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Chapter 1

Lattices

1.1 Haar measure

In this section, we briefly recall the elementary properties of Haar measures
that we will use. First, we have the following fundamental existence result:

Theorem 1.1.1. Let G be a locally compact topological group. Then G ad-
mits a non zero Radon measure that is invariant under left translations. This
measure is unique up to multiplication by a non zero real number.

Such a measure is called a (left) Haar measure on G (and sometimes the
Haar measure of G, since it is essentially unique).

Example 1.1.2. Haar measure of Rd is Lebesgue measure. Haar measure of
discrete groups is the counting measure.

Example 1.1.3. One of the difficulties which one encounters in the study of
Haar measure is that it is not in general right invariant. For example, if P
denotes the group of matrices of the form(

a b
0 a−1

)
a, b ∈ R, a 6= 0,

then one easily checks that the measure 1
|a|dadb is left invariant, but that it

is not right invariant.

Definition 1.1.4. Let G be a locally compact topological group with left
Haar measure dg. The modular function of G is the unique function ∆G :

5



6 CHAPTER 1. LATTICES

G→ R∗+ such that, for any continuous function ϕ with compact support on
G, for any h in G, one has∫

G

ϕ(gh−1)dg = ∆G(h)

∫
G

ϕ(g)dg.

The existence of ∆G follows from the uniqueness part in Theorem 1.1.1.
Note that ∆G is a continuous multiplicative morphism.

Example 1.1.5. If P is as above, one has ∆P

(
a b
0 a−1

)
=
∣∣ 1
a2

∣∣.
Definition 1.1.6. A locally compact topological group is said to be unimod-
ular if its Haar measures are both left and right invariant.

Example 1.1.7. Discrete groups are unimodular. Abelian groups (and more
generally, nilpotent groups) are unimodular. Compact groups are unimod-
ular since the modular function is a morphism and R∗+ does not admit any
compact subgroup. The groups SLd(R) and GLd(R), d ≥ 2, (and more gen-
erally, any reductive Lie group) are unimodular.

Let us now study Haar measure on quotient spaces. Recall that, if G is
a locally compact topological group and H is a closed subgroup of G, then
the quotient topology on G/H is Hausdorff and locally compact.

Proposition 1.1.8. Let G be a locally compact topological group and H be
a closed subgroup of G. Then there exists a non zero G-invariant Radon
measure on G/H if and only if the modular functions of G and H are equal
on H. This measure is then unique up to multiplication by a scalar.

In particular, if both G and H are unimodular, such a measure exists
(and this is the main case of application of this result).

Remark 1.1.9. There is a formula which relates measure on quotient spaces
and Haar measures on G and H. Let dg and dh denote Haar measures on G
and H. For any continuous compactly supported function ϕ on G, set, for
g in G, ϕ(gH) =

∫
H
ϕ(gh)dh. Then ϕ is a continuous compactly supported

function on G/H and, if the assumptions of the proposition hold, one can
chose the G-invariant measure µ on G/H in such a way that∫

G/H

ϕdµ =

∫
G

ϕ(g)dg
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(that is, to integrate on G, one first integrate on fibers of the projection
G→ G/H and then on the base space G/H).

When G is second countable (which is of course the interesting case for
geoemtric purposes!), this formula can easily be extended to any Borel func-
tion ϕ which is integrable with respect to Haar measure.

Note that if H is discrete, one can chose the counting measure as Haar
measure, so that, for g in G, ϕ(gH) =

∑
h∈H ϕ(gh).

Example 1.1.10. Since G = SL2(R) is unimodular and its subgroup

N =

{(
1 t
0 1

)∣∣∣∣ t ∈ R
}
' R

is unimodular, the space G/N admits an invariant measure: indeed, as a
homogeneous space, this space identifies with R2 r {0} and this measure is
nothing but the restriction of the Lebesgue measure of R2.

The projective line does not admit any Radon measure that is invariant
under the action of SL2(R), since it is the quotient of SL2(R) by the group P
of Example 1.1.3 which is not unimodular. The fact that P1

R does not admit
any SL2(R)-invariant measure can of course be proved directly!

1.2 Definition and first examples of lattices

Lattices are discrete subgroups that are very large:

Definition 1.2.1. Let G be a locally compact topological group and Γ be a
discrete subgroup of G. We say that Γ is a lattice in G if the locally compact
topological space G/Γ admits a finite Radon measure that is invariant under
the natural left action of G.

Example 1.2.2. For any integer d ≥ 1, the subgroup Zd is a lattice in Rd.
Indeed, since they are abelian groups, the quotient is an abelian group and its
Haar measure is invariant under translations. Since the quotient is compact,
this measure is finite.

As we saw in Proposition 1.1.8, if H is a closed subgroup of G, there is
no reason for the homogeneous space G/H to admit a G-invariant Radon
measure. In fact, we have

Proposition 1.2.3. Let G be a locally compact topological group which ad-
mits a lattice. Then G is unimodular.
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Proof. Let Γ be a lattice in G. Since G/Γ admits a G-invariant measure, by
Proposition 1.1.8, the modular function ∆G of G is trivial on Γ. Let H be the
kernel of ∆G, so that H ⊃ Γ. The image of the G-invariant measure on G/Γ
is a finite G-invariant measure on G/H. This means that the quotientgroup
G/H has finite Haar measure, that is, it is compact. Now, ∆G factors as an
injective morphism G/H → R∗+. Since this latter group does not admit non
trivial compact subgroups, we get H = G as required.

By using the elementary properties of Haar measure, one can show

Proposition 1.2.4. Let G be a locally compact topological group and Γ be a
discrete subgroup of G. If Γ is cocompact in G (that is, if the space G/Γ is
compact), then Γ is a lattice.

Example 1.2.5. Let H (resp. Γ) be the Heisenberg group (resp. the discrete
Heisenberg group), that is, the group of matrices of the form

hx,y,z =

1 x z
0 1 y
0 0 1


with x, y, z in R (resp. Z) and let Z = {h0,0,z|z ∈ R}. One easily proves
that Z is the center of H, hence in particular, that Z is a normal subgroup
of H. One has H/Z ' R2 and ΓZ is a closed subgroup of H and ΓZ/Z is a
cocompact lattice in H/Z. Therefore, since Γ∩Z is also a cocompact lattice
in Z, the space H/Γ is compact and Γ is a lattice in H.

Example 1.2.6. Let G be the sol group, that is the semidirect product UnV ,
where U = R acts on V = R2 through the one-parameter group of auto-

morphisms

(
et 0
0 e−t

)
t∈R

. Now, let A be a hyperbolic element of SL2(Z)

with positive eigenvalues (for example, A =

(
2 1
1 1

)
). Then there exists g in

SL2(R) such that B = gAg−1 is diagonal. By construction, B preserves the
lattice Λ = gZ2 in V . We set Γ = BZΛ. One easily checks that, since Λ is
cocompact in V and BZ is cocompact in U , the group Γ is cocompact in G
and hence, that it is a lattice.

Example 1.2.7. Let S be a closed orientable surface of genius g ≥ 2 with
fundamental group Γ. Choose a uniformization of S, that is, equivalently,
equip S with a complex manifold structure or with a Riemannian metric
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with constant curvature −1. Then the universal cover of S is identified with
the real hyperbolic plane H2 and Γ acts on H2 by orientation preserving
isometries, that is, one is given an injective morphism from Γ to PSL2(R)
(which has discrete image). Since, as a PSL2(R)-homogeneous space, one has
H2 = PSL2(R)/PSO(2) and since S = Γ\H2 is compact, the image of Γ in
PSL2(R) is a discrete cocompact subgroup, that is, it is a lattice.

In the sequel, we will prove that, for d ≥ 2, SLd(Z) is a non cocompact
lattice in SLd(Z). Nevertheless, there are groups all of whose lattices are
cocompact. Indeed, one has the

Proposition 1.2.8. Let G be a locally compact topological group. Assume
G is nilpotent. Then every lattice in G is cocompact.

Remark 1.2.9. This does not mean that every such group admits a lattice!
Indeed, by dimension arguments, one can easily prove that there are a lot of
14-dimensional nilpotent Lie groups which do not admit lattices.

For solvable groups, the situation is more complicated. On one hand, one
has the

Theorem 1.2.10 (Mostow). Le G be a solvable Lie group. Every lattice in
G is cocompact.

On the other hand, there exists an example by Bader-Caprace-Gelander-
Mozes of a locally compact solvable group G with a non cocompact lattice.
In this example, the group G is not compactly generated. To my knowledge,
is is not known wether this can be done with a compactly generated group.

Let us now describe compact subsets of spaces of the form G/Γ, where Γ
is a lattice in G.

Proposition 1.2.11. Let G be a locally compact topological group, Γ be a
lattice in G and A ⊂ G/Γ. Then A is relatively compact if and only if there
exists a neighborhood U of e in G such that, for any x = gΓ in A, for any
γ 6= e in Γ, one has gγg−1 /∈ U .

Remark 1.2.12. This propoition is a group-theoretic translation of the fol-
lowing fact: if a Riemannian manifold M has finite Riemannian volume but
is not compact, then, close to infinity in M , the injectivity radius is small.



10 CHAPTER 1. LATTICES

Proof. Assume A is contained in a compact subset L. For every x = gΓ in
L, the group gΓg−1 is discrete in G, hence there exists a neighborhood Wx

of e in G such that gΓg−1 ∩Wx = {e}. Let us prove that we can chose a
neighborhood of e that does not depend on x in L. Indeed, there exists a
symmetric neighborhood Vx of e such that VxVxVx ⊂ Wx. By construction,
for any h in Vx, we have

hgΓg−1h−1 ∩ Vx = h(gΓg−1 ∩ h−1Vxh)h−1 ⊂ h(gΓg−1 ∩Wx)h
−1 = {e}.

Now, we pick x1, . . . , xr in L such that L ⊂ Vx1x1 ∪ · · · ∪ Vxrxr and we
set U = Vx1 ∩ · · · ∩ Vxr . By construction, we have, for any x = gΓ in L,
gΓg−1 ∩ U ⊂ {e}.

Conversely, assume there exists such a compact neighborhood U . Let
µ be the invariant measure on G/Γ, that we normalize in such a way that
the formula from Remark 1.1.9 holds, when G is equipped with a given
Haar measure and Γ is equipped with the counting measure. Choose a non
zero continuous compactly supported function ϕ ≥ 0 on G, with support
contained in U . Set ε =

∫
G
ϕ(g)d(g), so that, for any x in A, we have

µ(Ux) ≥ ε. If F ⊂ A is a finite subset such that for any x 6= y in F ,
Ux∩Uy = ∅, one has ]F ≤ ε−1, hence one can choose such a F to be maximal.
Then, for any z ∈ A\F , one has Uz ∩ UF 6= ∅ and hence A ⊂ U−1UF , so
that A is relatively compact.

Corollary 1.2.13. Let G be a locally compact topological group, H be a closed
subgroup of G and Γ be a discrete subgroup of G such that Γ∩H is a lattice
in H. Then the natural map H/(Γ∩H)→ G/Γ is proper. In particular, the
set H/(Γ ∩H) is a closed subset of G/Γ.

Remark 1.2.14. If Γ ∩H is cocompact in H, there is nothing to prove.

Example 1.2.15. This is far from being true if one does not assume Γ ∩ H
to be a lattice in H: for example, if G = R, Γ = Z and H = Zα, where α
belongs to RrQ, one has H ∩ Γ = {e} and H has dense image in G/Γ!

Proof. Let L be a compact subset ofG/Γ. Note that the first part of the proof
of Proposition 1.2.11 only uses the fact that Γ is a discrete subgroup of G, so
that, reasoning in the same way, we get that there exists a neighborhood U of
e in G such that, for any x = gΓ in G/Γ, one has gΓg−1 ∩U = {e}. If x also
belongs to H/(Γ∩H), we get g(Γ∩U)g−1 ∩ (U ∩H) = {e}. By Proposition
1.2.11, we get that L∩ (H/(Γ∩H)) is a compact subset of H/(Γ∩H), what
should be proved.
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Finally, let us give an elementary criterion for a group to be a lattice:

Proposition 1.2.16. Let G be a unimodular second countable locally compact
group and Γ be a discrete subgroup of G. Then Γ is a lattice if and only if
there exists a Borel subset S of G with finite Haar measure such that G = SΓ.
If this is the case, one can choose S in such a way that the natural map
G→ G/Γ is injective on S.

Proof. Assume first that such a set S exist and apply the formula from
Remark 1.1.9 to the indicator function ϕ of the set S. Since G = SΓ, we
have ϕ ≥ 1 on G/Γ, hence, since S has finite Haar measure, G/Γ has finite
G-invariant measure.

Conversely, let us first construct a Borel subset S of G such that G = SΓ
and the natural map G → G/Γ is injective on S. Since Γ is discrete in G,
for any g in G, there exists an open neighborhood Ug of g in G such that the
map h 7→ hΓ, G → G/Γ is injective on Ug. Since G/Γ is second countable,
there exits a sequence (gk)k≥0 of elements of G such that the union

⋃
k≥0 Ugk

covers G. We set

S =
⋃
k≥0

(
Ugk r

⋃
`<k

U`Γ

)
and we are done. In particular, if ϕ is the indicator function of S, we have
ϕ = 1 on G/Γ, so that, again by Remark 1.1.9, if G/Γ has finite G-invariant
measure, S has finite Haar measure.

1.3 Lattices in Rd and the group SLd(Z)
We will now prove that SLd(Z) is a lattice in SLd(R). To this aim, we first
study lattices in Rd. We equip R with the usual scalar product and Lebesgue
measure.

We have the following elementary

Proposition 1.3.1. Let Λ be a discrete subgroup of Rd. Then there exists
k ≤ d and a linearily independent family of vectors v1, . . . , vk in Rd such that
Λ is the subgroup spanned by v1, . . . , vk. In particular, Λ is a free abelian
group and Λ is a lattice if and only if it has rank d.

If Λ is a lattice in Rd, we equip Rd/Λ with the unique Radon measure
that is invariant under translations associated to the choice of Lebesgue mea-
sure on Rd and the counting measure on Λ (see Remark 1.1.9). The total
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measure of this quotient space is called the covolume of Λ; in other words,
the covolume of Λ is the absolute value of the determinant of an algebraic
base of Λ. We say Λ is unimodular if it has covolume 1 (this has nothing to
do with the notion of a unimodular group).

Proposition 1.3.1 implies that every lattice in Rd is the image of the
standard lattice Zd by an element of GLd(R). Since the stabilizer of Zd in
GLd(R) is GLd(Z), the space of lattices of Rd identifies with GLd(R)/GLd(Z).
In the same way, the space of unimodular lattices of Rd identifies with
SLd(R)/SLd(Z). Since we know that SLd(R) is unimodular, by Proposition
1.2.16, to prove that SLd(Z) is a lattice, we only have to exhibit a Borel
subset S of SLd(R) with finite Haar measure such that SLd(R) = SSLd(Z).
The starting point of the construction of S is the following elementary lemma
which tells us that lattices are not too far away from 0:

Lemma 1.3.2. Let Λ be a unimodular lattice in R2. Then Λ contains a non
zero vector with euclidean norm ≤

(
4
3

) 1
4 .

Proof. Let v be a non zero vector with minimal norm in Λ. If ‖v‖ ≤ 1, we
are done. Else, let D be the open disk with center 0 and radius ‖v‖. By
assumption, we have D ∩ Λ = {e}. Now, since v is a primitive vector of
the free abelian group Λ, there exists a vector w in Λ such that (v, w) is a
basis of Λ, and hence the determinant of (v, w) is ±1. Thus, Λ contains an
element whose distance to the line Rv is 1

‖v‖ . Now, the set E of such vectors
is a union of two affine lines whose intersection with D are intervals of length

2
√
‖v2‖ − 1

‖v‖2 . Since E ∩ Λ is stable under the translations by v and does

not encounter D, we have

2

√
‖v2‖ − 1

‖v‖2 ≤ ‖v‖ ,

that is,

‖v‖4 ≤ 4

3
,

which should be proved.

Now, to construct the set S, we need some structure results about SLd(R).
We letK denote SO(d), A denote the group of diagonal matrices with positive
entries and N denote the group of upper-triangular matrices all of whose
eigenvalues are equal to 1.
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Proposition 1.3.3 (Iwasawa decomposition for SLd(R)). One has SLd(R) =
KAN . More precisely, the product map K × A × N → SLd(R) is a homeo-
morphism.

Proof. This is a translation of Gram-Schmidt orthonormalization process.

Remark 1.3.4. Here is an interpretation of Iwasawa decompostion: if e1 de-
notes the vector (1, 0, . . . , 0) and if g is an element of SLd(R) with Iwasawa
decomposition kan, then a1,1 is the norm of the vector ge1.

The set S that we will build will be given as a product set in the Iwasawa
decomposition. In order to compute its Haar measure, we need the

Lemma 1.3.5. Equip the groups K, A and N with Haar measures. Then
the image by the product map K × A×N → SLd(R) of the measure∏

1≤i<j≤d

ai,i
aj,j

dkdadn

is a Haar measure on SLd(R).

Proof. Consider the product map K × AN → SLd(R), (k, p) 7→ k−1p. Since
SLd(R) is unimodular, the inverse image of a Haar measure by this map is
a measure on K × AN that is right K × AN invariant, so that it is the
product of right Haar measures of K and AN . Since K is compact, it is
unimodular and this right Haar measure is also a left Haar measure, so that
it only remains to prove that the measure

∏
1≤i<j≤d

ai,i
aj,j

dadn is a right Haar

measure on AN .
An elementary matrix computation shows that one can choose dn to be

the product measure
∏

i<j dni,j. Now, N is a normal subgroup of AN and the

adjoint action of an element a of A multiplies this measure by
∏

1≤i<j≤d
aj,j
ai,i

.

The result follows by easy computations.

For t, u > 0, we set

At = {a ∈ A|∀1 ≤ i ≤ d− 1 ai,i ≤ tai+1,i+1}
Nu = {n ∈ N |∀1 ≤ i < j ≤ d |ni,j| ≤ u}

and St,u = KAtNu.

The set St,u is called a Siegel domain. It is our candidate for being the set
S in Proposition 1.2.16.

First, we check that Siegel domains have finite Haar measure:
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Lemma 1.3.6. For any t, u > 0, the set St,u has finite Haar measure in
SLd(R).

Proof. Since K and Nu are compact, by Lemma 1.3.5, it suffices to prove
that one has ∫

At

∏
1≤i<j≤d

ai,i
aj,j

da <∞,

where da is a Haar measure on A.
Now, one easily checks that the map

A→ Rd−1, a 7→
(

log
a2,2

a1,1

, . . . , log
ad,d

ad−1,d−1

)
is a topological group isomorphism. Therefore, we can choose da in such a
way that∫

At

∏
1≤i<j≤d

ai,i
aj,j

da =

∫
Rd−1

∏
1≤i<j≤d

e−si−...−sj−11s1,...,sd−1≥− log tds1 · · · dsd−1

=
d−1∏
k=1

∫ ∞
− log t

e−k(d−k)skdsk.

The lemma follows, since the latter integral is finite.

Example 1.3.7. This proof might seem mysterious at a first glance. Let us
check what it means for d = 2. In this case, the space SL2(R)/N is R2 r {0}
and the SL2(R)-invariant measure is the restriction of the Lebesgue measure
of R2. Under this identification, the right N -invariant set KAtN may be seen
as the intersection of R2 r {0} with the euclidean disk of radius

√
t. This set

is not compact in R2 r {0}, but it has finite SL2(R)-invariant measure.

We now have all the tools in hand to prove the

Theorem 1.3.8 (Hermite). For any d ≥ 2, the subgroup SLd(Z) is a lattice
in SLd(R). More precisely, one has SLd(R) = S 2√

3
, 1
2
SLd(Z).

Remark 1.3.9. Note that this lattice is not cocompact. Indeed, if one sets

γ =


1 1 0 · · · 0
0 1 0 · · · 0
0 0
...

... 1d−2

0 0

 and g =


2 0 0 · · · 0
0 1

2
0 · · · 0

0 0
...

... 1d−2

0 0
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(where by 1d−2 we mean a (d − 2) × (d − 2) identity matrix), then γ is an
element of SLd(Z) and g−nγgn −−−→

n→∞
e, so that, by Proposition 1.2.11, the

sequence (g−nSLd(Z)) is not relatively compact in SLd(R)/SLd(Z).

Proof. Note that the second part of the Theorem implies the first one, thanks
to Proposition 1.2.16 and Lemma 1.3.6. Thus, let us prove that one has
SLd(R) = S 2√

3
, 1
2
SLd(Z).

First, we prove by induction on d ≥ 1 that one has

SLd(R) = KA 2√
3
NSLd(Z).

Indeed, for d = 1, there is nothing to prove. Assume d ≥ 2 and the result
is true for d − 1. Pick g in SLd(R), set Λ = gZd and let v1 be a non zero
element with minimal euclidean norm in Λ. Since v1 is a principal vector of
the free abelian group Λ, there exists v2, . . . , vd in Λ such that v1, . . . , vd is
a basis of Λ. Now, let γ be the element of GLd(Z) that sends e1, . . . , ed to
g−1v1, . . . , g

−1vd (where e1, . . . , ed is the canonical basis of Rd). After maybe
replacing v1 by −v1, we can assume γ belongs to SLd(Z). By construction,
the matrix gγ sends e1 to v1. Let k be an element of K that sends v1 to
a1,1e1, where a1,1 = ‖v1‖. Then the matrix kgγ has the form(

a1,1 ∗
0 h

)
,

where h is an element of GLd−1(R) with determinant a−1
1,1. By applying the

induction assupmption to the matrix a
1
d−1

1,1 h, we can find ` in K, δ in SLd(Z)
and a2,2, . . . , ad,d > 0, with ai,i ≤ 2√

3
ai+1,i+1, 2 ≤ i ≤ d − 1, such that `gδ

belongs to the set aN , where a is the diagonal matrix with diagonal entries
a1,1, . . . , ad,d. To conclude, we only have to prove that one has a1,1 ≤ 2√

3
a2,2.

To this aim, we will use Lemma 1.3.2. Indeed, recall that a1,1 is the minimal
norm of a non zero vector in Λ = gZd. Now, consider the discrete group

∆ = gδ(Ze1 ⊕ Ze2) ⊂ Λ.

By construction, (a1,1a2,2)−
1
2 ∆ is a unimodular lattice in the euclidean plane

gδ(Re1 ⊕ Re2), all of whose vectors have norm ≥
(
a1,1
a2,2

) 1
2
. By Lemma 1.3.2,

we get a1,1 ≤ 2√
3
a2,2 as required.
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To finish the proof, it suffices to prove that one has N = N 1
2
(N ∩SLd(Z)).

Again, we will prove this by induction on d ≥ 1. For d = 1, there is nothing
to prove. Assume d ≥ 2 and the result is true for d − 1. Pick g in N and
let k2, . . . , kd be relative integers such that |g1,j + kj| ≤ 1

2
, 2 ≤ j ≤ d, and

let γ be the matrix in N with entries γ1,j = kj, 2 ≤ j ≤ d, and γi,j = 0,
2 ≤ i < j ≤ d. Set g′ = gγ. Then all the coefficients g′1,j, 2 ≤ j ≤ d have
absolute value ≤ 1

2
. The result follows by applying the induction assumption

to the lower right (d− 1)× (d− 1)-block in g′.

Now that we know that SLd(Z) is a lattice in SLd(R), Proposition 1.2.11
gives a characterization of compact subsets of SLd(R)/SLd(Z) in eterms of
the adjoint action of SLd(R). We can also give a characterization of them in
terms of the identification of this space with the space of unimodular lattices
in Rd. This will use the

Definition 1.3.10. Let Λ be a lattice in Rd. Then the systole s(Λ) of Λ is
the smallest norm of a non zero vector of Λ.

Corollary 1.3.11. Let E be a subset of SLd(R)/SLd(Z). Then E is relatively
compact if and only if there exists ε > 0 such that, for any x = gSLd(Z) in
E, one has s(gΛ) ≥ ε.

Proof. Assume E is relatively compact and let L be a compact subset of
SLd(R) such that E ⊂ LSLd(Z). Set C = supg∈L ‖g−1‖. Then, for any v 6= 0
in Zd and g in L, one has ‖gv‖ ≥ 1

C
.

Conversely, assume there exists ε > 0 as in the statement of the corollary.
For t > 0, set

Aεt = {a ∈ A|a1,1 ≥ ε and ∀1 ≤ i ≤ d− 1 ai,i ≤ tai+1,i+1}
= {a ∈ At|a1,1 ≥ ε}.

We claim first that E ⊂ KAε2√
3

N 1
2
SLd(Z). Indeed, by Theorem 1.3.8, for g

in SLd(R), one can write g as kanγ, where k is in K, a is in A 2√
3
, n is in

N 1
2

and γ is in SLd(Z). In particular, one has ‖gγ−1e1‖ = a1,1, so that, if

gSLd(Z) belongs to E, a belongs to Aε2√
3

. Now, we claim that for any t > 0,

Aεt is a compact subset of A. Indeed, for any a in Aεt , one has, for 1 ≤ i ≤ d,
ai,i ≥ t1−ia1,1 ≥ t1−iε, whereas since ad,d = 1

a1,1···ad−1,d−1
,

ai,i ≤ td−iad,d =
td−i

a1,1 · · · ad−1,d−1

≤ t
d(d+1)

2
−iε1−d,
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that is, the coordinate functions are bounded on Aεt , so that it is compact.
Both statements imply that E is relatively compact.
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Chapter 2

Howe-Moore ergodicity
Theorem

In this chapter, we present a general theorem which shows how group-
theoretic tools can be used in order to prove dynamical results.

2.1 Group actions and representations

In this section, we make the link between group actions on probability spaces
and unitary representations in Hilbert spaces.

To be precise, we need to introduce a natural assumption on the proba-
bility spaces we shall encounter. Let (X,A, µ) be a probability space, that is
X is a set, A is a σ-algebra of subsets of X and µ is a probability measure on
(X,A). Recall that the space L∞(X,A, µ) may be viewed as the dual space
to the space L1(X,A, µ) of classes of integrable functions on X, so that it
admits a weak-∗ topology. In general, this space is not separable.

Definition 2.1.1. We say (X,A, µ) is a Lebesgue probability space if the
space L∞(X,A, µ) contains a separable weak-∗ dense subalgebra A which
separates points, that is, there exists a measurable subset E ofX with µ(E) =
1 such that, for any x 6= y in E, there exists f in A with f(x) 6= f(y).

Every natural probability space that appears in geometry is a Lebesgue
space. More precisely, we have

Proposition 2.1.2. Let X be a locally compact second countable space, B

19
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be its Borel σ-algebra and µ be a Borel probability measure on X. Then
(X,B, µ) is a Lebesgue probability space.

Proof. Take A to be the image in L∞(X,A, µ) of the algebra of bounded
continuous functions on X.

Up to atoms (and to isomorphism!), there exists only one Lebesgue prob-
ability space:

Proposition 2.1.3. Let (X,A, µ) be a Lebesgue probability space. Then,
there exists t in [0, 1] such that, as a probability space, (X,A, µ) is isomor-
phic to the disjoint union of [0, t], equipped with the restriction of Lebesgue
measure of R, and of N, equipped with the full σ-algebra and a measure of
mass 1− t.

Now, we will study group actions on these spaces.

Definition 2.1.4. Let (X,A, µ) be a Lebesgue probability space ang G be a
locally compact group. A measure preserving action of G on X is an action
of G on X such that the action map G × X → X is measurable and that,
for any g in G, the map x 7→ gx,X → X preserves the measure µ.

For example, if X is a locally compact second countable space and G acts
continuously on X, if µ is a Borel probability measure on X that is preserved
by the elements of G, we get a measure preserving action of G. Of course,
this is the main example of such an action. But, even in geometric situation,
it may happen that certain operations (such as taking quotients) break the
topological structure.

Given a measure preserving action of G on (X,A, µ), we get actions by
isometries ofG on the spaces Lp(X,A, µ), 1 ≤ p ≤ ∞, defined by gf = f◦g−1,
g ∈ G, f ∈ Lp(X,A, µ). The understanding of these representations plays a
great role in the study of the dynamical properties of the action of G. We
first define a notion of continuity for actions on Banach spaces.

Definition 2.1.5. Let G be a locally compact group and E be a Banach
space and let G act on E by isometries. We say that the action is strongly
continuous if the action map G× E → E is continuous.

One easily checks that this amounts to say that, for any v in E, the orbit
map g 7→ gv,G→ E is continuous at e.
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Proposition 2.1.6. Let G be a locally compact group and (X,A, µ) be a
Lebesgue probability space, equipped with a measure preserving action of G.
Then the associated actions of G on Lp(X,A, µ), 1 ≤ p < ∞, are strongly
continuous.

Example 2.1.7. In general, the action of G on L∞(X,A, µ) is not strongly
continuous. For example, if G = X is the one-dimensional torus T = R/Z,
acting on itself by translations, the orbit map associated to the characteristic
function of an proper interval is not continuous.

The proof uses the following elementary property of Haar measure:

Lemma 2.1.8. Let G be a locally compact group and B be a measurable
subset of G with finite positive Haar measure. Then, the set B−1B is a
neighborhood of e in G.

Proof. Let λ be a right Haar measure on G. Since the Haar measure is
a Radon measure, B contains a compact subset with positive measure K.
Again since the Haar measure is a Radon measure, there exists an open
subset V of G containing K with λ(V ) < 2λ(K). Finally, as K is compact,
there exists a neighborhood U of e in G with KU ⊂ V . We claim that
U ⊂ K−1K ⊂ B−1B. Indeed, for any g in U , we have Kg ∪ K ⊂ V and
λ(Kg) + λ(K) = 2λ(K) > λ(V ), hence Kg ∩ K 6= ∅, which should be
proved.

Proof of Proposition 2.1.6. Let f be in Lp(X,A, µ) and let (hk)k≥0 be a dense
sequence in Lp(X,A, µ) (which exists since the probability space is Lebesgue).
Let K be a compact subset of G with positive Haar measure. Fix ε > 0. For
any h in Lp(X,A, µ), there exists k in N with ‖h− hk‖1 ≤ ε. For k in N, the
map

K ×X → R
(t, x) 7→

∣∣f(g−1x)− hk(x)
∣∣

is measurable. Therefore, by Fubini Theorem, the map

K → R
t 7→ ‖gf − hk‖p

is measurable and the set

Bk = {g ∈ K| ‖gf − hk‖p ≤ ε}
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is a measurable subset of G. As we have K =
⋃
k∈NBk, we can find a k

such that Bk has positive Haar measure. By Lemma 2.1.8, there exists a
neighborhood U of e in G such that U ⊂ B−1

k Bk. Then, if g belongs to U ,
there exists r and s in Bk with g = r−1s and we have

‖gf − f‖p =
∥∥r−1sf − f

∥∥
p

= ‖sf − rf‖p ≤ ‖rf − hk‖p + ‖sf − hk‖ ≤ 2ε,

since r and s belong to Bk. Hence the map g 7→ gf is continuous at e, which
should be proved.

2.2 Howe-Moore Theorem for SL2(R)
We will now focus on the study of unitary representations of groups in Hilbert
spaces. We first start by giving a property of the representations of SL2(R),
which will later be extended to all connected semisimple Lie groups. The
following theorem says that, in unitary representations of SL2(R) with no
invariant vectors, the coefficient functions decay.

Theorem 2.2.1 (Howe-Moore). Let H be a Hilbert space equipped with a
strongly continuous unitary action of SL2(R). Assume H does not admit
any non zero SL2(R)-invariant vector. Then, for any v, w in H, one has
〈gv, w〉 −−−→

g→∞
0.

In this statement, 〈gv, w〉 −−−→
g→∞

0 means that, for any ε > 0, there exists

a compact subset K of SL2(R) such that, for any g in SL2(R) rK, one has
|〈gv, w〉| ≤ ε.

Remark 2.2.2. Assume G is a locally compact abelian group. Then Howe-
Moore theorem does not apply to G. Indeed, by Pontryagin theory, the
characters of G, that is the continuous morphisms from G to T = R/Z, sepa-
rate points. Let χ be a non trivial character. Define a unitary representation
of G in the Hilbert space H = C by letting an element g of G act through the
multiplication by e2iπχ(g). Then this unitary representation does not admit
non zero G-invariant vectors, but for any g in G, we have 〈g1, 1〉 = e2iπχ(g)

which has constant modulus 1.

In other words, Howe-Moore theorem is a way of saying that SL2(R) is
far away from being abelian.
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To prove the theorem, we need a new decomposition in linear groups. We
let A+ denote the set of diagonal matrices a with positive entries in SLd(R)
such that a1,1 ≥ · · · ≥ ad,d.

Proposition 2.2.3 (Cartan decomposition for SLd(R)). One has SLd(R) =
KA+K. More precisely, for any g in SLd(R), there exists a unique a in
A+ ∩KgK.

Proof. Let g be in SLd(R) then the matrix gtg is symmetric and positive,
so that it admits a positive symmetric square root s. By construction, one
has g = ks with k in K. The existence of the decomposition follows by
diagonalizing s. Uniqueness comes from the uniqueness of the square root.

Proof of Theorem 2.2.1. Let v be in H. We have to prove that one has
gv −−−→

g→∞
0 in H for the weak topology. Since, by Banach-Alaoglu theorem,

the closed balls of H are weakly compact, it suffices to prove that all the
weak cluster points of gv as g →∞ are 0. Since SL2(R) is second countable,
after having replaced H by the closure of the subspace spanned by SL2(R)v,
it suffices to prove that, for any sequence (gp) going to infinity in G, if
gpv −−−→

p→∞
u weakly, for some u in H, then u = 0.

Now, let u, v and (gp) be as above. For any p, write a Cartan decomposi-
tion of gp as kpap`p, so that ap goes to infinity in A+. After having extracted
a subsequence, we can assume kp −−−→

p→∞
k and `p −−−→

p→∞
`, for some k, ` in K.

We claim that ap`v −−−→
p→∞

k−1u. Indeed, for any p, one has

∣∣〈ap`pv, k−1
p w〉 − 〈ap`v, k−1w〉

∣∣
≤
∣∣〈ap`pv, k−1

p w〉 − 〈ap`pv, k−1w〉
∣∣+
∣∣〈ap`pv, k−1w〉 − 〈ap`v, k−1w〉

∣∣
and, on one hand,∣∣〈ap`pv, k−1

p w〉 − 〈ap`pv, k−1w〉
∣∣ =

∣∣〈ap`pv, k−1
p w − k−1w〉

∣∣
≤ ‖v‖

∥∥k−1
p w − k−1w

∥∥ ,
whereas, on the other hand,∣∣〈ap`pv, k−1w〉 − 〈ap`v, k−1w〉

∣∣ =
∣∣〈`pv − `v, a−1

p k−1w〉
∣∣ ≤ ‖`pv − `v‖ ‖w‖ ,
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so that ∣∣〈ap`pv, k−1
p w〉 − 〈ap`v, k−1w〉

∣∣ −−−→
p→∞

0.

Since gpv −−−→
p→∞

u weakly, we get

〈ap`pv, k−1
p w〉 −−−→

p→∞
〈u,w〉 = 〈k−1u, k−1w〉

and we are done.
We set v′ = `v and u′ = k−1u. We claim that u′ is N -invariant. Fix n in

N . First, let us note that, for any n in N , since ap goes to infinity in A+,
one has a−1

p nap −−−→
p→∞

e. Now, we write, for any w in H, for any p,

〈napv′, w〉 = 〈a−1
p napv

′, a−1
p w〉

and∣∣〈a−1
p napv

′, a−1
p w〉 − 〈v′, a−1

p w〉
∣∣ =

∣∣〈a−1
p napv

′ − v′, a−1
p w〉

∣∣
≤
∥∥a−1

p napv
′ − v′

∥∥ ‖w‖ −−−→
p→∞

0.

Thus, we get
〈napv′, w〉 − 〈apv′, w〉 −−−→

p→∞
0,

hence 〈nu′, w〉 = 〈u′, w〉, that is, nu′ = u′.
We will now prove that this implies that u′ is actually SL2(R)-invariant,

which finishes the proof, since then, by assumption u′ = 0, hence u = ku′ = 0.
Indeed, for g in G, set ϕ(g) = 〈gu′, u′〉. The function ϕ is continuous and

left and right N -invariant. Consider ϕ as a function on G/N ' R2 r {0}:
it is constant on N -orbits in R2 r {0}. Now, for every y 6= 0 in R, the
N -orbit of (0, y) in R2 is the line R × {y}, so that ϕ is constant on each of
these lines. Since ϕ is continuous, it is also constant on R∗ × {0}. In other
words, for any p in P , we have 〈pu′, u′〉 = ‖u′‖2, hence, by the equality case
in Cauchy-Schwarz inequality, pu′ = u′, that is, u′ is P -invariant and ϕ is
left and right P -invariant. Now, consider ϕ as a function on G/P ' P1

R.
Again, it is constant on P -orbits in P1

R. Since the P -orbit of R(0, 1) is equal
to P1

R rR(1, 0), ϕ is constant, hence u′ is SL2(R)-invariant, which should be
proved.

Remark 2.2.4. This proof may be seen as a translation in group theoretic
language of Hopf’s proof of mixing for geodesic flows.
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2.3 Howe-Moore Theorem for SLd(R)
We will now extend the proof of Howe-Moore theorem for any d ≥ 2.

Theorem 2.3.1 (Howe-Moore). Let H be a Hilbert space equipped with a
strongly continuous unitary action of SLd(R). Assume H does not admit
any non zero SLd(R)-invariant vector. Then, for any v, w in H, one has
〈gv, w〉 −−−→

g→∞
0.

Proof. Fix v in H. Again, it suffices to prove that, if (gp) is a sequence that
goes to infinity in SLd(R) such that gpv −−−→

p→∞
u for some u in H, then u is

SLd(R)-invariant. By using Cartan decomposition as in the proof of the case
where d = 2, one can assume (gp) = (ap) takes values in A+. In particular,

one has (ap)1,1
(ap)d,d

−−−→
p→∞

∞.

For any 1 ≤ i < j ≤ d, let Ni,j be the group of those n in N such that
nk,` = 0 for any 1 ≤ k < ` ≤ d with (i, j) 6= (k, `). For n in N1,d, we
have a−1

p nap −−−→
p→∞

e in SLd(R), so that, reasoning again as in the case where

d = 2, we get that the vector u is N1,d-invariant. Now, for 1 ≤ i < j ≤ d, let
Si,j be the group of matrices of SLd(R) of the form

1i−1 0 0 0 0
0 ∗ 0 ∗ 0
0 0 1j−i−1 0 0
0 ∗ 0 ∗ 0
0 0 0 0 1d−j


(where, for any k, 1k means an identity square block of size k). In other
words, the group Si,j is the subgroup spanned by Ni,j and by its image by
transposition of matrices. The group Si,j is isomorphic to SL2(R), so that, by
the case where d = 2, we get that the vector u is S1,d-invariant. In particular,
u is invariant under the matrix

ad =

2 0 0
0 1d−2 0
0 0 1

2

 .

Fix 2 ≤ j ≤ d. Again, since, for any n in N1,j, we have a−kd nakd −−−→
k→∞

e, we



26 CHAPTER 2. HOWE-MOORE ERGODICITY THEOREM

get that u is N1,j-invariant. Hence u is S1,j-invariant. Set

aj =


2 0 0 0
0 1j−2 0 0
0 0 1

2
0

0 0 0 1d−j

 .

For any 1 ≤ i < j ≤ d, for any n in Ni,j, we have a−kj nakj −−−→
k→∞

e, so that

u is Ni,j-invariant, hence Si,j-invariant. Since SLd(R) is spanned by these
subgroups, we are done.

The combinatorial game that appears in this proof may be extended to
any connected simple Lie group by using the general structure theory of these
groups (which we are trying to avoid to do in these notes). One then gets
the full Howe-Moore Theorem:

Theorem 2.3.2 (Howe-Moore). Let G be a connected simple Lie group and
H be a Hilbert space equipped with a strongly continuous unitary action of
G. Assume H does not admit any non zero G-invariant vector. Then, for
any v, w in H, one has 〈gv, w〉 −−−→

g→∞
0.

2.4 Dynamical consequences of Howe-Moore

theorem

Let us now give an interpretation of these results in the language of er-
godic theory. Recall that, if (X,A, µ) is a probability space, if T is measure
preserving ransformation of X, then T is said to be ergodic if, for any mea-
surable subset A of X such that T−1A = A almost everywhere (that is,
µ(T−1A∆A) = 0), one has µ(A) = 0 or µ(A) = 1. In other words, the trans-
formation T is ergodic if and only if the isometry f 7→ f ◦ T of L2(X,A, µ)
does not admit any invariant vector besides the constant functions.

Remark 2.4.1. Note that, if A is a subset of X such that T−1A = A almost
everywhere, there exists a measurable subset A′ such that T−1A′ = A′ and
µ(A∆A′) = 0, so that in the definition of ergodicity one can forget the words
“almost everywhere”.
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Now, the transformation T is said to be (strongly) mixing if for any
measurable subsets A,B of X, one has

µ(T−nA ∩B) −−−→
n→∞

µ(A)µ(B).

Strong mixing implies ergodicity, since, if T−1A = A, one gets µ(A) =
µ(T−nA ∩ A) = µ(A)2 hence µ(A) ∈ {0, 1}. One easily checks that T is
(strongly) mixing if and only if, for any ϕ, ψ in L2(X,A, µ), one has∫

X

ϕ ◦ T nψdµ −−−→
n→∞

∫
X

ϕdµ

∫
X

ψdµ.

Example 2.4.2. Equip T = R/Z with Lebesgue measure and the transforma-
tion x 7→ 2x. Then this dynamical system is strongly mixing. Indeed, for
any k in Z and x in T, set ek(x) = e2iπkx. Then, for any k, ` in Z, k 6= 0, one
has ∫

T
ek(2

nx)e`(x)dx =

∫
T
e2nk(x)e`(x)dx = 0

as soon as |2nk| > |`|, whence the result by density of the trigonometric
polynomials in the space of square-integrable functions on the torus.

Now, consider the transformation x 7→ x+ α, where α belongs to RrQ.
This transformation is ergodic, but it is not mixing: indeed, for anu n, one
has ∫

T
e1(x+ nα)e−1(x)dx = e1(nα),

which has modulus 1! This is the dynamical version of the phenomenon that
is described in Remark 2.2.2.

Let us now draw the conclusions of Howe-Moore Theorem for the action
of semisimple groups on finite volume homogeneous spaces. We begin with
a special case:

Corollary 2.4.3. Let g be an element of SLd(R) that is not contained in a
compact subgroup. Then the map x 7→ gx of SLd(R)/SLd(Z) is mixing for
the SLd(R)-invariant measure.

This will follow from Howe-Moore that we will apply to the natural action
of SLd(R) on L2(SLd(R)/SLd(Z)). To prove that the only invariant functions
are the constant ones, we will need the following extension of Remark 2.4.1:
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Lemma 2.4.4. Let G be a locally compact second countable toplogical group
and (X,A, µ) be a Lebesgue probability space, equipped with a measure pre-
serving G action. Let ϕ be a measurable function on X such that, for any
g in G, one has ϕ ◦ g = ϕ almost everywhere. Then, there exists a measur-
able function ϕ1 on X such that ϕ = ϕ1 almost everywhere and ϕ1 ◦ g = ϕ1

everywhere, for any g in G.

Proof. Let λ be a right Haar measure on G and let E be the set of those
(g, h, x) in G such that ϕ(gx) = ϕ(hx). Then, by Fubini Theorem, E has
full measure for λ⊗λ⊗µ. Therefore, again by Fubini Theorem, the set A of
those x in X such that, for λ⊗λ-almost every (g, h) in G2, ϕ(gx) = ϕ(hx) is
a measurable subset of full measure for µ. Since λ is right invariant, this set
is G-invariant. For any x in A, the map g 7→ ϕ(gx) is λ-almost everywhere
constant on G. We let ϕ1(x) denote its almost constant value. Again, since
λ is right invariant, ϕ1 is a G-invariant function on A. We extand ϕ1 to all
of X by setting ϕ1 = 0 on XrA. This is a G-invariant function. Now, again
by Fubini Theorem, for µ-almost any x in X, for λ-almost any g in G, we
have ϕ(gx) = ϕ(x), so that ϕ1(x) = ϕ(x) and the result follows.

Now, we need to prove that, if an element g of SLd(R) does not belong to
a compact subgroup, its powers go to infinity. This we could do directly by
studying the Jordan decomposition of g. Instead, we will prove that this is
a general fact in locally compact groups by establishing a general dynamical
property.

Lemma 2.4.5. Let X be a locally compact topological space and T : X → X
be a continuous map (resp. (ϕt)t≥0 be a continuous semiflow). Assume, for
every x in X, the semiorbit {T nx|n ≥ 0} (resp. {ϕt(x)|t ≥ 0}) is dense in
X. Then X is compact.

By a consinuous semiflow, we mean a family (ϕt)t≥0 of continuous maps
such that ϕt+s = ϕt ◦ ϕs, s, t ≥ 0, and the map R+ × X, (t, x) 7→ ϕt(x) is
continuous.

Proof. We prove the result in the case of one map, the proof for semiflows
being analoguous. Let Y be a compact subset of X that contains a non empty
open subset U . For any x in X, there exists n ≥ 1 such that T nx ∈ U . For
x in X, we set τ(x) = min{n ≥ 1|T nx ∈ U}. Since U is open, τ is an upper
semicontinuous function. In particular, Y being compact, τ is bounded on Y
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by some constant m ≥ 1. Thus, one has
⋃
n≥0 T

nY =
⋃

0≤n≤m T
nY and this

set is compact. Since it is stable by T , it is equal to X and X is compact.

Corollary 2.4.6. Let G be a locally compact group and g be an element of
G. Assume gZ is dense in G. Then either G = gZ or G is compact.

Proof. Assume G is different from gZ, that is, G is not discrete. Then, for
any neighborhood V of e, for any integer n ≥ 0, there exists an integer p ≥ n
such that gp ∈ V . Indeed, one can assume V to be symmetric. Now, since G
is not discrete, the set V r {gk| −n < k < n} has non empty interior, hence,
it contains some gp, with |p| ≥ n. Since V is symmetric, it contains g|p| and
we are done.

Now, let us prove that gN is dense in G. Indeed, for any open subset U of
G, there exists k in Z such that gk belongs to U . Let V be a neighborhood
of e such that V gk ⊂ U and let p ≥ |k| be such that gp belongs to V . We
get gp+k ∈ U and p+ k ≥ 0, and the result follows.

Equip the group G with the map x 7→ gx. Then every semiorbit gNx is
dense in G. By Lemma 2.4.5, G is compact.

Proof of Corollary 2.4.3. Consider the natural action of SLd(R) on the space
SLd(R)/SLd(Z). Let ϕ be an element of L2(SLd(R)/SLd(Z)) that is SLd(R)-
invariant. By Lemma 2.4.4, ϕ admits a representative that is an SLd(R)-
invariant function. As the action of SLd(R) on SLd(R)/SLd(Z) is transi-
tive, ϕ is constant. Therefore, the space of functions with zero integral in
L2(SLd(R)/SLd(Z)) does not admit any non zero SLd(R)-invariant vector.
The mixing property now follos from Howe-Moore Theorem, since, by Corol-
lary 2.4.6, for any g in SLd(R) that does not belong to a compact subgroup,
one has gn −−−→

n→∞
∞ in SLd(R).

Let us give an extension of this result for actions on quotients of semisim-
ple groups by lattices. Note that, in case one is working with semisimple but
non simple groups, the result may be untrue in general. Indeed, for example,
in the group G = SL2(R) × SL2(R), the subgroup Γ = SL2(Z) × SL2(Z) is
a lattice, but the action of an element of the form (g, e) on G/Γ is never
ergodic! Thus, we need to introduce a new notion:

Definition 2.4.7. Let G be a connected semisimple Lie group and Γ be a
lattice in G. We say Γ is irreducible if, for any non discrete proper normal
closed subgroup H of G, Γ has dense image in G/H.
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Example 2.4.8. By using the same technique as in the proof that SL2(Z) is
a lattice in SL2(R), one can show that the image of SL2(Z[

√
2]) in SL2(R)×

SL2(R) by the map g 7→ (g, σ(g)) (where σ is the non-trivial automorphism
of the field Q[

√
2]) is a lattice. It is clearly irreducible.

The study of the quotients of semisimple groups by lattices essentially
reduces to the study of quotients by irreducible ones:

Proposition 2.4.9. Let G be a connected semisimple Lie group and Γ be a
lattice in G. There exist normal closed connected subgroups G1, . . . , Gr of G
such that

(i) G = G1 · · ·Gr.

(ii) for any 1 ≤ i < j ≤ r, Gi ∩Gj is discrete.

(iii) for any 1 ≤ i ≤ r, Γi = Γ ∩Gi is a lattice in Gi.

(iv) the group Γ1 · · ·Γr has finite index in Γ.

Now we can state a very general mixing property:

Corollary 2.4.10. Let G be a conneceted semisimple Lie group, Γ be an
irreducible lattice in G and g be an element of G that is not contained in a
compact subgroup. Then the map x 7→ gx of G/Γ is mixing for the SLd(R)-
invariant measure.



Chapter 3

Recurrence of unipotent flows

In this chapter, we will establish a fundamental result by Dani and Margulis
about the trajectories of certain one-parameter subgroups on quotients of
semisimple groups by lattices. It has applications in itself, in particular in
Diophantine approximation, and plays also a key-role in the proof of Ratner’s
Theorem.

Let us state this result. We will say that a one-parameter subgroup
(ut)t∈R of SLd(R) is unipotent if its derivative is nilpotent, that is, if there
exists a nilpotent d × d matrix X such that, for any t, ut = exp(tX). We
will establish the following

Theorem 3.0.11 (Dani-Margulis). Let (ut) be a unipotent one-parameter
subgroup of SLd(R) and x be an element in SLd(R)/SLd(Z). Then, for any
ε > 0, there exists a compact subset K of SLd(R)/SLd(Z) such that, for any
T > 0, one has

|{0 ≤ t ≤ T |utx ∈ K}| ≥ (1− ε)T.

By |.|, we mean Lebesgue measure of R.

Remark 3.0.12. Let µ be the SLd(R)-invariant probability measure of the
space SLd(R)/SLd(Z) and (Kn) be a sequence of compact subsets inside
SLd(R)/SLd(Z) such that µ(Kn) −−−→

n→∞
1. We know that the action of (ut) on

SLd(R)/SLd(Z) is mixing, hence ergodic with respect to the SLd(R)-invariant
measure µ. Therefore, we know from Birkhoff’s ergodic theorem that, for µ-
almost any x in SLd(R)/SLd(Z), for any n, one has

1

T
|{0 ≤ t ≤ T |utx ∈ Kn}| −−−→

n→∞
µ(Kn),

31
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so that the theorem clearly holds for µ-almost any x in SLd(R)/SLd(Z). But
it is much more difficult to prove it for any x!

Example 3.0.13. The assumption that the one-parameter subgroup is unipo-
tent is crucial for the theorem to hold. Indeed, assume d = 2 and consider

the point x = SL2(Z) and the one-parameter subgroup

(
et 0
0 e−t

)
t∈R

. Then,

in SL2(R)/SL2(Z), by Corollary 1.3.11, one has atx −−−→
t→∞

∞, since atZ2

contains a non-zero vector with norm e−t.

3.1 Recurrence in case d = 2

We start by giving the proof of Dani-Margulis Theorem in case d = 2, which
is simpler than the general case.

Proof of Theorem 3.0.11 in case d = 2. All the unipotent subgroups of the
group SL2(R) are conjugate, so that we can assume, for any t, one has

ut =

(
1 t
0 1

)
.

Now, set Λ = gZ2, where g is in SL2(R) and x = gSL2(Z). The set Λ is a
unimodular lattice in R2 and we distinguish between two cases.

First, assume Λ contains a non zero vector in the coordinate axis Re1.
Choose v to be a generator of Λ ∩ Re1 and w in R2 such that (v, w) is
a basis of Λ, so that, in particular, w2 6= 0. Then, for any t, we have
ut(w) = (w1 + tw2, w2), hence, if t0 = v1

w2
, ut0(w) = w + v and we have

ut0(Λ) = Λ, that is ut0x = x. Therefore, the orbit of x under (ut) is compact
and the result naturally follows.

Now, assume Λ ∩ Re1 = {0}. We will use Corollary 1.3.11 to prove that
the trajectory (utx) spends most of its time in compact subsets, that is, we
will prove that, most of the time, the systole of the lattice utΛ is not too
small. Set

E =

{
t ∈ R

∣∣∣∣s(utΛ) <
1

2
min(s(Λ), 1)

}
,

where s denotes systole. For any t in R, let Ft ⊂ Λ denote the set of vectors
v in Λ such that ‖utv‖ = s(utΛ) and, for any v in Λr {0}, let Ev denote the
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set of t in E such that v ∈ Ft. We claim that Ev is both open and closed in
E and that, for any t in Ev, Ft = {±v}. On one hand, since

Ev = {t ∈ E|∀w ∈ Λ r {0} ‖utw‖ ≥ ‖utv‖},

Ev is clearly closed in E. On the other hand, let t be in Ev and I be
a neighborhood of t in R such that, for any s in I, one has ‖usv‖ < 1

2
.

We claim that, for s in I, Fs = {±v}. Indeed, for any v′ in Fs, we have
‖usv′‖ ≤ ‖usv‖ < 1

2
, hence

det(utv, utv
′) ≤ ‖utv‖ ‖utv′‖ <

1

4
,

whereas, Λ being unimodular, we have det(v, v′) = det(utv, utv
′) ∈ Z, hence

det(utv, utv
′) = 0. This gives v′ = ±v, since ‖utv‖ ≤ ‖utv′‖ and ‖usv′‖ ≤

‖usv‖, and we are done.
Let I be the set of connected components of E, which is at most count-

able. Fix I in I. By the property above, there exists a vector vI in
Λ such that, for any t in I, one has s(utΛ) =

∥∥utvI∥∥. By assumption,
we have vI /∈ Re1, so that ‖utvI‖ −−−→

|t|→∞
∞ and I is a bounded interval

(a, b). Note that, by construction, we have
∥∥uavI∥∥ = 1

2
min(s(Λ), 1). Fix

0 < ε ≤ 1
4

min(s(Λ, 1) and let us study the set of t in I such that s(utΛ) ≤ ε.
Set w = uav

I , so that if t = a+ r is in I and s(utΛ) ≤ ε, we have

(w1 + rw2)2 + w2
2 = ‖urw‖2 ≤ ε2.

If w2 > ε, this inequation has no solution. If not, we have

w2
1 =

1

4
min(s(Λ), 1)2 − w2

2 ≥
1

4
min(s(Λ), 1)2 − ε2 ≥ 3

16
min(s(Λ), 1)2

hence, for T > a, the set

{a ≤ t ≤ T | ‖utv‖ ≤ ε}

is empty if T ≤ a+ 1
4w2

min(s(Λ), 1). Else, we have

|{a ≤ t ≤ T | ‖utv‖ ≤ ε}| ≤ 2ε

|w2|
≤ 8εmin(s(Λ), 1)(T − a).

In any case, we get, for any T > 0,

|{a ≤ t ≤ min(T, b)|s(utΛ) ≤ ε}| ≤ 8εmin(s(Λ), 1) |[0, T ] ∩ (a, b)| .
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Hence, we have

|{0 ≤ t ≤ T |s(utΛ) ≤ ε}| =
∑
I∈I

|{0 ≤ t ≤ T |s(utΛ) ≤ ε}|

≤
∑
I∈I

|{t ∈ [0, T ] ∩ I|s(utΛ) ≤ ε}|

≤ 8εmin(s(Λ), 1)
∑
I∈I

|[0, T ] ∩ I|

≤ 8εmin(s(Λ), 1)T

and the result now follows from Corollary 1.3.11.

3.2 Preliminaries from multilinear algebra

We will now give the full proof of Dani-Margulis Theorem. As in case d = 2,
we need to control the amount of time when polynomial functions take small
values, but now this polynomial functions have larger degrees. This is not a
great difficulty, and we will prove below an elementary lemma on polynomial
functions with bounded degrees (whose conceptual statement will turn out
to be easier to handle that the very explicit computations we made in case
d = 2). The main problem when the dimension d is ≥ 3 is that the vector
of a lattice in Rd that achieves the minimum of the norm has no reason to
be unique. Indeed, for example, for any t > 0, there are (up to sign change)
two vectors of the lattice Λt = e−tZe1 ⊕ e−tZe2 ⊕ e2tZe3. In this example,
this phenomenon is related to the fact that the dual lattice Λ∗t has systole
e−2t, that is, much smaller than the systole of Λt (where, by the dual lattice
of a lattice Λ in Rd, we mean the set of linear forms ϕ in the dual space
of Rd such that ϕ(Λ) ⊂ Z). For this reason, to control efficiently the way
a family of lattices goes to infinity in SLd(R)/SLd(Z), we need to introduce
new functions on this space, which are other versions of the systole. These
functions will be defined by using notions from multilinear algebra. When
d = 3, there is only one new function to consider, which is precisely the
systole of the dual lattice of a given lattice in R3.

Let us proceed to this definition. As we said, we need to recall elements
of multilinear algebra. Given a finite-dimensional real vector space V with
dimension d and an integer k ≥ 0, we let ∧kV denote its k-th exterior power
(with the convention that ∧0V = R): this space may be seen as the space of
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alternate k-linear forms on the dual space V ∗ of V . In particular, it is 0 if
k > d. If T is a linear endomorphism of V , we let ∧kT denote the associated
linear endomorphism of ∧kV , so that, for v1, . . . , vk in V , one has

∧kT (v1 ∧ · · · ∧ vk) = (Tv1) ∧ · · · ∧ (Tvk).

We let Sk denote the group of permutations of {1, . . . , k} and ε : Sk →
{±1} be the signature morphism.

Lemma 3.2.1. Let V be a euclidean space and k ≥ 0. There exists a unique
scalar product on ∧kV such that, for any v1, . . . , vk in V , one has

‖v1 ∧ · · · ∧ vk‖2 =
∑
σ∈Sk

ε(σ)
k∏
i=1

〈vi, vσ(i)〉.

Proof. For v1, . . . , vk and w1, . . . , wk in V , define

ϕ(v1, . . . , vk, w1, . . . , wk) =
∑
σ∈Sk

ε(σ)
k∏
i=1

〈vi, wσ(i)〉.

Then ϕ is 2k-linear and it is alternate in the k-first variables and in the
k-last variables. Therefore, ϕ defines a bilinear for on ΛkV , which we still
denote by ϕ. Now, let e1, . . . , ed be an orthnormal basis of V , so that (ei1 ∧
· · · ∧ eik)1≤i1<···<ik≤d is a basis of ∧kV . One easily checks that this basis
is orthonormal for ϕ, hence that ϕ is a scalar product. Existence follows.
Uniqueness is evident.

In the sequel, we shall always equip the exterior powers of a euclidean
space with this scalar product. Here is a geometric interpretation of this
construction:

Lemma 3.2.2. Let V be a euclidean space and v1, . . . , vk be a free set of
vectors in V . Then the euclidean volume of the set

C(v1, . . . , vk) =

{
k∑
i=1

tivi

∣∣∣∣∣∀1 ≤ i ≤ k ti ∈ [0, 1]

}

is equal to the norm of v1 ∧ · · · ∧ vk.
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Proof. It suffices to prove this result when k = d. By Gram-Schmidt theorem,
there exists an orthogonal basis w1, . . . , wd of V such that the matrix of the
basis w1, . . . , wd with respect to v1, . . . , vd is unipotent. In particular, the
unique linear map T that sends vi to wi, 1 ≤ i ≤ d, has determinant 1, hence
T preserves the euclidean volume and ∧dT is the identity map in ∧dV . Since
TC(v1, . . . , vd) = C(w1, . . . , wd), it suffices to prove the result when v1, . . . , vd
is orthogonal. In this case, one clearly has

|C(v1, . . . , vd)| = ‖v1‖ · · · ‖vd‖ = ‖v1 ∧ · · · ∧ vd‖ .

When k varies, these norms are related by a nice inequality.

Lemma 3.2.3. Let V be a euclidean space, h, k, ` ≥ 0 be integers and u =
u1 ∧ . . . ∧ uh ∈ ∧hV , v = v1 ∧ . . . ∧ vk ∈ ∧kV and w = w1 ∧ . . . ∧ w` ∈ ∧`V
be pure tensors. One has

‖u‖ ‖u ∧ v ∧ w‖ ≤ ‖u ∧ v‖ ‖u ∧ w‖ .

Proof. We can assume u, v and w are 6= 0. Since u ∧ v, u ∧w and u ∧ v ∧w
are not changed by adding linear combinations of u1, . . . , uh to v1, . . . , vk and
w1, . . . , w`, we can assume that v1, . . . , vk and w1, . . . , w` are orthogonal to
u1, . . . , uh. Now, the left member of the inequality we have to prove is equal
to ‖u‖2 ‖v ∧ w‖ whereas the right member is equal to ‖u‖2 ‖v‖ ‖w‖. So that
we are reduced to proving the simpler inequality

‖v ∧ w‖ ≤ ‖v‖ ‖w‖ .

Let W be the linear span of w1, . . . , w`, W
⊥ be its orthogonal subspace and,

for 1 ≤ i ≤ k, let v′i be the orthogonal projection of vi on W⊥, so that
vi ∈ v′i +W . We have v ∧ w = v′ ∧ w, hence

‖v ∧ w‖ = ‖v′ ∧ w‖ = ‖v′‖ ‖w‖ .

Besides, by using the definition of the scalar product in ∧kV , one easily
checks that the tensors v′ and v − v′ are orthogonal, so that ‖v′‖ ≤ ‖v‖ and
we are done.
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Let us now introduce unipotent flows and make explicit their link with
polynomial functions. Let (ut) be a one-parameter subgroup in GL(V ).
Recall (ut) is said to be unipotent if its generator is nilpotent, that is,
if there exists a nilpotent endomorphism N of V such that, for t ≥ 0,
ut = exp(tN) =

∑d−1
p=0

1
p!
Np. In particular, we at once get

Lemma 3.2.4. Let V be a a euclidean space and (ut) be a unipotent one-
parameter subgroup in GL(V ). Then for any integer k ≥ 0 and any v in

∧kV , the function t 7→
∥∥∧kutv∥∥2

is polynomial wth degree ≤ k(d− 1).

We will now use these objects to define new systoles in lattices.

Definition 3.2.5. Let Λ be a lattice in Rd and k be an integer in [1, d]. The
k-systole of Λ is the positive real number sk(Λ) defined by

sk(Λ) = min{‖v1 ∧ · · · ∧ vk‖ |v1, . . . , vk ∈ Λ v1 ∧ · · · ∧ vk 6= 0}.

In other words, by Lemma 3.2.2, sk(Λ) is the smallest covolume of the
intersection of Λ with a k-dimensional subspace of Rd. In particular, sd(Λ)
is the covolume of Λ.

Assume Λ is unimodular. We can identify the space ∧d−1Rd with the dual
space of Rd through the map that sends a pure tensor w1 ∧ · · · ∧wd−1 to the
linear form v 7→ det(w1, . . . , wd−1, v). Under this identification, the scalar
product on ∧d−1Rd is the one one obtains on the dual space of Rd, through
the natural identification of a euclidean space with its dual space. Then,
the lattice ∧d−1Λ identifies with the dual lattice Λ∗ of Λ and the number
sd−1(Λ) is the systole of Λ∗. More generally, for any 1 ≤ k ≤ d− 1, one has
sk(Λ) = sd−k(Λ

∗).
The systoles are comparable to each other.

Lemma 3.2.6. Fix d ≥ 1. There exists a constant C > 1 such that, for any
unimodular lattice Λ in Rd, for any 1 ≤ k ≤ ` ≤ d, one has

1

C
s`(Λ)

d−k
d−l ≤ sk(Λ) ≤ Cs`(Λ)

k
` .

Proof. Let us sketch this briefly, since we will note use it later. First, note
that there exists Cd > 1, such that, if a1, . . . , ad are positive numbers with
a1 · · · ad = 1 and ai ≤ 2√

3
ai+1, 1 ≤ i ≤ d − 1, one has a1 · · · ak ≤ Cd. By

Theorem 1.3.8, this tells us that any unimodular lattice Λ in Rd satisfies
sk(Λ) ≤ Cd.



38 CHAPTER 3. RECURRENCE OF UNIPOTENT FLOWS

Let Λ be a unimodular lattice in Rd, 1 ≤ k ≤ ` ≤ d and V be an `-
dimensional subspace of Rd such that Λ∩ V is a lattice with covolume s`(Λ)
in V . By the remark above, there exists v1, . . . , vk in Λ ∩ V with

‖v1 ∧ · · · ∧ vk‖ ≤ C`s`(Λ)
k
` ,

hence
sk(Λ) ≤ C`s`(Λ)

k
` .

Now, recall that, since Λ is unimodular, we have sk(Λ) = sd−k(Λ
∗) and

s`(Λ) = sd−`(Λ
∗). By applying the same inequality, we get

s`(Λ) ≤ Cd−ksk(Λ)
d−`
d−k .

Given a unipotent one-parameter subgroup (ut) of SLd(R), we will study
the behavior of the functions t 7→ sk(utΛ)2. As these are piecewise polynomial
function with bounded degrees, we will need an elementary lemma about the
small values of polynomial functions.

Lemma 3.2.7. Let m ≥ 0 be an integer. For any ε > 0, there exists α > 0
such that, for any polynomial function ϕ with degree ≤ m and max[0,1] |ϕ| ≥ 1,
one has

|{0 ≤ t ≤ 1| |ϕ(t)| ≤ α}| ≤ ε.

Proof. It suffices to prove the result for polynomial functions ϕ with

max
[0,1]
|ϕ| = 1.

Equip the space of polynomial functions with degree ≤ m with the norm
ϕ 7→ max[0,1] |ϕ|, so that, in particular, the unit sphere S is compact.

For α > 0 and ϕ ∈ S, set Fα(ϕ) = |{0 ≤ t ≤ 1| |ϕ(t)| ≤ α}|. We claim
that the function Fα is upper semicontinuous: indeed, for any ϕ in S, one
has

Fα(ϕ) = inf
θ∈C0([0,1])
θ≥1[0,α]

∫ 1

0

θ(ϕ(t))dt,

so that Fα is the infimum of a family of continuous functions.
Now, for any ϕ in S, we have Fα(ϕ) −−→

α→0
0, since ϕ has but a finite

numbers of 0 in [0, 1]. In particular, we have
⋂
α>0 F

−1
α ([ε,∞[) = ∅. Since S

is compact, there exists α > 0 such that F−1
α ([ε,∞[) = ∅, which should be

proved.
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3.3 Besicovitch covering Theorem

In the course of the proof of Theorem 3.0.11, one splits the interval [0, T ] into
smaller intervals where the systole functions are polynomial. One then needs
to build these intervals together and to control their overlapings. This will
be done by using the one-dimensional case of Besicovitch covering Theorem:

Lemma 3.3.1 (Besicovitch covering Theorem in dimension 1). Let A be a
bounded subset of R and T : A → R∗+ be a bounded function. For x in
A, set I(x) = [x − T (x), x + T (x)]. There exists B ⊂ A such that A ⊂⋃
x∈B I(x) and that, for any x, y, z in B that are two by two distinct, one has

I(x) ∩ I(y) ∩ I(z) = ∅.

In other words, the covering
⋃
x∈B I(x) has multiplicity 2. This result

holds in any dimension, but with a bound on the multiplicity of the covering
that grows with the dimension.

Proof. First, we construct a sequence of elements of A by induction. We start
by chosing x0 in A with T (x0) ≥ 1

2
supA T . Then, if n ≥ 1 and x0, . . . , xn−1

are constructed, we pick xn in Ar
⋃n−1
k=0 I(xk) such that

T (xn) ≥ 1

2
sup

Ar
⋃n−1
k=0 I(xk)

T.

For any n, set Tn = T (xn) and In = I(xn). We will construct B as a subset
of the set {xn|n ≥ 0}. First, let us draw some direct consequences of the
construction of the sequence.

We claim that Tn −−−→
n→∞

0. Indeed, for any n < p, one has xp /∈ In, hence

|xn − xp| ≥ Tn. As A is bounded, (xn) admits a converging subsequence,
hence (Tn) admits a subsequence converging to 0. Since, for any n < p, one
has Tp ≤ 2Tn, (Tn) goes to 0. In particular, this implies that A ⊂

⋃
n≥0 In.

Indeed, for every x in A, there exists n such that, for p ≥ n, one has one has

T (x) > 2Tn ≥ sup
Ar

⋃n−1
k=0 I(xk)

T,

hence x ∈
⋃n−1
k=0 I(xk).

For x in A, we let N(x) be the set of n in N such that In contains x and
we claim that N(x) is finite. Write N(x) = N+(x) ∪ N−(x) where N+(x)
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(resp. N−(x)) is the set of n in N(x) such that xn ≥ x (resp. xn ≤ x).
Assume N+(x) is not empty, and let us prove it is finite. Fix n in N+(x).
Then, there exists p ≥ n+ 1 such that, for any q ≥ p, one has Tq ≤ Tn. For
such a q, as xq does not belong to In, one has q /∈ N+(x). In the same way,
N−(x) is finite.

We are now ready to construct the set B. This will again need an in-
duction procedure, that relies on the following observation. Assume n, p are
integers. We claim that, if xn ≤ xp, one has xn − Tn ≤ xp − Tp. Indeed,
if n > p, one has xn < xp − Tp and, if n < p, one has xp > xn + Tn and
Tp ≤ 2Tn. In the same way, if xn ≥ xp, one has xn + Tn ≥ xp + Tp. Now,
assume n, p, q are integers with xn < xp < xq and In ∩ Iq 6= ∅. Then, on
one hand, In ∪ Iq = [xn − Tn, xq + Tq] is an interval and, on the other hand,
xp−Tp ≥ xn−Tn and xp+Tp ≤ xq +Tq. We get Ip ⊂ In∪Iq. In other words,
as soon as such a configuration of three points arises, we can erase the one
in the middle. Let us do this precisely.

We define inductively a decreasing sequence of subsets of N. We set
E0 = N. Assume the construction was achieved for 0, 1, . . . , n. If there exists
p, q in En such that xp < xn < xq and Ip ∩ Iq 6= ∅, we set En+1 = En r {n}.
If not, we set En+1 = En. In any case, we have

⋃
p∈En+1

Ip =
⋃
p∈En+1

Ip ⊃ A.
Finally, we set E =

⋂
n≥0Bn, B = {xn|n ∈ E} and we claim that B has the

required properties.
First, let n, p, q be two by two distincts elements of E and assume, for

example xn < xp < xq. Then, since n and q belong to Ep and p belongs to
Ep+1, we have In ∩ Ip ∩ Iq = ∅.

Now, recall that, for any x in A, the set N(x) of n in N such that x ∈ In
is finite. Hence the family (N(x) ∩ En)n≥0 is a decreasing sequence of finite
subsets. Since it is never empty, it has non-empty intersection, hence, there
exists n in E such that x belongs to In, which should be proved.

To give an idea of how powerful this covering theorem is, we give an
application that is a strong extension of Lebesgue derivation Theorem.

Corollary 3.3.2. Let µ and ν be Radon measures on R. Then, for ν-almost
any x in R, one has

µ([x− ε, x+ ε])

ν([x− ε, x+ ε])
−−→
ε→0

dµ

dν
(x).

Proof. We can of course assume µ and ν are concentrated in a bounded
subset of R.
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First, let us assume that µ is absolutely continuous with respect to ν,
that is, µ = ϕν, for some ϕ in L1(R, ν). In this case, we will prove that
the result follows from the fact that it holds when ϕ is continuous and from
the denseness of continuous functions in L1(R, ν). To make this possible, we
must prove that the quantities we want to converge do not change very much
when one changes the function. This is where Besicovitch Theorem comes
into play.

For any ψ in L1(R, ν), we introduce the associated maximal function ψ∗

defined for ν-almost every x by

ψ∗(x) = sup
0<ε≤1

∣∣∣∫[x−ε,x+ε]
ψdν

∣∣∣
ν([x− ε, x+ ε])

.

We claim that, for any λ > 0, this function satisfies the maximal inequality

ν({x ∈ R|ψ∗(x) ≥ λ}) ≤ 2

λ
‖ψ‖1 .

Indeed, let I be a bouded interval of R which contains the support of ν and
set Aλ = {x ∈ I|ψ∗(x) ≥ λ}. For any x in Aλ, we choose some εx > 0 such
that ∣∣∣∣∫

[x−εx,x+εx]

ψdν

∣∣∣∣ ≥ λν([x− εx, x+ εx]).

By Lemma 3.3.1, there exists a set Bλ ⊂ Aλ such that Aλ ⊂
⋃
x∈Bλ [x −

εx, x + εx] and the covering
⋃
x∈Bλ [x − εx, x + εx] has multiplicity ≤ 2. We

have

ν(Aλ) ≤
∑
x∈Bλ

ν([x− εx, x+ εx]) ≤
1

λ

∑
x∈Bλ

∣∣∣∣∫
[x−εx,x+εx]

ψdν

∣∣∣∣
≤ 1

λ

∑
x∈Bλ

∫
[x−εx,x+εx]

|ψ| dν ≤ 2

λ
‖ψ‖1 ,

where the last inequality follows from the fact that the covering has multi-
plicity 2.

Let us deduce from this inequality the almost sure convergence of the

ratios
∫
[x−ε,x+ε] ϕdν

ν([x−ε,x+ε])
towards ϕ. More precisely, we will prove that, for any

α > 0, one has

lim sup
ε→0

∣∣∣∣∣
∫

[x−ε,x+ε]
ϕdν

ν([x− ε, x+ ε])
− ϕ(x)

∣∣∣∣∣ ≤ 2α
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on a set whose complement has measure ≤ 3α, which implies the result.
Indeed, pick a continuous compactly supported function ψ on R such that
‖ϕ− ψ‖1 ≤ α2. On one hand, one has

ν({x ∈ R| |ϕ(x)− ψ(x)| ≥ α}) ≤ α

and, on the other hand, form the maximal inequality,

µ({x ∈ R|(ϕ− ψ)∗(x) ≥ α}) ≤ 2α,

which implies the claim, hence the lemma in the case where µ is absolutely
continuous with respect to ν.

Now, to get the general case, we just have to deal with the case where µ
is orthogonal to ν, that is, there exists a Borel set A which has measure 0 for
ν and full measure for µ. In this sitation, since both µ and ν are absolutely
continuous with respect to µ + ν, we get from the previous case that, for
ν-almost any x in A, one has

µ([x− ε, x+ ε])

µ([x− ε, x+ ε]) + ν([x− ε, x+ ε])
−−→
ε→0

0,

which amounts to saying

µ([x− ε, x+ ε])

ν([x− ε, x+ ε])
−−→
ε→0

0,

which should be proved.

3.4 Dani-Margulis induction

We now come back to the proof of the recurrence theorem.
Let us introduce some terminology about subgroups of lattices. We let

P(Λ) denote the set of proper non trivial subgroups of Λ which are direct
factors in Λ. For any ∆ in P(Λ), we have ∆ = Λ∩V , where V is the subspace
of Rd that is spanned by ∆. We let d(∆) be the covolume of ∆ in V , that is
d(∆) = ‖v1 ∧ · · · ∧ vk‖, where v1, . . . , vk is a basis of ∆. Finally, we define a
primitive flag of Λ as a (finite) subset F of P(Λ) that is totally ordered by
inclusion. For such a flag F , we let C(F) denote the set of primitve subgroups
in P(Λ) r F which are comparable with all the elements of F .

The core of the proof of Dani-Margulis theorem is the following lemma,
which relies on successive applications of Lemma 3.2.7:
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Lemma 3.4.1. Let Λ be a unimodular lattice in Rd and (ut) be a unipotent
one-parameter subgroup in SLd(R). Fix ε > 0. Then, there exists 0 < σ ≤
ρ with the following property: for any T > 0, there exists a Borel subset
ET ⊂ [0, T ] with |ET | ≥ (1 − ε)T , such that, for any t in ET , there exists a
primitive flag F of ∆ with

d(ut∆) ≥ σ for any ∆ in F ∪ C(F)

and d(ut∆) ≤ ρ for any ∆ in F .

This conclusion might seem a bit strange, but let us show that it permits
to conclude:

Proof of Theorem 3.0.11 in the general case. Keep the notations of Lemma
3.4.1 and let us prove that, for any t in ET , one has s1(ut∆) ≥ σ

min(ρ,1)
, which,

by Corollary 1.3.11, implies the result.
Indeed, for such a t, let F be as in the statement and v be a primitive

vector of Λ. If v belongs to all the elements of F , then Zv belongs to F∪C(F),
hence ‖v‖ ≥ σ. Else, let ∆ be the largest element of F that does not contain
v. Then Zv ⊕∆ belongs to F ∪ C(F), hence

σ ≤ d(ut(Zv ⊕∆)) ≤ ‖utv‖ d(ut∆) ≤ ‖utv‖ ρ

(where the second inequality follows from Lemma 3.2.3) and we are done.

It remains to prove Lemma 3.4.1. To build the flags F , we will proceed by
induction. More precisely, we will assume that a small flag G has already been
constructed at most points of ET and that it is constant on some intervals.
Then, we will prove that, at most points, we can select a nice element of
C(G). Once written precisely, the induction statement is the following:

Lemma 3.4.2. Fix ρ, ε > 0. Then, there exists 0 < σ ≤ ρ with the following
property: for any unimodular lattice Λ in Rd and any primitive flag G in Λ
and any compact interval I ⊂ R such that

min
∆∈C(G)

max
t∈I

d(ut∆) ≥ ρ,

there exists a Borel subset EI ⊂ I with |EI | ≥ (1− ε) |I|, such that, for any
t in EI , there exists a primitive flag F of ∆ with F ⊂ G ∪ C(G) and

d(ut∆) ≥ σ for any ∆ in F ∪ C(F) r G
and d(ut∆) ≤ ρ for any ∆ in F r G.



44 CHAPTER 3. RECURRENCE OF UNIPOTENT FLOWS

In this statement, one has to think to G as the part of the flag F that
has already been constructed.

This allows to recover Lemma 3.4.1:

Proof of Lemma 3.4.1. This is the particular case where G is the empty flag,
ρ is the minimum of the d(∆), where ∆ belongs to P(Λ), and I = [0, T ].

It only remains to give the

Proof of Lemma 3.4.2. We will prove this statement when one fixes the car-
dinality r of the flags G. This, we will do by reverse induction on r, that is
an element in 0, . . . , d− 1. If r = d − 1, we can take EI = I and F = G,
since C(G) = ∅.

Hence, assume r belongs to 0, . . . , d− 2 and the statement holds for r+1.
Let σ′ the constant that is given by this induction assumption for flags of
cardinality r + 1 and when ε is replaced with ε

12
. From Lemmas 3.2.4 and

3.2.7, we know that there exists α > 0 such that, for any compact interval I
of R, for any ∆ in P(Λ), if maxt∈I d(ut∆) = ρ, then |{t ∈ I|d(ut∆) ≤ α}| ≤
ε
12
|I|. We set σ = min(σ′, α) and we will prove that it satisfies the conclusions

of the Lemma.
Let G be a primitive flag in Λ with cardinality r and I be a compact

interval in R such that

min
∆∈C(G)

max
t∈I

d(ut∆) ≥ ρ.

We will split I into smaller intervals such that, on each of these, there is
a good choice of an element of C(G). Then, we will apply the induction
statement to the small intervals and to the flag one obtains by adding the
marked element of C(G) to G.

Let us be more precise. We let A ⊂ I be the set of those t in I such that
there exists ∆ in C(G) with d(ut∆) < ρ. For t in I rA, we note that F = G
satisfies the conclusions of the lemma.

Now, for any t in A, there exists only finitely many ∆ in C(G) with
d(ut∆) < ρ: indeed, these correspond to vectors with bounded norm in the
lattices ∧kΛ, 1 ≤ k ≤ d− 1. We let Tt > 0 be the smallest real number such
that

min
∆∈C(G)

max
s∈[t−Tt,t+Tt]

d(us∆) ≥ ρ

and we pick some ∆t ∈ C(G) such that, for any s in (t− Tt, t + Tt), one has
d(us∆t) < ρ. Note that, by assumption, we have Tt ≤ |I|. We apply the



3.4. DANI-MARGULIS INDUCTION 45

induction assumption to the interval [t − Tt, t + Tt] and the flag G ∪ {∆t}.
This gives us a Borel subset Et ⊂ [t − Tt, t + Tt] with |Et| ≥ (1 − ε

12
)2Tt

such that, for any s in Et, there exists a primitive flag Fs of Λ with Fs ⊂
G ∪ {∆t} ∪ C(G ∪ {∆t}) and

d(us∆) ≥ σ′ for any ∆ in Fs ∪ C(Fs) r (G ∪∆t)

and d(us∆) ≤ ρ for any ∆ in Fs r (G ∪ {∆t}).

To conclude, we need to take out the points s where d(us∆t) is too small.
We set

Ft = {s ∈ [t− Tt, t+ Tt]|d(us∆t) ≥ α}.

By definition of α, we have |Ft| ≥ (1− ε
12

)2Tt. For s in Ft ∩ Et, the flag Fs
associated to s satisfies the conclusions of the lemma.

Now, we need to go back to the full interval I. To do this we apply
Lemma 3.3.1 to the set A and the intervals [t− Tt, t+ Tt], t ∈ A. This gives
us a subset B of A such that A ⊂

⋃
t∈B[t−Tt, t+Tt] and, for any two by two

distinct t, t′, t′′ in B, the three associated intervals do not intersect. We set

EI = (I r A) ∪
⋃
t∈K

Et ∩ Ft.

To conclude, we only need to prove that the Lebesgue measure of the com-
plement of this set is small. Indeed, we have

|I r EI | ≤
∑
t∈B

|[t− Tt, t+ Tt] r (Et ∩ Ft)| ≤
∑
t∈B

ε

3
Tt ≤

ε

3

∣∣∣∣∣⋃
t∈B

[t− Tt, t+ Tt]

∣∣∣∣∣
(where the latter inequality follows from the multiplicity bound on the cov-
ering). Now, since, for any t in B, we have Tt ≤ |I|, we get∣∣∣∣∣⋃

t∈B

[t− Tt, t+ Tt]

∣∣∣∣∣ ≤ 3 |I|

and we are done.


