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Abstract

We investigate a multivariate growth series ΓL(z), z ∈ Cd associated
with a regular language L over an alphabet of cardinality d. Our focus is
on languages coming from subgroups of the free group and from subshifts
of finite type. We develop a mechanism for computing the rate of growth
ϕL(r) of L in the direction r ∈ Rd. Using the concave growth condition
(CG) introduced by the second author in [18] and the results of Convex
Analysis we represent ψL(r) = log (ϕL(r)) as a support function of a
convex set that is a Relog image of the domain of absolute convergence
of ΓL(z). This allows us to compute ψL(r) in some important cases, like
a Fibonacci language or a language of freely reduced words representing
elements of a free group F2. Also we show that the methods of the Large
deviation theory can be used as an alternative approach. Finally, we
suggest some open problems directed on the possibility of extensions of
the results of the first author from [13] on multivariate cogrowth.
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1 Introduction

The study of asymptotic properties of a sequence {γn}n≥0 of real (or complex)
numbers is related to study of analytic properties of the function Γ(z) presented

by a power series

∞∑
n=0

γnz
n. This includes inspection of singularities on the border
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of the domain of (absolute) convergence of Γ(z) and local behavior of Γ(z) in
their neighborhood. If Γ(z) is a rational function i.e.

Γ(z) =
G(z)

H(z)
, G(z), H(z) ∈ C[z]

then all needed information about the coefficients γn can be gained from the
polynomials G(z) and H(z).

In algebra, and especially in modern group theory, there are many notions
and concepts that attached to the algebraic object a sequence {γn}n≥0. This
include growth, cogrowth, subgroup growth etc. Recall that given a finitely
generated group G with a system of generators S, one can consider a function

γn = #{g ∈ G : |g| = n},

where n ∈ N and |g| is the length of the element g with respect to S. If the pair
(G,S) has a regular geodesic normal form (in other terminology a rational cross
section [7]) then the power series

Γ(z) =

∞∑
n=0

γnz
n

represents a rational function and the asymptotic of γn is either polynomial or
exponential. There are many groups (for instance groups of intermediate growth
constructed in [8]) for which Γ(z) is irrational for any system of generators and
the study of asymptotic properties of {γn}∞n becomes much more complicated.

Now let Fm be a free group of rank m. Every m generated group G can
be presented as a quotient Fm/N, for a suitable normal subgroup N C Fm.
Let A = {a1, · · · , am} be a basis of Fm. Elements of Fm are presented by
freely reduced words over alphabet Σ = {a1, · · · , am, a−1

1 , · · · , a−1
m } and there

is 2m(2m− 1)n−1 such words of length n ≥ 1. The function

ΓFm(z) =

∞∑
n=0

2m(2m− 1)n−1zn =
1 + z

1− (2m− 1)z

is a spherical growth function of Fm with respect to the basis S. Now letH < Fm
be a subgroup and Hn be the set of elements in H of length n with respect to
generators {a1, · · · , am} of Fm. The sequence {|Hn|}∞n of cardinalities of these
sets is a cogrowth sequence,

H(z) =

∞∑
n=0

|Hn|zn

is a cogrowth series, and
αH = lim sup

n→∞
|Hn|

1
n
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is a cogrowth. The range for αH is [1, 2m − 1] and the range of αH when H
is nontrivial and normal subgroup is

(√
2m− 1, 2m− 1

]
. (See [10, 11, 12, 13]).

The spectral radius χ of the simple random walk on G = Fm/N , when N / Fm
is related with αN as

χ =

√
2m− 1

2m

(√
2m− 1

αN
+

αN√
2m− 1

)
and the group G is amenable if and only if αN = 2m − 1 (that is αN takes its
maximum possible value).

α

χ

√
2m− 1

m

χ(α)

√
2m− 1

1

2m− 1

(a)

−
√

2m− 1

m

√
2m− 1

m

(b)

Figure 1: The graph of χ = χ(α) and the interval

[
−
√

2m− 1

m
,

√
2m− 1

m

]
In the case when H < Fm is not a normal subgroup, one can consider a

Schreier graph Λ = Λ(Fm, H,Σ). Then the dependence on αH of the spectral
radius χ of a simple random walk on Γ is given by

χ =


√

2m− 1

2m

(√
2m− 1

αH
+

αH√
2m− 1

)
if αH >

√
2m− 1

√
2m− 1

2m
if αH ≤

√
2m− 1

(See Figure 1a). Hence, again the graph Γ is amenable if and only if αH = 2m−1,
while in the case when Γ is infinite, it is a Ramanujan graph if and only if

αH ≤ 2m− 1. The value

√
2m− 1

m
is a spectral radius of random walk on Fm

computed by H. Kesten [14] and if the spectrum of the Laplacian operator of
graph Γ minus two points set {−1, 1} is a subset of the interval given by Figure
1b, then the graph is called Ramanujan. Observe that the analogue of the for-
mula for χ in the context of differential geometry was obtained in [20].
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Now we are going to introduce a finer growth characteristics: multivariate
growth and multivariate cogrowth.

Let Σ = {a1, · · · , ad}, d ≥ 2 be an alphabet, Σ∗ be the set of all finite words
(or strings) over Σ. The set Σ∗ with concatenation as a binary operation, can
be interpreted as a monoid (with empty word serving as the identity element).
In fact, Σ∗ is a free monoid. Its growth sequence is dn, n = 0, 1, · · · . Any subset
L ⊂ Σ∗ is called a (formal) language. With any w ∈ Σ∗ we can associate the
length |w| and the frequency vector ℘(w) = (|w|a1 , · · · , |w|ad) ∈ Nd where |w|ai
is a number of occurrences of the symbol ai in the word w. Let z = (z1, · · · , zd) ∈
Cd and

ΓL(z) =
∑
w∈L

z℘(w), (1)

where z℘(w) = z
|w|a1
1 · · · z|w|add . The series (1) is a multivariate series associated

with L and can be rewritten as

ΓL(z) =
∑
i∈Nd

γiz
i, (2)

where γi is the number of words w in L with the same vector ℘(w) = i.

If we normalize the vector ℘(w) as
1

|w|
℘(w) we get a vector of frequencies

℘̃(w) belonging to the simplex Md of probability vectors:

Md =

{
r ∈ Rd≥0 : r = (r1, · · · , rd), ri ≥ 0, ‖r‖1 =

d∑
i=1

ri = 1

}
and ‖·‖1 is a l1 norm. The multivariate growth indicatrice that we are going
to introduce is the number ψ(r), r ∈ Md which characterizes the growth of
coefficients γi when ‖i‖1 → ∞ in the direction of vector r. When r ∈ Qd is a
rational vector, then the possible approach would be to define ψ(r) by

ψ(r) = lim sup
n→∞

1

n
log |γnr| (3)

where n ∈ N and γnr = 1 if nr /∈ Nd. The Definition 4.1 given in the Section 4
follows the idea of [18]. It works for arbitrary r ∈Md and coincides with (3) in
the rational case for many examples.

A crucial assumption that we make is the “concavity” assumption (CG) (see
Definition 4.2) which allows to apply the powerful methods from convex analysis
(as well as the results from [18]). In fact our definition works for arbitrary
multivariate power series (2) with real coefficients. The main point is to present
the indicatrice of growth ψ(r) (assuming the condition (CG)) as

ψ(r) = inf
θ∈∂(Ω′)

〈r, θ〉 (4)
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where Ω′ = −Ω ⊂ Rd≥0 and Ω is a closed convex set representing the Relog
image of the domain of absolute convergence of (2) where

Relog(z) = (log |z1|, · · · , log |zd|)

(see Theorem 4.1). We apply (4) for two languages: the Fibonacci language
LFib and the language LFm of freely reduced words associated with a free group
Fm of rank m ≥ 2. These languages belong to class of regular languages, that is
languages accepted by finite automaton. Regular languages play important role
in many areas of mathematics, including dynamical systems and algebra. Reg-
ular normal form of elements in the group is a bijective presentation of elements
of the group by elements of a regular language over the alphabet of generators
and inverses. Regular geodesic normal form is such presentation for which the
length of the element with respect to generating set coincides with the length
of the word. Virtually abelian groups and Gromov hyperbolic groups have a
regular geodesic normal form for any system of generators.

Regular languages are good in particular because their growth series (in one
or multivariate case) are rational functions. This fact even in stronger form
was known already to Chomsky and Schützenberger [3]. Proposition 2.1 of
Section 2 gives a rational expression for a multivariate growth series associated
with regular language. The condition (CG) mentioned earlier holds under the
assumption of ergodicity of the automaton presenting the language (condition
(E) in Section 2). It is satisfied in the presented examples and we summaries
the computations from Section 5 and the Propositions 6.1 as

Theorem 1.1. The indicatrices ψF2
(r) and ψFib(r) are given by

1.
ψF2

(r) = H(r) + p log
(

2q − p+ 2
√
p2 − pq + q2

)
+q log

(
2p− q + 2

√
p2 − pq + q2

)
,

2.

ψFib(r) = p log

(
p

p− q

)
+ q log

(
p− q
q

)
if p ≥ 1

2
,

= −∞ if p <
1

2
,

where r = (p, q) ∈M2 and H(r) = −p log p− q log q is the Shannon’s entropy.

In fact, ψF2
(r) is computed for modified multivariate growth series ∆F2

(z), r ∈
M2 (see Section 3). The graphics of these functions are presented by Figure 2.

Regular languages quite often appear in Dynamical systems, first of all as
languages associated with subshifts of finite type (SFT). For example a subshift
of a full shift ΣZ determined by a finite set F of forbidden words; Σ = {0, 1},

5



(a)

;

(b)

Figure 2: Graphs of ψF2
(r) and ψFib(r).

F = {11}, is the Fibonacci language. And if Σ = {a1, · · · , am, a−1
1 , · · · , a−1

m },
F = {aia−1

i , a−1
i ai : i = 1, · · · ,m} we get a subshift corresponds to the language

LFm of freely reduced words representing elements of the free group Fm over Σ.

A standard way to present SFT is to define it by a digraph Γ = (V,E) (i.e.
a directed graph with allowed loops and multiple edges) or equivalently by a
matrix A with non-negative integer entries. The theory of positive matrices
based first of all on the powerful Perron-Frobenius theorem allows comprehen-
sive study of SFT from the dynamical and other points of view. There is a
canonical way to associate with irreducible SFT an ergodic Markov shift (and a
Markov chain on Σ) given by a stochastic matrix P. Let (∆, ζ) be a SFT where
∆ ⊂ ΣZ and ζ : ΣZ → ΣZ is a shift map defined by (ζx)n = xn+1, x ∈ ΣZ. Let
L(∆) be the language of (∆, ζ) (all finite words that appears as a subwords in
x ∈ ΣZ). Let ψ∆(r) be indicatrice of growth of L(∆). The maximum of values
of ψ∆(r) is a topological entropy of L(∆) [15] and ψ∆(r) satisfies the relation
(4), because L(∆) is a regular language and the condition (CG) holds. There is
an alternative way to present ψ∆(r) as the support function of a convex set via
the methods of Large Deviation Theory (LDT) [5]. For our purpose it is enough
only to apply Sanov’s theorem stating that the Large Deviation Principle holds
for finite Markov chains. The discussion in Section 7 relates formula (4) with
the Sanov’s expression for the rate function I(r).

The paper is organized as follows. In Section 2, we recall some of the ba-
sic definitions from the theory of finite automata and formal languages that
will be needed later. Then we introduce the condition (E) for the regular lan-
guages. The Section 3 is devoted to the computations of the modified multivari-
ate growth series of language LFm of reduced elements of a free group Fm using
two approaches. In Section 4, we discuss the condition (CG) and then prove
Theorem 4.1. In Sections 5 and 6 we present computations of indicatrice ψ(r)
for F2 and for the Fibonacci language LFib, respectively. Section 7 is devoted to
application of Large Deviations Theory. Using Sanov Theorem, we get a rela-
tionship between ψ(r) and the rate function I(r). Using result from asymptotic
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combinatorics in several variables presented in [16], in Section 8, we get a finer
asymptotics associated with F2. Finally, Section 9 contains concluding remarks
and some open questions.

2 Regular languages, their growth series and the
condition (E)

We begin this section with recall of definition of finite automaton and language
accepted by it. A finite automaton A is given by a quintuple (Q,Σ, κ, q0,F ) ,
where Q is a finite set whose elements are called states, Σ is a finite alphabet,
κ : Q×Σ→ Q is a transition function, the state q0 ∈ Q is a special state called
the initial state and the set F ⊂ Q is nonempty set whose elements are called
final states. It is convenient to visualize A as a labeled directed graph ΘA with
the vertex set Q, edge set

E = {(q, s) : q, s ∈ Q, κ(q, ai) = s for some ai ∈ Σ},

and each such edge (q, s) with κ(q, ai) = s is supplied by the label ai. Multiple
edges and loops are allowed. The graph ΘA is called the diagram of A . The
example of these diagrams are presented by Figures 3a and 8. Observe that so
defined A is deterministic and complete automaton, i.e. given any q ∈ Q and
any a ∈ Σ we know what would be the next state κ(q, a). A word w ∈ Σ∗ is
accepted by A if starting with the initial state q0 and traveling in diagram ΘA

along with the path pw determined by w we end up at some final state. Let
L (A ) be the set of words accepted by A . A language L ⊂ Σ∗ is called regular
if there is a finite automaton A such that L = L (A ) . The important feature
of this definition is the uniqueness of the path pw for each w ∈ Σ∗.

One can generalize the above definition by replacing a singleton {q0} by a
nonempty subset I ⊂ Q whose elements are called initial states and defining
L (A ) as a set of words w for which there is an initial state i ∈ I such that the
path pi,w that begins at i and follow the word w ends up at F . Surprisingly, this
does not lead to a larger class of languages (as it is always possible to replace
A by automaton A ′ with a single initial state such that L (A ) = L (A ′)).
The automaton with a single initial state are unambiguous in the sense that for
each w ∈ L (A ) there a unique path pw that recognizes w. Nevertheless, there
are situations (for instance in the case of the language of freely reduced words
over the alphabet of generators of a free group) when ambiguous automata work
better (see Figure 3b and Section 5).

One also can consider non-deterministic and incomplete automata.Still, this
much larger class of automata determines the same class of languages, the class
of regular languages. Non-deterministic automata appear for instance in the
study of languages associated with sofic subshifts [15].

Recall that given w ∈ Σ∗ the vector ℘(w) = (|w|a1 , · · · , |w|ad) , where |w|ai
denote the number of occurrences of ai ∈ Σ in w. Let also |w| denote the length
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s0

s1

s3

s2 s4

a

a−1

b b−1

a

b b−1

a−1

b b−1

b

a

a−1

b−1

a

a−1

(a)

s1 s2

s4 s3

b−1

a

b−1 a−1

a

a−1

b

a

b

b−1

ba−1

(b)

Figure 3: Diagrams of automata A and A ′ associated with the language LF2 of
reduced words representing elements of the free group F2, where the initial states
are denoted by horizontal unlabeled arrow and the final states are represented
by “double” circles.

of w. With L ⊂ Σ∗ one can associate a number of formal series: the ordinary
series,

ΓL(z) =
∑
w∈L

z|w|, z ∈ C (5)

the multivariate series,

ΓL(z) = ΓL(z1, · · · , zd) =
∑
w∈L

z℘(w), (6)

where z = (z1, · · · , zd) ∈ Cd and z℘(w) = z
|w|a1
1 · · · z|w|add . Also one can consider

the formal sum ∑
w∈L

wz|w| ∈ Z[w∗]JzK (7)

viewed as a formal power series with coefficients in the ring Z[w∗] (the semi-
group ring of the free semi-group Σ∗). The consideration of these type of series
go back at least to 50’s of 20th century and is related first of all with the names
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of Chomsky and Schützenberger [3].

For us it is important that in the case when L is a regular language the
series (5), (6) and (7) are rational i.e. ratio of two polynomials. We focus our
attention only on (5) and (6), and in fact the study of asymptotic properties of
(6) is the main purpose of this article.

Let A = (aij) be the adjacency matrix of ΘA i.e. a |Q| × |Q| matrix whose
rows and columns correspond to the states and

aij = the number of edges in ΓA joining i with j, where i, j ∈ Q.

We use the ordering on Q in such a way that the first state is q0. Let

u = (1, 0, · · · , 0) , and v =
(
v1, · · · , v|Q|

)t
be a row and column vectors of dimension |Q|, where

vq = 1, if state q ∈ F and vq = 0 if q /∈ F .

Then the standard technique of counting paths (see Theorem 4.7.2 of [19]) in
finite graph (or in finite Markov chain) leads to the

ΓL(z) = u

∑
n≥0

(zA)n

 v = u [I − zA]
−1
v

and the rationality of L(z) is obvious. A similar argument works for multivariate
case, only the matrix zA should be replaced by

A(z) = (ast(z))
|Q|
s,t=1 ,

where z = (z1, · · · , zd) and

ast(z) =


∑
i

zi where summation is taken over such i that κ(s, ai) = t

0 if there is no edge from s to t.

With this notations we have the following.

Proposition 2.1. The multivariate growth series of a regular language L =
L (A ) satisfies

ΓL(z) = u [I −A(z)]
−1
v. (8)

Hence ΓL(z), z ∈ Cd is a multivariate rational function i.e.

ΓL(z) =
G(z)

H(z)
,

9



where G(z), H(z) ∈ C[z1, · · · , zd]. The polynomials G(z), H(z) obtained in (8),
can be calculated, for instance, using the Cramer’s rule.

For example, in the case of automaton presented by Figure 8,

A(z) =

(
z1 z2

z1 0

)
and ΓL(z) =

1 + z2

1− z1 − z1z2
.

For us the following condition will be crucial.

Definition 2.1. (Condition (E)). We say that a language L ⊂ Σ∗ satisfy the
condition (E) if there exists an integer N ≥ 0 such that, for every U, V ∈ L,
there exists w ∈ Σ∗, |w| ≤ N with UwV ∈ L.

The example of the regular languages satisfying the condition (E) come
from ergodic (or primitive) automata A i.e. automata in which any state can
be connected to another state by a path in the diagram.

q0

s

t

V

w

U

Figure 4: Part of Moore diagram of an ergodic automaton A

This is because A is ergodic automaton, U, V ∈ L (A ) and s, t are end
states of the path pU , pV then connecting state s with the initial state q0 by some
path q whose length does not exceed the diameter D of the graph ΘA (i.e. max-
imum of combinatorial distances between states in A ) we get UwV ∈ L (A )
where w is a word read along path q, |w| ≤ D. See Figure 4. So the condition
(E) holds.

Unfortunately, not every regular language satisfying (E) can be accepted by
ergodic automaton of the type described above. For instance the language LF2

over the alphabet Σ = {a, a−1, b, b−1} of freely reduced words (i.e. aa−1, a−1a,
bb−1, b−1b are forbidden) of the free group F2 of rank 2, satisfy the condition
(E) but can not be accepted by an ergodic unambiguous automaton [2]. The
Figure 3 show two automata accepting the language LF2 . The first automaton

10



presented in the Figure 3a is unambiguous but not ergodic. In the second au-
tomaton 3b, all states are initial, it is ergodic automaton but not unambiguous.

Later, we will introduce a condition (CG) for multivariate power series and
it will follow that ΓL(z), z ∈ Cd satisfies the condition (CG) if the associated
language L satisfies the condition (E).

3 Computations of the multivariate growth se-
ries in the case of a free group

Let Fm = 〈a1, · · · , am〉 be a free group of rank m ≥ 2 and LFm be the language
of freely reduced words over alphabet Σ = {a1, · · · , am, a−1

1 , · · · , a−1
m }. This is a

regular language (an automaton accepting it in the case m = 2 is given by Figure
3a) and hence a corresponding multivariate growth series ΓFm(z) is rational. It
can be computed using for instance Proposition 2.1. Even in the case of m = 2
computations are quite involved. So instead we will focus on a modified version
∆Fm(z) defined as

∆Fm(z) = 1 +
∑

g∈Fm, g 6=e

z℘(g)

where ℘(g) = (|g|aε1 , · · · , |g|aεm) and |g|aεi is a number of occurrences of sym-

bols ai and a−1
i in the freely reduced word presenting element g i.e. |g|aεi =

|g|ai + |g|a−1
i
. The modified series ∆Fm(z) is also important for us, because of

the question 9.1 formulated at the end of the article in connection with sym-
metric random walks. Of course if we know ΓFm(z), then we can obtain the
∆Fm(z) and vice versa.

We present the computations of the modified multivariate growth series
∆Fm(z), first using the automata approach i.e using the Proposition 2.1 and
later, using the symmetries of this language leading to a simpler system of
equations and as a result of simpler expression for ∆Fm(z) given by Proposition
3.2.

Proposition 3.1.

ΓFm(z) =
(1 + z1) · · · (1 + zm)

R(z)
(9)

where

R(z) = 1−

∑
i

zi + 3
∑
i<j

zizj + · · ·+ (2l − 1)
∑

i1<···<il

l∏
k=1

zik

+ · · ·+ (2m− 3)
∑

i1<···<im−1

m−1∏
k=1

zik + (2m− 1)z1 · · · zm

 .

11



Proof. Let AFm be an automaton generating language LFm of reduced elements
of Fm. See Figure 3a for AF2 . The 2m+1 states of AFm are s0, s1, · · · , sm, sm+1 =
s−1

1 , · · · , s2m = s−1
m and the adjacency matrix A of AFm is

A =

 01×1 J1×m J1×m
0m×1 Jm×m (J − I)m×m
0m×1 (J − I)m×m Jm×m

 ,

where 0m×n is zero matrix, Jm×n is matrix with all entries are one and
(J−I)m×m is matrix having diagonal entries are zero and one elsewhere. Using
the above decomposition of A, we obtain the transfer matrix A(z) and then
applying Equation (8) of the Proposition 2.1 we obtain

ΓFm(z) =

∑
i(−1)i+1 det(I −A(z) : i, 1)

det (I −A(z))
, (10)

where sum is taken over all final states si and if N is matrix then (N : i, j)
denotes the matrix obtained by removing the ith row and jth column of N .
The matrix I is the 2m+ 1 dimensional identity matrix.

We divide the rest of the proof in two lemmas.

Lemma 3.1.

det (I −A(z)) = (1− z1) · · · (1− zm)×R(z)

Proof. We prove the lemma using induction on m ≥ 2. It is easy to see that
the statement is true when m = 2. i.e.

det (I −A(z)) = (1− z1)(1− z2)(1− z1 − z2 − 3z1z2).

Assume that the statement is true when m = k. i.e.

det (I −A(z)) = (1− z1) · · · (1− zk)×1−

∑
i

zi + 3
∑
i<j

zizj + · · ·+ (2l − 1))
∑

i1<···<il

l∏
j=1

zij

+ · · ·+ (2k − 3)
∑

i1<···<ik−1

k−1∏
j=1

zij + (2k − 1)z1 · · · zk

 .

Let m = k + 1. Then I −A(z)

=



1 −z1 · · · −zk+1 −z1 · · · −zk+1

0 1− z1 · · · −zk+1 0 · · · −zk+1

...
...

. . .
...

...
. . .

...
0 −z1 · · · 1− zk+1 −z1 · · · 0
0 0 · · · −zk+1 1− z1 · · · −zk+1

...
...

. . .
...

...
. . .

...
0 −z1 · · · 0 −z1 · · · 1− zk+1
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We rearrange the rows and columns of I −A(z) by interchanging the positions
of (k + 1)th row and column with {k + 2, · · · , 2k + 1}th rows and columns,
respectively. Then I −A(z)

=



1 −z1 · · · −zk −z1 · · · −zk −zk+1 −zk+1

0 1− z1 · · · −zk 0 · · · −zk −zk+1 −zk+1

...
...

. . .
...

...
. . .

...
...

...
0 −z1 · · · 1− zk −z1 · · · 0 −zk+1 −zk+1

0 0 · · · −zk 1− z1 · · · −zk −zk+1 −zk+1

...
...

. . .
...

...
. . .

...
...

...
0 −z1 · · · 0 −z1 · · · 1− zk −zk+1 −zk+1

0 −z1 · · · −zk −z1 · · · −zk 1− zk+1 0
0 −z1 · · · −zk −z1 · · · −zk 0 1− zk+1


Observe that the rows and columns of I−A(z) are indexed as s0, s1, · · · , sk, s−1

1 ,
· · · , s−1

k , sk+1, s
−1
k+1 and the determinant of the central block and the expression

that we have assumed when m = k are identical. As first column has exactly
one 1 and zero elsewhere, we can ignore the first row and first column. Hence
det (I −A(z))

= det



1− z1 · · · −zk 0 · · · −zk −zk+1 −zk+1

...
. . .

...
...

. . .
...

...
...

−z1 · · · 1− zk −z1 · · · 0 −zk+1 −zk+1

0 · · · −zk 1− z1 · · · −zk −zk+1 −zk+1

...
. . .

...
...

. . .
...

...
...

−z1 · · · 0 −z1 · · · 1− zk −zk+1 −zk+1

−z1 · · · −zk −z1 · · · −zk 1− zk+1 0
−z1 · · · −zk −z1 · · · −zk 0 1− zk+1


We rewrite the matrix by naming these blocks as

det (I −A(z)) = det

(
A2k×2k B2k×2

C2×2k D2×2

)
Recall that zi 6= 1, for all i = 1, · · · , k + 1 and hence det(D2×2) 6= 0. Therefore
we have

det (I −A(z)) = det

(
A′2k×2k B2k×2

02×2k D2×2

)
= det(A′2k×2k) det(D2×2),

13



where A′ = A2k×2k −Bk×2D
−1
2×2C2×k and its (i, j)th entry

A′(i, j) =



1− zi −
2zizk+1

1− zk+1
if i = j

− 2zizk+1

1− zk+1
if i < j and j = i+ k(mod 2k)

− 2zizk+1

1− zk+1
if j < i and i = j + k(mod 2k)

−zi −
2zizk+1

1− zk+1
otherwise.

In order to prove the m = k + 1 step, it is suffices to show that

det(A′) =
(1− z1) · · · (1− zk)

1− zk+1
×

1−
∑
i

zi − 3
∑
i<j

zizj − · · · − (2k − 1)
∑

i1<···<ik

k∏
j=1

zij − (2k + 1)z1 · · · zk+1

 .

Applying below rows and columns transformations

1. Ri −R1, i = 2, · · · , 2k
2. Ci − Ck+i, i = 1, · · · , k
3. Ri +R1, i = 2, · · · , k, k + 2, · · · , 2k and Rk+1 + 2R1

4. Rk+i +Ri, i = 2, · · · , k
5. Ri +R1, i = 2, · · · , k and Ri + 2R1, i = k + 1, · · · , 2k

to the matrix A′, we convert A′ to the below upper triangular block matrix.
det(A′)

= det



1− z1 · · · 0 − 2z1zk+1

1−zk+1
· · · −z1 − 2zkzk+1

1−zk+1

...
. . .

...
...

. . .
...

0 · · · 1− zk −zk − 2z1zk+1

1−zk+1
· · · − 2zkzk+1

1−zk+1

0 · · · 0 1− z1 − 4z1zk+1

1−zk+1
· · · 2

(
−zk − 2zkzk+1

1−zk+1

)
...

. . .
...

...
. . .

...

0 · · · 0 2
(
−z1 − 2z1zk+1

1−zk+1

)
· · · 1− zk − 4zkzk+1

1−zk+1


We call the bottom right corner block as A′′. In A′′ matrix, subtracting twice
the first row from each row Ri, i = 2, · · · , k, we get

det(A′′) = det


1−z1−zk+1−3z1zk+1

1−zk+1

−2z2(1+zk+1)
1−zk+1

· · · −2zk(1+zk+1)
1−zk+1

−1− z1 1 + z2 · · · 0
...

...
. . .

...
−1− z1 0 · · · 1 + zk
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=

1−
∑
i

zi − 3
∑
i<j

zizj − · · · − (2k − 1)
∑

i1<···<ik

k∏
j=1

zij − (2k + 1)z1 · · · zk+1

 .

This implies that the statement is true for m = k + 1 and hence the lemma is
proved.

Lemma 3.2.∑
i

(−1)i+1 det(I −A(z) : i, 1) = (1− z2
1) · · · (1− z2

m).

Proof. Using similar strategy as in the above proof, we can show that

det(I −A(z) : i+ 1, 1) = det(I −A(z) : i+m+ 1, 1)

= zi(1− zi)
∏
j 6=i

(1− z2
j )

This implies∑
i

(−1)i+1 det(I −A(z) : i, 1) = (1− z2
1) · · · (1− z2

m).

Hence, the proof of Proposition 3.1 follows from Lemmas 3.1 and 3.2.

We now provide an alternative way of computations.

Proposition 3.2. The function ∆Fm(z) satisfies

∆Fm(z) =
1

1− 2

m∑
i=1

zi
1 + zi

. (11)

Proof. Recall that the elements of Fm are identified with freely reduced words
over the alphabet Σ = {a1, · · · , am, a−1

1 , · · · , a−1
m }.

∆Fm(z) = 1 +
∑

e 6=g∈Fm

z℘(g)

where e is the identity in Fm, z = (z1, · · · , zm), ℘(g) = (|g|aε1 , · · · , |g|aεm) and

z℘(g) = z
|g|aε1
1 · · · z|g|a

ε
m

m .
For each i = 1, · · · ,m, ε = ±1, let F εm,i = {g ∈ Fm\{e} : the first letter of g is aεi}.
Define

∆ε
i(z) = ∆ε

Fm,i(z) =
∑

e 6=g∈F εm,i

z℘(g)

so that we get

∆Fm(z) = 1 +
∑
i,ε

∆ε
i(z).

15



Observe that
∆i(z) = zi + zi∆i(z) + zi

∑
j 6=i,ε

∆ε
j(z).

This implies
∆i(z) = zi

(
∆Fm(z)−∆−1

i (z)
)
.

Similarly we can write

∆−1
i (z) = zi (∆Fm(z)−∆i(z)) .

Adding ∆i(z) and ∆−1
i (z) we get

∆i(z) + ∆−1
i (z) =

(
2zi

1 + zi

)
∆Fm(z),

Hence

∆Fm(z) = 1 +
∑
i

(
∆i(z) + ∆−1

i (z)
)

= 1 + 2

m∑
i=1

(
zi

1 + zi

)
∆Fm(z)

and we come to (11).

We now compare two expressions for ∆Fm(z). Multiplying numerator and
denominator of (11) by (1 + z1) · · · (1 + zi) we get

∆Fm(z) =
(1 + z1) · · · (1 + zm)

((1 + z1) · · · (1 + zm))− 2 ((1 + z1) · · · (1 + zm))
∑m
i=1

zi
1+zi

(12)

It is easy to see that

(1 + z1) · · · (1 + zm) = 1 +
∑
i

zi +
∑
i2<i1

zi1zi2 + · · ·+
∑

i1<···<il

l∏
k=1

zik + · · ·+
m∏
i=1

zi

and

2 ((1 + z1) · · · (1 + zm))

m∑
i=1

zi
1 + zi

= 2
∑
i

zi + 4
∑
i2<i1

zi1zi2 + · · ·+ 2l
∑

i1<···<il

l∏
k=1

zik + · · ·+ 2m

m∏
i=1

zi

Substituting above relations in the denominator of (12) we get R(z) of (9).
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4 The multivariate growth exponent and the
condition (CG)

Let
Γ(z) =

∑
i∈Nd

fiz
i =

∑
i1,··· ,id

fi1,··· ,idz
i1
1 · · · z

id
d (13)

be a multivariate power series. We denote by D the interior of the domain of
absolute convergence of Γ, which we assume to be non empty. In particular, 0
belongs to D .

We are going to define for each r ∈Md a growth exponent ϕ(r) for coefficients
{fi}i∈Nd in the direction of r. When r is a vector with rational entries, then one
can define ϕ(r) as

ϕ(r) = lim sup
n→∞

|fnr|
1
n , (14)

where only coefficients nr = (nr1, · · · , nrd) ∈ Nd with integer entries are taken
into account. This approach is considered in the book [16] and some of its ref-
erences.

To define ϕ(r) for arbitrary r ∈Md following [18], we first define the function
ψ(r). We then hope to be able put ϕ(r) = eψ(r), which would then agree with
(3).

Definition 4.1. Let C ⊂ Rd be an open cone at 0 ∈ Rd containing vector
r ∈ Rd. Define

τC = lim sup
R→∞

1

R
log

 ∑
i∈C

R≤‖i‖1≤R+1

fi

 (15)

and
ψ(r) = ‖r‖1 inf

r∈C
τC (16)

where inf is taken over open cones containing r.

We call ψ(r) indicatrice of growth. The assumption that 0 is an interior
point of the domain of absolute convergence of Γ ensures that ψ can not take
the value +∞, but it may take the value −∞.

Recall that the Relog map is a map Relog : Cd∗ → Rd, where C∗ = C\{0}
given by

Relog(z) = (log |z1|, · · · , log |zd|).

In future, we will use the notation E = Rd and E ∗ for its dual space i.e. the
space of continuous linear functionals θ : E → R with a natural identification of
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E ∗ with E via the standard inner product

〈x, θ〉 = θ(x) =

d∑
i=1

xiθi,

where x = (x1, · · · , xd) ∈ E , θ = (θ1, · · · , θd) ∈ E ∗.
The height function hr(z) for z ∈ E is the function

hr(z) = −
d∑
i=1

ri log |zi| = −〈r,Relog(z)〉

if r ∈Md ∩Qd is a rational vector then for (14) there is an upper bound

ϕ(r) = lim sup
n→∞

|fnr|
1
n ≤ |z′1|−r1 · · · |z′d|−rd = e−hr(z′) (17)

which hold for every point z′ in the closure of D of D , as shown for instance
in ([16], formula (5.15)). We shall provide sufficient conditions for replacement
of the inequality in (17) by the equality for properly chosen z′ and extend the
definition of ϕ(r) to irrational r by ϕ(r) = eψ(r). The function ϕ(r) will be
called the multivariate growth exponent.

For what follow it will be convenient to associate with the power series Γ(z)
a Radon measure ν = νΓ defined on Borel subsets S of E by

ν(S) =
∑
i∈S

fi (18)

We shall now define the condition (CG).

Definition 4.2. (Condition (CG)) Following [18] we say that Γ(z) has a con-
cave growth of coefficients if there are a, b, c > 0 such that for all x,y ∈ E

ν (Bx+y(a)) ≥ cν (Bx(b)) ν (By(b)) (19)

where Bx(a) is the ball of radius a with the center at x ∈ E for the norm ‖.‖1.

A large class of power series Γ(z) satisfying the condition (CG) are generating
series of regular languages satisfying the condition (E), as explained in section 2.

Given a Radon measure ν satisfying condition (CG) one defines for a given
open cone C ⊂ E with a root at 0,

τν,C = lim sup
R→∞

log ν (B0(R+ 1) rB0(R)) ,

τν(r) = ‖r‖1 inf
r∈C

τν,C
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for r ∈ E and ‖r‖1 = 1 and finally for x ∈ E

ψ(x) =

 τν

(
x

‖x‖1

)
if x 6= 0

0 if x = 0.
(20)

Then assuming that τν <∞, where

τν = sup
x∈E ,‖x‖1=1

ψν(x) (21)

we know from ([18], Lemma 3.1.7) that the function ψν : E → R ∪ {−∞} is
upper semi-continuous. Obviously it is positively homogeneous i.e. for any t > 0

ψν(tx) = tψν(x).

Finally, if the Condition (CG) holds, then ψν(x) is concave i.e.

ψν(x + y) ≥ ψν(x) + ψν(y), for x,y ∈ E .

Observe that in our situation, because the measure ν = νΓ is supported only on
the Nd ⊂ Rd≥0 part of E ,

ψν(x) = −∞, for x /∈ Rd≥0.

Let Ω = Relog(D∩Cd∗) ⊂ E (recall that D ⊂ Cd is the interior of the domain
of absolute convergence of (13)). It is well known ([16], Proposition 3.4) that Ω
is convex. Let ψ = ψΓ be the function given by Definition 4.1.

Theorem 4.1. Let Γ(z) be a power series given by the Equation (13) with non-
negative coefficients fi, i ∈ Nd such that fi satisfy the concavity condition (CG)
and τν < ∞ where ν = νΓ is given by the Equation (18) and τν is given by
(21). Let D ⊂ Cd be the interior of the set of points of absolute convergence of
Γ(z), Ω = Relog(D ∩Cd∗) and Ω be the closure of Ω. Then −ψΓ(x) is the support
function of the closure Ω and for x ∈ Rd≥0

ψΓ(x) = inf
θ∈−Ω

〈x, θ〉 (22)

= inf
θ∈−∂Ω

〈x, θ〉 if Ω 6= Rd. (23)

Proof. Because of the Condition (CG), the function −ψΓ(x) is a lower semi-
continuous, convex and positively homogeneous. Hence, it is a support function
of a one and only one closed convex subset S ⊂ E ∗ given by

S = {θ ∈ E ∗ : −ψΓ(x) ≥ 〈x, θ〉,∀x ∈ E }
= {θ ∈ E ∗ : ψΓ(x) ≤ −〈x, θ〉,∀x ∈ E } (24)
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The set of absolute convergence of Γ(z) is determined by the condition that the
integral given below in the Equation (25) is convergent.

Γ(|z1|, · · · , |zd|) =
∑
i

fie
∑d
k=1 ik log |zk|

=

∫
E

e〈x,θ〉dνΓ(x) (25)

where θ = Relog(z), z = (z1, · · · , zd).

Consider the set

∆◦Γ = {θ ∈ E ∗ : −〈x, θ〉 > ψΓ(x),∀x ∈ E \{0}} .

Using ([18], Lemma 3.1.3), we conclude that if θ ∈ ∆◦Γ, then the integral (25)
converges while if there is x ∈ E \{0} with −〈x, θ〉 < ψΓ(x), then it diverges.
The closure ∆Γ = ∆◦Γ is the set

∆Γ = {θ ∈ E ∗ : −〈x, θ〉 ≥ ψΓ(x),∀x ∈ E }

which is the set S given by the Equation (24) for whom −ψΓ(x) is the support
function. Thus

−ψΓ(x) = sup
θ∈S
〈x, θ〉

ψΓ(x) = − sup
θ∈S
〈x, θ〉

= inf
θ∈−S

〈x, θ〉

Also, we conclude that
S = Relog(D) = Ω.

This leads us to the Equation (22) and eventually to (23) as the maximum of a
linear functional taken over the closed convex set S is achieved on the boundary
∂S of S or equals to −∞.

Following is the immediate consequence of Theorem 4.1.

Corollary 4.1.

ψ(x) = inf
z∈∂D

(
−
∑

xi log |zi|
)

(26)

Example
Let d = 2,Σ = {a1, a2} and L = Σ∗ be the language of a free monoid. Then

ΓL(z) =
1

1− z1 − z2
=

∞∑
n=0

n∑
i=0

(
n

i

)
zi1z

n−i
2 .

It is obvious that the Condition (CG) holds and the direct computation based on
the use of Stirling’s formula or Theorem 4.1 show that for r ∈M2 the function
ψL(x) is the Shannon’s entropy H(r). i.e.

ψL(r) = H(r) = −r1 log r1 − r2 log r2, r ∈M2.

More examples will be discussed in the following two sections.
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5 Multivariate growth exponent in the case of
the free group

In the section 3, we got two expressions for the multivariate growth series ΓFm(z)
for the language LFm of freely reduced words in the alphabet {a1, · · · , am, a−1

1 ,
· · · , a−1

m }.

Consider the case m = 2. Then

∆F2
(z) =

(1 + z1)(1 + z2)

1− z1 − z2 − 3z1z2
(27)

We use the notations D ,Ω, Relog of Section 4. First, we are mainly interested in
understanding the shape of the set Ω = Relog(D).To get a view of the real slice
of the domain of the absolute convergence of the power series (27), we observe
that the domain D is described as

D = {(z1, z2) ∈ C2 : |z1|+ |z2|+ 3|z1||z2| < 1}

The real slice of the curve

H(z1, z2) = f1(z) = 1− z1 − z2 − 3z1z2 = 0

is presented by hyperbola in Figure 5a.

(a) (b)

Figure 5: Real part of the Domain D of H(z1, z2) of LF2 and LFib, respectively.

The real slice of D with z1, z2 ∈ R, z1, z2 ≥ 0 is presented by the tented area
Ξ. The set −Ω is obtained from Ξ by making the substitution z1 = e−s, z2 = e−t.
To get the clear picture of the shape of the set Ω (and hence −Ω) we make use
of an interesting notion from algebraic geometry called amoeba.

Recall, that given a Laurent polynomial f(z), z ∈ Cd, the amoeba of f is the
set

amoeba(f) =
{

Relog(z) : z ∈ Cd∗, f(z) = 0
}
⊂ Rd,

where C∗ = C\{0}. The amoeba’s complement is amoeba(R)c = Rd\amoeba(R).

The following result follows from Gelfand, Kapranov, and Zelevinsky [6,
Chap. 6, Prop. 1.5 and Cor. 1.6].
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(a) (b)

Figure 6: The amoeba(f1), amoeba(f2) along with sets Ω associated to the lan-
guage LF2 and the Fibonacci language are presented in 6a and 6b, respectively,
where f1(z) = 1− z1 − z2 − 3z1z2 and f2(z) = 1− z1 − z1z2.

Proposition 5.1. If f(z) is a Laurent polynomial then all connected compo-
nents of the complement amoeba(f)c are convex subsets of Rd. These real convex
subsets are in bijection with the Laurent series expansions of the rational func-
tion 1

f(z) . When 1
f(z) has a power series expansion, then it corresponds to the

component of Rd\amoeba(f) containing all points (−N, · · · ,−N) for N positive
and sufficiently large.

The techniques of drawing amoeba are well developed. The amoebas of poly-
nomials f1(z) = 1− z1− z2−3z1z2 and f2(z) = 1− z1− z1z2 that correspond to
the cases of language LF2

of freely reduced words of F2 and Fibonacci language,
respectively, are presented in the Figure 6.

Looking at the shape of −Ω presented in Figure 7, in the case of LF2 , we see
that for each r ∈M2 with positive entries there is a tangent line to the bound-
ary ∂(−Ω), is orthogonal to r and hence, the infimum of the linear form (23) is
achieved. To compute ψ(r) we apply a standard method of Lagrange multipliers.

In coordinates (s, t) ∈ R2, z1 = e−s, z2 = e−t, the boundary of −Ω is a curve
l given by the equation

1− e−s − e−t − 3e−s−t = 0 (28)

or
es+t − es − et − 3 = 0 (29)

Let r = (p, q) ∈M2. We have to minimize ps+qt when (s, t) ∈ l. The associated
Lagrange function is

Φ(s, t, λ) = ps+ qt− λ(es+t − es − et − 3).
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(a) (b)

Figure 7: The sets −Ω presented in 7a and 7b are associated with languages
LF2 and LFib, respectively.

Equating partial derivatives to zero we obtain

∂Φ

∂s
= p− λ

(
es+t − es

)
= 0 =⇒ p = λ

(
es+t − es

)
∂Φ

∂t
= q − λ

(
es+t − et

)
= 0 =⇒ q = λ

(
es+t − et

)
∂Φ

∂λ
= es+t − es − et − 3 = 0.

This gives

ρ =
p

q
=

1− e−t

1− e−s
=⇒ e−t = 1− (1− e−s)ρ
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Substituting the value of e−t in (28) we get

1− e−s −
(
1− (1− e−s)ρ

)
− 3e−s

(
1− (1− e−s)ρ

)
= 0

−e−s + ρ− ρe−s − 3e−s + 3ρe−s − 3ρe−2s = 0

−3ρe−2s + (2ρ− 4) e−s + ρ = 0

Substituting x = e−s in the above quadratic and then solving it gives

x1,2 =
2ρ±

√
1− ρ+ ρ2

6ρ

We choose positive sign (i.e. +) because we know due to [9] that the function

is real analytic. Re-substituting x = e−s and ρ =
p

q
we get

e−s =
p− 2q + 2

√
p2 − pq + q2

3p
,

es =
2q − p+ 2

√
p2 − pq + q2

p

and by symmetry,

et =
2p− q + 2

√
p2 − pq + q2

q
.

Hence,

s = log

(
2q − p+ 2

√
p2 − pq + q2

p

)
, t = log

(
2p− q + 2

√
p2 − pq + q2

q

)
,

and

ψF2
(r) = p log

(
2q − p+ 2

√
p2 − pq + q2

p

)
+q log

(
2p− q + 2

√
p2 − pq + q2

q

)
or

ψF2
(r) = H(r)+p log

(
2q − p+ 2

√
p2 − pq + q2

)
+q log

(
2p− q + 2

√
p2 − pq + q2

)
,

where H(r) = −p log p − q log q. See Figure 2a for the graph of ψF2
(r) =

ψF2
(p, 1− p).

6 Multivariate growth in the case of Fibonacci
language

Fibonacci language LFib is a language over binary alphabet {0, 1} consisting of
words that do not contain 11 as a subword i.e. the word 11 is forbidden. It is
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one of the important examples associated with subshifts of finite type [15]. The
reason why Fibonacci name is associated to it is coming from the fact that the
number of words of length n in LFib is equal to the (n+ 2)th Fibonacci number
β.

β =
1√
5

(
λn+2

1 − λn+2
2

)
,

where λ1 =
1 +
√

5

2
and λ2 =

1−
√

5

2
are eigenvalues of matrix

A =

(
1 1
1 0

)
which is the matrix of transitions of the Fibonacci subshift. At the same time
A is the adjacency matrix of the automaton AFib given in the Figure 8 which

s1 s2

b

a

a

Figure 8: Moore diagram of Fibonacci automaton AFib

accepts the language LFib, if instead of {0, 1} we use the alphabet {a, b}. An
easy computation of growth series gives function

ΓFib(z) =
1 + z2

1− z1 − z1z2

mentioned before Definition 2.1. In order to compute ψ, observe from Figure 8
that the Condition (CG) holds as the automaton AFib is ergodic.

Proposition 6.1. The indicatrice ψFib viewed as a function of p, 0 < p < 1
where r = (p, 1− p) ∈M2 is the direction vector, is given by

ψFib(r) =


p log

(
p

2p− 1

)
+ (1− p) log

(
2p− 1

1− p

)
if p ≥ 1

2

−∞ if p <
1

2

The graph of ψFib(r) on [ 1
2 ,∞) is shown in the Figure 2b.

Proof. As before, we switch to the variables x, y instead of z1, z2, respectively.
The amoeba of f2(x, y) = 1− x− xy and the set −Ω are shown in the Figures
6b and 7b, respectively.
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We provide two explanations why ψFib(p) = −∞ when 0 < p <
1

2
, first,

algebraic and second, geometric. The power series expansion of (1− x− xy)−1

is

1

1− x− xy
=

∞∑
n=1

n∑
i=0

(
n

i

)
xn−i(xy)i

=

∞∑
n=1

xn
n∑
i=0

(
n

i

)
yi

Hence,

1 + y

1− x− xy
=

∞∑
n=1

xn
n∑
i=0

(
n

i

)
yi +

∞∑
n=1

xn
n∑
i=0

(
n

i

)
yi+1

=

∞∑
n=1

xn

{
1 + y +

n∑
i=0

[(
n

i

)
+

(
n

i− 1

)]
yi

}

and we see that coefficients of the power series corresponding to the indices
(n, i) with i > n+ 1 are zero. Hence, any direction r = (p, q) with p

q > 1 gives
value −∞ to ψFib. As for the geometric explanation let us use Figures 6b and
7b. The domain −Ω is shown in Figure 7b and it is bounded by the curve l
given by the equation

1− e−s − e−s−t = 0 (30)

• Case (i) If p < 1
2 , then 1−p

p > 1
2 and lines

ps+ (1− p)t = c

intersect −Ω for arbitrary c ∈ R. Hence,

ψFib(p) = inf
(s,t)∈−Ω

(ps+ (1− p)t) = −∞

• Case (ii) If p > 1
2 , then 1−p

p < 1
2 and there is a unique value of c such that

the line
ps+ (1− p)t = c

is tangent to the curve l. The coordinates (s0, t0) of the tangent point P
gives a minimum value to the linear form ps+(1−p)t when (s, t) ∈ −Ω. To
find it again, we again apply the method of Lagrange. We denote q = 1−p
and rewrite Equation (30) as

es+t − et − 1 = 0

The associated Lagrange function is

Φ(s, t, λ) = ps+ qt− λ(es+t − et − 1)
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and the corresponding system of equation is

∂Φ

∂s
= p− λes+t = 0

∂Φ

∂t
= q − λes+t + λet = 0 (31)

∂Φ

∂λ
= es+t − et − 1 = 0

From the first equation in (31), we get es+t = p
λ . from the second equation

we get q = p + λet, and from the third equation we get p
λ − e

t − 1 = 0.
Hence,

et =
p− q
λ

=
2p− 1

λ

But λ = 1− p = q. This gives,

et =
2p− 1

1− p
and hence, es =

p

2p− 1
.

The last equation determine the point (s0, t0). Making substitution in (23)
we obtain (30).

7 Multivariate growth and LDT

The alternative approach for computing ψ(r) is via the application of methods
of Large Deviation Theory (LDT). Here we discuss a special case related to
languages associated with subshifts of finite type. Let us first recall the ba-
sic facts about subshifts of finite type (SFT). For more details see [15]. Let
Σ = {a1, · · · , ad} be a finite alphabet and ΣZ be a space of two-sided infinite
sequences over Σ indexed by integers. ΣZ is supplied by a product topology and
is homeomorphic to a Cantor set when d ≥ 2. The shift map U : ΣZ → ΣZ is
the homeomorphism given by

(Uw)n = wn+1, w = (w)∞n=−∞ ∈ ΣZ.

A closed U -invariant subset X ⊂ ΣZ is a subshift. Let LX ⊂ Σ∗ be a language
of subshift consisting of (finite) words that appear as a subwords of w ∈ X.
A subshift X is said to be subshift of finite type if there is a finite subset
F ⊂ Σ∗ (set of forbidden words) such that X = XF consist of sequences w ∈ ΣZ

that do not contain forbidden subwords. It is obvious that XF is closed and
U -invariant. For instance, in the case Σ = {0, 1} and F = {11} we get the
Fibonacci subshift. Alternative way to define subshifts of finite type is via the
graph Ξ = (V,E) (in fact directed multi-graph i.e. loops and multiple edges are
allowed) or equivalently, via the adjacency matrices A = (aij) of the size |V |×|V |
whose rows and columns correspond to vertices of the graph and aij , i, j ∈ V is

27



a non-negative integer equal to the number of edges joining vertex i with vertex
j. For instance, the Fibonacci subshift the matrix is

A =

(
1 1
1 0

)
and the graph Ξ is given by the Figure 9 and is similar to the diagram of the
automaton from Figure 8.

1

0

0

Figure 9: The graph Ξ of the Fibonacci subshift

Another example is the free group Fm, the subshift X, m ≥ 2 with alphabet
Σ = {a1, · · · , am, a−1

1 , · · · , a−1
m } and

A =

(
Jm×m Km×m
Km×m Jm×m

)
,

where J is matrix with all entries 1, K = J − I and I is an m × m identity
matrix. The language LX consists of freely reduced words.

It is well known that the language LX associated with a subshift of finite
type is regular. Hence, its multivariate growth series represents a rational func-
tion and the technique of computation of multivariate growth rate described in
the previous sections is applicable. Now, we shall see how the results of LDT
can be used for the same goal.

To make one more step towards LDT, let us recall some other important
notions related to SFT. The SFT (U,X) is irreducible if the graph ΞX is strongly
connected (i.e. for any vertices in graph, there is a path connecting them). In
this case, the associated matrix A is called irreducible. The Perron-Frobenius
theorem states that the irreducible matrix A with non-negative entries (like in
our case) has a simple eigenvalue ρ = ρ(A) (called Perron-Frobenius eigenvalue)
such that any other eigenvalue λ satisfies |λ| ≤ ρ. Also there are two vectors
u,v ∈ Rd satisfying

Av = ρv,utA = ρut,

where ut is the transpose of the column vector u. These vectors are unique up
to scalar factor. Assume that A is primitive matrix. Then the Perron-Frobenius
triple (ρ,u,v) (consisting of vectors u,v > 0 such that Av = ρv,utA = ρut,
and normalized by the condition 〈ut,v〉 = 1) gives the information about the
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powers An of A:

lim
n→∞

1

ρn
An = v · ut.

See ([15], Theorem 4.5.12).

Next, we need the notion of Markov measure on ΣZ. Given a a stochastic
d× d matrix

P = (pij), where pij ≥ 0 and

d∑
j=1

pij = 1, i = 1, · · · , d,

and a stationary probability row vector p = (p1, · · · , pd), pP = p, one can define
a Borel probability measure µ = µP on ΣZ by

µ ([ω0, · · · , ωn]) = pω0

n−1∏
i=0

pωi,ωi+1 ,

where [ω0, · · · , ωn] is a cylinder subset of ΣZ consisting of all ω ∈ ΣZ with the
prescribed entries ω0, · · · , ωn at coordinates 0, 1, · · · , n. (such sets generate the
sigma-algebra of Borel subsets and hence, values of µ on them determine µ
completely). The Perron-Frobenius eigenvalue of P is 1, vector p exists and is
unique if P is irreducible. The measure µP is shift-invariant and the system(
ΣZ, U, µ

)
is ergodic.

One of the main results of theory of SFT is a statement (assuming irre-
ducibility of X) on the existence and uniqueness of probability measure η = ηX
of maximal entropy. Not getting into the details we just mentioned that if ϑ
is U -invariant probability measures on ΣZ, then the Kolmogorov-Sinai entropy
h(ϑ) can be defined. Then

h(η) = max
ϑ

h(ϑ),

where maximum is taken over all U -invariant probability measures supported
on X. The measure η is called Parry measure. It is a Markov type measure
determined by a stochastic matrix P = (pij), with

pij =
1

ρ
aij

vj
vi
, (32)

where A = (aij) and Av = ρv. For such measure we have

µ ([i, x1, · · · , xn−1, j]) =
uivj
ρn

(33)

See [17] for further details. In fact, for (32) and (33) we have to assume that
aij ∈ {0, 1} (i.e. graph Γ does not have multiple edges). Meanwhile observe
that, every SFT can be coded in such a way that the matrix A will have only
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entries {0, 1} [15]. Starting from this moment we assume that the measure of
maximal entropy is associated with SFT.

Now, we recall some basic notions of LDT, namely, the notion of the rate
function I and the Large Deviation Principal (LDP). A rate function is a lower
semi-continuous function I : W → [0,+∞] defined on a topological space W
(for us now W = Rd) such that for each a ∈ [0,∞) the level set

YI(a) = {x ∈W : I(x) ≤ a}

is a closed subset of W. A good rate function is a rate function for which all level
sets YI(a) are compact. A sequence {µn}∞n=1 of Borel measures on W satisfies
LDP if, for every Borel subset B ⊂W,

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1

n
logµn(B) ≤ lim sup

n→∞

1

n
logµn(B) ≤ − inf

x∈B
I(x),

where B◦, B are, respectively, the interior and the closure set of the set B.

Given a finite Markov chain on a set Σ = {a1, · · · , ad} determined by a
stochastic matrix P = (pij)

d
i,j and a function f : Σ → Rd, d ≥ 1 one can

consider for each x = (xi)
∞
i=1 ∈ ΣN the empirical means

Zn(x) =
1

n

n∑
i=1

f (xi)

and the corresponding distributions µn (discrete measures in Rd). We assume
that the random process is a Markov process given by the matrix P and sta-
tionary vector p, pP = p.

Associate with every y ∈ Rd a non-negative matrix Π(y) whose elements are

πij(y) = pije
〈y,f(j)〉, i, j ∈ Σ.

Π(y) is a matrix with non-negative entries and it is irreducible if and only if
P is irreducible. Let ρ(Π(y)) be the Perron Frobenious eigenvalue of Π(y).
The Theorem 3.1.2 of [5] states that the empirical mean Zn (or corresponding
distributions µn) satisfies the LDP with the convex and good rate function

I(z) = sup
y∈Rd

{〈y, z〉 − log ρ (Π(y))} , z ∈ Rd.

There is a version of this result due to Sanov which is more suitable for our
goals. Let f : Σ→ Rd, |Σ| = d be a function such that

f(ai) =



0
...
1
...
0
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where 1 is at i-th position and i = 1, · · · , d.

The following alternative description of I holds ([5], Theorem 3.1.6).

I(r) =

 sup
u�0

d∑
j=1

rj log

(
uj

(uP )j

)
r ∈Md

∞ r /∈Md

The supremum is taken over the strictly positive vectors u i.e. ui > 0 fro all i.

Now we have all needed to describe the connection between ψ and I. We
assume that the language L ⊂ Σ∗ is a language determined by the automaton
A with the property that for each state q ∈ Q all incoming edges are labeled
by the same symbol (like in the examples given by the Figure 3 or 8). The
indicatrice of growth as before is denoted by ψ(r). We assume that A is ergodic
(and hence, condition (CG) satisfied). Let A be the adjacency matrix of A
and XA be the corresponding subshift. Let L1 be a language associated with
XA . In described situation we identify Σ with Q attaching to each state q ∈ Q
symbol aq (the label of the entering edges). Because A is ergodic, we get a
bijection between Σ and Q. After such identification, it become obvious that
L ⊂ L1. Because of ergodicity (i.e. irreducibility of A) as easily can be shown
the indicatrice of growth ψ(r) is same for languages L and L1.

Associate with A = (aij) the stochastic matrix P = (pij), where pij =
aij vj
ρ vi

, ρ = ρ(A) and Av = ρv, v� 0. Let p be a stationary probability vector

(pP = p) and µ = µp be a corresponding Markov measure (i.e. Perry measure).
From (34) (assuming normalization 〈p,v〉 = 1) we know that the measure µ is
almost equidistributed on the cylinder sets Cw determined by the words w ∈ L1

of the fixed length as for any i, j, w1, · · · , wn−1 ∈ Σ

µ ([i, w1, · · · , wn−1, j]) =
pi vj
ρn

. (34)

Let r ∈ Md be a rational vector with positive entries and C ⊂ Md a small
neighborhood of r. Let

Bn = {w ∈ ∆A : Zn(w) ∈ C }

From LDP, we know that 1
n logµ(Bn) is close to −I(r) when n is large. On

the other hand, from (34) we get that 1
n logµ(Bn) is close to 1

n log (ρ−n · lnr) ,
where

L1(z) =
∑
i∈Nd

liz
i

is a multivariate growth series of L1. Hence, in the limit when n → ∞ we get
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the equality

I(r) = log ρ− lim sup
n→∞

1

n
log lnr

= log ρ− ψ(r) (35)

In fact, under the impose conditions using the definition of ψ(r) one can prove
(35) for all r ∈Md, not just rationals. We summarize this as

Proposition 7.1. The indicatrice of growth ψ(r) of a language determined by
ergodic automaton A of type described above satisfies

I(r) = log ρ− ψ(r),

where I(r) is the rate function associated with the Markov chain determined by
the stochastic matrix P corresponding to A and

I(r) = sup
u�0

d∑
j=1

rj log

[
uj

(uP )j

]
, r ∈Md. (36)

Finally, we make one more remark. Recall that entries of A belong to the set
{0, 1}. Let as before v = (v1, · · · , vd) be a right eigenvector of A corresponding
to ρ = ρ(A), Av = ρv. Assume that v is a probability vector. Let

Md>0 = {r = (r1, · · · , rd) ∈Md : ri > 0, ∀ i} .

Then the map T : Md>0 → Rd given by

T (q) = s = (s1, · · · , sd),

where
sj =

qj

vj
∑d
i=1

qiaij
vi

, j = 1, · · · , d. (37)

Let A(z) be the matrix from Proposition 2.1 i.e. matrix obtained from A by
replacing each 1 in the jth column of A by zj and let t be a vector obtained
from q ∈Md>0 by

t =

(
q1

v1
, · · · , qd

vd

)
Lemma 7.1. For each q ∈ Md>0 vector t satisfies tA(s) = t, where s =
(s1, · · · , sd) is given by (37).

Proof. For 1 ≤ j ≤ d,

(tA(s))j = sj

d∑
i=1

qiaij
vi

=
qj

vj
∑d
i=1

qiaij
vi

·
d∑
i=1

qiaij
vi

=
qj
vj

= tj (38)

(in the above relations we used the fact that aij ∈ {0, 1}).
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Observe that s depends on the vector q, so we can write s = s(q).

Corollary 7.1.
det (I −A(s(q))) = 0, ∀ q ∈Md>0.

Recall that the multivariate growth series of language L satisfies Proposition
2.1. i.e.

ΓL(z) =
G(z)

det (I −A(z))

and singularities of ΓL(z) are determined by the roots of denominator. Hence,
T (Md>0) is a part of the set of the real singularities of ΓL(z) and is part of the
boundary ∂D .

(a) (b)

Figure 10: The graphics of the sets T (Md>0) and log(−T (Md>0)) presented in
(10a) and (10b) are associated with languages LF2 and LFib, respectively.

We already know from Proposition 7.1 that

I(r) = log ρ− ψ(r).

Recall that P = (pij) and pij =
vjaij
ρvi

. Rewriting (36) as

I(r) = sup
q∈Md>0


d∑
j=1

rj log ρ−
d∑
j=1

rj log

(
vj
∑d
i=1

qiaij
vi

qj

)
= log ρ− inf

q∈Md>0

d∑
j=1

rj(−1) log [T (q)]j

= log ρ− inf
s∈T (Md)

− d∑
j=1

rj log sj
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we conclude

ψ(r) = inf
s∈T (Md)

− d∑
j=1

rj log sj


Comparing with (26) we observe that in the described situation, the infimum in
(26) can be taken only via the subset of the positive part of the boundary ∂D .
See Figures 10.

8 Finer asymptotic

As was already mentioned in the introduction, in the case of rational vector r the
function ψ(r) can be identified by (3) (alternatively, the function ϕ(r) = eψ(r)

can be identified by (14)). A powerful results of the theory of ACSV (asymptotic
combinatorics in several variables) presented in [16] allow not only to compute

in many cases ϕ(r), for rational functions Γ(z) =
G(z)

H(z)
and rational vectors r

but also to describe much finer asymptotics of the diagonal coefficients fnr (See
Theorems 5.1,5.2,5.3 in [16]). Also there are statements on the smoothness of
ϕ(r) as a function of rational r.

Our definition of ϕ(r), that follow the idea from [18] and is based on the cone
approach works for arbitrary direction r ∈Md. Moreover, under the assumption
(CG) in many “good”examples (including considered in this paper) the upper
bound (17) can be replaced by the equality

ϕ(r) = e
inf
x∈D

hr(x)
= e

inf
x∈∂D

hr(x)
= eψ(r)

when r is rational, where

ψ(r) = inf
θ∈∂(−Ω)

〈r, θ〉, Ω = Relog(D)

Additionally, the facts based on the convex analysis and Large Deviation The-
ory allow to claim that for the good rational functions Γ(z), the function ϕ(r)
is a real analytic function. See [9].

Now we recall few definitions and results presented in [16], apply them to
our examples and make a comparison. The Theorem 5.1 from [16] basically
states the following.

Let r ∈ Qd and let G(z), H(z) ∈ Q[z] be coprime polynomials such that

Γ(z) =
G(z)

H(z)
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admits a power series expansion

Γ(z) =
∑
i∈Nd

fiz
i.

Suppose that the system of equations

H(z) = r2z1Hz1(z)− r1z2Hz2(z) = rdz1Hz1(z)− r1zdHzd(z) (39)

admits a finite number of solutions, exactly one of which z′ ∈ Cd∗ is minimal
(i.e. no other singularity z of Γ(z) satisfies |zj | < |z′j | for all 1 ≤ j ≤ d).

Suppose that Hzd(z) 6= 0, G(z′) 6= 0. Then as n→∞

fnr = z′−nrn
1−d
2

(2πrd)
1−d
2 −G(z′)

z′dHzd(z′)
√

det(H )

(
1 +O

(
1

n

))
(40)

when nr ∈ Nd, where H is a (d−1)× (d−1) matrix defined by Equation (5.25)
in [16] and it is supposed that det(H ) 6= 0.

It is also claimed that as r varies in any sufficiently neighborhood in Rd>0,
the solution z′ = z′(r) varies smoothly with r. The factor (z′)−nr in (40) gives
us

lim sup
n→∞

|fnr|
1
n = |(z′)−r| = e−

∑
ri log |z′i| = e−hr(z′)

The system of equations (39) is equivalent in our situation (assuming condition
(CG)) to the system of equations coming from the Lagrange multipliers method
because if

Φ(z, λ) =

d∑
i=1

ri log zi − λH(z) (41)

then the critical points are solutions of the system

∂Φ

∂zi
=

ri
zi
− λHzi = 0, i = 1, · · · , d

H(z) = 0 (42)

which is equivalent to (39). In our situation, we make substitutions zi = e−θi

and replace (41) by the

Φ′(θ, λ) =

d∑
i=1

riθi − λH(e−θ)

as shown in the previous sections. Of course (40) is much finer asymptotic than

fnr ∼ (z′)−nr.

As was already mentioned, the condition (CG) gives an alternative definition
of the growth in the direction of r that works not only for rational r but for
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any direction r ∈ Rd>0. At the same time the above argument show that when
(CG) holds and conditions of Theorem 5.1 in [16] are satisfied, then the rates
of growth in the rational direction r defined by (3) or as e−ψ(r) coincide. The
smooth dependence of z′ = z′(r) (and hence of ϕ(r) = z′−r) on r ∈ Qd>0 can
be strengthen to the claim about the analytic dependence on r for all r ∈ Rd>0,
where ψ(r) ≥ 0 as shown in [9].

An useful tool in discussed topics is the logarithmic gradient map

Ologf = (z1fz1 , · · · , zdfzd) .

Proposition 3.13 in [16] states that for any minimal singular point z′ of Γ(z) =
G(z)

H(z)
(where G,H are coprime) there exists r ∈ Rd≥0 and τ ∈ C such that

(
OlogH

(s)
)

(z′) = τ · r,

where H(s) is a square free part of H. In this situation z′ is either a minimizer
or a maximizer of the height function hr(z) on D .

Let us apply Theorem 5.1 from [16] to the case of the free group of rank 2.
We assume that r = (p, 1−p) is rational, z = (x, y). Recall that the multivariate
growth series of free group F2 is

ΓF2
(x, y) =

(1 + x)(1 + y)

1− x− y − 3xy
=
G(x, y)

H(x, y)

and that the singularities of ΓF2
(x, y) are the points

z′ = (x, y) =

(
3p− 2 + 2

√
3p2 − 3p+ 1

3p
,

1− 3p+ 2
√

3p2 − 3p+ 1

3(1− p)

)

whose coordinates are real numbers with positive coordinates. Hence,

(z′)−n·r =

(
2− 3p+ 2

√
3p2 − 3p+ 1

p
,

3p− 1 + 2
√

3p2 − 3p+ 1

(1− p)

)n·r
= en·ψF2

(r)

We quickly check that the assumption of Theorem 5.1 from [16] are satisfied.
In other words, we need to check that the partial derivative ∂H

∂y does not vanish

at z′ and that the matrix H from Equation (5.25) in [16] is non singular (with
w = z′). Indeed, a direct computation gives

∂H

∂y
(x, y) = −1− 3x
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which is non zero at z′. Now, the dimension d being two, still with the notation
of [16], the matrix H is the scalar

H = V1 + V 2
1 + U1,1 − 2V1U1,2 + V 2

1 U2,2

=
x(1 + 3y)

y(1 + 3x)
+

(
x(1 + 3y)

y(1 + 3x)

)2

+ 0− 2
x(1 + 3y)

y(1 + 3x)

3xy

y(1 + 3x)
+ 0

=
xy + 3x2y + 3xy2 + x2

y2(1 + 3x)2
> 0.

Therefore, following ([16], Equation 5.1) we get

fn·r = cen·ψF2
(r)n−

1
2

(
1 +O

(
1

n

))
(43)

where c = c(p) does not depend on p and r is rational. In fact the results
of [9] allows to have relation (43) when r is irrational, only the left hand side
should be replaced by the sum of the coefficients γi in the uniformly bounded
neighborhood of the point nr.

9 Concluding remarks and open questions

Finding of ψFm(r), where r = (p, q, 1− p− q) for free group F3 of rank 3 leads
to the solving of polynomial equation of degree 4 in variable z = es

3p2z4 + 4p(7p− 2)z3 + 2
(
33p2 − 32pq − 8p− 32q2 + 32q − 8

)
z2

+ 12p(5p− 6)z − 45p2 = 0 (44)

and it can be solved in radicals. Substituting p = q = 1
3 in (44) we obtain that

s = log 5 and hence we get a value ψF3
( 1

3 ,
1
3 ,

1
3 ) = log 5. So the multivariate

growth in this case coincides with the ordinary growth and log 5 is a maximal
value of ψ(r). The higher ranks m = 4, 5, · · · lead to polynomial equations of
degree > 5 and most probably obtaining of the precise analytic expressions for
ψFm(r) is impossible. But at least we know that ψFm(r) is a real analytic con-
cave function [9] with a maximum value log(2m − 1) achieved at unique point
r =

(
1
m , · · · ,

1
m

)
.

Now, let us go back to cogrowth. It can be shown that the condition (CG)
always hold for a subgroup H < Fm and so the formula (4) is applicable. If H <
Fm is a finitely generated subgroup then it is represented by a regular language
[4] and hence, its cogrowth and multivariate cogrowth series are rational. The
Conjecture claiming that ΓH(z), z ∈ C is rational if and only if H is finitely
generated was stated in [4] and it is known that this conjecture is true in the
case of normal subgroups. A similar conjecture can be stated for multivariate
cogrowth series ΓH(z), z ∈ Cm. Also, we state the following:
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Conjecture 9.1. Let N C Fm. Then Fm/N is amenable if and only if ψN (r) =
ψFm(r).

By cogrowth criteria of amenability we know that in the case when Fm/N
is amenable, the relation

log(2m− 1) = max
r
ψFm(r) = max

r
ψN (r) (45)

hold. It is unclear if ψN (r) may have values less than the values of ψFm(r) in
the case when the Equation (45) holds. Even the case when N = [F2, F2] is a
commutator subgroup of F2 deserves a separate consideration.

And finally, there is a formula in [1]

χ(p) = 2 min
t

[
m∑
i=1

√
t2 + p2

i − (m− 1)t

]

for the spectral radius χ(p) of a symmetric random walk on a free group Fm given
by a positive vector p = (p1, · · · , pm), 2

∑
pi = 1 where p(ai) = p(a−1

i ) = pi.

Computation of χ(p) in the case of rank 2 leads to the equation of degree 4
in variable x = t2

3x4 + 4
(
p2

1 + p2
2

)
x3 + 6p2

1p
2
2x

2 − p4
1p

4
2 = 0 (46)

and hence χ(p) can be expressed in radicals. Taking p1 = p2 = 1
4 , (46) leads to

the equation
(1 + 16x)3(−1 + 48x) = 0

which gives a value χ(p) =

√
3

2
.

The later number is known since 1959 due to H. Kesten [14] who, in particular

proved that for a simple random walk on Fm the spectral radius χ =

√
2m− 1

m
.

Higher rank leads to solving polynomial equations of degree > 5 and expressing
χ(p) in radicals seems to be impossible for Fm,m ≥ 3 and arbitrary p.

Let H < Fm and χFm/H(p) be a spectral radius of a random walk on a
Schreier graph Λ = Λ(Fm, H,Σ) given by probabilities pi, 1 ≤ i ≤ m. We end
up with the following question.

Problem 9.1. Is there a formula expressing χFm/H via αH(p), where αH(p) =
ϕH(p) is a multivariate growth of ∆H(2p) in the direction prescribed by the
vector 2p ∈ Mm ? Does such a formula exists when H is normal subgroup in
Fm and hence Λ = Λ(Fm, H,Σ) is a Cayley graph.
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