theses conditions can not be fulfilled since the first point gives λ(f) =

λ([g, e]) = 0, and with the second point we have λ(f) = âd(f) = −2.

(7)The manifold M is diffeomorphic to the circle.
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The previous example shows that some homogeneous spaces do not

have an invariant connection. For the remaining of Section 5 we work

with the following

Assumption 5.3. — The subalgebra h has a H-invariant supplemen-

tary subspace m in g.

In [4] the homogeneous spaces G/H are called of reductive type when

the assumption 5.3 is satisfied. This hypothesis guarantees the existence

of invariant connections as we will see now.

Let X 7→ Xm denotes the H-equivariant projection onto m relatively

to h. This projection induces an H-equivariant isomorphism g/h ≃ m.

Then a G-invariant connection on T(G/H) is determined uniquely by a

linear H-equivariant mapping λ : g → End(m) which extends the adjoint

action ad : h → End(m). So λ is completely determined by its restriction

λ|m : m → End(m)

We now define a family of invariant connections ∇a, a ∈ R, when G/H

is a homogeneous space of reductive type.

Definition 5.4. — Let G/H be a homogeneous space of reductive type.

For any a ∈ R, we define a H-equivariant mapping λa : g → End(m) by

λa(X) = ad(X) for X ∈ h and

λa(X)Y = a[X, Y ]m for X, Y ∈ m.

We denote by ∇a the G-invariant connection associated with λa.

The connection ∇0 is called the canonical connection. Note that the

connections ∇a, a ∈ R, are distinct except when the bracket [−,−]m = 0

is identically equal to 0.

We finish this section by looking to the torsion free invariant connec-

tions.

Proposition 5.5. — Let ∇ be a G-invariant connection on T(G/H)

and let λ : g → End(m) be the associated H-equivariant map. The

connection ∇ is torsion free if and only if we have

(5.59) [X, Y ]m = λ(X)Y − λ(Y )X for all X, Y ∈ m.



40 PAUL-EMILE PARADAN

Condition (5.59) is equivalent to asking that

(5.60) λ(X)Y =
1

2
[X, Y ]m + b(X, Y ),

where b : m × m → m is a symmetric bilinear map.

Proof. — The vector fields XM , X ∈ g, generate the tangent space

of M = G/H , hence the connection is torsion free if and only if

T∇(XM , YM) = 0 for every X, Y ∈ g. Following (4.48) the condition is

(5.61) [X, Y ]M = Λ(X)YM − Λ(Y )XM for all X, Y ∈ g.

A small computation shows that the function X̃M : G → m associ-

ated with the vector field XM via the isomorphism (5.55) is defined by

X̃M(g) = −[Ad(g)−1X]m. For the function ˜λ(X)YM : G→ m we have

˜λ(X)YM(g) = −λ(Ad(g)−1X)[Ad(g)−1Y ]m, for all X, Y ∈ g.

So condition (5.61) is equivalent to

(5.62) [X, Y ]m = λ(X)Ym − λ(Y )Xm for all X, Y ∈ g.

It is now easy to see that (5.62) is equivalent to (5.59) and (5.60).

Corollary 5.6. — Let a ∈ R and let ∇a be the G-invariant connection

introduced in Definition 5.4. By Proposition 5.5, we see that

• if the bracket [−,−]m is identically equal to 0 : ∇a = ∇0 is torsion

free.

• if the bracket [−,−]m is not equal to 0, ∇a is torsion free if and only

if a = 1
2
.

5.2. Geodesics on a homogeneous space. — Let ∇ be a G-

invariant connection on M = G/H associated with a H-equivariant map

λ : m → End(m). A smooth curve γ : I → M is a geodesic relatively to

∇ if

(5.63) ∇γ′(γ′) = 0.

The last condition can be understood locally as follows. Let t0 ∈ I

and let U ⊂ M be a neighborhood of γ(t0) : if U is small enough there
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exists a vector field v on U such that v(γ(t)) = γ′(t) for t ∈ I closed to

t0. Then for t near t0, condition (5.63) is equivalent to

(5.64) ∇vv|γ(t) = 0.

Proposition 5.7. — For X ∈ m, we consider the curve γX(t) =

π(expG(tX)) on G/H, where π : G → G/H denotes the canonical

projection and expG is the exponential map of the Lie group G. The

curve γX is a geodesic for the connection ∇, if and only if λ(X)X = 0.

Proof. — The vector field XM , which is defined on M , satisfies

XM(γX(t)) = γ′X(t) for t ∈ R. Since ∇XM
XM = Λ(X)XM we get

∇XM
XM |γX(t) = [γX(t), λ(X)X] in TM ≃ G×H m,

so the conclusion follows.

Corollary 5.8. — Let ∇a be the connection on G/H introduced in

Def. 5.4. Then

• the maximal geodesics are the curves γ(t) = π(g expG(tX)), where

g ∈ G and X ∈ m.

• the exponential mapping expē : m → G/H is defined by expē(X) =

π(expG(X)).

5.3. Levi-Civita connection on a homogeneous space. — We

suppose now that one has an Ad(H)-invariant scalar product on the

supplementary subspace m of h, which we just denote by (−,−).

We define a G-invariant Riemannian metric (−,−)M on M = G/H

as follows. Using the identification G ×H m ≃ TM , we take (v, w)M =

(X, Y ) for the tangent vectors v = [g,X] and w = [g, Y ] of TgM . Let

∇LC be the Levi-Civita connection on M corresponding to this Rieman-

nian metric. Since the Riemannian metric is G-invariant, the connection

∇LC is G-invariant (see Section 4.2). Let λLC : g → End(m) be the

H-equivariant map associated with the connection ∇LC. Since ∇LC pre-

serves the metric we have

(5.65) λLC(X) ∈ so(m) for every X ∈ g.

Here so(m) denotes the Lie algebra of the orthogonal group SO(m).
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Proposition 5.9. — The map λLC is determined by the following condi-

tions: λLC(X) = ad(X) for X ∈ h and λLC(X)Y = 1
2
[X, Y ]m+bLC(X, Y )

for X, Y ∈ m, where bLC : m × m → m is the symmetric bilinear map

defined by

(5.66) 2(bLC(X, Y ), Z) = ([Z,X]m, Y ) + ([Z, Y ]m, X) X, Y, Z ∈ m.

Proof. — We use the decomposition (5.60) together with the fact that

(λLC(X)Y, Z) = −(Y, λLC(X)Z) for X, Y, Z ∈ m. It gives

(5.67)

(bLC(X, Y ), Z) + (bLC(Z,X), Y ) =
−1

2

(
([X, Y ]m, Z) + ([X,Z]m, Y )

)
.

Now if we interchange X, Y, Z with Z,X, Y and after in Y, Z,X, we get

two other equalities. If we sum them with alternative sign, on the left-

hand side we get the term 2(bLC(X, Y ), Z), while on the right-hand side

we get −([X,Z]m, Y ) − ([Y, Z]m, X).

Example. Suppose that G is a compact Lie group and H is a closed

subgroup. Let (−,−)g be a G-invariant scalar product on g. We take

m as the orthogonal subspace of h. We take on G/H the G-invariant

Riemannian metric coming from the scalar product (−,−)g restricted

to m. In this situation we see that the bilinear map bLC vanishes. So,

the Levi-Civita connection on G/H is equal to the connection ∇1/2 (see

Definition 5.4). Then we know after Corollary 5.8 that the geodesics on

G/H are of the form γ(t) = π(g expG(tX)) with X ∈ m.

5.4. Levi-Civita connection on symmetric spaces of the non-

compact type. — We come back to the situation of Section 3.4. Let

G be a connected semi-simple Lie group with Lie algebra g. Let Θ :

G → G be an involution of G such that θ = dΘ is a Cartan involution

of g. On the Lie algebra level we have the decomposition g = k ⊕ p

where k is the Lie algebra of the closed connected subgroup K = GΘ and

p = {X ∈ g | θ(X) = −X}. We denote by X 7→ Xk and X 7→ Xp the

projections such that X = Xk +Xp for X ∈ g.

We consider here the homogeneous space M = G/K. Since Ad(K) is

compact, the vector subspace p ≃ TēM carries Ad(K)-invariant scalar
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products that induce G-invariant Riemannian metrics on M . One of

them is of particular interest : the Killing form Bg.

Proposition 5.10. — The Levi-Civita connection ∇LC on G/K asso-

ciated with any Ad(K)-invariant scalar product on p coincides with the

canonical connection ∇0 (see Definition 5.4).

Proof. — Since [p, p] ⊂ k, we have [X, Y ]p = 0 when X, Y ∈ p. By

Proposition 5.9, we have then λLC(X) = ad(Xk) for X ∈ p, which means

that ∇LC = ∇0.

In this setting Corollary 5.8 gives

Corollary 5.11. — • All the maximal geodesics on G/K are defined

over R: the Riemannian manifold G/K is complete.

• the exponential mapping expē : p → G/K is defined by expē(X) =

π(expG(X)).

We will now compute the curvature tensor RLC of ∇LC. By definition

RLC is a 2-form on M with values in End(TM). We take X, Y ∈ g and

look at RLC(XM , YM) ∈ Γ(End(TM)) or equivalently at the function
˜RLC(XM , YM) : G→ End(p) : (4.49) gives

˜RLC(XM , YM)(g) = −[λLC(g−1X), λLC(g−1X)] + λLC([g−1X, g−1Y ])

= −[ad((g−1X)k), ad((g−1X)k)] + ad([g−1X, g−1Y ]k)

= ad([(g−1X)p, (g
−1Y )p]).

At the point ē ∈ M , the curvature tensor RLC specializes in a map

RLC
ē : p × p → End(p).

Proposition 5.12. — For X, Y ∈ p, we have

RLC
ē (X, Y ) = ad([X, Y ]).

We will now compute the sectional curvature when the Riemannian

metric on M = G/K is induced by the scalar product on p defined by

the Killing form Bg. The sectional curvature is a real function κ defined

on the Grassmannian Gr2(TM) of 2-dimensional vector subspaces of

TM (see e.g. [2]). If S ⊂ TēM is generated by two orthogonal vectors

X, Y ∈ p we have
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κ(S) =
Bg(R

LC
ē (X, Y )X, Y )

‖X‖2‖Y ‖2
[1]

=
Bg([[X, Y ], X], Y )

‖X‖2‖Y ‖2
[2]

= −
‖[X, Y ]‖2

‖X‖2‖Y ‖2
[3].

[1] is the definition of the sectional curvature. [2] is due to Proposition

5.12, and [3] follows from the g-invariance of the Killing form and also

from the fact that −Bg defines a scalar product on k.

Conclusion : The homogeneous manifold G/K, when equipped with

the Riemannian metric induced by the Killing form, is a complete Rie-

mannian manifold with negative sectional curvature.

5.5. Flats on symmetric spaces of the non-compact type. —

Let M be a Riemmannian manifold and N a connected submanifold of

M . The submanifold N is called totally geodesic if for each geodesic

γ : I →M of M we have for t0 ∈ I
(
γ(t0) ∈ N and γ′(t0) ∈ Tγ(t0)N

)
=⇒ γ(t) ∈ N for all t ∈ I.

We consider now the case of the symmetric space G/K equipped with

the Levi-Civita connection ∇0.

Theorem 5.13. — The set of totally geodesic submanifolds of G/K

containing ē is in one-to-one correspondence with the subspaces(8) s ⊂ p

satisfying [s, [s, s]] ⊂ s.

For a proof see [2][Section IV.7]. The correspondence works as follows.

If S is a totally geodesic submanifold of G/K, one has RLC
n (u, v)w ∈ TnS

for each n ∈ S and u, v, w ∈ TnS. Then when ē ∈ S one takes s := TēS

: the last condition becomes [[u, v], w] ∈ s for u, v, w ∈ s.

In the other direction, if s is a Lie triple system one sees that gs :=

[s, s] ⊕ s is a Lie subalgebra of g. Let Gs be the connected Lie subgroup

(8)Such subspaces of p are called Lie triple system.
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of G associated with gs. One can prove that the orbit S := Gs · ē is a

closed submanifold of G/K which is totally geodesic.

We are interested now in the “flats” of G/K. These are the totally

geodesic submanifolds with a curvature tensor that vanishes identically.

If we use the last Theorem one sees that the set of flats in G/K pass-

ing through ē is in one-to-one correspondence with the set of abelian

subspaces of p.

We will conclude this section with the

Lemma 5.14. — Let s, s′ be two maximal abelian subspaces of p. Then

there exists ko ∈ K such that Ad(ko)s = s′. In particular the subspaces s

and s′ have the same dimension.

Proof. — first step. Let us show that for any maximal abelian sub-

space s there exists X ∈ s such that the stabilizer gX := {Y ∈ g |

[X, Y ] = 0} satisfies gX ∩ p = s. We look at the commuting family

ad(X), X ∈ s, of linear maps on g. All these maps are symmetric rela-

tively to the scalar product Bθ := −Bg(·, θ(·)), so they can be diagonal-

ized all together : there exists a finite set α1, · · · , αr of non-zero linear

maps from s to R such that

g = g0 ⊕
r∑

i=1

gαi
,

with gαi
= {X ∈ g | [Z,X] = αi(Z)X, ∀Z ∈ s}. Here the subspace s

belongs to g0 = {X ∈ g | [Z,X] = 0, ∀Z ∈ s}. Since we have assumed

that s is maximal abelian in p we have g0 ∩ p = s. For any X ∈ s we

have obviously

gX = g0 ⊕
∑

αi(X)=0

gαi
.

If we take X ∈ s such that αi(X) 6= 0 for all i, then gX = g0, hence

gX ∩ p = g0 ∩ p = s.

Second step. Take X ∈ s and X ′ ∈ s′ such that gX∩p = s and gX′

∩

p = s′. We define the function f(k) = Bg(X
′,Ad(k)X) for k ∈ K. Let

k0 be a critical point of f (such a point exists since Ad(K) is compact).

If we differentiate f at ko we get Bg(X
′, [Y,Ad(ko)X]) = 0, ∀ Y ∈ k.

Since Bg is g-invariant we get Bg([X
′,Ad(ko)X], Y ) = 0, ∀ Y ∈ k, so



46 PAUL-EMILE PARADAN

[X ′,Ad(ko)X] = 0. Since gAd(ko)X ∩ p = Ad(ko)(g
X ∩ p) = Ad(ko)s,

the last equality gives X ′ ∈ Ad(ko)s. And since Ad(ko)s is an abelian

subspace of p we have then

Ad(ko)s ⊂ gX′

∩ p

⊂ s′.

Finally since s, s′ are two maximal abelian subspaces, the last equality

guarantees that Ad(ko)s = s′.
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