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Abstract

We investigate a multivariate growth series I'r(z),z € C? associated
with a regular language L over an alphabet of cardinality d. Our focus is
on languages coming from subgroups of the free group and from subshifts
of finite type. We develop a mechanism for computing the rate of growth
@r(r) of L in the direction r € R%. Using the concave growth condition
(CG) introduced by the second author in [I8] and the results of Convex
Analysis we represent ¢r(r) = log(¢r(r)) as a support function of a
convex set that is a Relog image of the domain of absolute convergence
of I'r.(z). This allows us to compute 9 (r) in some important cases, like
a Fibonacci language or a language of freely reduced words representing
elements of a free group F>. Also we show that the methods of the Large
deviation theory can be used as an alternative approach. Finally, we
suggest some open problems directed on the possibility of extensions of
the results of the first author from [I3] on multivariate cogrowth.

Keywords: Growth, Cogrowth, Regular language, Multivariate growth expo-
nent, Free group, Fibonacci subshift, Subshift of finite type, Large deviations
principle

Mathematics Subject Classification — MSC2020: 20E05, 20F69, 05A05,
05A15, 05A16, 60F10, 68Q45

1 Introduction

The study of asymptotic properties of a sequence {7y },>0 of real (or complex)
numbers is related to study of analytic properties of the function I'(z) presented

[ee]
by a power series Z Y 2". This includes inspection of singularities on the border

n=0



of the domain of (absolute) convergence of I'(z) and local behavior of T'(z) in
their neighborhood. If T'(z) is a rational function i.e.
G(2)

I(z) = ) G(z),H(z) € C[¢]

then all needed information about the coefficients ~,, can be gained from the
polynomials G(z) and H(z).

In algebra, and especially in modern group theory, there are many notions
and concepts that attached to the algebraic object a sequence {7y }n>0. This
include growth, cogrowth, subgroup growth etc. Recall that given a finitely
generated group G with a system of generators .S, one can consider a function

Yo =#{g € G : |g| = n},

where n € N and |g| is the length of the element g with respect to S. If the pair
(G, S) has a regular geodesic normal form (in other terminology a rational cross
section [7]) then the power series

I'(z) = Zvnz"
n=0

represents a rational function and the asymptotic of 7, is either polynomial or
exponential. There are many groups (for instance groups of intermediate growth
constructed in [8]) for which I'(z) is irrational for any system of generators and
the study of asymptotic properties of {7, }>° becomes much more complicated.

Now let F), be a free group of rank m. Every m generated group G can
be presented as a quotient F,,/N, for a suitable normal subgroup N < F,,.
Let A = {a1, -+ ,am,} be a basis of F,,. Elements of F,, are presented by
freely reduced words over alphabet ¥ = {ay, - ,am, afl, o+ ,a 1} and there
is 2m(2m — 1)"~! such words of length n > 1. The function

= 142
r =) 2m@2m-1)" = —— T
n=0
is a spherical growth function of F},, with respect to the basis S. Now let H < F},
be a subgroup and H,, be the set of elements in H of length n with respect to
generators {ay, - ,am} of F,. The sequence {|H,|}5° of cardinalities of these
sets is a cogrowth sequence,

o0

H(z) = Y [,

n=0

is a cogrowth series, and

ag = limsup |Hn|%
n— oo



is a cogrowth. The range for ap is [1,2m — 1] and the range of ay when H
is nontrivial and normal subgroup is (v/2m —1,2m — 1] . (See [10, 11}, 12} 13]).
The spectral radius x of the simple random walk on G = F,;,/N, when N < F,,,
is related with apn as

X:\/Qm—l<\/2m—1 an )

+
2m aN 2m — 1

and the group G is amenable if and only if any = 2m — 1 (that is ay takes its
maximum possible value).
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Figure 1: The graph of x = x(«) and the interval [—

In the case when H < F,, is not a normal subgroup, one can consider a
Schreier graph A = A(F,,, H,%). Then the dependence on ay of the spectral
radius x of a simple random walk on I is given by

2m — 1 2m — 1
V2m vam—1,  on if app > v/2m — 1
2m ag 2m — 1

X:
Vv2m—1
vare o if ap < v2m— 1

2m

(See Figure[La)). Hence, again the graph I is amenable if and only if ay = 2m—1,
while in the case when I' is infinite, it is a Ramanujan graph if and only if

V2
ag < 2m — 1. The value vamz— 2 is a spectral radius of random walk on F,,

computed by H. Kesten [14] z?rlld if the spectrum of the Laplacian operator of
graph I" minus two points set {—1, 1} is a subset of the interval given by Figure
then the graph is called Ramanujan. Observe that the analogue of the for-
mula for x in the context of differential geometry was obtained in [20].



Now we are going to introduce a finer growth characteristics: multivariate
growth and multivariate cogrowth.

Let ¥ = {a1, -+ ,aq4},d > 2 be an alphabet, 3* be the set of all finite words
(or strings) over ¥. The set ¥* with concatenation as a binary operation, can
be interpreted as a monoid (with empty word serving as the identity element).
In fact, ¥X* is a free monoid. Its growth sequence is d”,n =0,1,--- . Any subset
L C ¥* is called a (formal) language. With any w € ¥* we can associate the
length |w| and the frequency vector p(w) = (|wa,, - , |w|a,) € N? where |w]q,
is a number of occurrences of the symbol a; in the word w. Let z = (21, -+ ,24) €
C? and

Tr(z) =) 27", (1)
weL
where z9(®) = 2"l . zllw‘“d. The series (1)) is a multivariate series associated
with L and can be rewritten as

Tr(z) = ) vz, (2)
ieNd
where ; is the number of words w in L with the same vector p(w) = i.

1
If we normalize the vector p(w) as — p(w) we get a vector of frequencies
w

¢(w) belonging to the simplex My of probability vectors:

d
Mg = {r eERLyir=(r1,- ,ra),ri > 0,]r[|; :Zri = 1}
i=1

and ||-[[; is a {1 norm. The multivariate growth indicatrice that we are going
to introduce is the number ¥(r), r € My which characterizes the growth of
coefficients 7; when |[i[|, — oo in the direction of vector r. When r € Q% is a
rational vector, then the possible approach would be to define 1 (r) by

. 1
¥(r) = lim sup — log |vnr| (3)
n—oo N
where n € N and v, = 1 if nr ¢ N<. The Definition given in the Section
follows the idea of [I8]. It works for arbitrary r € M, and coincides with (3)) in
the rational case for many examples.

A crucial assumption that we make is the “concavity” assumption (CG) (see
Deﬁnition which allows to apply the powerful methods from convex analysis
(as well as the results from [I8]). In fact our definition works for arbitrary
multivariate power series with real coefficients. The main point is to present
the indicatrice of growth ¢(r) (assuming the condition (CG)) as

V() = ok (r.6) ()



where Q' = —Q C Rio and 2 is a closed convex set representing the Relog
image of the domain of absolute convergence of where

Relog(z) = (log |z1], - - - ,1og |z4])

(see Theorem [4.1)). We apply for two languages: the Fibonacci language
Lp;, and the language L, = of freely reduced words associated with a free group
F,, of rank m > 2. These languages belong to class of regular languages, that is
languages accepted by finite automaton. Regular languages play important role
in many areas of mathematics, including dynamical systems and algebra. Reg-
ular normal form of elements in the group is a bijective presentation of elements
of the group by elements of a regular language over the alphabet of generators
and inverses. Regular geodesic normal form is such presentation for which the
length of the element with respect to generating set coincides with the length
of the word. Virtually abelian groups and Gromov hyperbolic groups have a
regular geodesic normal form for any system of generators.

Regular languages are good in particular because their growth series (in one
or multivariate case) are rational functions. This fact even in stronger form
was known already to Chomsky and Schiitzenberger [3]. Proposition of
Section [2] gives a rational expression for a multivariate growth series associated
with regular language. The condition (CG) mentioned earlier holds under the
assumption of ergodicity of the automaton presenting the language (condition
(E) in Section . It is satisfied in the presented examples and we summaries
the computations from Section [5| and the Propositions [6.1] as

Theorem 1.1. The indicatrices V¥r,(r) and Yrip(r) are given by

1.
Ur, (r) = H(r) + plog (2q —p+ 2m)
+qlog(2p—q+2\/m),
2.
. . 1
Yrip(r) = plog(p)+qlog<pq) ifp> 2,
pP—q q 2
_—
- ; 1
o ifp <,

where r = (p,q) € My and H(r) = —plogp — ¢qlog ¢q is the Shannon’s entropy.

In fact, ¢¥p, (r) is computed for modified multivariate growth series A, (z),r €
M; (see Section . The graphics of these functions are presented by Figure

Regular languages quite often appear in Dynamical systems, first of all as
languages associated with subshifts of finite type (SFT). For example a subshift
of a full shift ¥% determined by a finite set F of forbidden words; ¥ = {0,1},
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Figure 2: Graphs of ¢p, (r) and ¢¥p;p(r).

F = {11}, is the Fibonacci language. And if ¥ = {ay, -+ ,am,a; ', a1},
F= {aiajl, a;lai :i=1,---,m} we get a subshift corresponds to the language
Lp,, of freely reduced words representing elements of the free group F,,, over X.

A standard way to present SFT is to define it by a digraph I' = (V, E) (i.e.
a directed graph with allowed loops and multiple edges) or equivalently by a
matrix A with non-negative integer entries. The theory of positive matrices
based first of all on the powerful Perron-Frobenius theorem allows comprehen-
sive study of SFT from the dynamical and other points of view. There is a
canonical way to associate with irreducible SFT an ergodic Markov shift (and a
Markov chain on ¥) given by a stochastic matrix P. Let (A, () be a SFT where
A C X% and ¢ : ©% — ¥? is a shift map defined by (Cz), = Zp11,7 € X2, Let
L(A) be the language of (A, () (all finite words that appears as a subwords in
x € ¥%). Let 1a(r) be indicatrice of growth of L(A). The maximum of values
of Pa(r) is a topological entropy of L(A) [15] and ¥ (r) satisfies the relation
(), because L(A) is a regular language and the condition (CG) holds. There is
an alternative way to present ¥ (r) as the support function of a convex set via
the methods of Large Deviation Theory (LDT) [5]. For our purpose it is enough
only to apply Sanov’s theorem stating that the Large Deviation Principle holds
for finite Markov chains. The discussion in Section |7| relates formula with
the Sanov’s expression for the rate function I(r).

The paper is organized as follows. In Section [2] we recall some of the ba-
sic definitions from the theory of finite automata and formal languages that
will be needed later. Then we introduce the condition (E) for the regular lan-
guages. The Section |3|is devoted to the computations of the modified multivari-
ate growth series of language L of reduced elements of a free group F), using
two approaches. In Section [4) we discuss the condition (CG) and then prove
Theorem In Sections [f] and [6] we present computations of indicatrice ¥ (r)
for F» and for the Fibonacci language Ly, respectively. Section[7]is devoted to
application of Large Deviations Theory. Using Sanov Theorem, we get a rela-
tionship between ¢ (r) and the rate function I(r). Using result from asymptotic



combinatorics in several variables presented in [I6], in Section |8 we get a finer
asymptotics associated with Fy. Finally, Section [9] contains concluding remarks
and some open questions.

2 Regular languages, their growth series and the
condition (E)

We begin this section with recall of definition of finite automaton and language
accepted by it. A finite automaton < is given by a quintuple (Q, %, k, qo, F) ,
where @ is a finite set whose elements are called states, ¥ is a finite alphabet,
K :Q x X — (@ is a transition function, the state gy € @ is a special state called
the initial state and the set .# C @ is nonempty set whose elements are called
final states. It is convenient to visualize &7 as a labeled directed graph ©, with
the vertex set @), edge set

E={(q,s):q,s € Q,k(q,a;) = s for some a; € X},

and each such edge (g, s) with (g, a;) = s is supplied by the label a;. Multiple
edges and loops are allowed. The graph ©, is called the diagram of /. The
example of these diagrams are presented by Figures [3a] and [§] Observe that so
defined &7 is deterministic and complete automaton, i.e. given any ¢ € ) and
any a € ¥ we know what would be the next state x(g,a). A word w € ¥* is
accepted by 7 if starting with the initial state gyp and traveling in diagram © 4
along with the path p,, determined by w we end up at some final state. Let
Z (&) be the set of words accepted by 7. A language L C ¥* is called regular
if there is a finite automaton & such that L = .% (). The important feature
of this definition is the uniqueness of the path p,, for each w € ¥*.

One can generalize the above definition by replacing a singleton {go} by a
nonempty subset .# C @ whose elements are called initial states and defining
Z (&) as a set of words w for which there is an initial state ¢ € .# such that the
path p; , that begins at i and follow the word w ends up at .#. Surprisingly, this
does not lead to a larger class of languages (as it is always possible to replace
&/ by automaton &/’ with a single initial state such that .Z (&) = £ (&")).
The automaton with a single initial state are unambiguous in the sense that for
each w € Z (/) there a unique path p,, that recognizes w. Nevertheless, there
are situations (for instance in the case of the language of freely reduced words
over the alphabet of generators of a free group) when ambiguous automata work
better (see Figure |3b] and Section .

One also can consider non-deterministic and incomplete automata.Still, this
much larger class of automata determines the same class of languages, the class
of regular languages. Non-deterministic automata appear for instance in the
study of languages associated with sofic subshifts [15].

Recall that given w € ¥* the vector p(w) = (|w|ay, -, |W|a,), Where |w]q,
denote the number of occurrences of a; € ¥ in w. Let also |w| denote the length
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Figure 3: Diagrams of automata <7 and &/’ associated with the language Lp, of
reduced words representing elements of the free group Fs, where the initial states
are denoted by horizontal unlabeled arrow and the final states are represented
by “double” circles.

of w. With L C ¥* one can associate a number of formal series: the ordinary
series,

I'r(z) = Zzlw‘, zeC (5)

weL
the multivariate series,
Ip(z) =Tr(21, -, 24) = Zzp(w)’ (6)
weL
where z = (21, , 2q) € C? and z#(*) = zllw“” - ~z(‘iw|ad. Also one can consider
the formal sum
Z w2 e Zjw*|[2] (7

weL

viewed as a formal power series with coefficients in the ring Z[w*] (the semi-
group ring of the free semi-group ¥*). The consideration of these type of series
go back at least to 50’s of 20th century and is related first of all with the names



of Chomsky and Schiitzenberger [3].

For us it is important that in the case when L is a regular language the
series , @ and (|7)) are rational i.e. ratio of two polynomials. We focus our
attention only on (|5) and @, and in fact the study of asymptotic properties of
@ is the main purpose of this article.

Let A = (a;;) be the adjacency matrix of O, i.e. a |Q| x |Q| matrix whose
rows and columns correspond to the states and

a;; = the number of edges in I'yy joining 7 with j, where 4,5 € Q.
We use the ordering on @ in such a way that the first state is gp. Let
u=(1,0,---,0), and v = (v, ,U|Q|>t
be a row and column vectors of dimension |@Q|, where
vy =1, if state ¢ € F and v, =01if ¢ ¢ F.

Then the standard technique of counting paths (see Theorem 4.7.2 of [19]) in
finite graph (or in finite Markov chain) leads to the

Tr(z)=u Z(ZA)” v=ull —zA] v
n>0

and the rationality of L(z) is obvious. A similar argument works for multivariate
case, only the matrix zA should be replaced by

Az) = (ax(2))!9,

where z = (21, -+ ,24) and

Z z;  where summation is taken over such ¢ that x(s,a;) =t
ast(z) = i
0 if there is no edge from s to t.

With this notations we have the following.

Proposition 2.1. The multivariate growth series of a regular language L =
X () satisfies
Ip(z) =ull — A(z)] v (8)

Hence I'1,(z),z € C? is a multivariate rational function i.e.




where G(z), H(z) € C[zy,- -+, zq). The polynomials G(z), H(z) obtained in (§),
can be calculated, for instance, using the Cramer’s rule.

For example, in the case of automaton presented by Figure 3]

21z 1+ 29
Az) = < Zi 02 ) and Tz (z) = [E——

For us the following condition will be crucial.

Definition 2.1. (Condition (E)). We say that a language L C X* satisfy the
condition (E) if there exists an integer N > 0 such that, for every U,V € L,
there exists w € ¥*, |w| < N with UwV € L.

The example of the regular languages satisfying the condition (E) come
from ergodic (or primitive) automata 7 i.e. automata in which any state can
be connected to another state by a path in the diagram.

U

Figure 4: Part of Moore diagram of an ergodic automaton <7

This is because &7 is ergodic automaton, U,V € £ (&) and s,t are end
states of the path py, py then connecting state s with the initial state gy by some
path ¢ whose length does not exceed the diameter D of the graph © 4 (i.e. max-
imum of combinatorial distances between states in &) we get UwV € £ ()
where w is a word read along path ¢, |w| < D. See Figure |4 So the condition
(E) holds.

Unfortunately, not every regular language satisfying (E) can be accepted by
ergodic automaton of the type described above. For instance the language Lp,
over the alphabet ¥ = {a,a™!,b,b~1} of freely reduced words (i.e. aa~!,a 1a,
bb=1 b= 1b are forbidden) of the free group F» of rank 2, satisfy the condition
(E) but can not be accepted by an ergodic unambiguous automaton [2]. The

Figure [3| show two automata accepting the language Lp,. The first automaton

10



presented in the Figure is unambiguous but not ergodic. In the second au-
tomaton [3B] all states are initial, it is ergodic automaton but not unambiguous.

Later, we will introduce a condition (CG) for multivariate power series and
it will follow that T'1(z),z € C? satisfies the condition (CG) if the associated
language L satisfies the condition (E).

3 Computations of the multivariate growth se-
ries in the case of a free group

Let F,, = {a1, - ,a;,) be a free group of rank m > 2 and Lg, be the language
of freely reduced words over alphabet ¥ = {ay, - , am, afl, o ya ). Thisis a
regular language (an automaton accepting it in the case m = 2 is given by Figure
and hence a corresponding multivariate growth series I'g,, (z) is rational. It
can be computed using for instance Proposition 2.I] Even in the case of m = 2
computations are quite involved. So instead we will focus on a modified version
Ap, (z) defined as
Ap (z) =1+ Z 2909

gEFm, g#e

where ©(g9) = (|glas, -+ ;|glac,) and |glas is a number of occurrences of sym-

bols a; and a; ' in the freely reduced word presenting element g i.e. |g as =
|9]a; + |g],-1- The modified series Af, (2z) is also important for us, because of

the question formulated at the end of the article in connection with sym-
metric random walks. Of course if we know ', (z), then we can obtain the
Ap (z) and vice versa.

We present the computations of the modified multivariate growth series
Ap, (z), first using the automata approach i.e using the Proposition and
later, using the symmetries of this language leading to a simpler system of
equations and as a result of simpler expression for Ag_(z) given by Proposition
0.2

Proposition 3.1.
(T+21) (14 zpn)

b = )

(9)

where

l
no =1 (SaraYan @y X T

i<j i< <ig k=1

m—1
+---+(2m—3) Z Hzik+(2m—l)z1---zm

i< <fpm—1 k=1

11



Proof. Let @i, be an automaton generating language Ly of reduced elements
ofF . See F1gurefor ,. The 2m+1 states of @, are so, 81, , Sm; Smt1 =
81 o+, Som = 8,1 and the adjacency matrix A of @ is

01x1 Jixm Jixm
A= Omx1 mem (J_I)mxm ’
Om><1 (J*I)me Jm><m

where 0., %, iS zero matrix, J,,x, is matrix with all entries are one and

(J = I)mxm is matrix having diagonal entries are zero and one elsewhere. Using
the above decomposition of A, we obtain the transfer matrix A(z) and then
applying Equation (8) of the Proposition [2.1] we obtain

S, (1) det(I — Az) : i, 1)
det (I — A(z)) ’ (10)

where sum is taken over all final states s; and if N is matrix then (N : i, 7)
denotes the matrix obtained by removing the ith row and jth column of N.
The matrix I is the 2m + 1 dimensional identity matrix.

Fpm (Z) =

We divide the rest of the proof in two lemmas.
Lemma 3.1.
det (I — A(z)) =(1—21) - (1 — z1,) X R(z)

Proof. We prove the lemma using induction on m > 2. It is easy to see that
the statement is true when m = 2. i.e.

det (I — A(z)) = (1 — 2z1)(1 — 22)(1 — 21 — 22 — 32122).
Assume that the statement is true when m = k. i.e.

det (I —A(z)) = (1 —21)--- (1 — zx) X

l
ZZ’+3ZZ“ZJ +(20-1)) Z HZ%

1<j 11 <<y j=1

4o+ (2k—3) Z sz (2k — 1)zq -+ 2

1< <tp—1 J=1

Let m =k + 1. Then I — A(z)

1| -z - —zkn 21 —Zkn

01—z -~ —zip 0 -~z
= 0 —2Z1 e 1-— Zk+1 —2Z1 e 0

0 0 s —Zk+1 1-— Z1 cee —Zk+1

0 —Z1 0 —Z1 1 — Zk+1

12



We rearrange the rows and columns of I — A(z) by interchanging the positions
of (k + 1)th row and column with {k + 2,--- ,2k 4+ 1}th rows and columns,
respectively. Then I — A(z)

V| =z - =z =z —zp | =2kl — 2kl
0]1—2 --- —2k 0 e —Z2k —Zk+1 —Zk+1
0 -z -+ 1=z, —21 - 0 —Zk41 —Zk41
=| 0 0 e =z 1=z 0 =2 —Z2k41 —Zk41
0 —Z21 ce 0 —Z1 ce 1-— 2k —Zk+1 —Zk+1
0] —2 - —2k —z1 —2r | 1—2rkh 0
0 =1 -+ —z -z e =2k 0 1— 2z
Observe that the rows and columns of T — A(z) are indexed as sg, $1,- - , Sk, 51_1,

st Skt s,;ll and the determinant of the central block and the expression
that we have assumed when m = k are identical. As first column has exactly
one 1 and zero elsewhere, we can ignore the first row and first column. Hence
det (I — A(z))

=2z - —z 0 e T2k | T2k —Zk+1
-z o 1=z -z - 0 —Zk+1 —Zk+1
0 e —Z l—2 -+ =z —z —z
— det k 1 k k+1 k+1
-z 0 -z o 1=z | —zpn —Zk+1
—z1 e =2k —z1 o =z | 1=z 0
—z1 e —2Zk —21 —2k 0 1— 241

We rewrite the matrix by naming these blocks as

Aopxar  Bokxa
det (I — A = det
¢ ( <Z)) ¢ < Coxok Dayxo

Recall that z; # 1, for all i = 1,--- ,k + 1 and hence det(Dax2) # 0. Therefore
we have

Al B
det (I — A(z)) = det < 022’“;2? DQ::; ) = det(AYyx2x) det(Daxa),

13



where A’ = Agpwor — BkX2D§X12ngk and its (i, 7)th entry

222k +1

1— 2 — ifi=j
1— 2341
222k 41 e ..
R if i < jand j =i+ k(mod 2k)
A =4 b
—1%& if j <iandi=j+k(mod 2k)
— Zk+41
2 .
—z; — ididinn otherwise.
1— 24

In order to prove the m = k + 1 step, it is suffices to show that

1—21)-~-(1—zk)><

det(A") = ( p—

k
1_Zzi_3zzizﬁ'_"'_(2k_l) Z Hzij—(2k+1)zl...zk+1

i<j i< <ig j=1
Applying below rows and columns transformations

1. Ry — R1,i=2,--- 2k
Ci —Crysyi=1,---k
Ri+Ry,i=2,--- k,k+2,---,2k and Rpy1 + 2R,
Ryyi +Riyi=2,--- )k
R+ Ry,i=2,--- Jkand R; +2Ry,i=k+1,--- ,2k

Gt D

to the matrix A’, we convert A’ to the below upper triangular block matrix.

det(A")

— _ 2z oy 2ZEER4
1—2 0 T—ni: 21 T
e _ o, _ 2ZZk41 L. _ 2ZkZh41
d . 0 1 Zk Zk T—2pas T—zps
=de 1 2
0 ... 0 1z — dzzmn 2(—%—%)
—Zk+1 —Zk+1
oy = 2R} o — Azzen
0 0 |2 ( 7 — Pagen ) 1 — 2 — a2k
We call the bottom right corner block as A”. In A” matrix, subtracting twice
the first row from each row R;,i = 2,--- , k, we get
1—21—2k41—3212k41 _222(1+Zk+1) . —2Zk(1+Zk+1)
1—2pq1 1—zp41 1—2pq1
—1-2 1+ 29 " 0
det(A”) = det ) .
—1— 2 0 - 1 + 2k

14



= 1—22’1—32,222] (2k—1) Z Hzl 2k + 1)z1 -+ 2541

1<j i< <iy =1

This implies that the statement is true for m = k + 1 and hence the lemma is
proved. O

Lemma 3.2.
Z(q)iﬂ det(I — A(z) :4,1) = (1 — 22) - (1 — 22).

Proof. Using similar strategy as in the above proof, we can show that

det(I —A(z):i+1,1) = det(I—A(z):i+m+1,1)
= zi(l—zi)H(l—z?)
JFi

This implies

D (1) det(I — A(z) :i,1) = (1= 27) -+ (1 = 22,).

i

Hence, the proof of Proposition [3.1] follows from Lemmas [3.1] and O
We now provide an alternative way of computations.
Proposition 3.2. The function Ap, (z) satisfies

A, (2) = — (1)

m .
1_2;1+Z1‘

Proof. Recall that the elements of F),, are identified with freely reduced words

over the alphabet ¥ = {ay,--- ,am,al_l, canth
Ap, (z)=1+ Z 799
e#QEFnL
where e is the identity in F,, z = (21, -+ ,2m), 9(9) = (|9las, - ,[9las,) and
z0(9) — Z‘lg‘“i |g‘“5n_

Foreachi =1,--- ,m,e==1,let F, ; = {g € Fn\{e} : the first letter of g is a5}.

Define
Af(z) =Ag (2)= Y 2%
e#geFl,

m,i

Ap, (z) =1+ Z Al(z)

so that we get

15



Observe that

This implies

Similarly we can write

Adding A;(z) and A; !(z) we get

M)+ A7 @) = (12 ) Ar(2)

1+ 2z
Hence
D) =143 (4 a7 @) =123 (12 ) B9
i=1 v
and we come to . O

We now compare two expressions for Ag, (z). Multiplying numerator and
denominator of by (1+21)---(1+ 2;) we get

(A+z) (It zm) —2(A+21) (14 2m) ey 2

Ar, () = (12)

It is easy to see that

(I42z1) - (L+2zm) _1+Zzl+ZzhzZ2+ -+ Z HszJr +HZZ

120<11 11<--<1 k=1
and .

Zi

2((1 (14 2,

(@2 () S
l m

—22%—!—422“2'12 s+ 20 Z Hzik +2msz
i<1y i1 < <iy k=1

Substituting above relations in the denominator of (| we get R(z) of @[)
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4 The multivariate growth exponent and the
condition (CG)

Let
D(z)= Y fizd= > fiigite- 2 (13)
ieNd i1, ,id
be a multivariate power series. We denote by & the interior of the domain of

absolute convergence of I', which we assume to be non empty. In particular, 0
belongs to 2.

We are going to define for each r € M, a growth exponent ¢(r) for coefficients
{fi}iene in the direction of r. When r is a vector with rational entries, then one
can define (r) as
(14)

o(r) = limsup | fur

n— oo

where only coefficients nr = (nrq,- -+ ,nry) € N¢ with integer entries are taken
into account. This approach is considered in the book [16] and some of its ref-
erences.

To define ¢(r) for arbitrary r € My following [18], we first define the function
¥(r). We then hope to be able put ¢(r) = ™), which would then agree with

(3)-

Definition 4.1. Let C C R be an open cone at 0 € R? containing vector
r € R?. Define

1
7o = limsup — lo i 15
R—00 R s 1620 fl ( )
R<|lifl, <R+1
and
¥(r) = el inf o (16)

where inf is taken over open cones containing r.

We call ¥(r) indicatrice of growth. The assumption that 0 is an interior
point of the domain of absolute convergence of I' ensures that ¢ can not take
the value 400, but it may take the value —occ.

Recall that the Relog map is a map Relog : C¢ — R?, where C, = C\{0}
given by
Relog(z) = (log|1], - log |zal)-

In future, we will use the notation & = R% and &* for its dual space i.e. the
space of continuous linear functionals 0 : & — R with a natural identification of

17



&* with & via the standard inner product

d
(x,0) = 0(x) = Zm%

where x = (21, ,24) € &, 0= (01,--- ,04) € &*.
The height function h,(z) for z € & is the function

d
he(z) = = rilog|zi| = —(r, Relog(z))
=1

if r € My N Q7 is a rational vector then for there is an upper bound

o(r) = limsup | fre|® < [24]770 - 2|77 = e 7o) (17)
n—o0

which hold for every point z’ in the closure of 2 of 2, as shown for instance
n ([I6], formula (5.15)). We shall provide sufficient conditions for replacement
of the inequality in by the equality for properly chosen z’ and extend the
definition of o(r) to irrational r by ¢(r) = e¥®). The function ¢(r) will be
called the multivariate growth exponent.

For what follow it will be convenient to associate with the power series I'(z)
a Radon measure v = vp defined on Borel subsets S of & by

v(S) =3 i (18)

ies
We shall now define the condition (CG).

Definition 4.2. (Condition (CG)) Following [18] we say that T'(z) has a con-
cave growth of coefficients if there are a,b,c > 0 such that for all x,y € &

v (Bxiy(a)) = cv (Bx(b)) v (By (b)) (19)
where By (a) is the ball of radius a with the center at x € & for the norm ||.||;.

A large class of power series I'(z) satisfying the condition (CG) are generating
series of regular languages satisfying the condition (E), as explained in section

Given a Radon measure v satisfying condition (CG) one defines for a given
open cone C' C & with a root at 0,

Ty,c = limsuplog v (Bo(R + 1) \ Bo(R)),
R—o0

() = [l inf 70
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for r € & and ||r||; =1 and finally for x € &

X .
px) =4 T <||x||1> fx#0 (20)
0 ifx=0.

Then assuming that 7, < oo, where

Ty = sup by (X) (21)
x€8&,|Ix]|;=1

we know from ([I8], Lemma 3.1.7) that the function v, : & — R U {—o0} is
upper semi-continuous. Obviously it is positively homogeneous i.e. for any ¢ > 0

U, (tx) = 1, (x).

Finally, if the Condition (CG) holds, then ), (x) is concave i.e.

Yu(x+y) 2 (x) + ¥ (y), forx,y € 6.

Observe that in our situation, because the measure v = vr is supported only on
the N¢ C R%o part of &,

,(x) = —o0, for x ¢ Réo.

Let Q = Relog(Z2NCY) C & (recall that 2 C C? is the interior of the domain
of absolute convergence of ([13))). It is well known ([I6], Proposition 3.4) that (2
is convex. Let 1) = ¢r be the function given by Definition

Theorem 4.1. Let I'(z) be a power series given by the Equation with non-
negative coefficients fi,i € N% such that f; satisfy the concavity condition (CG)
and 1, < oo where v = vr is given by the Equation and T, is given by
. Let 9 C C? be the interior of the set of points of absolute convergence of
['(z), Q = Relog(2NCY) and Q be the closure of Q. Then —ir(x) is the support
function of the closure Q and for x € R‘io

Yr(x) = 921%<X’9> (22)
= inf (x,6) if Q #R% (23)
0e—0Q

Proof. Because of the Condition (CG), the function —ir(x) is a lower semi-
continuous, convex and positively homogeneous. Hence, it is a support function
of a one and only one closed convex subset S C &* given by

S = {#e&: —yYr(x) > (x,0),Vx e &}
= {#eé& :yYr(x) <—(x,0),¥x € &} (24)
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The set of absolute convergence of I'(z) is determined by the condition that the
integral given below in the Equation is convergent.

1_\(|Zl|7 a|Zd|) = Zfiezzzlikbglzkl
i

= / e dup (x) (25)
&
where 6 = Relog(z),z = (21, , 24).

Consider the set
Ap={0e€ & —(x,0) > Yr(x),vx € &\{0}}.
Using ([18], Lemma 3.1.3), we conclude that if § € AY, then the integral
converges while if there is x € &\{0} with —(x,0) < ¢r(x), then it diverges.
The closure Ar = A}, is the set
Ar={0€ & : —(x,0) > Yr(x),Vx € &}

which is the set S given by the Equation for whom —r(x) is the support
function. Thus

—Yr(x) = sup(x,0)
0esS

Yr(x) = —sup(x,0)
0es

B elen—fs<x’ )

Also, we conclude that

S = Relog(2) = Q.

This leads us to the Equation and eventually to as the maximum of a
linear functional taken over the closed convex set S is achieved on the boundary
08 of S or equals to —oo. O

Following is the immediate consequence of Theorem [4.1

Corollary 4.1.

$(x) = inf (—in log|zi\) (26)

z€09

Example
Let d = 2,% = {a1,a2} and L = ¥* be the language of a free monoid. Then

F — — 1. nN—1 .
R et W EE
n=0 i=0
It is obvious that the Condition (CG) holds and the direct computation based on

the use of Stirling’s formula or Theorem show that for r € M5 the function
¥ (x) is the Shannon’s entropy H(r). i.e.

Yr(r) =H(r) = —rylogry — relogra,r € M.

More examples will be discussed in the following two sections.
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5 Multivariate growth exponent in the case of
the free group

In the section[3] we got two expressions for the multivariate growth series I'r,, (z)
for the language Lp, of freely reduced words in the alphabet {a1,- -+, am, al_l,
—1

T Oy

Consider the case m = 2. Then

(14 21)(1 + 22)
A =
2 (Z) 1— Z1 — k9 — 32122

(27)

We use the notations 2, Q2, Relog of Section[d] First, we are mainly interested in
understanding the shape of the set Q = Relog(2).To get a view of the real slice
of the domain of the absolute convergence of the power series , we observe
that the domain & is described as

9 = {(21,2’2) c (C2 : |21‘ + |2'2| +3|21||22| < 1}
The real slice of the curve
H(Zl,ZQ) = fl(Z) =1- Z1 — k9 — 32’12’2 =0

is presented by hyperbola in Figure

(a) (b)

Figure 5: Real part of the Domain 2 of H(z1, 22) of Ly, and Ly, respectively.

The real slice of Z with 21,29 € R, 21, 2z > 0 is presented by the tented area
=. The set —2 is obtained from = by making the substitution z; = ™%, 2z = e~ .
To get the clear picture of the shape of the set © (and hence —2) we make use
of an interesting notion from algebraic geometry called amoeba.
Recall, that given a Laurent polynomial f(z),z € C¢, the amoeba of f is the
set
amoeba(f) = {Relog(z) : z € C4, f(z) =0} C RY,
where C, = C\{0}. The amoeba’s complement is amoeba(R)¢ = R¥\amoeba(R).

The following result follows from Gelfand, Kapranov, and Zelevinsky [6]
Chap. 6, Prop. 1.5 and Cor. 1.6].
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Figure 6: The amoeba(f1), amoeba(f2) along with sets 2 associated to the lan-
guage Lp, and the Fibonacci language are presented in [6a] and [6b] respectively,
where f1(z) =1— 21 — 20 — 32129 and fa(z) =1 — 21 — 21 29.

Proposition 5.1. If f(z) is a Laurent polynomial then all connected compo-
nents of the complement amoeba(f)¢ are convex subsets of RY. These real convex
subsets are in bijection with the Laurent series expansions of the rational func-
tion ﬁ When ﬁ has a power series expansion, then it corresponds to the
component of R:\amoeba(f) containing all points (—N,--- ,—N) for N positive
and sufficiently large.

The techniques of drawing amoeba are well developed. The amoebas of poly-
nomials f1(z) = 1— 21 — 20 — 32129 and f2(z) = 1 — 21 — 2125 that correspond to
the cases of language L, of freely reduced words of F» and Fibonacci language,
respectively, are presented in the Figure [6]

Looking at the shape of —Q presented in Figure[7] in the case of L,, we see
that for each r € Ms with positive entries there is a tangent line to the bound-
ary 90(—{), is orthogonal to r and hence, the infimum of the linear form is
achieved. To compute v (r) we apply a standard method of Lagrange multipliers.

In coordinates (s,t) € R?, z; = ™%, 2o = e~ !, the boundary of —(Q is a curve
[ given by the equation

l—e®—e'-3"=0 (28)

or

et —ef — e —3=0 (29)

Let r = (p,q) € Ms. We have to minimize ps+ gt when (s,t) € I. The associated
Lagrange function is

B(s,t,\) =ps+qt — A" —e* —e' —3).
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(a) (b)

Figure 7: The sets —() presented in and are associated with languages
L, and L, respectively.

Equating partial derivatives to zero we obtain

g—f = p—)\(es+t_es):0:>p:)\(es+t_es)
D A =0 = g A (e —)
g—;}i = et —ef—e-3=0
This gives ,
p:‘g:i::_s et=1—-(1—-e%)p
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Substituting the value of e~* in we get

l—e*—(1-(1—-e®)p) =3 (1-(1—€e")p) =
—e S+ p—pe®—3e*+3pe —3pe? =

—3pe X+ (2p—4) e +p =

Substituting = e¢™* in the above quadratic and then solving it gives

_2pE/1-p+p?
6p

T1,2

5

We choose positive sign (i.e. +) because we know due to [9] that the function

is real analytic. Re-substituting x = e~*

o—s _ D= 20+ 2Vp? —pg+ ¢
3p ’

and p = b we get
q

o 2q —p+2v/p* — pq + ¢>
P

and by symmetry,

ot 2= a 2V —pgt e
q
Hence,

B 2q — p+2v/p? — pq + ¢> _ 2p — q +2+/p? — pq + ¢>
s =log , t=log )
P q

and

Y, (r) = plog

2q —p+2v/p? — pq+ ¢? 2p — q+2y/p? —pg+¢?
P *alog q

or
¥r, (r) = H(r)+plog (261 —p+2Vp®—pg+ q2) +qlog (2p —q+2Vp®—pg+ q2) ;
where H(r) = —plogp — qlogq. See Figure for the graph of ¢¥p,(r) =
V(P 1—p).

6 Multivariate growth in the case of Fibonacci
language

Fibonacci language Ly is a language over binary alphabet {0, 1} consisting of
words that do not contain 11 as a subword i.e. the word 11 is forbidden. It is
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one of the important examples associated with subshifts of finite type [15]. The
reason why Fibonacci name is associated to it is coming from the fact that the
number of words of length n in Lp; is equal to the (n + 2)th Fibonacci number

B.
B =

()\71L+2 _ /\3-&-2) ’

-
S
Sw

where \; = and Ay =

are eigenvalues of matrix

1 1
=1 )
which is the matrix of transitions of the Fibonacci subshift. At the same time
A is the adjacency matrix of the automaton gy, given in the Figure |8 which

oW O

a

Figure 8: Moore diagram of Fibonacci automaton «7g;,

accepts the language Lp, if instead of {0,1} we use the alphabet {a,b}. An
easy computation of growth series gives function

1+22

FFib(Z) - 1-— Z1 — 2172

mentioned before Definition In order to compute ¥, observe from Figure
that the Condition (CG) holds as the automaton gy, is ergodic.

Proposition 6.1. The indicatrice gy viewed as a function of p,0 < p < 1
where v = (p,1 — p) € My is the direction vector, is given by

-1 1
plog <p> +(1—p)10g<2p ) ifp> -
Yrip(r) = 2p—1 I=p %

- if p <
00 ifp <3

The graph of g (r) on [3,00) is shown in the Figure

Proof. As before, we switch to the variables x,y instead of z1, 29, respectively.
The amoeba of fo(x,y) = 1 — 2 — zy and the set — are shown in the Figures

[6D] and respectively.
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1
We provide two explanations why g (p) = —oo when 0 < p < 2 first,

algebraic and second, geometric. The power series expansion of (1 — z — xy)~*
is

- EE ()

Hence,

eI LD I G PR SED O (4 i

n=1 1=0 n=1 1=0
oo n n n

f— n 1 T
v (D) ()]

and we see that coefficients of the power series corresponding to the indices
(n,7) with @ > n +1 are zero. Hence, any direction r = (p, q) with 2 > 1 gives
value —00 to 9. As for the geometric explanation let us use Figures [6b] and
The domain — is shown in Figure and it is bounded by the curve [

given by the equation
l—e*—e*t=0 (30)

e Case (i) If p < 1, then 1_Tp > 1 and lines
ps+(1—pit=c
intersect —( for arbitrary ¢ € R. Hence,

Yrip(p) = inf (ps+ (1 —p)t) = —occ
(s,t)e—Q

e Case (ii) If p > 1, then lp%p < 1 and there is a unique value of ¢ such that
the line
ps+(1-pjt=c

is tangent to the curve [. The coordinates (sg,%o) of the tangent point P
gives a minimum value to the linear form ps+(1—p)t when (s,t) € —Q. To
find it again, we again apply the method of Lagrange. We denote ¢ = 1—p
and rewrite Equation as

eStTh—el —1=0
The associated Lagrange function is

(s, t,\) =ps+qt — AT —el — 1)
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and the corresponding system of equation is

0o

— s+t _

S p—Ae 0

0P +t t
— e — 1

" qg—Xe’T" 4+ e’ =0 (31)
0P +t ot
TT L estt gt 1 =

\ e e 0

From the first equation in , we get ¢St = 2. from the second equation
we get ¢ = p+ X', and from the third equation we get § —e* —1 = 0.

Hence,
foP—a_2p—1
A A
But A =1 — p =q. This gives,
2p—1
P and hence, e° = P
1—p 2p—1

The last equation determine the point (sg, tp). Making substitution in

we obtain (30).
O

7 Multivariate growth and LDT

The alternative approach for computing ¥ (r) is via the application of methods
of Large Deviation Theory (LDT). Here we discuss a special case related to
languages associated with subshifts of finite type. Let us first recall the ba-
sic facts about subshifts of finite type (SFT). For more details see [15]. Let
Y = {a1, - ,aq} be a finite alphabet and ©Z be a space of two-sided infinite
sequences over Y. indexed by integers. %% is supplied by a product topology and
is homeomorphic to a Cantor set when d > 2. The shift map U : £% — X% is
the homeomorphism given by
(Uw)p = wpy1, w= (W) _, € X%

A closed U-invariant subset X C X% is a subshift. Let Lx C X* be a language
of subshift consisting of (finite) words that appear as a subwords of w € X.
A subshift X is said to be subshift of finite type if there is a finite subset
F C X* (set of forbidden words) such that X = X consist of sequences w € %%
that do not contain forbidden subwords. It is obvious that Xg is closed and
U-invariant. For instance, in the case ¥ = {0,1} and F = {11} we get the
Fibonacci subshift. Alternative way to define subshifts of finite type is via the
graph = = (V, E) (in fact directed multi-graph i.e. loops and multiple edges are
allowed) or equivalently, via the adjacency matrices A = (a;;) of the size |V|x|V|
whose rows and columns correspond to vertices of the graph and a;;,7,j € V is
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a non-negative integer equal to the number of edges joining vertex ¢ with vertex
j. For instance, the Fibonacci subshift the matrix is

1 1
=(1)
and the graph = is given by the Figure [9] and is similar to the diagram of the
automaton from Figure [§

0

Figure 9: The graph = of the Fibonacci subshift

Another example is the free group F,,, the subshift X, m > 2 with alphabet
Y ={a, - ,am,a;’, - ,a,'} and

A — ( Jme Kmxm )

Kme Jm><m

where J is matrix with all entries 1, K = J — I and [ is an m X m identity
matrix. The language Lx consists of freely reduced words.

It is well known that the language Lx associated with a subshift of finite
type is regular. Hence, its multivariate growth series represents a rational func-
tion and the technique of computation of multivariate growth rate described in
the previous sections is applicable. Now, we shall see how the results of LDT
can be used for the same goal.

To make one more step towards LDT, let us recall some other important
notions related to SFT. The SFT (U, X) is irreducible if the graph Zx is strongly
connected (i.e. for any vertices in graph, there is a path connecting them). In
this case, the associated matrix A is called irreducible. The Perron-Frobenius
theorem states that the irreducible matrix A with non-negative entries (like in
our case) has a simple eigenvalue p = p(A) (called Perron-Frobenius eigenvalue)
such that any other eigenvalue A satisfies |A\| < p. Also there are two vectors
u,v € R? satisfying

Av = pv,u’A = pu’,

where u! is the transpose of the column vector u. These vectors are unique up
to scalar factor. Assume that A is primitive matrix. Then the Perron-Frobenius
triple (p,u,v) (consisting of vectors u,v > 0 such that Av = pv,u‘d = put,
and normalized by the condition (uf,v) = 1) gives the information about the
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powers A™ of A:
1
lim —A" =v-ul.
n—oo0 P

See ([15], Theorem 4.5.12).

Next, we need the notion of Markov measure on ©%. Given a a stochastic
d x d matrix

d
P = (pij), where p;; >0 and Zpij =1,i=1,---.,d,
=1
and a stationary probability row vector p = (p1,--- ,pa), pP = p, one can define

a Borel probability measure p = up on 2 by

n—1
1% ([WO’ t 7wn]) = Puwo H Puw; wiyrs
1=0

where [w, -+ ,wy] is a cylinder subset of X% consisting of all w € ¥ with the
prescribed entries wy, - -+ ,wy, at coordinates 0,1, -- ,n. (such sets generate the
sigma-algebra of Borel subsets and hence, values of 1 on them determine u
completely). The Perron-Frobenius eigenvalue of P is 1, vector p exists and is
unique if P is irreducible. The measure up is shift-invariant and the system
(ZZ, U, u) is ergodic.

One of the main results of theory of SFT is a statement (assuming irre-
ducibility of X) on the existence and uniqueness of probability measure n = nx
of maximal entropy. Not getting into the details we just mentioned that if ¢

is U-invariant probability measures on ¥, then the Kolmogorov-Sinai entropy
h(¥) can be defined. Then

h(n) = maxh(?),

where maximum is taken over all U-invariant probability measures supported
on X. The measure 7 is called Parry measure. It is a Markov type measure
determined by a stochastic matrix P = (p;;), with

1 Uj

i = — Qi L, 32
Dij pajvi (32)

where A = (a;5) and Av = pv. For such measure we have
_ . U5
M([Zaxla"' 73;’”—1’]}):# (33)
See [I7] for further details. In fact, for and we have to assume that

a;; € {0,1} (i.e. graph I' does not have multiple edges). Meanwhile observe
that, every SF'T can be coded in such a way that the matrix A will have only
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entries {0,1} [I5]. Starting from this moment we assume that the measure of
maximal entropy is associated with SFT.

Now, we recall some basic notions of LDT, namely, the notion of the rate
function I and the Large Deviation Principal (LDP). A rate function is a lower
semi-continuous function I : W — [0, +00| defined on a topological space W
(for us now W = R?) such that for each a € [0,00) the level set

Yi(a) ={xeW:I(x) <a}

is a closed subset of W. A good rate function is a rate function for which all level
sets Yr(a) are compact. A sequence {52, of Borel measures on W satisfies
LDP if, for every Borel subset B C W,

1 1
— inf I(z) <liminf —log u,(B) < limsup — log p,,(B) < — inf I(x),
n n

xEB° n—00 n—o0 x€B
where B°, B are, respectively, the interior and the closure set of the set B.

Given a finite Markov chain on a set ¥ = {aj, - ,aq} determined by a
stochastic matrix P = (pij)g)j and a function f : ¥ — R% d > 1 one can

consider for each x = (7;)%2; € XN the empirical means
1 n
Zo(e) = 23 f @)
i=1

and the corresponding distributions p,, (discrete measures in R%). We assume
that the random process is a Markov process given by the matrix P and sta-
tionary vector p, pP = p.

Associate with every y € R? a non-negative matrix II(y) whose elements are
mii(y) = pise 0N i j e %,

II(y) is a matrix with non-negative entries and it is irreducible if and only if
P is irreducible. Let p(II(y)) be the Perron Frobenious eigenvalue of II(y).
The Theorem 3.1.2 of [5] states that the empirical mean Z,, (or corresponding
distributions pu,,) satisfies the LDP with the convex and good rate function

I(z) = sup {(y,7) ~logp ((y))} 2 B

There is a version of this result due to Sanov which is more suitable for our
goals. Let f: Y — R? || = d be a function such that

0

fla;) = 1
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where 1 is at i-th position and ¢ =1,--- ,d.

The following alternative description of I holds ([5], Theorem 3.1.6).

I(r)={ o3k zd:%‘ log ((uﬁ)j) re M,

=\ woim
00 r ¢ My

The supremum is taken over the strictly positive vectors u i.e. u; > 0 fro all 4.

Now we have all needed to describe the connection between 1 and I. We
assume that the language L C ¥* is a language determined by the automaton
&/ with the property that for each state ¢ € @ all incoming edges are labeled
by the same symbol (like in the examples given by the Figure 3| or . The
indicatrice of growth as before is denoted by 1 (r). We assume that o is ergodic
(and hence, condition (CG) satisfied). Let A be the adjacency matrix of &
and X be the corresponding subshift. Let L; be a language associated with
X . In described situation we identify ¥ with @ attaching to each state g € @
symbol a4 (the label of the entering edges). Because &/ is ergodic, we get a
bijection between ¥ and . After such identification, it become obvious that
L C L;. Because of ergodicity (i.e. irreducibility of A) as easily can be shown
the indicatrice of growth ¢ (r) is same for languages L and L.

Associate with A = (a;;) the stochastic matrix P = (p;;), where p;; =
M, p=p(A) and Av = pv, v > 0. Let p be a stationary probability vector
P Ui
(pP =p) and p = u, be a corresponding Markov measure (i.e. Perry measure).
From (assuming normalization (p,v) = 1) we know that the measure yu is

almost equidistributed on the cylinder sets C,, determined by the words w € Ly

of the fixed length as for any 4, j,wy, -+ ,wp—1 € X
. . Pi U;
/L([Z,U}l,"' 7wn—17j]):pTJ' (34)

Let r € My be a rational vector with positive entries and 4 C My a small
neighborhood of r. Let

B,={welAy:Z,(w) €€}

From LDP, we know that 1logu(B,) is close to —I(r) when n is large. On
the other hand, from we get that %log w(By,) is close to %log (p™™ L),

where )
Li(z) = Z l;z'
ieNd

is a multivariate growth series of L;. Hence, in the limit when n — oo we get
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the equality

1
I(r) = logp—limsup —logl,,
n—oo N
— logp— () (35)

In fact, under the impose conditions using the definition of 1 (r) one can prove
for all r € My, not just rationals. We summarize this as

Proposition 7.1. The indicatrice of growth ¥ (r) of a language determined by
ergodic automaton <7 of type described above satisfies

I(r) =log p — (),

where I(r) is the rate function associated with the Markov chain determined by
the stochastic matriz P corresponding to A and

d
Ua
I(r) = sup r-log[ d }, re M. 36
() u>>0j;] (uP)J d ( )

Finally, we make one more remark. Recall that entries of A belong to the set
{0,1}. Let as before v = (v1,- -+ ,v4) be a right eigenvector of A corresponding
to p = p(A), Av = pv. Assume that v is a probability vector. Let

Md>0:{1‘:(7”1,“- ,Td)EMdZTi>0, Vl}
Then the map T : Mg>o — R? given by
T(q) =s=(s1,""- ,5a),

where 0
, j
Sj

Jj = d i

VD it q:;l,; -
Let A(z) be the matrix from Proposition i.e. matrix obtained from A by
replacing each 1 in the jth column of A by z; and let t be a vector obtained

from q € My~ by
t = (‘117... ,qd>
U1 Vq

Lemma 7.1. For each q € My~ vector t satisfies tA(s) = t, where s =
(81, ,84) 1s given by .

Proof. For 1 < j <d,

d
qiQj
(tA@E); = s> —
i=1 v

d
_ q; ) Z qiQij
o i d qiQij .
Vi D i1 i

v; i=1
4
= 2 _y. 38
4=ty (38)
(in the above relations we used the fact that a;; € {0,1}). O
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Observe that s depends on the vector q, so we can write s = s(q).

Corollary 7.1.
det (I — A(s(q))) =0, V q€ Mgso.

Recall that the multivariate growth series of language L satisfies Proposition

21 ie.
G(z)

" det (I — A(z))
and singularities of I'y,(z) are determined by the roots of denominator. Hence,

T(Mg>0) is a part of the set of the real singularities of I'z,(z) and is part of the
boundary 02.

FL(Z)

Log(-TiMg50))

1 \.7. r— = [l

8 s 2 T 2
—_t— 7  J— 1
TiMg.0) |

TiMg=p)

\
Logi-TiMg-0

(a) (b)

Figure 10: The graphics of the sets T'(My~o) and log(—T(Mgs0)) presented in
(10a) and (10b)) are associated with languages Lp, and Ly, respectively.

We already know from Proposition [7.1] that

I(r) = log p— %(x).

Recall that P = (p;;) and p;; = Ui az_'j . Rewriting as
d d d  qiaij
() s T
I(r) = sup T logp—er log @
a€EMa>o j=1 j=1 dj
d
= logp— inf ri(—=1)log [T ,
gp qud>0; j(=1)log [T(q)]
d
= logp— inf - r;logs
&p se€T(Myq) ; 708 3]



we conclude

d
— inf |- oo 5.
)= _inf ;m 0 s;

Comparing with we observe that in the described situation, the infimum in
(26) can be taken only via the subset of the positive part of the boundary 02.
See Figures [10]

8 Finer asymptotic

As was already mentioned in the introduction, in the case of rational vector r the
function ¥ (r) can be identified by (alternatively, the function ¢(r) = e¥(*)
can be identified by ) A powerful results of the theory of ACSV (asymptotic
combinatorics in several variables) presented in [16] allow not only to compute
G(z)
H(z)
but also to describe much finer asymptotics of the diagonal coefficients f,,. (See
Theorems 5.1,5.2,5.3 in [I6]). Also there are statements on the smoothness of
©(r) as a function of rational r.

and rational vectors r

in many cases ¢(r), for rational functions I'(z) =

Our definition of ¢(r), that follow the idea from [I8] and is based on the cone
approach works for arbitrary direction r € M. Moreover, under the assumption
(CG) in many “good”examples (including considered in this paper) the upper
bound can be replaced by the equality

inf hy(x) inf h.(x)
So(r) EX- xXED —e x€dD — ew(r)

when r is rational, where

P(r)= inf (r,0), Q= Relog(2)
9ea(-0)

Additionally, the facts based on the convex analysis and Large Deviation The-
ory allow to claim that for the good rational functions I'(z), the function ¢(r)
is a real analytic function. See [9].

Now we recall few definitions and results presented in [I6], apply them to
our examples and make a comparison. The Theorem 5.1 from [I6] basically

states the following.

Let r € Q7 and let G(z), H(z) € Q[z] be coprime polynomials such that
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admits a power series expansion
I(z) = Z fiz'.
ieNd
Suppose that the system of equations
H(z) =roz1H,, (2) — m122H,,(2) = rqz1H,, (2) — r12qH,,(2) (39)
admits a finite number of solutions, exactly one of which z’ € C¢ is minimal

(i.e. no other singularity z of I'(z) satisfies |z;| <[z} for all 1 <j <d).

Suppose that H,,(z) # 0,G(z’) # 0. Then as n — oo

foe =2 Z(;;Zj(); ;j((;;) (1 +0 (i)) (40)

when nr € N?, where 7 is a (d — 1) x (d — 1) matrix defined by Equation (5.25)
in [I6] and it is supposed that det(.#) # 0.

It is also claimed that as r varies in any sufficiently neighborhood in R‘io,
the solution z’ = z/(r) varies smoothly with r. The factor (z’)~"" in gives
us
|(Z/)7r| _ efzm log |z;| _ efhr(z')

1
n

limsup | e
n— o0

The system of equations is equivalent in our situation (assuming condition
(CQ)) to the system of equations coming from the Lagrange multipliers method

because if
d

®(z,\) = rilogz — \H(z) (41)

=1

then the critical points are solutions of the system

O T \HL =0i=1,-.d
62’1' Zi
H(z) = 0 (42)

which is equivalent to . In our situation, we make substitutions z; = e~%

and replace by the
d
(0,0 =D ity — MH(e™?)
i=1

as shown in the previous sections. Of course is much finer asymptotic than
fnr ~ (z/)fnr'

As was already mentioned, the condition (CG) gives an alternative definition
of the growth in the direction of r that works not only for rational r but for
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any direction r € R‘io. At the same time the above argument show that when
(CG) holds and conditions of Theorem 5.1 in [16] are satisfied, then the rates
of growth in the rational direction r defined by or as e~ %) coincide. The
smooth dependence of z’ = z/(r) (and hence of ¢(r) = z'~F) on r € Q¢ can
be strengthen to the claim about the analytic dependence on r for all r € Rio,
where ¢(r) > 0 as shown in [9].

An useful tool in discussed topics is the logarithmic gradient map

vlogf - (Zllev"' azdfzd)~

Proposition 3.13 in [16] states that for any minimal singular point z’ of I'(z) =

G
H((Z)) (where G, H are coprime) there exists r € R% and 7 € C such that
- >

(vmgH(S)) () =71,

where H®) is a square free part of H. In this situation z' is either a minimizer
or a maximizer of the height function h,(z) on 2.

Let us apply Theorem 5.1 from [I6] to the case of the free group of rank 2.
We assume that r = (p, 1 —p) is rational, z = (z,y). Recall that the multivariate
growth series of free group Fj is

A+x)(1+y) _ Glzy)
l—az—y—32zy H(z,y)

Ip,(z,y) =

and that the singularities of I'g, (2, y) are the points

, 3p—2+23p2—-3p+1 1-3p+24/3p2—-3p+1
z = (z,y) = 3 :

3(1-p)

whose coordinates are real numbers with positive coordinates. Hence,

n-r
A (2 —3p+2y/37 = 3p 1 3p—1+2y/37 By 1) _ @
p

(1-p)

We quickly check that the assumption of Theorem 5.1 from [16] are satisfied.
In other words, we need to check that the partial derivative %—H does not vanish
at 2’ and that the matrix . from Equation (5.25) in [16] is non singular (with
w = 7’). Indeed, a direct computation gives

OH
B — = —1 —
a9 (z,y) 3w
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which is non zero at z’. Now, the dimension d being two, still with the notation
of [16], the matrix 5 is the scalar

H =V +VE+ Ui — 2V U2+ ViUs

(14 3y) (x(1+3y)>2 o_o"(+3y)  Boy
y(1+ 3z) y(1+ 3z) y(1 4 3x) y(1 + 3x)
_wy + 327y + 3zy® 4 2? =0
y*(1+ 3x)? '

Therefore, following ([16], Equation 5.1) we get

frx = VP =3 (1 +0 <711>) (43)

where ¢ = ¢(p) does not depend on p and r is rational. In fact the results
of [9] allows to have relation when r is irrational, only the left hand side
should be replaced by the sum of the coefficients +; in the uniformly bounded
neighborhood of the point nr.

9 Concluding remarks and open questions

Finding of ¢ g  (r), where r = (p,q,1 — p — q) for free group Fj of rank 3 leads
to the solving of polynomial equation of degree 4 in variable z = e*

3p2z" + 4p(Tp — 2)2° + 2 (33p* — 32pq — 8p — 32¢° + 32¢ — 8) 2*
+12p(5p — 6)z — 45p* =0 (44)

and it can be solved in radicals. Substituting p = ¢ = % in we obtain that
s = logh and hence we get a value 1/)1:3(%, %, %) = log5. So the multivariate
growth in this case coincides with the ordinary growth and log5 is a maximal
value of ¥(r). The higher ranks m = 4,5,--- lead to polynomial equations of
degree > 5 and most probably obtaining of the precise analytic expressions for
¥, (r) is impossible. But at least we know that ¢r, (r) is a real analytic con-

cave function [9] with a maximum value log(2m — 1) achieved at unique point

r= (o)

Now, let us go back to cogrowth. It can be shown that the condition (CG)
always hold for a subgroup H < F,, and so the formula is applicable. If H <
F,, is a finitely generated subgroup then it is represented by a regular language
[4] and hence, its cogrowth and multivariate cogrowth series are rational. The
Conjecture claiming that 'y (z),z € C is rational if and only if H is finitely
generated was stated in [4] and it is known that this conjecture is true in the
case of normal subgroups. A similar conjecture can be stated for multivariate
cogrowth series 'y (z),z € C™. Also, we state the following:
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Conjecture 9.1. Let N < F,,. Then F,,,/N is amenable if and only if Yn(r) =
¥r,, (r).

By cogrowth criteria of amenability we know that in the case when F,,/N
is amenable, the relation

log(2m — 1) = mfmxiﬁpm (r) = max Yy (r) (45)

hold. Tt is unclear if 45 (r) may have values less than the values of g _(r) in
the case when the Equation holds. Even the case when N = [Fy, Fy] is a
commutator subgroup of F» deserves a separate consideration.

And finally, there is a formula in [I]

x(p) = 2mtin [Z\/t2+p? —(m— 1)t]

for the spectral radius x(p) of a symmetric random walk on a free group F,,, given
by a positive vector p = (p1,-- ,pm),2 > p; = 1 where p(a;) = p(a{l) = p;.

Computation of x(p) in the case of rank 2 leads to the equation of degree 4
in variable x = ¢?

3¢t + 4 (p] +p3) 2 + 6pip3a® — pips =0 (46)

and hence x(p) can be expressed in radicals. Taking p; = py = %, leads to
the equation
(1+162)%(—1+48z) =0
V3

which gives a value x(p) = -
The later number is known since 1959 due to H. Kesten [14] who, in particular
2m — 1
proved that for a simple random walk on F,,, the spectral radius y = L.
Higher rank leads to solving polynomial equations of degree > 5 and expressing
X(p) in radicals seems to be impossible for F,,m > 3 and arbitrary p.

Let H < F,, and xp,, ,u(p) be a spectral radius of a random walk on a
Schreier graph A = A(F,,, H,X) given by probabilities p;, 1 < i < m. We end
up with the following question.

Problem 9.1. Is there a formula expressing xr,, /u via am(p), where ag(p) =
wu(p) is a multivariate growth of Ag(2p) in the direction prescribed by the
vector 2p € M, ¢ Does such a formula exists when H is normal subgroup in
F,, and hence A = A(F,,,, H,X) is a Cayley graph.
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