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Abstract. We explain how certain tools from convex analysis and
probability theory may be used in order to obtain counting results
for the number of words with prescribed frequencies of letters in
regular languages.

1. Introduction

1.1. General objectives. The goal of this article (that shares features
of survey and research article) is to provide tools coming from proba-
bility theory, dynamical systems and discrete mathematics (automata
theory, computer science, theory of formal languages) applicable to the
needs of asymptotic combinatorics.

The enumeration problems of combinatorics lead to the coding of
combinatorial data by a multivariate power series that could repre-
sent a function which would be rational, meromorphic or of a more
general type. In the case of one variable, the asymptotic of the coef-
ficients of the corresponding power series could be easily gained from
the polynomials representing the function in the rational case or from
algebraic equations representing in the algebraic case. There are pow-
erful methods for the asymptotic of coefficients for more general classes
of functions (see [12, Sect. 2.4 & 2.5]).

In the case of two or more variables, a natural approach is to search
for the asymptotic along a certain direction, sometimes called (gener-
alized) diagonal (as is done in [12] for instance). That is, if F (z) =∑

n∈Nk anz
n, z ∈ Ck, is a series in k variables, one can fix a probability

vector p = (p1, . . . , pk) and inspect asymptotic of coefficients an when
the index n = (n1, . . . , nk) tends to infinity along the direction given
by the vector p, that is n = mp, m ∈ N. This ”naive” approach works
only if the direction vector p is rational (i.e. has rational coordinates).
In this case one considers only those mp that have integer values.

The monograph [12] (based on the work of many mathematicians)
provides a bunch of powerful methods and strong results of this sort
that serve in the rational case. The irrational case is mentioned time
to time in the book but practically no rigorous result is stated.
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Here we suggest our approach to the problem. The idea comes from
the article [16] of the second author and is based on the use of convexity,
functional analysis, and measure theory. To define correctly the direc-
tional growth we (using the coefficients of the series) create a Radon
measure associated with the (open) cones around the direction vector,
then consider the volume growth of this measure and its logarithmic
version. This leads us to the definition of the rate of growth in arbitrary
direction by means of a homogeneous function, called the indicator of
growth. Then we use the condition from [16] that we call concave
growth and that guarantees that the involved function is concave and
therefore the powerful tools of the convex analysis are applicable.

Then using results of various authors in probability theory, large
deviation theory, Perry-Frobenius operators, methods of symbolic dy-
namics, etc. we provide the results that could serve for a large number
of situations.

The problems of combinatorics that are in the focus of the authors
interest have algebraic origin (growth, cogrowth, random walks on
groups) and in many situations are transferred to the counting in for-
mal languages over finite alphabet that could represent a normal form
of elements in a group, set of words representing the identity element
etc. In the Chomsky hierarchy of languages the regular languages are
at the first level and they are the class of languages mostly used by al-
gebraists. Such languages can be defined by finite automata-acceptors.
The corresponding counting problem is closely related to the counting
for subshifts of finite type, the first level of complexity in symbolic dy-
namics. A second level gives sofic systems that also lead to the use of
regular languages. The material of the last section is adapted to these
cases.

This article is a continuation of studies initiated in the previous
work [8] of authors and A. Shaikh. Making comparison of the results
presented here and in monograph [12], we indicate that in the ”nice”
examples and for rational directions the function defined here coincides
with the logarithm of the function presented in [12, Definition 6.20].

At the same time we have to emphasize that, among other results,
we have the Corollary 9.1 claiming the analytic dependence of the di-
rectional growth from the direction.

1.2. Counting for automata. We now present the framework of our
results. Given a finite set A, we consider a language W written with
the alphabet A, that is, W is a subset of the set A∗ =

⋃
n≥0A

n of all
finite words over the alphabet A. Counting words in A means giving
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an asymptotic as n → ∞ for the cardinality of the set Wn = W ∩ An
of words with length n in W .

In what follows, we are interested in a more refined form of count-
ing. Indeed, to each word w in W , we can associate a vector whose
coordinates describe the number of occurrences of each letter of A in
w. Formally, we represent this string of integral numbers by an integer
valued function P(w) on A, that is, P(w) is an element of NA. Now,
we raise the following directional counting problem: given a sequence
(fn)n≥0 of integer valued functions on A, may we obtain an asymptotic
as n → ∞ of the number Nn = |{w ∈ Wn|P(w) = fn}| of words w in
Wn with prescribed associated function fn?

For languages associated with finite deterministic automata, it turns
out that this is the case, under some natural assumptions on the se-
quence (fn)n≥0. This asymptotic is of the form Nn ∼ n−k/2eδn where k
is an integer which only depends on the automaton and the exponent
δ > 0 depends on the limit of the direction of the vector fn in the space
RA of all real valued functions on the set A. This is the final result
of this article (see Theorem 11.3 and Theorem 12.5). The latter form
of the asymptotic will not surprise readers who are familiar with prob-
ability theory and in particular with the local limit theorem of Stone
[20] and the large deviation theory of Bahadur-Rao [1] and Petrov [15].

Indeed, most of our results on languages generated by automata are
essentially known under a different presentation among specialists of
the quantitative theory of hyperbolic dynamical systems. They rely
on the adaptation to this framework of tools from classical probability
theory, following a general principle due to Sinai [19] who established
a central limit theorem for Hölder continuous observables over such
dynamical systems. This theory is presented in the book of Parry and
Pollicott [14].

As mentioned above, our final result relies on an adaptation of the
proof of the fine large deviation estimates in probability theory. Besides
the work of Borovkov of Mogul’skĭı [3] in probability theory, we were not
able to find a precise reference for such a result over hyperbolic systems.
This is surely due to the fact that in the smooth dynamical systems
community, people are mainly interested by real valued observables
whereas in our case, we will focus on integer valued observables (this
splitting appears in probability theory where one separates the study
of random walks between the so called non-lattice and lattice cases, see
[17, 21]).

1.3. Structure of the article. The article is organized as follows.
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We begin by general ideas about counting. In Section 2, we recall
some facts of convex analysis. In Section 3, we present some tools for
studying directional counting in real vector spaces. In Section 4, under
some mild assumptions, we relate those tools with the convex analysis
of Section 2. In Section 5, we draw a link between the previously intro-
duced objects and the approach to counting through higher complex
analysis used in the book by Melczer [12].

Next, we study languages generated by automata. In Section 6, we
introduce general notions for languages; we also define directed graphs
and the associated language of paths whose alphabet is the set of edges
of the graph. We relate the general objects associated to the counting
problem for these languages in Section 3 with the spectral properties
of certain transfer operator. These operators are a family of Perron-
Frobenius operators acting on the space V of functions on vertices of
the graph. They depend on the choice of a function on the set of edges
of the graph. This analysis by means of transfer operators is a direct
translation of the theory of [14] for subshifts of finite type. In Section
7, we use the previously introduced tools for giving global counting
estimates for the language associated with a connected directed graph.

In the remainder of the article we establish our final fine counting
results. In the technical Section 8, we study a certain analytic function
λ on the space E of function on edges of the graph. Given θ in E ,
λ(θ) is the leading eigenvalue of the associated transfer operator. It is
a well-known fact in the study of hyperbolic dynamical systems that
λ(θ) plays the role of the characteristic function of the law of a random
walk in probability theory. Thus, the fine understanding of λ(θ) leads
to an analogue of the Central Limit Theorem in Section 8. Although
this result does not come with a very comfortable interpretation in the
framework of our original counting problem, the tools which are used
in its proof will play a key role in Section 11, where they are further
developed in order to state and prove Theorem 11.3 about directional
counting estimates for languages generated by directed graphs. Un-
fortunately, the statement of the latter result is rather technical. As
above, for a given sequence (fn)n≥0 of integer valued functions on the
set of vertices of the graph, this result gives an asymptotic estimate of
the number Nn defined above. For this to hold, the sequence (fn)n≥0

is subject to a certain set of natural assumptions. For example, the
sum of the values of the function fn must be equal to n, otherwise the
number Nn is 0. A less obvious restriction, comes from the fact that, as
soon as the graph has at least two vertices, the vectors P(w) remain at
a bounded distance from a proper subspace of the space E . Moreover,
their projections on that subspace remain close to a proper convex cone
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which may be smaller than the cone of positive functions. All these
objects are introduced precisely along the article and play a role in the
final formulation of Theorem 11.3. In Section 12, we establish a ver-
sion of the directional counting result for languages generated by finite
automata: these languages are obtained from languages generated by
directed graphs through forgetting part of the information.

1.4. Acknowledgements. The authors thank the university of Ge-
neva for offering them several occasions to meet at Les Diablerets.
The first author was also supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – SFB-TRR 358/1
2023–491392403, by Humboldt Foundation and expresses his acknowl-
edgement to the University of Bielefeld. The authors also thank Nataša
Jonoska for helpful discussions on the relation between languages and
subshifts.

2. Convex subsets and homogeneous functions

Let E be a finite-dimensional real vector space. When necessary, we
will equip E with a norm but our statements will not depend on the
choice of this norm.

Let ψ : E → R ∪ {−∞} be a positively homogeneous function,
that is, for x in E and t in [0,∞), we have ψ(tx) = tψ(x) (with the
convention that ψ(0) = 0). If ψ is concave and upper semicontinuous,
we associate to ψ the following non empty closed convex subset of the
dual space E∗ of E:

(2.1) Ω = {φ ∈ E∗|∀x ∈ E φ(x) ≥ ψ(x)}.

Conversely, if Ω is a closed non empty convex subset of E∗, we define
a homogeneous concave upper semicontinuous function

ψ : E → R ∪ {−∞}

by setting, for x in E,

(2.2) ψ(x) = inf{φ(x)|φ ∈ Ω}.

It follows from the geometric form of Hahn-Banach theorem (see [18])
that those two correspondances are reciprocal to each other.

If C ⊂ E is a closed convex cone, we define its dual cone C∗ by

C∗ = {φ ∈ E∗|∀x ∈ E φ(x) ≥ 0}.

It is a closed convex cone in E∗. Again, the Hahn-Banach theorem
implies that the dual cone of C∗ is C (when E is identified with the
dual space of E∗).
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Lemma 2.1. Let C ⊂ E be a closed convex cone. Then, an element

x in E belongs to the interior
◦
C of C if and only if, for every φ in

C∗ ∖ {0}, one has ⟨φ, x⟩ > 0.

Proof. If ⟨φ, x⟩ ≤ 0 for some φ ̸= 0 in C∗, we choose y in E with

⟨φ, y⟩ < 0. Then, for every ε > 0, ⟨φ, x+ εy⟩ < 0, hence x is not in
◦
C.

If ⟨φ, x⟩ > 0 for any φ ̸= 0 in C∗, then the function φ 7→ ⟨φ, x⟩ is
everywhere > 0 on the compact set C∗∩S where S is the unit sphere of
a fixed norm. Therefore, it is bouded away from 0, which is to say that
there exists α > 0 such that, for any φ in C∗, one has ⟨φ, x⟩ ≥ α∥φ∥.
In particular, for every y in E with ∥y∥ ≤ α, one has, for φ ∈ C∗,

⟨φ, x+ y⟩ ≥ α∥φ∥ − ∥y∥∥φ∥ ≥ 0,

hence x+ y ∈ C. Thus, x is an interior points of C as required. □

Every concave upper semicontinuous function ψ on E defines a nat-
ural closed convex cone, namely the closure of the essential domain of
definition of ψ:

Cψ = {x ∈ E|ψ(x) > −∞}.
Every non empty closed convex subset Ω of E∗ defines an other natural
closed convex cone, namely the cone

CΩ = {φ ∈ E∗|φ+ Ω ⊂ Ω}.
The following lemma tells us that these constructions are dual to

each other.

Lemma 2.2. Let ψ : E → R∪{−∞} be a homogeneous concave upper
semicontinuous function and Ω ⊂ E∗ be the associated closed convex
subset given by (2.1). Then we have

C∗
ψ = CΩ.

Proof. First suppose φ belongs to C∗
ψ. Let θ be in Ω and x be in E. If

x is not in Cψ, we have ψ(x) = −∞, hence φ(x) + θ(x) ≥ ψ(x). If x
is in Cψ, we have φ(x) ≥ 0, hence φ(x) + θ(x) ≥ θ(x) ≥ ψ(x). Thus,
φ+ θ belongs to Ω as required.

Conversely let φ not belong to C∗
ψ. We will prove by contradiction

that φ + Ω is not contained in Ω. Indeed, suppose φ + Ω ⊂ Ω, hence
nφ + Ω ⊂ Ω for any n ≥ 0. Choose x in E with ψ(x) > −∞ and
φ(x) < 0. Fix θ in Ω. Then, for n large, we have nφ(x) + θ(x) < ψ(x),
which contradicts the fact that nφ+ θ belongs to Ω. □

Note that we have another characterisation of the cone associated to
Ω. Define the asymptotic cone of Ω as the set of φ in E∗ such that there
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exists a sequence (tn)n≥0 of non-negative real numbers and a sequence
(φn)n≥0 of elements of Ω such that

(2.3) tn −−−→
n→∞

0 and tnφn −−−→
n→∞

φ.

Lemma 2.3. Let Ω ⊂ E∗ be a non empty closed convex subset. Then
the cone CΩ is also the asymptotic cone of Ω.

Proof. Clearly, the cone CΩ = {φ ∈ E∗|φ + Ω ⊂ Ω} is contained in
the asymptotic cone. Conversely, if φ is in the asymptotic cone, we
choose a sequence (tn)n≥0 of non-negative real numbers and a sequence
(φn)n≥0 of elements of Ω such that tn −−−→

n→∞
∞ and tnφn −−−→

n→∞
φ.

Then, for n large, we have tn ≤ 1. In particular, if θ is in Ω, we get
(1−tn)θ+tnφn ∈ Ω. Letting n go to∞ yields θ+φ ∈ Ω as required. □

We also show that, in most cases, ψ is defined by the boundary of
Ω. Say that a half space in E∗ is a convex subset of E∗ of the form

{φ ∈ E∗|φ(x) ≥ a},
where x is a non zero vector in E and a is a real number.

Lemma 2.4. Let ψ : E → R∪{−∞} be a homogeneous concave upper
semicontinuous function and Ω ⊂ E∗ be the associated closed convex
subset. Then either Ω = E∗ or Ω is a half-space (and Cψ is a half-line)
or Ω is the convex closure of its boundary. In the last case, for x in E,
we have

ψ(x) = inf
φ∈∂Ω

φ(x).

Proof. Consider the closed convex cone Cψ.
If Cψ is {0}, we have C∗

ψ = E∗, hence, by Lemma 2.2, Ω = E.
If Cψ is a half-line, then there exists x ̸= 0 in E and a in R such that,

for y in E,

φ(y) = −∞ if y /∈ [0,∞)x

φ(y) = ta if y = tx, t ≥ 0.

Then, a direct computation shows that Ω is the half-space

{φ ∈ E∗|φ(x) ≥ a}.
In every other case, there exists two non zero and non positively

colinear vectors x and y with ψ(x) > −∞ and ψ(y) > −∞. Let us
show that this implies that Ω is the convex closure of its boundary.
Indeed, as x and y are not positively colinear, there exists a θ in E∗

with θ(x) < 0 and θ(y) > 0. Pick φ in Ω and consider the set

I = {t ∈ R|φ+ tθ ∈ Ω}.
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As Ω is a closed convex set which contains φ, I is a closed interval in R
which contains 0. We claim that I is compact. Indeed, since θ(x) < 0
and ψ(x) > −∞, for large t, we have

φ(x) + tθ(x) < ψ(x)

hence φ+ tθ /∈ Ω and t /∈ I. In the same way, for small t, we have

φ(y) + tθ(y) < ψ(y),

hence t /∈ I. Thus, I = [a, b] for some a ≤ 0 and b ≥ 0. Then, φ + aθ
and φ+ bθ belong to ∂Ω and hence φ belongs to the convex closure of
∂Ω as required. In particular, for x in E and φ in Ω, we have

φ(x) ≥ inf{θ(x)|θ ∈ ∂Ω},
hence

ψ(x) = inf{θ(x)|θ ∈ ∂Ω}
as required. □

We can describe the interior
◦
Ω of Ω. Note that, as ψ is homogeneous

and concave, for any x in E, we have ψ(x) + ψ(−x) ≤ 0.

Lemma 2.5. Let ψ : E → R∪{−∞} be a homogeneous concave upper
semicontinuous function and Ω ⊂ E∗ be the associated closed convex
subset. Then the following are equivalent:
(i) the set Ω has non empty interior.
(ii) for any x ̸= 0 in E, we have ψ(x) + ψ(−x) < 0.
If this holds, we have

(2.4)
◦
Ω = {φ ∈ E∗|∀x ∈ E ∖ {0} φ(x) > ψ(x)}.

Proof. We actually prove that the negation of the statements are equiv-
alent.
Suppose Ω has empty interior. Then, as the convex closures of affine

basis of E∗ have non empty interior, Ω is contained in an affine subspace
of E∗. In other words, we may find x in E∖ {0} and θ in E∗ such that

Ω ⊂ {φ ∈ E∗|φ(x) = θ(x)}.
In particular, for t in R, we have

ψ(tx) = inf
φ∈Ω

tφ(x) = tθ(x),

which yields ψ(x) + ψ(−x) = 0.
Conversely, suppose there exists x in E ∖ {0} with ψ(−x) = −ψ(x).

If φ is in Ω, we get

φ(x) ≥ ψ(x) and − φ(x) = φ(−x) ≥ ψ(−x) = −ψ(x).
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Thus, φ(x) = ψ(x) for any φ in Ω and Ω has empty interior.
Now, let us show (2.4). As ψ is upper semicontinuous, the set

{φ ∈ E∗|∀x ∈ E ∖ {0} φ(x) > ψ(x)}

is open, hence it is contained in the interior of Ω. Conversely, if φ is in
Ω and φ(x) = ψ(x) for some x ̸= 0 in E with ψ(x) > −∞, we choose
θ in E∗ with θ(x) < 0. Then, for ε > 0, φ+ εθ is not in Ω and φ does
not belong to the interior of Ω. □

As a general principle, when a convex object in E∗ is smooth, the
dual convex object in E is strictly convex. In the following Lemma,
we make this precise by assuming that Ω is real analytic and strictly
convex and deducing that ψ is then real analytic and strictly concave.
Recall that, if V is a real vector space, a function f defined on an

open subset U of V is said to be real analytic if it may be written as
the sum of a power series in the neighbourhood of every element of U .
Equivalently, f is real analytic if it is the restriction to U of a holomor-
phic function defined on an open subset U ′ ⊃ U of the complexification
VC of V .

Lemma 2.6. Let ρ : E∗ → R be a convex real analytic function. As-
sume that, for every θ in E∗, the derivative dθρ of ρ at θ does not vanish
and that the second derivative d2

θρ is positive definite on the kernel of
dθρ. Set Ω = ρ−1((−∞, 0]) and assume that Ω is non empty. Then,
Ω is a closed convex subset of E∗. Let ψ be the concave homogeneous
function on E that is dual to Ω. Then the cone Cψ has non empty
interior and the function ψ is strictly concave and real analytic in the
interior of Cψ.

Saying that ψ is strictly concave on
◦
Cψ amounts to saying that, for

any x, y in
◦
Cψ with y /∈ (0,∞)x, we have ψ(x+ y) > ψ(x) + ψ(y).

Proof. This is a consequence of the implicit function theorem which we
apply to the boundary of Ω. Let us be more precise. We fix a Euclidean
norm on E, so that the norm is an analytic function outside of 0. We
assume that the dimension of E is ≥ 2, else the statement is trivial.
Note that, since ρ is a globally defined convex function, it is not

bounded, hence Ω is not equal to all of E∗. Pick θ in ∂Ω. It follows
from the implicit function theorem that there exists a neighbourhood
U of θ in E∗ such that Ω ∩ U is contained in the half-space {ξ ∈
E∗|dθρ(ξ − θ) ≤ 0}. As Ω is convex, all of Ω is contained in the half-
space. In other words, setting u(θ) = −dθρ (which is a linear functional
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on E∗, hence a vector in E), we get, for all ξ in Ω,

(2.5) ⟨ξ, u(θ)⟩ ≥ ⟨θ, u(θ)⟩,

hence ψ(u(θ)) = θ(u(θ)). In particular ψ(u(θ)) > −∞. Thus, we have
built a map u : ∂Ω → E such that, for every θ in ∂Ω, one has u(θ) ∈ Cψ.

Let still θ be an element of ∂Ω. The assumption that d2
θρ is positive

definite on the kernel of d2
θρ ensures that the inequality in (2.5) is strict

for any ξ ̸= θ close enough to θ and belonging to Ω. Still as Ω is convex,
the inequality is strict for any ξ ̸= θ in Ω. We set v(θ) = ∥u(θ)∥−1u(θ).
Then, θ is the unique element of Ω with ψ(v(θ)) = θ(v(θ)), hence the
map v : ∂Ω → E is injective. We will now consider this map as an
analytic map from ∂Ω towards the unit sphere S of E and show that

its range is the intersection of
◦
Cψ with S.

Still by the positivity assumption, for θ in ∂Ω, the vector u(θ) does
not belong to the space dθu(Tθ∂Ω), that is, to the range of the differ-
ential of u on the tangent space to ∂Ω at θ (this is the infinitesimal
version of the injectivity property above). This says that the differen-
tial of v at θ maps this tangent space onto the tangent space of the
sphere. Therefore, as v is injective, it is an analytic diffeomorphism
onto its image which is an open subset of S.

We claim that this open subset of the sphere is given by v(∂Ω) =
◦
Cψ ∩ S. Indeed, the set (0,∞)v(∂Ω) is open in E and contained in Cψ.
Conversely, let x ̸= 0 be in E ∖ (0,∞)v(S) an let us show that x does
not belong to the interior of Cψ. If ψ(x) = −∞, this follows from the
definition of Cψ. Thus, we now assume ψ(x) > −∞. Note that, as
E has dimension ≥ 2, the positivity property of the second derivative
of ρ implies that the convex set Ω is not a half-space. Therefore, by
Lemma 2.4, we have

ψ(x) = inf
θ∈∂Ω

θ(x).

We fix a sequence (θn)n≥0 in ∂Ω with

θn(x) −−−→
n→∞

ψ(x).

We claim that ∥θn∥ −−−→
n→∞

∞. Indeed, if this was not the case, after

extracting a subsequence, we could assume that (θn)n≥0 converges to
some θ in ∂Ω, which would then satisfy θ(x) = ψ(x). But, then, as ψ
is concave and ≤ θ, for all 0 ≤ t ≤ 1, we would have

(2.6) θ(tx+ (1− t)v(θ)) = ψ(tx+ (1− t)v(θ)).

As (0,∞)v(∂Ω) is open in E, for small t, we have tx+(1−t)v(θ) = sv(ξ)
for some s > 0 and ξ in ∂Ω. From (2.6), we get θ(v(ξ)) = ψ(v(ξ)),
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hence, from the construction of the map v, ξ = θ. Thus, x belongs to
Rv(θ). As by assumption, x does not belong to [0,∞)v(θ), x belongs
to −(0,∞)v(θ). But then, from (2.6), we get ψ(v(θ)) + ψ(−v(θ)) = 0,
hence, by Lemma 2.5, the set Ω has empty interior, which contradicts
the local study of the function ρ. Hence, the sequence (θn)n≥0 goes to
∞ in E∗.

After extracting, we can assume that ∥θn∥−1θn −−−→
n→∞

φ for some

φ ̸= 0 in E∗. This linear functional φ belongs to the asymptotic cone
of Ω, which by Lemma 2.2 and Lemma 2.3, is the dual cone of Cψ. As
θn(x) −−−→

n→∞
ψ(x) > −∞, we get φ(x) = 0. Thus, we have built an

element φ in C∗
ψ with φ(x) = 0. By Lemma 2.1, this shows that x does

not belong to the interior of Cψ as required.
We now have established that v is an analytic diffeomorphism of ∂Ω

onto S ∩
◦
Cψ. By construction, for x in

◦
Cψ, we have

ψ(x) = ⟨v−1(∥x∥−1x), x⟩,

which shows that the function ψ is strictly concave and analytic on
◦
Cψ. □

Example 2.7. Set E = Rk, k ≥ 1, and let us identify E∗ with Rk

through the standard pairing, that is,

⟨x, y⟩ = x1y1 + · · ·+ xkyk, x, y ∈ Rk.

Then, we claim that the convex subset

Ω = {θ ∈ Rk|e−θ1 + · · ·+ e−θk ≤ 1}

is in duality with the concave homogeneous function ψ defined by

ψ(x) =
∑
1≤i≤k
xi>0

xi log
x1 + · · ·+ xk

xi
x1, . . . , xk ≥ 0(2.7)

= −∞ else.

This will follow from applying the tools used in the proof of Proposition
2.6.

Indeed, we define the function

ρ : E → R
θ 7→ e−θ1 + · · ·+ e−θk − 1,

which is clearly real analytic, so that we have Ω = ρ−1((−∞, 0]). The
second derivative of ρ is everywhere positive definite, hence we are in
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the setting of Proposition 2.6. We keep the notation of its proof. A
direct computation gives, for θ in E,

(2.8) u(θ) = (e−θ1 , . . . , e−θk).

Let ψ : E → [−∞,∞) be the upper semicontinuous concave ho-
mogeneous function which is dual to Ω. The proof of Proposition 2.6
shows that the interior of the cone Cψ is the set (0,∞)u(∂Ω). Using
(2.8), we obtain

◦
Cψ = (0,∞){(y−1

1 , . . . , y−1
k )|y1, . . . , yk > 0, y1 + · · ·+ yk = 1},

hence clearly, Cψ = [0,∞)k.

Finally, still by the proof of Proposition 2.6, for x in
◦
Cψ = (0,∞)k,

we have ψ(x) = ⟨θ, x⟩, where θ is the unique element of ∂Ω with u(θ) ∈
(0,∞)x. A direct computation using (2.8) gives

θi = log
x1 + · · ·+ xk

xi
, 1 ≤ i ≤ k,

hence (2.7) holds for x in (0,∞)k. The case of x in [0,∞)k follows as
ψ is upper semicontinuous.

Note that the restriction of ψ to the simplex

{x ∈ [0,∞)k|x1 + · · ·+ xk = 1}
is Shannon entropy function.

We will later need the following lemma which tells us how the duality
works when the objects are transported through linear maps.

Lemma 2.8. Let F be an other finite-dimensional real vector space
and T : E → F be a linear map, with adjoint map T ∗ : F ∗ → E∗.
Suppose ψ : E → R∪{−∞} is a concave upper semicontinuous function
and let Ω ⊂ E∗ be the associated closed convex subset. Assume that
ψ < 0 on kerT ∖ {0}. Then, the set Ω′ = (T ∗)−1Ω ⊂ F ∗ is not
empty and the associated homogeneous concave upper semicontinuous
function ψ′ : F → R ∪ {−∞} is given by, for y in F ,

(2.9) ψ′(y) = sup{ψ(x)|x ∈ E Tx = y}.

In the above formula, we took the convention that sup ∅ = −∞.

Proof. Set G = kerT and, for y in F , define ψ′(y) to be as in (2.9),
where for the moment, we consider ψ′(y) as an element of [−∞,∞].
We will show that the function ψ′ actually takes values in [−∞,∞)
and is concave and upper semicontinuous. This will imply the result.

First, we show that ψ′ < ∞ everywhere. As ψ′ is −∞ on F ∖ TE,
it suffices to show that we have ψ′ <∞ on TE. We choose a norm on
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E and we begin by noticing that, as ψ is upper semicontinuous, there
exists ε > 0 such that, for every z in G, we have ψ(z) ≤ −ε∥z∥. Pick
x in E; we have

(2.10) lim sup
z→∞
z∈G

ψ(x+ z)

∥z∥
≤ −ε.

Indeed, if (zn)n≥0 is a sequence which goes to ∞ in G, up to extracting
a subsequence, we can assume that it takes non zero values and that
∥zn∥−1zn −−−→

n→∞
u for some u in G. Then, we have ∥zn∥−1(x+zn) −−−→

n→∞
u and therefore, as ψ is upper semicontinuous,

lim sup
n→∞

ψ(x+ zn)

∥zn∥
= lim sup

n→∞
ψ(∥zn∥−1(x+ zn)) ≤ ψ(u) ≤ −ε,

so that (2.10) holds. In particular we have

(2.11) ψ(x+ z) −−−→
z→∞
z∈G

−∞.

Still as ψ is upper semicontinuous, it is bounded on compact sets and
therefore, by (2.11), we have supz∈G ψ(x+z) <∞, that is, ψ′(Tx) <∞
as required.

Concavity of ψ′ directy follows from the concavity of ψ and we will
now show that ψ′ is upper semicontinuous. As above, it suffices to
prove that ψ′ is upper semicontinuous on TE. Now, the proof of (2.11)
shows that, if K is a compact subset of E, we may find a compact
subset L of G such that, for any x in K, we have

(2.12) sup
z∈G

ψ(x+ z) = sup
z∈L

ψ(x+ z)

(the latter supremum being attained by semicontinuity). In particular,
let (yn)n≥0 be a sequence in TE which converges to some y in TE. We
may choose a sequence (xn)n≥0 in E, which converges to some x in E,
such that, for any n ≥ 0, yn = Txn. Then, applying (2.12), we may
assume that there exists a bounded sequence (zn)n≥0 in G, such that,
for n ≥ 0, ψ′(yn) = ψ(xn + zn). Up to extracting a subsequence, we
may also assume that zn −−−→

n→∞
z for some z in G. As Tz = 0, we have

T (x+ z) = Tx = y hence, by upper semicontinuity,

lim sup
n→∞

ψ′(yn) = lim sup
n→∞

ψ(xn + zn) ≤ ψ(x+ z) ≤ ψ′(y).

Therefore, the function ψ′ is upper semicontinuous.
Now, for θ in F ∗ we have

(θ ≥ ψ′) ⇔ (∀x ∈ E ψ(x) ≤ θ(Tx)) ⇔ (T ∗θ ∈ Ω) ⇔ (θ ∈ Ω′).

This shows that Ω′ is not empty and dual to ψ′. □
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3. Exponential divergence of measures

We recall some facts from [16].
Let µ be a Radon measure on E. Later, we will only be concerned

with counting measures, but the formalism turns out to be easier to
write this way. Fix a norm on E. For x in E and r > 0, we denote
by B(x, r) the closed ball with radius r and center at x in E. The
following Lemma is independent on the particular choice of the norm.

Lemma 3.1. Let µ be a Radon measure on E. The followig are equiv-
alent:
(i) there exists some s in R such that

(3.1) F(s) =

∫
E

exp(−s∥x∥)dµ(x) <∞.

(ii) there exists a, C ≥ 0 such that, for any r > 0,

µ(B(0, r)) ≤ CeaR.

If these conditions are satisfied, we shall say that µ has subexponential
divergence.

Proof. (i)⇒(ii) As the function s 7→
∫
E
exp(−s∥x∥)dµ(x) is non in-

creasing, we may find s ≥ 0 such that (3.1) holds. Then, by Chebyshev
inequality, for r > 0, we have

µ(B(0, r)) ≤ esr
∫
E

exp(−s∥x∥)dµ(x).

(ii)⇒(i) Let a and C be as in the statement and choose s > a. By
Fubini Theorem, we have∫

E

exp(−s∥x∥)dµ(x) <∞ =

∫ ∞

0

µ({x ∈ E| exp(−s∥x∥) ≥ u})du

=

∫ 1

0

µ(B(0,−s−1 log u))du

≤ C

∫ 1

0

u−
a
s du <∞,

where the latter follows from the assumption that a < s. □

When µ has subexponential divergence, we set τ ∈ R∪ {−∞} to be
the infimum of all s such that (3.1) holds and we call τ the exponent
of growth of µ. For s in R, we have

(3.2) s > τ ⇒ F(s) <∞ and F(s) <∞ ⇒ s ≥ τ.

The exponent τ depends on the choice of the norm. Below, we will
introduce a more intrinsic notion.
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First, if C ⊂ E is an open cone, we denote by τC the exponent of
growth of the restriction of µ to C. We set ψµ(0) = 0 and, for x in E,
x ̸= 0,

ψµ(x) = ∥x∥ inf{τC|C is an open cone and x ∈ C}.

The function ψµ does not depend on the choice of the norm and is
called the indicator of growth of µ. It is upper semicontinuous and we
have

τ = sup
x ̸=0

ψµ(x)

∥x∥
.

We also get the following multi-dimensional analogue of (3.2). For φ
in E∗, we have

(3.3) (∀x ̸= 0 φ(x) > ψµ(x)) ⇒
∫
E

exp(−φ(x))dµ(x) <∞

and

(3.4)

∫
E

exp(−φ(x))dµ(x) <∞ ⇒ (∀x ̸= 0 φ(x) ≥ ψµ(x)).

For counting measures, the function ψν takes its values in the set
[0,∞)∪{−∞} (appearance of the value −∞ is justified in Lemma 3.2
below). Recall that the asymptotic cone of a non-empty subset X of
E is defined by (2.3).

Lemma 3.2. Let A be a countable set and w : A → E be a proper
map, that is, w−1(B) is finite for any bounded set B in E. We set
µ =

∑
a∈A δw(a) and we assume that µ has subexponential divergence as

in (3.1), that is, there exists s in R with∑
a∈A

exp(−s∥w(a)∥) <∞.

Let C be the asymptotic cone of w(A). Then, we have ψµ ≥ 0 on C and
ψµ = −∞ on E ∖ C.

Proof. Let x ̸= 0 be in E.
If x is not in C, there exists an open cone D containing x such that

w−1(D) is finite. Then, for every s in R, we have∑
a∈A

w(a)∈D

exp(−s∥w(a)∥) <∞,

hence τD = −∞ and ψµ(x) = −∞.
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If x belongs to C, then, for every open cone containing x, the set
w−1(D) is infinite. We get∑

a∈A
w(a)∈D

1 = |{a ∈ A|w(a) ∈ D}| = ∞,

hence τD ≥ 0. Thus, ψµ(x) ≥ 0 as required. □

We shall need to study the behaviour of the indicator of growth when
mapping measures through a surjective linear map.

Proposition 3.3. Let F be a subspace of E and π : E → E/F be the
quotient map. Let µ be a Radon measure with subexponential divergence
on E and suppose that ψµ(x) = −∞ for every x ̸= 0 in F . Then,
the measure ν = π∗µ is finite on compact sets and has subexponential
divergence. For every y in E/F , we have

ψν(y) = sup{ψµ(x)|x ∈ E π(x) = y}.

The proof uses the assumption on F under the following form.

Lemma 3.4. Let F be subspace of E and µ be a Radon measure with
subexponential divergence on E and ψµ(x) = −∞ for every x ̸= 0 in
F . Then, for every a in R, there exists an open cone C ⊂ E with
F ∖ {0} ⊂ C and τC ≤ a.

Proof. By assumption, for every unit vector x in F , there exists an open
cone Cx containing x with

∫
Cx exp(−a∥z∥)dµ(z) <∞. By compactness

of the unit ball of F , we can therefore find x1, . . . , xr in F ∖ {0} with

F ∖ {0} ⊂ C = Cx1 ∪ . . . ∪ Cxr .

We get ∫
C
exp(−a∥z∥)dµ(z) ≤

r∑
i=1

∫
Cxi

exp(−a∥z∥)dµ(z) <∞,

hence τC ≤ a as required. □

Proof of Proposition 3.3. We equip E/F with the quotient norm de-
fined by

∥y∥ = inf{∥x∥|x ∈ E π(x) = y}.
We first show that ν has subexponential divergence. Indeed, by the

assumption and Lemma 3.4, there exists an open cone C containing
F ∖ {0} with µ(C) < ∞. As C is open, there exists ε > 0 such that,
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for every x in E ∖ C, one has ∥π(x)∥ ≥ ε∥x∥. Now, we choose s > 0
with

∫
E
exp(−s∥x∥)dµ(x) <∞ and we dominate∫

E/F

exp(−ε−1s∥y∥)dν(y) =
∫
E

exp(−ε−1s∥π(x)∥)dµ(x)

≤ µ(C) +
∫
E∖C

exp(−s∥x∥)dµ(x) <∞,

hence ν has subexponential growth.
Now, we prove the formula for ψν . Take y in E/F . If y = 0, the

formula holds directly from the assumption.
If y ̸= 0, we take x in E with π(x) = y and we show that ψµ(x) ≤

ψν(y). Set α = ∥x∥∥y∥−1 and fix D ⊂ E/F to be an open cone
containing y. For ε > 0, the cone

C = {x′ ∈ π−1D|(1 + ε)−1α∥π(x′)∥ < ∥x′∥ < (1 + ε)α∥π(x′)∥}

is open and contains x. For s ≥ 0, we have∫
C
exp(−s∥x′∥)dµ(x′) ≤

∫
D
exp(−s(1 + ε)−1α∥y′∥)dν(y′)

and, for s ≤ 0,∫
C
exp(−s∥x′∥)dµ(x′) ≤

∫
D
exp(−s(1 + ε)α∥y′∥)dν(y′).

This yields

τC,µ ≤ α−1max((1 + ε)τD,ν , (1 + ε)−1τD,ν),

hence

ψµ(x) ≤ ∥y∥max((1 + ε)τD,ν , (1 + ε)−1τD,ν).

Letting ε go to 0, we get ψµ(x) ≤ ∥y∥τD,ν and therefore, as this holds
for any D, ψµ(x) ≤ ψν(y) as required.

To prove the converse inequality, we start by fixing a < 0 in R with
a ≤ ∥y∥−1 supx∈Ey

ψµ(x), where

Ey = π−1(y) = {x ∈ E|π(x) = y}.

Then, we apply Lemma 3.4 so that we get an open cone C0 with F ∖
{0} ⊂ C0 and τC0 ≤ a.

Note that the set K = Ey ∖ C0 is compact. Indeed, as x goes to ∞
in Ey, the vector ∥x∥−1π(x) = ∥x∥−1y goes to 0 in E/F , that is, the
distance between ∥x∥−1x and F goes to 0. Thus, there exists M ≥ 0
such that, for any x in Ey with ∥x∥ ≥M , we have x ∈ C0.
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Therefore, for ε > 0, we can find x1, . . . , xr in K and open cones
C1, . . . , Cr containing x1, . . . , xr such that

K ⊂ C1 ∪ . . . ∪ Cr,
and, for 1 ≤ i ≤ r, ∥xi∥τCi ≤ ψµ(xi) + ε and

Ci ⊂ {x ∈ E|(1 + ε)−1αi∥π(x)∥ < ∥x∥ < (1 + ε)αi∥π(x)∥},
with αi = ∥y∥−1∥xi∥.

We set C = C0 ∪ C1 . . . ∪ Cr, so that Ey ⊂ C. We define

D = {x ∈ E|x+ F ⊂ C}
and we claim that D is open in E.
Indeed, suppose this is not the case. Then, we may find x is in D and

sequences (xn)n≥0 in E and (zn)n≥0 in F with xn −−−→
n→∞

x but, for any

n ≥ 0, xn+zn /∈ C. If the sequence (zn)n≥0 would go to ∞, the distance
between the vectors ∥xn+ zn∥−1(xn+ zn) and the space F would go to
zero and hence, for n large, we would have xn+zn ∈ C0, which we have
assumed to be false. Hence, we can assume that (zn)n≥0 is bounded
and even that it converges to some z in F . Then by assumption, we
have x + z ∈ C and therefore, as C is open, for n large, xn + zn also
belongs to C, a contradiction.
Therefore, the cone D is open. By construction, it is stable by trans-

lations by F , which amounts to say that D = π−1π(D). As D contains
Ey, π(D) contains y and, for s in R, we have∫

π(D)

exp(−s∥y′∥)dν(y′) =
∫
D
exp(−s∥π(x)∥)dµ(x)

≤
r∑
i=0

∫
Ci
exp(−s∥π(x)∥)dµ(x).

For i = 0, we have, if s ≥ 0,∫
C0
exp(−s∥π(x)∥)dµ(x) ≤ µ(C0) <∞

and, if s ≤ 0,∫
C0
exp(−s∥π(x)∥)dµ(x) ≤

∫
C0
exp(−s∥x∥)dµ(x),

which is finite as soon as s > a. In the same way, for 1 ≤ i ≤ r, we
have, if s ≥ 0,∫

Ci
exp(−s∥π(x)∥)dµ(x) ≤

∫
Ci
exp(−s(1 + ε)−1αi∥x∥)dµ(x)
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and, if s ≤ 0,∫
Ci
exp(−s∥π(x)∥)dµ(x) ≤

∫
Ci
exp(−s(1 + ε)αi∥x∥)dµ(x).

This yields

τD ≤ max(a, max
1≤i≤r

(αi(1 + ε)τCi), max
1≤i≤r

(αi(1 + ε)−1τCi)),

hence

ψν(y) ≤ max(a∥y∥, max
1≤i≤r

(∥xi∥(1 + ε)τCi), max
1≤i≤r

(∥xi∥(1 + ε)−1τCi)).

In view of the assumption, we obtain

ψν(y) ≤ max((1 + ε) sup
x∈Ey

ψµ(x), (1 + ε)−1 sup
x∈Ey

ψµ(x)) + ε(1 + ε).

The result follows by letting ε go to 0. □

4. Concave growth measures

As in [16], we say that a Radon measure µ on E has concave growth
if there exists α, β, γ > 0 such that, for every x, y in E, one has

µ(B(x+ y, α)) ≥ γµ(B(x, β))µ(B(y, β)).

This notion actually does not depend on the choice of the norm. We
get from [16, Théorème 3.2.1]:

Proposition 4.1. Let µ be a Radon measure with subexponential di-
vergence and concave growth on E. The the indicator of growth ψµ is
concave.

Thus, we can apply the formalism of Section 2. This yields

Corollary 4.2. Let F be a subspace of E and π : E → G = E/F
be the quotient map. Let µ be a Radon measure with subexponential
divergence and concave growth on E and suppose that ψµ(x) = −∞ for
every x ̸= 0 in F . Then, the measure ν = π∗µ is finite on compact sets
and has subexponential divergence. The function ψν is concave; more
precisely, for y in G, we have

ψν(y) = sup
x∈E
π(x)=y

ψµ(x).

If Ων ⊂ G∗ is the associated non empty closed convex subset, or every
φ in G∗, we have∫

G

exp(−φ(y))dν(y) <∞ ⇒ φ ∈ Ων
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and

φ ∈
◦
Ων ⇒

∫
G

exp(−φ(y))dν(y) <∞.

Proof. In view of (3.3) and (3.4), it suffices to show that ψν is concave.
This is actually a direct consequence of Proposition 3.3. Indeed, in
view of this result, for y in G, we have ψν(y) = sup x∈E

π(x)=y
ψµ(x). Take

y, y′ in G and set y′′ = y+ y′. Fix x in E with π(x) = y. For any x′′ in
E with π(x′′) = y′′, we have π(x′′−x) = y′, hence, since ψµ is concave,

ψµ(x
′′) ≤ ψµ(x) + ψµ(x

′′ − x) ≤ ψν(y) + ψν(y
′).

We get ψν(y
′′) ≤ ψν(y) + ψν(y

′) as required. □

5. Multivariate power series

We now relate the previously introduced formalism to the study of
the domain of convergence of multivariate power series in the spirit of
analytic combinatorics (see [4, 6, 7]).

Let d ≥ 1 and suppose we are given a family f = (fn)n∈Nd of complex
numbers. We associate to f the domain of absolute convergence Df of
the associate power series in Cd,

Df = {z ∈ Cd|
∑
n∈Nd

|fnzn1
1 · · · znd

d | <∞}.

The set Df is stable under multiplication of the coordinates by com-
plex numbers of modulus 1, hence it is completely determined by the
set Df ∩ [0,∞)d. We note that the latter set satisfies the following
logarithmic convexity property.

Lemma 5.1. Let z and w be in Df ∩ [0,∞)d and 0 ≤ s ≤ 1, then
zsw(1−s) also belongs to Df , where we have written

zsw(1−s) = (zs1w
(1−s)
1 , . . . , zsdw

(1−s)
d ).

Proof. This is a direct consequence of Hölder inequality: we set p = s−1

and q = (1− s)−1 and we get∑
n∈Nd

|fn|(zs1w
(1−s)
1 )n1 · · · (zsdw

(1−s)
d )nd

≤

(∑
n∈Nd

|fn|zn1ps
1 · · · zndps

d

)s(∑
n∈Nd

|fn|wn1q(1−s)
1 · · ·wndq(1−s)

d

)(1−s)

=

(∑
n∈Nd

|fn|zn1
1 · · · znd

d

)s(∑
n∈Nd

|fn|wn1
1 · · ·wnd

d

)(1−s)

<∞.
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□

From this lemma, we deduce that the set

{(log |z1|, . . . , log |zd|)|z ∈ Df ∩ (C∗)d} ⊂ Rd

is convex. We denote by Ωf its closure. It is non empty as soon as Df

contains at least one point all of whose coordinates are ̸= 0, which is
to say that there exists R,C > 0. with∑

n∈Nd

n1+...+nd=k

fn ≤ CR−k, k ≥ 0.

We can relate this formalism to the one of measures with subexpo-
nential divergence.

Lemma 5.2. Let d ≥ 1 and f = (fn)n∈Nd be in CNd
. Assume that

Df ∩ (C∗)d is non empty. Then, the Radon measure ν on Rd defined
by

ν =
∑
n∈Nd

|fn|δn

has subexponential divergence. Identify Rd with its dual space through
the standard pairing. Then, the set Ωf is the set of linear functionals
φ on Rd with φ ≥ ψν.

When the measure ν has concave growth in the sense of Section 4,
Proposition 4.1 says that the function ψν is concave and therefore, by
Lemma 5.2, the convex set Ωf and the function ψν are dual to each
other in the sense of Section 2 (see [8, Thm. 4.1]).

Proof of Lemma 5.2. The first part of the lemma directly follows from
the definitions. For the second part, which is the reformulation of the
definition of Ωf , we note that any φ in {(log |z1|, . . . , log |zd|)|z ∈ Df ∩
(C∗)d}, we have φ ≥ ψν in view of (3.4). Conversely, the asumption
implies that, for large M > 0, the linear functional θ with coordinates
(M, . . . ,M) satisfy θ > ψν everywhere on Rd ∖ {0}, hence, if φ ≥ ψν ,
then, for any ε > 0, we have φ+ εθ > ψν everywhere on Rd ∖ {0} and
the conclusion follows from (3.3). □

6. Languages and directed graphs

In this article, we deal with a multivariate counting problem for two
special subclasses of the class of regular languages. Recall that a regular
language is a language determined (accepted) by a finite automaton (as
is explained for example in [9, 10]. The multivariate growth function
of such a language is rational and can be computed for instance using
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Theorem 4.1 from [8]. The latter article also provides a foundational
tool for finding directional asymptotic of growth that is based on the
theory developed in [16]. An important role in this is played by the
”ergodicity” of the language.

Here, we focus on two special types of regular languages, arising in
the study of finite type subshifts and sofic subshifts. Not getting into
details, we mention only here that finite type subshifts correspond to
languages determined by directed graphs and that the set of edges plays
the role of the alphabet. While a more general type of subshifts, the
sofic systems, are determined by labelled finite directed graphs when
different edges can be labelled by the same symbol. The ”ergodicity”
for such languages corresponds to irreducibility of the subshift. We call
such languages ”finite type” and ”sofic”respectively. For more details
on this, see [11]. Let now express things rigorously.

Fix a finite set A, which we will consider as an alphabet, and denote
by W a language written with the alphabet A, that is, W is a subset
of the set A∗ =

⊔
n≥0A

n of all finite words. Denote by Wn = W ∩ An
the set of words with length n in W .

We associate to W a counting measure νW on the space E = RA

of all real valued functions on A as follows. For any n ≥ 0 and any
w = (b1, . . . , bn) in An, we denote by P(w) the function on A such
that P(w)(a) is the number of occurences of the letter a in the word
b, that is,

P(w)(a) = |{1 ≤ k ≤ n|bk = a}|.
Set νW to be the image measure of the counting measure of W under
the map P, that is,

νW =
∑
w∈W

δP(w),

where δx stands for the Dirac mass at a point x. Note that, as A is
finite, the measure νW has subexponential divergence. We denote its
indicator of growth by ψW .
For languages with a reasonable connectivity property, the measure

νW has concave growth.

Lemma 6.1. Assume that the language W is irreducible in the follow-
ing sense: there exists an integer p ≥ 0 such that, for every n,m ≥ 0,
and every w ∈ Wn, w

′ ∈ Wm, there exists 0 ≤ q ≤ p and w′′ ∈ Wn+m+q

such that w is the beginning of w′′ and w′ is the end of w′′. Then, the
function ψW is concave.

The proof is a direct consequence of the assumption and the concav-
ity statement for measures with concave growth, namely, the Proposi-
tion 4.1.
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q1

a2a1

q2

a3

Figure 1. The Fibonacci graph

We will now study languages that are produced by a directed graph.
By a directed graph, we shall mean the data of a list G = (Q,A, σ, γ)
where Q and A are finite sets and σ and γ are maps from A to Q. We
shall think to Q as being a set of states or vertices and to A as being a
set of arrows between the states. The source of an arrow a is σ(a) and
its goal is γ(a). See Figure 1 and Figure 2 for examples.

Given such a data, we define a language W on the alphabet A
which describes the set of admissible paths on the graph. Write W =⊔
n≥0Wn, where, for n ≥ 0,

Wn = {(a1, . . . , an) ∈ An|∀1 ≤ k ≤ n− 1 γ(ak) = σ(ak+1)},

that is, Wn is the set of paths with length n in the directed graph G.
Then the language is irreducible if and only if the graph is connected
that is, if and only if given q, q′ in Q, we may find n ≥ 0 such that the
set of paths of length n from q to q′,

W q,q′

n = {(a1, . . . , an) ∈ Wn|σ(a1) = q, γ(an) = q′},

is not empty. In other words, there exists t least one path from q to q′.
Assume this holds. Then, if E = RA is the space of real-valued

functions on A, by Lemma 6.1, the function ψW on E is concave. We
shall now write ψG for ψW .

We will give a direct description of the set ΩG ⊂ E∗ which is dual
to the function ψG. Identify E∗ with E by using the standard inner
product

⟨f, g⟩ =
∑
a∈A

f(a)g(a), f, g ∈ E .

Denote the space of real valued functions on Q by V , that is, V = RQ,
which we also identify to its dual space by means of the standard scalar
product. Then, to every θ in E , we associate a linear operator Lθ on V
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by the formula

(Lθf)(q) =
∑
a∈A
σ(a)=q

e−θ(a)f(γ(a)), q ∈ Q, f ∈ V .

This operator is an analogue of the transfer operator of hyperbolic
dynamics (see [14]); it can also be thought of as a weighted Laplace
operator on the directed graph G. Note that this operator is non-
negative, or equivalently Perron-Frobenius.

Proposition 6.2. Let G = (Q,A, σ, γ) be a connected directed graph.
Then, the set ΩG is the set of θ in E such that the operator Lθ has
spectral radius ≤ 1 in V.

To prove this, we will need to study more closely the operators Lθ.
First, we recall some basic facts about Perron-Frobenius operators (see
[13]). We state these facts in an abstract form. Recall that a closed
convex cone C ⊂ E is said to be proper if C ∩ (−C) = {0}, that is, C
does not contain any vector line.

Lemma 6.3. Let H be a finite-dimensional real vector space and C ⊂
H be a proper closed convex cone with non empty interior. Let T :
H → H be a linear map with TC ⊂ C. Then, the spectral radius λ
of T is an eigenvalue of T and there is an associated eigenvector in
C ∖ {0}. If there exists p ≥ 1 such that the operator

∑p
j=0 T

j maps

C ∖ {0} into the interior
◦
C of C, then λ has multiplicity one and the

associated eigenline is spanned by an element of
◦
C.

Recall that saying that λ has multiplicity 1 is saying that λ is a
simple root of the characteristic polynomial of T .

For θ in E , we denote by λ(θ) the spectral radius of Lθ in V . By
Lemma 6.3, up to a scalar multiple, there exists a unique non zero
function fθ in V with Lθfθ = λ(θ)fθ and we may choose fθ to be
positive. In the same way, applying Lemma 6.3 to the adjoint operator
L∗
θ (acting on the dual space of V , which we have identified with V)

yields a unique positive linear functional φθ such that L∗
θφθ = λ(θ)φθ

and ⟨φθ,1⟩ = 1, where 1 is the constant function with value 1 on Q.
Since we have identified V and its dual space, we consider φθ as a
positive function on V . We normalize fθ by asking that ⟨φθ, fθ⟩ = 1.
Below, we will show that the function log λ(θ) is a convex function of
θ. We will first describe the other eigenvalues of Lθ with modulus λ(θ).
They are multiples of λ(θ) by roots of unity.
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Figure 2. A directed graph with p = 2

Lemma 6.4. Let G = (Q,A, σ, γ) be a connected directed graph. There
exists p ≥ 1 and a complex valued function u on Q, with values of
modulus 1, with the following property. For every a in A, one has
u(γ(a)) = e2πip

−1
u(σ(a)). Then, for every θ in E, the eigenvalues of

modulus 1 of Lθ are the e2πikp
−1
, 0 ≤ k ≤ p− 1; they have multiplicity

one and the associated eigenspaces in VC are the lines spanned by ukfθ,
0 ≤ k ≤ p− 1.

We wrote VC for the complexification of V , that is, the space of all
complex valued functions on Q.
On Figure 2, we have represented a directed graph for which p = 2.

Indeed, the space of states is partitioned into the set of black states and
the set of white states. Every arrow with a black source has a white
goal; every arrow with a white source has a black goal. The function
u can be chosen to take the value 1 on black states and −1 on white
states.

Proof of Lemma 6.4. Let T ⊂ C denote the set of complex numbers
with modulus 1. For z in T, define Uz ⊂ VC as the space of all functions
f such that, for every a in A, one has for f(γ(a)) = zf(σ(a)). Set
G ⊂ T to be the set of all z such that Uz is non zero. We claim that G
is a finite multiplicative subgroup.

Indeed, one easily shows that the vector subspaces Uz, z ∈ G, are
linearly independent. Besides, as G is connected, for z in G, the mod-
ulus of a function f in Uz is necessarily constant. Thus, if z, z′ are in
G, then Uzz′ is non zero and equal to the set UzUz′ of functions that
are products of a function in Uz and a function in Uz′ . Thus, G is a
finite subgroup of T. Hence, it is of the form

G = {e2πikp−1|0 ≤ k ≤ p− 1}

for some p ≥ 1.
Moreover, still as G is connected, U1 is the line of constant functions,

hence all Uz, z ∈ G, have dimension 1. We choose a function u with
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constant modulus 1 in Uz for z = e2πip
−1
. Then, for 0 ≤ k ≤ p− 1, the

space Uzk is the line spanned by uk.
Let now θ be in E . For 0 ≤ k ≤ p − 1, we have Lθ(u

kfθ) =

λ(θ)e2πikp
−1
fθ. The converse statement that all eigenvalues with mod-

ulus λθ of Lθ are obtained in this way will follow from an application
of the maximum principle.

Indeed, let z be in T and f ̸= 0 be in VC with Lθf = zλ(θ)fθ. We
set g = f−1

θ f . For q in Q, we have∑
a∈A
σ(a)=q

e−θ(a)
fθ(γ(a))

λ(θ)fθ(q)
g(γ(a)) =

1

λ(θ)fθ(q)
Lθ(f)(q) = zg(q).

Set Q′ to be the set of q in Q such that |g(q)| is maximal. For q in Q′,
we have ∣∣∣∣∣∣∣∣

∑
a∈A
σ(a)=q

e−θ(a)
fθ(γ(a))

λ(θ)fθ(q)
g(γ(a))

∣∣∣∣∣∣∣∣ = |g(q)|

and all the g(γ(a)) have modulus ≤ g(q). Thus, since∑
a∈A
σ(a)=q

e−θ(a)
fθ(γ(a))

λ(θ)fθ(q)
= 1,

as the disks of C are strictly convex, for any a with σ(a) = q, we
have g(γ(a)) = zg(q) and in particular, γ(a) belongs to Q′. Since G is
connected, we obtain that Q′ = Q and that g belongs to Uz. Thus, g
belongs to Cukfθ for some 0 ≤ k ≤ p− 1 and hence, the eigenvalues of
modulus λθ of Lθ are the e2πikp

−1
, 0 ≤ k ≤ p− 1.

Since, for any such k, multiplication by uk conjugates the opera-
tors Lθ−λθe

2πikp−1
and e2πikp

−1
(Lθ−λθ), the eigenvalue e

2πikp−1
λθ has

multiplicity 1. □

In the sequel, we let p be and u be as in Lemma 6.4. As a Corollary
of the proof, we get another definition of p. For n ≥ 0 and q, q′ in Q,
recall that W q,q′

n is the set of paths of length n from q to q′.

Corollary 6.5. Let G = (Q,A, σ, γ) be a connected directed graph.
Then, for every q in Q, p is the greatest common divisor of the set of
integers

{n ∈ N|W q,q
n ̸= ∅}.

Proof. Fix q0 in A and let d be the greatest common divisor of the set
of n in N with W q0,q0

n ̸= ∅. For every such n, we have u(q0)
n = 1, hence
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u(q0)
d = 1. This gives that p divides d. Conversely, we will use the

definition of p in the proof of Lemma 6.4 to show that d divides p.
For q in Q define f(q) = e−2iπkd−1

where k is the least integer such
that W q,q0

k ̸= ∅. As G is connected, this function is well defined. Now,
let ℓ ≥ k be such that W q,q0

ℓ ̸= ∅. We claim that we also have f(q) =

e−2iπℓd−1
. Indeed, if we set n = ℓ−k, we haveW q,q

n ̸= ∅, hence d divides
n, so that e−2iπℓd−1

= e−2iπkd−1
as required. In particular, pick a is in

A with γ(a) = q and set σ(a) = q′. We have W q′,q0
k+1 ̸= ∅, which gives

f(q′) = e−2iπ(k+1)d−1

= e−2iπd−1

f(q).

Thus, by the definition of p, p divides d as required. □

These constructions allow us to describe the asymptotic behaviour
as n→ ∞ of Lnθf , for f positive. For q in Q and j in Z/pZ, denote by
Qq
j the set of q

′ in Q for which there exists n ≥ 0 with n ∈ j + pZ such

that the set W q,q′
n is not empty. Equivalently, Qq

j is the set of q′ such

that u(q′) = e2πijp
−1
u(q) where u is as in Lemma 6.4. For n in Z, write

Qq
n = Qq

j where j is the class of n in Z/pZ.

Corollary 6.6. Let G = (Q,A, σ, γ) be a connected directed graph. Let
θ be in E. There exists ε, C > 0 such that, for every f in E, q in Q
and n ≥ 0, one has

(6.1) |Lnθf(q)− pλ(θ)n⟨φθ, f1Qq
n
⟩fθ(q)| ≤ C(λ(θ)− ε)n∥f∥.

In the above, we have denoted by 1Qq
n
the characteristic function of

the set Qq
n ⊂ Q.

Proof. In view of Lemma 6.4, all the eigenvalues of the operator

f 7→ f −
∑

k∈Z/pZ

⟨φθ, u−kf⟩ukfθ

have modulus < λ(θ) (note that this operator is actually real). Thus,
we can find ε, C > 0 such that, for f in E and n in N, we have

(6.2) ∥Lnθf − λ(θ)nΓθ,nf∥ ≤ C(λ(θ)− ε)n∥f∥,

where, for j in Z/pZ, we have set

Γθ,jf =
∑

k∈Z/pZ

e2πijkp
−1⟨φθ, u−kf⟩ukfθ.

To conclude, we will now compute these operators in a different way.
This will be an application of the Fourier inversion formula on Z/pZ.
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Fix q in Q and j in Z/pZ. For k in Z/pZ, we have

u−kf = u−k(q)
∑
ℓ∈Z/pZ

e−2πiℓkp−1

f1Qq
ℓ
,

which yields

Γθ,jf(q) =
∑

k∈Z/pZ

e2πijkp
−1
∑
ℓ∈Z/pZ

e−2πiℓkp−1⟨φθ, f1Qq
ℓ
⟩fθ(q)

=
∑
ℓ∈Z/pZ

⟨φθ, f1Qq
ℓ
⟩fθ(q)

∑
k∈Z/pZ

e2πi(j−ℓ)kp
−1

.

For ℓ ̸= j, we have
∑

k∈Z/pZ e
2πi(j−ℓ)kp−1

= 0 and we get

Γθ,jf(q) = p⟨φθ, f1Qq
j
⟩fθ(q).

This together with (6.2) implies (6.1). □

Corollary 6.7. Let G = (Q,A, σ, γ) be a connected directed graph.
Then, the function θ 7→ log λ(θ) is convex on E.

The proof uses

Lemma 6.8. Let r ≥ 1 and α = (α1, . . . , αr) and β = (β1, . . . , βr) be
in Rr. Then, the function

hα,β : x 7→ log

(
r∑
i=1

eαix+βi

)
is convex on R.

Proof. Since hα,β is smooth, it suffices to check that its second deriative
is everywhere nonnegative. Indeed, for x in R, we have

h′α,β(x) =

∑r
i=1 αie

αix+βi∑r
i=1 e

αix+βi

and

h′′α,β(x) =

(∑r
i=1 α

2
i e
αix+βi

) (∑r
i=1 e

αix+βi
)
−
(∑r

i=1 αie
αix+βi

)2
(
∑r

i=1 e
αix+βi)

2 .

By Cauchy Schwarz inequality, the denominator of the latter fraction
is always ≥ 0. The Lemma follows. □

Proof of Corollary 6.7. We fix a positive function f in V and a positive
linear functional ρ in V∗. By Corollary 6.6, for θ in E , we have

log λ(θ) = lim
n→∞

1

n
log⟨ρ, Lnθf⟩.
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In view of Lemma 6.8 and of the definition of Lθ, for any n ≥ 0, the
function θ 7→ log⟨ρ, Lnθf⟩ is convex. The conclusion follows. □

We can now conclude.

Proof of Proposition 6.2. For q in A and n ≥ 0, define W q
n ⊂ Wn as

the set of all words w = (w1, . . . , wn) such that σ(w1) = q. Set also
W q =

⋃
n≥0W

q
n . We still let P : W → E be the natural map that

counts the number of occurences of a given letter in a word. Then, a
direct computation gives, for θ in E ,

Lnθf(q) =
∑
w∈W q

n

e−⟨θ,P(w)⟩f(γ(wn)), f ∈ V , n ≥ 0, q ∈ Q,

where wn stands for the last letter on the right of the word w (and by
convention, γ(wn) = q if n = 0). We get

∞∑
n=0

⟨1, Lnθ1⟩ =
∞∑
n=0

∑
q∈Q

Lnθ1(q) =
∞∑
n=0

∑
q∈Q

∑
w∈W q

n

e−⟨θ,P(w)⟩

=
∑
w∈W

e−⟨θ,P(w)⟩.

Therefore, by Corollary 6.6, we have
∑

w∈W e−⟨θ,P(w)⟩ <∞ if and only
if λ(θ) < 1. By Lemma 6.7, the function log λ is convex on E , hence
it is continuous and the set where it is < 0 is open. Thus, in view of
Lemma 2.5 and (3.3) and (3.4), we obtain

θ ∈
◦
ΩG ⇔ λ(θ) < 1.

Still as log λ is convex, the set {θ ∈ E|λ(θ) < 1} is the interior of the

set {θ ∈ E|λ(θ) ≤ 1}. As A is finite, the set
◦
ΩG is non empty, hence

both closed convex sets ΩG and {θ ∈ E∗|λ(θ) ≤ 1} are the closures of
their interior and are therefore equal to each other. □

Example 6.9. We use the characterization of Proposition 6.2 to compute
the objects in a simple example, which is called the Fibonacci graph
(see Figure 1).

In this example, the set A is written as {a1, a2, a3} and we identify
E with R3. In the same way, the set Q is written as {q1, q2} and we
identify V with R2. Note that, as the arrow a1 has source and goal the
state q1, we have p = 1 in view of Corollary 6.5. For θ = (θ1, θ2, θ3),
the matrix of the operator Lθ is

Lθ =

(
e−θ1 e−θ2

e−θ3 0

)
.
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The eigenvalues of this matrix are the roots of the equation

χθ(x) = x2 − e−θ1x− e−θ2−θ3 = 0.

This equation has exactly one positive root, which is

λ(θ) =
1

2
(e−θ1 +

√
e−2θ1 + 4e−θ2−θ3).

As χθ(x) ≥ 0 for x large, saying that the positive root λ(θ) is ≤ 1
amounts to saying that one has χθ(1) ≥ 0. From Proposition 6.2, we
get

ΩG = {θ ∈ R3|e−θ1 + e−θ2−θ3 ≤ 1}.
This allows to determine the function ψG. Indeed, as ψG is concave, we
get from (2.2), for x in E ,

ψG(x) = inf
θ∈ΩG

θ(x).

By using the formula in Example 2.7 together with Lemma 2.8, we
obtain, for x in R3,

ψG(x) = x1 log
x1 + x2
x1

+ x2 log
x1 + x2
x2

x1, x2, x3 ≥ 0, x2 = x3

= −∞ else.

7. Global asymptotic estimates

We continue the study of asymptotics of languages defined by di-
rected graphs and we keep the notation of the previous Section. We
will now use the previously introduced formalism to establish an esti-
mate of the number of words of length n.

Say that the connected directed graph G = (Q,A, σ, γ) is cyclic if,
for every q in Q, there exists a unique a in A with σ(a) = q. Then, the
sets A and Q may be identified with Z/pZ while the source map σ is
the identity map and the goal map γ is the map j 7→ j + 1.
For a non cyclic connected directed graph, the spectral radius λ(0)

of the operator L0 is > 1.

Lemma 7.1. Let G = (Q,A, σ, γ) be a connected directed graph. Then
λ(0) ≥ 1 with equality if and only if G is cyclic.

Proof. Clearly, if G is cyclic, we have λ(0) = 1. Conversely, suppose G
is not cyclic. Then, there exists q in Q and a ̸= a′ in A with σ(a) =

σ(a′) = q. As G is connected, we may find k ≥ 0 with W
γ(a),q
k ̸= ∅ and

W
γ(a′),q
k ̸= ∅. Then, we have Lk+1

0 (1q)(q) ≥ 2, hence, for any n ≥ 0,

L
n(k+1)
0 (1q)(q) ≥ 2n. Thus, L0 has spectral radius 2

1
k+1 . □
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Set

δG = log λ(0).

This number will describe the growth rate of the sets W q
n .

Example 7.2. For the Fibonacci graph of Example 6.9, we compute δG.
By definition, we have λ(δG1) = 1 which amounts to 1−e−δG−e−2δG = 0

or equivalently to e2δG = eδG + 1. Thus, eδG is the golden ratio 1+
√
5

2
.

Recall that, for n ≥ 0 and q in Q, W q
n stands for the set of words

w = (w1, . . . , wn) with length n in W such that σ(w1) = q. We will
estimate the size of these sets. If (an)n≥0 and (bn)n≥0 are sequences of
positive real numbers, we write an ∼

n→∞
bn to say that an

bn
−−−→
n→∞

1.

Proposition 7.3. Let G = (Q,A, σ, γ) be a connected directed graph.
Then, if p = 1, for q in Q,

|W q
n | ∼

n→∞
eδGn⟨φδG1,1⟩fδG1(q).

In general, for q in Q,

|W q
n | ∼

n→∞
peδGn⟨φδG1,1Qq

n
⟩fδG1(q).

Proof. We fix q in Q. By definition, for n ≥ 0, we have

LnδG11(q) = e−δGn|W q
n |.

As λ(δG1) = 1, the conclusion follows from Corollary 6.6. □

8. The function λ

We now aim at studying the number of elements w in Wn such that
P(w) takes a prescribed value. This is closely related to large deviation
theory of random walks on Euclidean spaces and will require us to have
a better understanding of the function λ. This function will play the
role played by the Laplace transform of the law of the random walk in
large deviation theory.

The fine study of the function λ requires us to introduce a new
subspace of E = RA. For f in V = RQ, we let ∇f be the function on
A defined by, for a in A,

∇f(a) = f(γ(a))− f(σ(a)).

The space ∇V ⊂ E will play a role in the statements of the next results.

Lemma 8.1. Let G = (Q,A, σ, γ) be a connected directed graph. For
f in V and c in R, we have ∇f = c1 if and only if c = 0 and f is
constant.



32 ROSTISLAV GRIGORCHUK, JEAN-FRANÇOIS QUINT

Proof. Suppose ∇f = c1. This amounts to saying that, for every a in
A, we have f(γ(a)) − f(σ(a)) = c. Fix q in Q. As G is connected, we
may find n ≥ 1 with W q,q

n ̸= ∅. We get 0 = f(q) − f(q) = nc, hence
c = 0. In particular, for every a in A, we have f(σ(a)) = f(γ(a)). Using
again the connectedness of G, we get that f is constant as required. □

Example 8.2. For the Fibonacci graph of Example 6.9 and Example
7.2, the space ∇V ⊂ E is the space of all θ = (θ1, θ2, θ3) in R3 with
θ1 = 0 and θ2+θ3 = 0. Note that this space is the orthogonal subspace
to the space spanned by the domain of definition of the function ψG (see
Example 6.9). This is general phenomenon, which will be explained in
Corollary 9.1 below.

Proposition 8.3. Let G = (Q,A, σ, γ) be a connected directed graph.
Then the function λ is real analytic on E.

For θ in E, the derivative of λ at θ is given by

(8.1) dθλ(ξ) = −
∑
a∈A

φθ(σ(a))e
−θ(a)ξ(a)fθ(γ(a)), ξ ∈ E .

The second derivative d2
θ log λ of log λ at θ is a non-negative symmet-

ric bilinear form on E whose kernel is the space R1⊕∇V of functions
that may be written as the sum of a constant function and an element
of ∇V. Additionally, for c in R and φ in V, we have

(8.2) λ(θ + c+∇φ) = e−cλ(θ).

The proof of this result will last until the end of the section.
Recall from Section 6 that fθ is an eigenvector associated to the

eigenvalue λ(θ) for Lθ acting on V and that φθ is an eigenvector as-
sociated to the eigenvalue λ(θ) for the adjoint operator L∗

θ. They are
normalized by the relations ⟨φθ,1⟩ = 1 = ⟨φθ, fθ⟩.
Note that Proposition 8.3 implies that the kernel of d2

θ log λ does not
depend on θ. In view of Lemma 8.1, its dimension is the dimension of
V , that is, the cardinality of Q.
The fact that λ(θ) is a real analytic function of θ is a direct conse-

quence of the following classical phenomenon from complex analysis,
when applied to the characteristic polynomial of Lθ.

Lemma 8.4. Let d ≥ 1 and Cd[z] be the set complex polynomial with
degree ≤ d and P be in Cd[z]. Assume 0 ≤ k ≤ d and U is an open
subset of C such that P has k roots (counted with multiplicities) in U .
Then, any polynomial Q which is close enough to P in Cd[z] has exactly
k roots (counted with multiplicities) in U . If k = 1, the unique root of
Q in U is a holomorphic function of Q in a neighborhood of P .
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We will actually need to know a bit more, namely that the projections
on each summand of the direct sum V = Rfθ ⊕ (Lθ − λ(θ))V depend
analytically of θ. This follows from the rather classical

Lemma 8.5. Let H be a finite-dimensional complex vector space, T be
an endomorphism of H and λ be an eigenvalue of T . Let L ⊂ H be
the associated characteristic subspace and M be the unique T -invariant
complementary subspace of L, that is, we have L = ker(T − λ)d and
M = (T − λ)dH where d is the dimension of H. Then, the residue at
λ of the endomorphism valued meromorphic function on C,

z 7→ (z − T )−1

is the projection on L in the direct sum H = L⊕M .

Proof. As T preserves both L and M , it suffices to deal with the case
where H = L. Then, we need to show that the residue of (z − T )−1

at λ is the identity map. Indeed, since we have assumed that λ is the
unique eigenvalue of T , we may write T as T = λ + N where N is a
nilpotent operator. Then, for z ̸= 0, we have

(z −N)−1 =
∞∑
k=0

z−k−1Nk

(the sum being actually finite). This gives, for z ̸= λ,

(z − T )−1 =
∞∑
k=0

(z − λ)−k−1Nk.

The conclusion follows. □

Corollary 8.6. Let G = (Q,A, σ, γ) be a connected directed graph.
Then, the maps θ 7→ λ(θ), θ 7→ fθ and θ 7→ φθ are real analytic on E.
Proof. We will apply Lemma 8.5 in the complexification VC of V , which
may be considered as the space of complex valued functions on Q. For
θ in EC, we still define Lθ by the same formula as in the real case, that
is, for f in VC and q in Q,

Lθ(f)(q) =
∑
a∈A
σ(a)=q

e−θ(a)f(γ(a)).

The map θ 7→ Lθ is holomorphic on EC. For θ a real function, we
now that the eigenvalue λ(θ) has multiplicity 1. Therefore, by Lemma
8.4, for ξ in EC close to θ, the operator Lξ has a unique eigenvalue
λ(ξ) which is close to λ(θ), this eigenvalue has multiplicity 1 and is a
holomorphic function of ξ. Thus, the function θ 7→ λ(θ) is well defined
and holomorpic in a neighbourhood U of E in EC.
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For θ in U , we let Πθ be the projection on ker(Lθ−λ(θ)) in the direct
sum VC = ker(Lθ − λ(θ))⊕ (Lθ − λ(θ))VC. Note that by construction,
Πθ has rank one. Besides, let us fix θ in U . Choose a closed disk D
in C whose interior contains λ(θ) but such that D contains no other
value of Lθ. Then, for ξ close enough to θ, we have, by Lemma 8.5,

Πξ =
1

2iπ

∫
∂D

(z − Lξ)
−1dz,

hence Πξ is a holomorphic function of ξ. By construction, for θ in E ,
we have

Πθ(1) =
⟨φθ,1⟩
⟨φθ, fθ⟩

fθ = fθ,

hence fθ is an analytic function of θ.
By reasoning in the same way for the adjoint operator of Lθ, we

obtain that φθ is also an analytic function of θ. □

In order to describe the second derivative of λ in Proposition 8.3, we
will use certain complementary subspaces of ∇V ⊕ R1 in E . Given θ
in E , we say that an element φ of E is θ-balanced if, for every q in Q,
we have ∑

a∈A
σ(a)=q

e−θ(a)φ(a)fθ(γ(a)) = 0.

In other words, φ is θ-balanced if we have dθL(φ)fθ = 0 where dθL is
the differential at θ of the map L : ξ 7→ Lξ. The space of θ-balanced
functions in E is denoted by Eθ.

Lemma 8.7. Let G = (Q,A, σ, γ) be a connected directed graph. Fix θ
in E. Then, we have

E = R1⊕∇V ⊕ Eθ,
that is, every φ in E may be written as φ = c+∇g+ψ where c is a real
number, g is in V and ψ is θ-balanced. The constant c and the function
ψ are uniquely defined; the function g is defined up to the addition of
a constant function.

Proof. Fix φ in E and define a function f on Q by setting, for q in Q,

f(q) =
∑
a∈A
σ(a)=q

e−θ(a)φ(a)fθ(γ(a)) = −dθL(φ)fθ(q).

Then, since λ(θ) is a simple eigenvalue of Lθ and fθ is a positive func-
tion, we may write

(8.3) f = cλfθ + Lθ(gfθ)− λ(θ)gfθ
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for some c in R and g in V . The number c is uniquely determined
by this equation; the function g is unique up to a constant. We set
ψ = φ−c−∇g and (8.3) directly says that ψ is θ-balanced. Uniqueness
follows the uniqueness properties of the solutions of (8.3). □

We can now compute the first derivatives of λ. This is inspired
by standard computations in the theory of finite state space Markov
chains.

Proof of Proposition 8.3. We fix θ in E and we will study the function
λ in the neighbourhood of θ. We change the normalization of the
eigenvector, so that we set, for ξ in E , gξ = 1

⟨φθ,fξ⟩
fξ in order to ensure

that

(8.4) ⟨φθ, gξ⟩ = 1.

Note that gξ is an analytic function of ξ by Corollary 8.6.
We introduce some notation. For ξ in E , we set hξ = f−1

θ dθg(ξ)
where dθg is the differential at θ of the map ξ 7→ gξ. Note that hξ is
a function on Q which depends linearly on ξ. By derivating (8.4), we
obtain

(8.5) ⟨φθ, hξfθ⟩ = 0.

We study the first derivative of λ. For ξ in E , we have

(8.6) Lξgξ = λ(ξ)gξ.

Derivating this equation at θ yields

(8.7) dθL(ξ)fθ + Lθ(hξfθ) = dθλ(ξ)fθ + λ(θ)hξfθ.

We evaluate φθ on the latter. From (8.5) and using that L∗
θφθ = λ(θ)φθ,

we get dθλ(ξ) = ⟨φθ, dθL(ξ)fθ⟩. Using the definition of the operator Lθ
yields

dθλ(ξ) = −
∑
q∈Q

φθ(q)
∑
a∈A
σ(a)=q

e−θ(a)ξ(a)fθ(γ(a))

= −
∑
a∈A

φθ(σ(a))e
−θ(a)ξ(a)fθ(γ(a))

as required.
Now, we prove (8.2). For c in R, we have Lθ+c = e−cLθ, hence

λ(θ + c) = e−cλ(θ). Fix φ in V . For f in V and q in Q, we have

Lθ+∇φ(f) = eφ(q)
∑
a∈A
σ(a)=q

e−θ(γ(a))−φ(γ(a))f(γ(a)) = eφ(q)Lθ(e
−φf)(q).
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Thus, the operators Lθ+∇φ and Lθ are conjugated. Therefore, they
have the same spectral radius, that is, we have λ(θ +∇φ) = λ(θ).

Finally, we study the second derivative of λ. We notice that, in view
of (8.2), for ξ in E and η in ∇V ⊕ R1, we have d2

θ log λ(ξ, η) = 0.
In other words, the space ∇V ⊕ R1 is contained in the kernel of the
symmetric bilinear form d2

θ log λ(ξ, η). Therefore, by Lemma 8.7, it
suffices to compute this bilinear form on the space Eθ of θ-balanced
elements. Note also that, in view of (8.1), if ξ and η are θ-balanced,
we have dθλ(ξ) = dθλ(η) = 0, hence

(8.8) d2
θ log λ(ξ, η) = λ(θ)−1d2λ(ξ, η).

Notice also that (8.7) says that, for ξ in E , the function

ξ + λ(θ)−1dθλ(ξ)−∇hξ
is θ-balanced. In particular, if ξ is already θ-balanced, from 8.7, we get
that dθλ(ξ) = 0 (which we already knew) and hξ is a constant function
on Q. In view of (8.5), this implies hξ = 0.

Now, we derivate (8.6) twice and we get, for ξ, η in E ,

d2
θL(ξ, η)fθ + dθL(ξ)(hηfθ) + dθL(η)(hξfθ) + Lθ(d

2
θg(ξ, η))

= d2
θλ(ξ, η)fθ + dθλ(ξ)hηfθ + dθλ(η)hξfθ + λ(θ)d2

θg(ξ, η).

Assume ξ and η are θ-balanced. Then, we get

d2
θL(ξ, η)fθ + Lθ(d

2
θg(ξ, η)) = d2

θλ(ξ, η)fθ + λ(θ)d2
θg(ξ, η).

From (8.4), we get ⟨φθ, d2
θg(ξ, η)⟩ = 0. Thus, applying φθ to the above

and using the definition of Lθ yields, still when ξ and η are θ-balanced,

d2
θλ(ξ, η) = ⟨φθ, d2

θL(ξ, η)fθ⟩ =
∑
a∈A

φθ(a)e
−θ(a)ξ(a)η(a)fθ(a).

Thus, by (8.8), the symmetric bilinear form d2
θ log λ is positive definite

on Eθ. The conclusion follows. □

9. Regularity of ψG

We can use the constructions above to say a bit more about the
function ψG.

Corollary 9.1. Let G = (Q,A, σ, γ) be a connected directed graph. The
asymptotic cone CG of the set P(W ) is also the essential definition cone
of the function ψG in E. This cone CG is contained in the orthogonal
subspace (∇V)⊥ of ∇V and CG has non empty interior in (∇V)⊥. The
function ψG is analytic, positive and strictly concave in the interior of
CG in (∇V)⊥.
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Recall that the asymptotic cone of a subset X of E is the set of limit
points of sequences of the form (tnxn)n≥0 where (xn)n≥0 is a sequence
in X and (tn)n≥0 is a sequence of non-negative real numbers converging
to 0.

Proof. By Proposition 8.3, the function λ is invariant under translations
by vectors from ∇V . By Proposition 6.2, the set ΩG is also invariant by
these translations. Therefore, by Lemma 2.2, the essential definition
cone CG of ψG is contained in (∇V)⊥. By Lemma 3.2, CG is also the
asymptotic cone of P(W ) and ψG is ≥ 0 on CG.
Note that the fact that the asymptotic cone of P(W ) is contained

in (∇V)⊥ can be obtained directly: indeed, for f in V and w in W , a
word with length n, one has

⟨P(w),∇f⟩ =
n∑
k=1

f(γ(wk))− f(σ(wk)) = f(γ(wn))− f(σ(w1)),

where we have used that, for 2 ≤ k ≤ n, we have σ(wk) = γ(wk−1).
Therefore, the vectors P(w) are at a bounded distance from the space
(∇V)⊥.
Finally, we note that since by Proposition 8.3, the function λ is

invariant under translations by vectors from ∇V , we can consider it as
a function on the quotient space E/∇V . Besides, the derivative of λ
never vanishes on constant functions. Then, by Proposition 8.3, the
assumption of Lemma 2.6 is satisfied and the analycity properties of
ψG follow. □

This leads to the introduction of a new object asocciated with the
language W .

Corollary 9.2. Let G = (Q,A, σ, γ) be a connected directed graph.
Then, there exists a unique vector xG in E with ⟨1, xG⟩ = 1 and

ψG(xG) = sup
x∈E

⟨1,x⟩=1

ψG(x).

One has ψG(xG) = δG and xG belongs to (∇V)⊥.

Proof. This directly follows from the strict concavity property of ψG
established in Corollary 9.1. □

Example 9.3. We go back to the Fibonacci graph of Examples 6.9,
7.2 and 8.2 and we will compute the vector xG. We look for vectors
x = (x1, x2, x3) in (∇V)⊥ with x1 + x2 + x3 = 1, that is, vectors of the
form x = (1− 2u, u, u). For such a vector the function ψG(1− 2u, u, u)
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is infinite if u /∈ [0, 1
2
] and the value of the interval is given by

ρ(u) = ψG(1−2u, u, u) = (1−u) log(1−u)−(1−2u) log(1−2u)−u log u.

The derivative is

ρ′(u) = − log(1− u) + 2 log(1− 2u)− log(u) = log
(1− 2u)2

u(1− u)
,

which vanishes at a solution of the equation (1− 2u)2 = u(1− u). We
rewrite the equation as 5u2 − 5u + 1 = 0. The only solution of this
equation in [0, 1

2
] is 1

2
(1− 1√

5
). We get

xG =

(
1√
5
,
1

2

(
1− 1√

5

)
,
1

2

(
1− 1√

5

))
.

10. A Central Limit Theorem

We now aim at counting the number of elements of w such that
P(w) belongs to certain subsets of E . This will rely on developing a
formalism which is an adaptation of the limit theorems of probability
theory for finite state space Markov chains. As a first step, we begin
by writing a version of the Central Limit Theorem.

For θ in E , we set xθ = −dθ log λ. Note that (8.2) implies that
⟨1, xθ⟩ = 1. We use the notation introduced in Section 6 and Section
7.

Theorem 10.1. Let G = (Q,A, σ, γ) be a connected directed graph.
Choose θ in E with λ(θ) = 1. Fix q in Q. Then, we have

1

n

∑
w∈W q

n

e−⟨θ,P(w)⟩(P(w)− nxθ) −−−→
n→∞

0

and there exists a positive definite quadratic form χθ on the space E0 =
(R1+∇V)⊥ such that, for any continuous compactly supported function
g on E, we have∑

w∈W q
n

e−⟨θ,P(w)⟩g

(
1√
n
(P(w)− nxθ)

)

−
⟨φθ,1Qq

n
⟩fθ(q)

(2π)r

∫
E0
exp

(
−1

2
χθ(y)

)
g(y)dy −−−→

n→∞
0.

We have denoted by r the dimension of E0. We have equipped the
space E0 with the Lebesgue measure associated with χθ, that is, the
unit hypercubes with respect to χθ have measure 1. See [2] for a related
result.
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The first statement of the Proposition says that, when the set W q
n

is equipped with the measure associated to the weights e−⟨θ,P(w)⟩,
w ∈ W q

n , the random vector P(w) behaves as a random walk on E
which satisfies a Law of Large Numbers with expectation xθ. The sec-
ond statement says that, when taking out this drift, this random walk
satisfies a Central Limit Theorem, that is, after being normalized in
the right way, it admits an asymptotic Gaussian distribution supported
on (∇V)⊥ ⊂ E .

To prove this second statement, we shall use the so called method
of characteristic functions from probability theory, which is to say the
following

Lemma 10.2. Let H be a real finite-dimensional vector space and
(µn)n≥0 and µ be finite Borel measures on H. Then, the following
are equivalent
(i) One has µn(V ) −−−→

n→∞
µ(V ) and, for any continuous compactly sup-

ported function g on H,
∫
H
gdµn −−−→

n→∞

∫
H
gdµ.

(ii) For any linear functional φ on H, one has∫
H

exp(iφ(x))dµn(x) −−−→
n→∞

∫
H

exp(iφ(x))dµ(x).

Proof of Proposition 10.1. We first establish the first statement. The
main idea is that the quantity G(n, q, θ) = −

∑
w∈W q

n
e−⟨θ,P(w)⟩P(w)

may be interpreted as the derivative at θ of Lnθ1(q). We then use the
precise structure of the operator Lθ to conclude.

More precisely, by Lemma 6.4 and Corollary 6.6 we may write, for ξ
in E∗ and n ≥ 0,

(10.1) Lnξ1(q) = λ(ξ)np⟨φξ,1Qq
n
⟩fξ(q) + ΠξL

n
ξ1(q),

where Πξ is a projection of V onto a subspace of codimension p, which
is stable under Lξ and where the spectral radius of Lξ is < λ(ξ). Using
Lemma 8.4 and Lemma 8.5 as in the proof of Proposition 8.3 shows
that Πξ is an analytic function of ξ. As λ(θ) = 1, derivating (10.1) at
θ yields

(10.2) ξ(G(n, a, θ)) = pndθλ(ξ)⟨φθ,1Qq
n
⟩fθ(q) + p⟨dθφ(ξ),1Qq

n
⟩fθ(q)

+p⟨φθ,1Qq
n
⟩dθf(ξ)(q)+dθΠ(ξ)L

n
θ1(q)+Πθ

n∑
k=1

Lk−1
θ dθL(ξ)L

n−k
θ 1(q).

The conclusion will follow from the fact that, in the above equation,
all terms but the first are bounded and hence go to 0 when divided by
n. Indeed, as λ(θ) = 1, the operator Lθ has spectral radius 1 and, by
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Lemma 6.4, all eigenvalues of Lθ with modulus 1 are simple. Hence,
the operator norm of Lnθ is uniformly bounded. Besides, all eigenvalues
of Lθ in the range of Πθ have modulus < 1, hence, there exists C > 0
and 0 < α < 1 such that, for any n ≥ 0, the operator ΠθL

n
θ has norm

≤ αnC. Thus, we get, up to enlarging C,

∥dθΠ(ξ)Lnθ1∥ ≤ C∥1∥∥ξ∥
and

∥Πθ

n∑
k=1

Lk−1
θ dθL(ξ)L

n−k
θ 1∥ ≤ C2

n∑
k=1

αk−1∥1∥∥ξ∥ ≤ C2

1− α
∥1∥∥ξ∥.

Plugging this in (10.2) yields

1

n
G(n, q, θ) + ⟨φθ,1Qq

n
⟩fθ(q)xθ −−−→

n→∞
0.

Besides, by Lemma 6.4 and Corollary 6.6 we have∑
w∈W q

n

e−⟨θ,P(w)⟩ − p⟨φθ,1Qq
n
⟩fθ(q) = Lnθ1(q)− p⟨φθ,1Qq

n
⟩fθ(q) −−−→

n→∞
0.

The conclusion follows.
Now, we will prove the second statement. The proof is the same

as the standard proof of the Central Limit Theorem, which relies on
Lemma 10.2. Thus, for ξ in E∗ and n ≥ 0, we compute∑

w∈W q
n

exp

(
−⟨θ,P(w)⟩+ iξ

(
1√
n
(P(w)− nxθ)

))
= exp(−i

√
nξ(xθ))L

n
θ−i ξ√

n

1(q).

Again, we will use the structure of the operator Lθ−i ξ√
n
to conclude.

When n is large, θ− i ξ√
n
is close to θ, hence we can write as in (10.1),

Ln
θ−i ξ√

n

1(q) =

λ

(
θ − i

ξ√
n

)n
p⟨φθ−i ξ√

n
,1Qq

n
⟩fθ−i ξ√

n
(q) + Πθ−i ξ√

n
Ln
θ−i ξ√

n

1(q).

As above, the spectral radius of Lθ in the range of Πθ is < 1 and we
get

Πθ−i ξ√
n
Ln
θ−i ξ√

n

−−−→
n→∞

0

and, by continuity,

⟨φθ−i ξ√
n
,1Qq

n
⟩fθ−i ξ√

n
−−−→
n→∞

⟨φθ,1Qq
n
⟩fθ.
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The study of the remaining term is the same as in the classical proof
of the Central Limit Theorem. Indeed, from the computation of the
derivatives of λ in Proposition 8.3, we can write, for n large,

exp

(
−i 1√

n
ξ(xθ)

)
λ

(
θ − i

ξ√
n

)
= exp

(
− 1

2n
d2
θ log λ(ξ, ξ) +

an

n
3
2

)
,

where (an)n≥0 is a bounded sequence of complex numbers. We obtain∑
w∈W q

n

exp

(
−⟨θ,P(w)⟩+ iξ

(
1√
n
(P(w)− nxθ)

))

− exp

(
−1

2
d2
θ log λ(ξ, ξ)

)
p⟨φθ,1Qq

n
⟩fθ(q) −−−→

n→∞
0

and the result is a consequence of the description of the null space of
d2
θ log λ in Proposition 8.3, Lemma 10.2 and standard computations of

Fourier transforms of Gaussian measures. □

11. Local asymptotic estimates for languages of finite
type

We continue to translate results from the theory of finite state space
Markov chains into our language. We will now show a strong version
of the Local Limit Theorem in the spirit of [3].

More precisely, for q, q′ in Q and n ≥ 0, we will consider the setW q,q′
n

and give an estimate as n→ ∞ of the number of words w inW q,q′
n such

that P(w) takes a fixed value x in E . Roughly speaking, this estimate
will say that this number behaves as Cxn

− r
2 e−ψG(x), where r is an integer

and Cx > 0 only depends on the direction of the vector x (that is,
Ctx = Cx for t > 0). This can be seen as a strong large deviation
principle in the sense of [5]. In stating such estimates precisely, we
encounter several difficulties.

First, if we want the above mentioned number to be non zero, we
have to assume that ⟨1, x⟩ = n, since ⟨1,P(w)⟩ = n for every w in
W q,q′
n . In other words, we will assume that x belongs to a fixed affine

hyperplane of the space E .
In the same spirit, for w in W , the vector P(w) is integer valued

when seen as a function on A. Therefore, we will need to assume that
x belongs to the lattice Λ ⊂ E of functions on A with values in Z.

Finally, as we have seen in the proof of Corollary 9.1, the set P(W )
stays at a bounded distance from the vector space (∇V)⊥. Nevertheless,
in general P(W ) is not contained in (∇V)⊥. The next Lemma will
show us that the elements of the set P(W q,q′) all belong to a translate
of (∇V)⊥ that only depends on q and q′.



42 ROSTISLAV GRIGORCHUK, JEAN-FRANÇOIS QUINT

Lemma 11.1. Let G = (Q,A, σ, γ) be a connected directed graph.
There exists a map R : Q→ Λ with the following properties.
(i) For any a in A, we have

1a − R(γ(a)) + R(σ(a)) ∈ (∇V)⊥.

(ii) For any q in Q and q′ in Qq
0 we have ⟨1,R(q)− R(q′)⟩ = 0.

In particular, for n ≥ 0, q, q′ in Q and w in W q,q′
pn , we have

P(w)−R(q′)+R(q) ∈ (∇V)⊥∩Λ and ⟨1,P(w)−R(q′)+R(q)⟩ = n.

The sets Qq
j , q ∈ Q, j ∈ Z/pZ, were introduced in Section 6. We

have denoted by 1a the indicator function of the set {a} ⊂ A.

Example 11.2. In the Fibonacci graph of Examples 6.9, 7.2, 8.2 and
9.3, we can take R(1) = (0, 0, 0) and R(2) = (1, 0,−1).

We denote by ∆ ⊂ V the lattice of functions on Q with values in Z.

Proof of Lemma 11.1. The construction relies on elementary properties
of linear algebra. We fix q0 in Q.

First, we build a section S : ∇V → V of the linear map ∇. By
Lemma 8.1, for f in ∇V , there exists a unique g in V with g(q0) = 0
and ∇g = f . We set Sf = g. We claim that if f belongs to Λ, then
g = Sf belongs to ∆. Indeed, for such a function f , let Q′ ⊂ Q be
the set of those q in Q such that g(q) is an integer. We have q0 ∈ Q.
Besides, for q in Q′ and a in A wth σ(a) = q, by construction, we have
f(a) = g(γ(a)) − g(q) hence g(γ(a)) = f(a) + g(q) is also an integer.
As G is connected, we obtain Q′ = Q.

We have just shown that

(11.1) S(Λ ∩∇V) ⊂ ∆.

Note that Λ ∩ ∇V = S(∆) is a lattice in ∇V and that Λ ∩ R1 is a
lattice in (the line!) R1. Therefore, Λ ∩ (∇V ⊕ R1) is a lattice in
∇V ⊕ R1. We will extend the definition of S in order to get a linear
map Λ ∩ (∇V ⊕ R1) → ∆. This requires us to find a complementary
subgroup of Λ ∩ ∇V in Λ ∩ (∇V ⊕ R1). The situation is a bit tricky
when p ≥ 2.

Recall that by definition, the group Λ∩(∇V⊕R1) is the set of integer
valued functions f on A which are of the form f = ∇g+ c1 for some g
in V and c in R. The difficulty will come from he fact that, when p ≥ 2,
this does not imply that we may choose c to be an integer and g to be
integer valued, that is, to belong to ∆. Nevertheless, we claim that for
such a function, the number c must belong to p−1Z. Indeed, let n ≥ 0
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be such that W q0,q0
n ̸= ∅, and choose a word w = (a1, . . . , an) in W

q0,q0
n .

Then, for any 1 ≤ i ≤ n, we get f(ai) = g(γ(ai))− g(σ(ai)) + c, hence

n−1∑
i=0

f(ai) = g(γ(an))− g(σ(a0)) + nc = nc,

so that, by assumption, nc is an integer. By Lemma 6.5, we obtain
pc ∈ Z as required.

Conversely, we set g0 = p−1
∑p−1

j=0 j1Qq0
j

and we obtain that f0 =

∇g0 − p−11 is integer valued. Thus, we have the decomposition

(11.2) Λ ∩ (∇V ⊕ R1) = Zf0 ⊕ (Λ ∩∇V).
We extend the linear map S : ∇V → V into a linear map ∇V⊕R1 → V
by setting S(f0) = 0. From (11.1) and (11.2), we obtain

S(Λ ∩ (∇V ⊕ R1)) ⊂ ∆.

Besides, since 1 = ∇(pg0)− pf0 and g(q0) = 0, we have

(11.3) S(1) = pg0 =

p−1∑
j=0

j1Qq0
j
.

Finally, since Λ∩ (∇V ⊕R1) is a lattice in ∇V ⊕R1, we can extend
S into a linear map E → V such that S(Λ) ⊂ ∆.
We will use the adjoint map of S to define R(q) for q in Q. More

precisely, for q in Q, we let R(q) be the unique element of E such that,
for any θ in E , we have

⟨θ,R(q)⟩ = ⟨Sθ,1q⟩ = Sθ(q).

Note that, since SΛ ⊂ ∆, for any θ in Λ, we have ⟨θ,R(q)⟩ ∈ Z,
hence R(q) belongs to Λ. Let us check that R satisfies the required
properties.

Fix f in ∇V and set g = Sf , so that, by construction, we have
f = ∇g. Then, for a in A, we get

f(a) = g(γ(a))− g(σ(a))

which we rewrite as

⟨f,1a⟩ = ⟨Sf,1γ(a) − 1σ(a)⟩ = ⟨f,R(γ(a))− R(σ(a))⟩,

that is, 1a − R(γ(a)) + R(σ(a)) ∈ (∇V)⊥.
Besides, from (11.3), for any 0 ≤ j ≤ p− 1 and q, q′ in Qq0

j ,

⟨1,R(q)⟩ = ⟨S1,1q⟩ = S1(q) = j = ⟨S1,1q′⟩ = ⟨1,R(q′)⟩,
as required. □
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We fix a function R as in Lemma 11.1. For x in E , n ≥ 0 and q, q′

in Q, we set

(11.4) Nn(x, q, q
′) = |{w ∈ W q,q′

n |P(w)− R(q′) + R(q) = x}|.
Theorem 11.3 below will tell us that, when x belongs to the intersection
◦
CG∩Λ of the interior of the cone CG in the space (∇V)⊥ with the lattice
Λ ⊂ E , we can give a very precise estimate of the number Nn(x, q, q

′).
Let x be in E with ψG(x) > 0. By Corollary 9.1, there exists θ in

E with λ(θ) = 1 and ψG(x) = ⟨θ, x⟩ and θ is unique up to translation
by an element of ∇V . Consider the quadratic form χθ on the space
E0 = (R1⊕∇V)⊥ which is defined in Theorem 10.1. Note that Λ ∩ E0
is a lattice in E0. We set ς(x) to be | detχθ|

1
2 where the determinant is

evaluated with respect to a basis of the lattice Λ ∩ E0 (and hence does
not depend on the choice of this basis).

We use these constructions to state our Local Limit Theorem. We
still let r be the dimension of the space E0 = (R1⊕∇V)⊥.
Theorem 11.3. Let G = (Q,A, σ, γ) be a connected directed graph.
Fix a compact subset K of {y ∈ (∇V)⊥|ψG(y) > 0}. Then, there exists
a sequence (εn)n≥0 of positive real numbers such that εn −−−→

n→∞
0 with

the following property. For any n ≥ 0, q, q′ in Q with q′ ∈ Qq
n and x in

Λ ∩ (∇V)⊥ with ⟨1, x− R(q) + R(q′)⟩ = n and n−1x ∈ K, we have∣∣∣(2πn) r
2 ς(x)e−ψG(x)Nn(x, q, q

′)− pe⟨θ,R(q′)−R(q)⟩φθ(q
′)fθ(q)

∣∣∣ ≤ εn,

where θ is any element of E such that λ(θ) = 1 and ψG(x) = ⟨θ, x⟩.

Remark 11.4. Note that the quantity e⟨θ,R(q′)−R(q)⟩φθ(q
′)fθ(q) which

appears in Theorem 11.3 does not depend on the choice of θ. Indeed,
given a θ such that λ(θ) = 1 and ψG(x) = ⟨θ, x⟩, the other choices are
of the form θ + ∇ξ, where ξ is in V . Then, since Lθ and Lθ+∇ξ are
conjugated by a multiplication operator (see the proof of Proposition
8.3), we get, for q, q′ in Q,

φθ+∇ξ(q
′)fθ+∇ξ(q) = eξ(q)−ξ(q

′)φθ(q
′)fθ(q).

On the other hand, by Lemma 11.1, we have

⟨∇ξ,R(q′)− R(q)⟩ = ξ(q′)− ξ(q).

Thus, we get

e⟨θ+∇ξ,R(q′)−R(q)⟩φθ+∇ξ(q
′)fθ+∇ξ(q) = e⟨θ,R(q′)−R(q)⟩φθ(q

′)fθ(q).

The statement of Theorem 11.3 is complicated by the fact that the
integer p of Lemma 6.4 can be ̸= 1, so that there are obstructions to
the numbers Nn(x, q, q

′) being ̸= 0 coming from the geometry of the
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graph. Also, we have stated Theorem 11.3 in order to describe the
uniformity properties with respect to x of the asymptotic estimate of
Nn(x, q, q

′) as n→ ∞. When assuming p = 1, fixing an x in Λ∩(∇V)⊥
and only caring for what happens on the half line Nx, that is, for the
values of Nn⟨1,x⟩(nx, q, q

′), n ∈ N, this estimate can be written in the
simpler following form.

Corollary 11.5. Let G = (Q,A, σ, γ) be a connected directed graph
with p = 1. Fix q, q′ in Q and x in Λ ∩ (∇V)⊥ with ψG(x) > 0. Then,
we have

Nn⟨1,x⟩(nx, q, q
′) ∼
n→∞

φθ(q
′)fθ(q)

(2π⟨1, x⟩) r
2 ς(x)

n− r
2 enψG(x),

where θ is any element of E such that λ(θ) = 1 and ψG(x) = ⟨θ, x⟩.
Compare with [12, Thm. 5.2].
We begin the proof of Theorem 11.3 by studying the spectral radius

of Lθ when θ is not real. In that case, we consider Lθ as an endomor-
phism of the complexification VC of V , that is, the space of complex
valued functions on Q.

Lemma 11.6. Let G = (Q,A, σ, γ) be a connected directed graph. Fix
θ in E. Then, for ξ in E, the operator Lθ+2iπξ has spectral radius ≤ λ(θ)
and equality holds if and only if ξ belongs to ∇V + R1+ Λ.

Proof. First suppose that we may write ξ ∈ ∇φ+ c1+Λ where c is in
R and φ is in V . Then, as in the proof of Proposition 8.3, we get, for
f in VC and q in Q,

Lθ+2iπξf(q) = e−2iπce2iπφ(q)Lθ(e
−2iπφf)(q),

hence Lθ+2iπξ is conjugated to e−2iπcLθ and the spectral radius of
Lθ+2iπξ is λ(θ).

Conversely, first note that, for f in VC and q in Q, we have

|Lθ+2iπξf(q)| ≤ Lθ|f |(q),
which, by iteration, yields, for n ≥ 0, |Lnθ+2iπξf | ≤ Lnθ |f |. Thus, for the
operator norm associated with the sup norm, we have ∥Lnθ+2iπξ∥ ≤ ∥Lnθ∥
and Lθ+2iπξ has spectral radius ≤ λ(θ).
Suppose now that Lθ+2iπξ admits an eigenvalue of the form wλ(θ)

where w is a complex number with modulus 1. Let ρ ̸= 0 be an
eigenvector, that is, we have Lθ+2iπξρ = wλ(θ)ρ. For q in Q, we set
ψ(q) = fθ(q)

−1ρ(q), so that we obtain

(11.5)
∑
a∈A
σ(a)=q

e−θ(a)fθ(γ(a))

λ(θ)fθ(q)
e−2iπξ(a)ψ(γ(a)) = wψ(q).
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We denote by Q′ ⊂ Q the set of q in Q such that the modulus |ψ(q)|
is maximal. For q in Q′, in view of (11.5), since∑

a∈A
σ(a)=q

e−θ(a)fθ(γ(a))

λ(θ)fθ(q)
= 1

and since the disks of C are strictly convex, we obtain that, for any a
in A with σ(a) = q, the element γ(a) also belongs to Q′ and satisfies

(11.6) ψ(γ(a)) = we2iπξ(a)ψ(q) = we2iπξ(a)ψ(σ(a)).

Thus, as G is connected, we get Q′ = Q and the function ψ has constant
modulus. Choose c in R with e2iπc = w and a function φ on V with
e2iπφ = ψ. Then, from (11.6), we get, for a in A,

ξ(a)− φ(γ(a)) + φ(σ(a)) + c ∈ Z,

that is, ξ −∇φ+ c1 ∈ Λ. The conclusion follows. □

The main step in the proof of Theorem 11.3 is the next lemma which
essentially deals with the case p = 1.

Lemma 11.7. Let G = (Q,A, σ, γ) be a connected directed graph. Fix
a compact subset K of {y ∈ (∇V)⊥|ψG(y) > 0}. Then, there exists a
sequence (εn)n≥0 of positive real numbers such that εn −−−→

n→∞
0 with the

following property. For any q in Q, q′ in Qq
0, n ≥ 0, x in Λ ∩ (∇V)⊥

with ⟨1, x⟩ = pn and (pn)−1x ∈ K, we have∣∣∣(2πpn) r
2 ς(x)e−ψ(x)Npn(x, q, q

′)− pe⟨θ,R(q′)−R(q)⟩φθ(q
′)fθ(q)

∣∣∣ ≤ εn,

where θ is any element of E such that λ(θ) = 1 and ψ(x) = ⟨θ, x⟩.

Proof. We fiw x as in the statement and we set y = (pn)−1x which
is an element of K. Let θ be an element of E with λ(θ) = 1 and
ψ(x) = ⟨θ, x⟩.

For n ≥ 0, q in Q and q′ in Qq
0, consider the finite measure

νq,q
′

n,x =
∑

w∈W q,q′
pn

e−⟨θ,P(w)⟩δP(w)−R(q′)+R(q)−x.

This measure is supported on Λ∩E0 = Λ∩ (∇V+R1)⊥. We will prove
the lemma by evaluating the number

(11.7) νq,q
′

n,x (0) = e−ψ(x)+⟨θ,R(q)−R(q′)⟩Npn(x, q, q
′).

We will use the Fourier inversion formula.
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Indeed, for ξ in E , define the characteristic function

ν̂q,q
′

n,x (ξ) =

∫
E
e−2iπ⟨ξ,z⟩dνq,q

′

n,x (z) =
∑

z∈Λ∩(∇V⊕1)⊥

e−2iπ⟨ξ,z⟩νq,q
′

n,x (z).

Note that this function is invariant under translations by Λ + ∇V +
1. Then, the Fourier inversion formula (which in this discrete case is
elementary) says that

(11.8) νq,q
′

n,x (0) =

∫
E/(Λ+∇V+1)

ν̂q,q
′

n,x (ξ)dξ,

where we have equipped the compact abelian group E/(Λ + ∇V + 1)
with its unique translation invariant Borel probability measure.

To conclude, we will use the language of transfer operators to give
an asymptotic expansion of ν̂q,q

′
n,x (ξ). Indeed, for ξ in E , we have

ν̂q,q
′

n,x (ξ) = e2iπ⟨ξ,x−R(q)+R(q′)⟩Lpnθ+2iπξ(1q′)(q).

First, let us use this formula for replacing the integral in (11.8) by
an integral over a small neighbourhood of 0. By Lemma 11.6, for any
ξ in E ∖ (Λ +∇V + 1), the operator Lθ+2iπξ has spectral radius < 1.
Therefore, since by Lemma 8.4, the spectral radius is a continuous
function, for any neighbourhood U of 0 in E/(Λ + ∇V + 1), we may
find 0 ≤ αU < 1 and CU > 0 such that, unformly for y in K, we have,
from (11.8),

(11.9)

∣∣∣∣νq,q′n,x (0)−
∫
U

ν̂q,q
′

n,x (ξ)dξ

∣∣∣∣ ≤ CUα
n
U .

Now, by Corollary 6.6, we can find C, ε > 0 such that,

|Lpnθ (1q′)(q)− λ(θ)pnpφθ(q
′)fθ(q)| ≤ Cεn.

Again, ε can be chosen to be uniform when y varies in K. Besides,
thanks to Lemma 8.4 and Lemma 8.5, the objects in the inequality
above are analytic functions of θ and we may find a neighbourhood W
of θ in E such that, up to lowering ε, for ξ in W , we have

|ν̂q,q′n,x (ξ)− λ(θ + 2iπξ)pne2iπ⟨ξ,x−R(q)+R(q′)⟩pφθ+2iπξ(q
′)fθ+2iπξ(q)| ≤ Cεn.

Up to shrinking U , we may assume that U is of the form U ′+Λ+∇V+1,
where U ′ is a neighbourhood of {0} in (∇V + 1)⊥ such that U ′ ⊂ W .
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Thus, from (11.9), for some C ′ > 0 and 0 < β < 1, we get

(11.10)∣∣∣∣νq,q′n,x (0)−
∫
U ′
λ(θ + 2iπξ)pne2iπ⟨ξ,x−R(q)+R(q′)⟩pφθ+2iπξ(q

′)fθ+2iπξ(q)dξ

∣∣∣∣
≤ C ′βn,

where we have equipped (∇V + 1)⊥ with the Lebesgue measure such
that Λ ∩ (∇V + 1)⊥ has covolume 1.

In this formula, we can eliminate the dependence in ξ of certain
terms. Indeed, by using the computation of the derivatives of λ from
Proposition 8.3, if we take U ′ small enough, for ξ in U ′, we get

(11.11)
∣∣λ(θ + 2iπξ)e2iπ⟨ξ,y⟩

∣∣ ≤ exp(−π2d2
θ log λ(ξ, ξ)),

hence, by using the change of variable η =
√
nξ in the integral, we

obtain ∫
U ′
∥ξ∥

∣∣λ(θ + 2iπξ)ne2iπn⟨ξ,y⟩
∣∣ dξ ≪ n− r+1

2 .

Thus, from (11.10), using that all objects below the integral are analytic
functions,
(11.12)∣∣∣∣νq,q′n,x (0)− pφθ(q

′)fθ(q)

∫
U ′
λ(θ + 2iπξ)pne2iπpn⟨ξ,y⟩dξ

∣∣∣∣≪ n− r+1
2 ,

uniformly for y in K.
We will conclude by replacing the integrand of the above by a Gauss-

ian law. First, we lower the size of the domain of integration. Keep-
ing in mind that (11.11) holds and using again the change of variable
η =

√
nξ, we obtain∫
ξ∈U ′

∥ξ∥≥( logn
n )

1
2

∣∣λ(θ + 2iπξ)ne2iπn⟨ξ,y⟩
∣∣ dξ

≤ n− r
2

∫
∥η∥≥(logn)

1
2

exp(−π2d2
θ log λ(η, η))dη ≪ (log n)rn− r+1

2 .

Now, we are reduced to studying the quantity∫
∥ξ∥≤( logn

n )
1
2

λ(θ + 2iπξ)ne2iπn⟨ξ,y⟩dξ.

For ξ as under the integral, by Proposition 8.3, we have

| log(λ(θ + 2iπξ)e2iπ⟨ξ,y⟩) + 2π2d2
θ log λ(ξ, ξ)| ≪ ∥ξ∥3 ≤

(
log n

n

) 3
2
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(where we have used the principal determination of the logarithm).
This gives

|n log(λ(θ + 2iπξ)e2iπ⟨ξ,y⟩) + 2nπ2d2
θ log λ(ξ, ξ)| ≪ (log n)

3
2n− 1

2 ,

hence, as the exponential function is Lipshitz continuous in the neigh-
bourhood of 0,∫
∥ξ∥≤( logn

n )
1
2

|λ(θ+2iπξ)ne2iπn⟨ξ,y⟩−e−2nπ2d2θ log λ(ξ,ξ)|dξ ≪ (log n)
r+3
2 n− r+1

2 .

By standard integral computations, we have∫
E0
e−2π2d2θ log λ(η,η)dη =

1

(2π)
r
2 ς(x)

.

Thus, using again the change of variable η =
√
nξ gives∣∣∣∣∣

∫
∥ξ∥≤( logn

n )
1
2

e−2nπ2d2θ log λ(ξ,ξ)dξ − 1

(2πn)
r
2 ς(x)

∣∣∣∣∣≪ (log n)rn− r+1
2 .

Therefore, from (11.12), we obtain∣∣∣∣νq,q′n,x (0)−
pφθ(q

′)fθ(q)

(2πpn)
r
2 ς(x)

∣∣∣∣≪ (log n)max(r, r+3
2

)n− r+1
2 .

In view of (11.7), the lemma follows. □

The general case of Theorem 11.3 will now follow from the latter
case and an elementary induction argument.

Proof of Theorem 11.3. We will prove the result for n in j + pZ by
induction on 0 ≤ j ≤ p− 1.

For j = 0, this is Lemma 11.7.
Assume j ≥ 1 and the result is true for j − 1. For n ≥ 1, q, q′ in Q

and x in E , the definition in (11.4) gives

Nn(x, q, q
′) =

∑
a∈A
σ(a)=q

Nn−1(x− 1a + R(γ(a))− R(q), γ(a), q′).

Assume that n is in j + pZ and that q′ is in Qq
j . Then, for a as above,

we have q′ ∈ A
γ(a)
j−1 . Besides, if ⟨1, x− R(q) + R(q′)⟩ = n, we have

⟨1, x−1a+R(γ(a))−R(q)−R(γ(a))+R(q′)⟩ = ⟨1, x−1a−R(q)+R(q′)⟩
= n− 1.

Also, the construction in Lemma 11.1 warrants that, if x belongs to
(∇V)⊥ ∩ Λ, so does x − 1a + R(γ(a)) − R(q); if n−1x lives in a com-
pact subset of {y ∈ (∇V)⊥|ψG(y) > 0}, so does (n − 1)−1(x − 1a +
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R(γ(a)) − R(q)). Therefore, the induction assumption together with
the continuity of the function σ tells us that Nn(x, q, q

′) is uniformly
equivalent to

pφθ(q
′)e⟨θ,R(q′)⟩

(2πn)
r
2 ς(x)

∑
a∈A
σ(a)=q

eψ(x−1a+R(γ(a))−R(q))−⟨θ,R(γ(a))⟩fθ(γ(a)).

Since θ is the derivative of ψ at x, in view of the assumption, for a as
above, we have

|ψ(x−1a+R(γ(a))−R(q))−ψ(x)−⟨θ,−1a+R(γ(a))−R(q)⟩| ≪ n−1,

so that Nn(x, q, q
′) is uniformly equivalent to

eψ(x)
pφθ(q

′)e⟨θ,R(q′)−R(q)⟩

(2πn)
r
2 ς(x)

∑
a∈A
σ(a)=q

e−θ(a)fθ(γ(a)).

The conclusion follows as by definition,
∑

a∈A
σ(a)=q

e−θ(a)fθ(γ(a)) = fθ(q).

□

12. The use of sofic languages

We will now introduce languages defined by automata which are an
extension of the notion of languages defined by directed graphs. The
counting result established in Theorem 11.3 can be extended to this
framework.

Assume now we are given a directed graph G = (Q,A, σ, γ). We
define a labelled graph as the additional data of a finite set B (which
we view as a new alphabet) together with a surjective map π : A→ B.
We will think to B as being a set of labels on the edges of the directed
graph G. We will always assume the labelling to be deterministic,
meaning that, for every q in Q, the map π is injective on the set of
arrows starting from q, that is, the set {a ∈ A|σ(a) = q}. In other
words, different arrows emanating from the same vertex have different
labels. Such a graph is called right resolving in [11, Def. 3.3.1] and it is
known that every sofic subshift has a right resolving presentation [11,
Th. 3.3.2].

Example 12.1. The Fibonacci labelled graph is obtained by labelling
the Fibonacci graph of Figure 1 with two colors b1 and b2 as in Figure
3.

Given such a labelling, for n ≥ 0, we still write π for the associated
surjective map An → Bn. We denote by X the language obtained
from W by replacing letters in A with their images by π, that is X =
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q1

b2b1

q2

b1

Figure 3. The Fibonacci labelled graph⋃
n≥0Xn where, for n ≥ 0, Xn = π(Wn). In the same way, for q, q′ in Q

and n ≥ 0, we write Xq,q′
n = π(W q,q′

n ) for the set of words in X which
may be obtained through path starting from q and terminating at q′.
Note that the assumption that the labelling is deterministic directly
gives

Lemma 12.2. Let A = (Q,A,B, σ, γ, π) be a deterministic labelled
graph. Then, for any q, q′ in Q and n ≥ 0 the map π induces a bijection
W q,q′
n → Xq,q′

n .

Let F be the space of all real valued functions on the set B. The
language X comes with a natural map Q : X → F which counts the
number of occurences of every letter in a given word. Still denote by
π : E → F the natural map defined by, for f in E and b in B,

πf(b) =
∑
a∈A
π(a)=b

f(a).

Then, by construction, for w in W , we have πP(w) = Q(πw).
Denote by ψA the indicator of growth of the image under Q of the

counting measure on set Q(X) = πP(w) in F . We obtain

Lemma 12.3. Let A = (Q,A,B, σ, γ, π) be a deterministic labelled
graph such that the directed graph G = (Q,Aσ, γ) is connected. Then
the function ψA is concave and, for every y in F , we have

ψA(y) = sup
x∈E

π(x)=y

ψG(x).

If ψA(y) > 0, this supremum is attained exactly once.

Proof. Fix q, q′ in Q. As the graph G is connected, the function ψG
is the indicator of growth of the measure µ which is the image under
P of the counting measure on the set W q,q′ . In the same way, the
function ψA is the indicator of growth of the measure ν which is the
image under P of the counting measure on the set Xq,q′ . In view of
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Lemma 12.2 above, we have π∗µ = ν. Thus, we will aim at applying
Corollary 4.2.

Indeed, thanks to Lemma 3.2, we know that the cone {x ∈ E|ψG(x) >
−∞} is the asymptotic cone to P(W ). By construction, P(W ) is
contained in the set of all nonnegative functions on A, hence ψG is −∞
on all functions which take at least one negative value. In particular, if
x ̸= 0 is in kerπ, we must have ψG(x) = −∞. The formula for ψA now
directly follows from Corollary 4.2 and this formula implies that ψA is
concave. The uniqueness statement follows from the strict concavity
properties of ψG from Corollary 9.1. □

Example 12.4. For the Fibonacci labelled graph of Example 12.1, the
map π may be written as

π : R3 → R2, (x1, x2, x2) 7→ y = (x1 + x3, x2),

hence, by using the formula from Example 6.9,

ψA(y) = (y1 − y2) log
y1

y1 − y2
+ y2 log

y1
y2

y1 ≥ y2 ≥ 0

= −∞ else.

The analysis of Section 11 can be extended to the study of the lan-
guage X. Keeping the notation of this Section, we set, as in (11.4), for
y in F , n ≥ 0 and q, q′ in Q,

Nn(y, q, q
′) = |{w ∈ W q,q′

n |π(P(w)− R(q′) + R(q)) = y}|
= |{w ∈ W q,q′

n |Q(πw)− πR(q′) + πR(q) = y}|.
To state an analogue of Theorem 11.3, we also need to introduce a

new version of the function ς. Denote by π∗ : F → E the adjoint map
of π, that is, for f in F and a in A,

π∗f(a) = f(πa).

Let y be in F with ψA(y) > 0. By Lemma 12.3, there exists a
unique x in E with π(x) = y and ψG(x) = ψA(y). By Corollary 9.1,
there exists θ in E with λ(θ) = 0 and ψG(x) = ⟨θ, x⟩ and θ is unique
up to translation by an element of ∇V . Note that the construction of
x implies that θ actually belongs to π∗F .

As in Section 11, consider the quadratic form χθ on the space E0 =
(R1 ⊕ ∇V)⊥ which is defined in Theorem 10.1. Now, the group Λ ∩
E0 ∩ π∗F is a lattice in E0 ∩ π∗F . We set ς(y) to be | det(χθ)|E0∩π∗F |

1
2

where the determinant is evaluated with respect to a basis of the lattice
Λ ∩ E0 ∩ π∗F . We let s be the dimension of the latter vector space
E0 ∩ π∗F .
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Theorem 12.5. Let A = (Q,A,B, σ, γ, π) be a deterministic labelled
graph such that G = (Q,A, σ, γ) is a connected directed graph. Fix a
compact subset K of {z ∈ F |ψG(z) > 0}. Then, there exists a sequence
(εn)n≥0 of positive real numbers such that εn −−−→

n→∞
0 with the following

property. For any n ≥ 0, q, q′ in Q with q′ ∈ Qq
n and y in π(Λ∩(∇V)⊥)

with ⟨1, y − πR(q) + πR(q′)⟩ = n and n−1y ∈ K, we have∣∣∣(2πn) s
2 ς(y)e−ψA(y)Nn(y, q, q

′)− pe⟨θ,R(q′)−R(q)⟩φθ(q
′)fθ(q)

∣∣∣ ≤ εn,

where θ is defined as above.
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