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Chapter 1

Continuous time dynamics

In this chapter, we will see how to extend to continuous time dynamical
systems the notions that have been introduced for discrete time dynamical
systems in Professor Le Calvez’s course. This will be an occasion for revising
these notions!

1.1 Continuous flows

Let X be a (Hausdorff) topological space.

Definition 1.1.1. A continuous flow on X is a family (ϕt)t∈R of homeomor-
phisms of X such that the map

R×X → X

(t, x) 7→ ϕt(x)

is continuous and that, for any t and s in R, one has ϕt+s = ϕt ◦ ϕs.

In other words, a flow (ϕt)t∈R is a homomorphism from the additive group
(R,+) to the group of homeomorphisms of X such that the map (t, x) 7→
ϕt(x) is continuous. One could say that a flow is a continuous action of the
group (R,+) on the topological space X.

In particular, one has ϕ0 = ϕ0 ◦ ϕ0 so that ϕ0 = IdX and, for any t in R,
ϕ−t is the inverse of ϕt.

Example 1.1.2. (i) Recall that, if U ⊂ Rd is an open subset, a C1 vector
field F : U → Rd is said to be complete if, for any x in U , there exists
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6 CHAPTER 1. CONTINUOUS TIME DYNAMICS

a C1 curve γ : R → U such that γ′ = F (γ) and γ(0) = x. Such
a curve is necessarily unique by Cauchy-Lipschitz theorem. Then, if
ϕt(x) denotes its value at t, the family (ϕt) is a flow on U .

(ii) Suppose now U = Rd and take F to be of the form x 7→ Ax, where
A is a square matrix of size d. This vector field is complete and the
associate flow ϕt satisfies ϕt(x) = exp(tA)x, t ∈ R, x ∈ Rd, where, for
any square matrix B, its exponential expB is defined by

expB =
∞∑

n=0

1

n!
Bn.

Such flows are called linear flows. In particular, if A is an antisymmetric
matrix, for any t in R, exp(tA) is an orthogonal matrix, so that for any
t, one has exp(tA)(Sd−1) ⊂ Sd−1.

(iii) Let y be a vector in Rd. For t in R and x in the torus Td = Rd/Zd,
set ϕt(x) = x+ ty (that is ϕt(x) is the image in Td of x̃+ ty, where x̃
is any vector in Rd which image in Td is x). Then (ϕt) is a continuous
flow on Td. Such flows are called translation flows.

Let us fix some continuous flow (ϕt)t∈R on X. For x in X, let us say that
the orbit of x under the flow (ϕt)t∈R is the set {ϕt(x)|t ∈ R}.

The usual notions that have been introduced in the case of continuous
maps X → X extend to flows. We recall the most important ones.

Definition 1.1.3. Let x be in X. The point x is said to be recurrent if there
exists a sequence (tk)k∈N in R+ going to infinity such that ϕtk(x) −−−→

k→∞
x;

otherwise, x is called non recurrent. The point x is is called non wandering
if, for every open set U containing x and for any t0 in R, there exists t ≥ t0
such that ϕ−t(U) ∩ U 6= ∅; otherwise, x is called wandering.

In other words, a point is recurrent if it is an accumulation point of its
orbit. A recurrent point is non wandering. The set of recurrent point may
behave badly. The set of non wandering points is closed.

Let us now recall the notion of topological transitivity:

Definition 1.1.4. The flow (ϕt)t∈R is said to be topollogically transitive if,
for any nonempty open subsets U and V of X, there exists a t in R such that
U ∩ ϕ−t(V ) 6= ∅. The flow (ϕt)t∈R is said to be topologically mixing if, for
any nonempty open subsets U and V of X, there exists a t0 in R such that,
for any t ≥ t0, one has U ∩ ϕ−t(V ) 6= ∅.
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A topologically mixing flow is topologically transitive (this is often a
very simple way to prove topological transitivity). We shall soon see on an
example that the converse is not true.

Recall that a set U of open subsets of X is said to be a basis for the
topology of X if, for any open subset V of X and for any x in V , there exists
U in U such that x ∈ U ⊂ V . In the definition of topological transitivity
and topological mixing, it is sufficient to verify the criterion for U and V in
a basis of the topology of X. We say that X has a countable basis if there
exists such a U which is countable. The space Rd, his open subsets and his
close subsets have countable basis.

Finally, let us recall that X is said to be a Baire space if, for every
countable family (Ui)i∈N of dense open subsets of X, the set

⋂
i∈N Ui is dense

in X. A locally compact space and a complete metric space are Baire spaces.
As in the case of discrete time dynamics, the pertinence of the definition

of transitivity comes from the

Proposition 1.1.5. Suppose X is Baire with countable basis. Then the
following are equivalent:

(i) the flow (ϕt)t∈R is transitive.

(ii) there exists a point x in X with dense orbit.

(iii) the set of points with dense orbit is a dense Gδ subset of X.

Finally let us define minimal flows:

Definition 1.1.6. The flow (ϕt)t∈R is said to be minimal if and only if every
orbit is dense.

Example 1.1.7. Let y = (y1, . . . , yd) be a vector in Rd. Then the associate
translation flow on the torus Td is transitive if and only if, for any non zero
α = (α1, . . . , αd) in Qd, one has α1y1 + . . . + αdyd 6= 0. Then, this flow is in
fact minimal. It is never mixing.

Say that a closed subset Y of X is invariant by the flow if, for any t in
R, one has ϕt(Y ) = Y . Then, (ϕt) induces a continuous flow on Y . As in
the case of discrete time dynamics, one deduces from an application of Zorn
lemma the

Proposition 1.1.8. Suppose X to be compact. There exists a closed subset
Y of X which is stable by the flow and such that the restriction of (ϕt) to Y
is minimal.
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1.2 Measure preserving flows

Let now (X,A, µ) be a probability space, that is X is a set, A is a σ-algebra
of subsets of X and µ is a probability measure defined on A. We will always
suppose A to be complete with respect to µ, that is, if B is a subset of X
such that there exists A in A with B ⊂ A and µ(A) = 0, one has B ∈ A.
This can be achieved by adding to A the necessary subsets of X.

Definition 1.2.1. A measurable flow on (X,A, µ) is a family (ϕt)t∈R of
measure preserving measurable automorphisms of (X,A, µ) such that the
map

R×X → X

(t, x) 7→ ϕt(x)

is measurable and that, for any t and s in R, one has ϕt+s = ϕt ◦ ϕs.

In other words, a measurable flow is a measurable action by measure
preserving automorphisms of the group (R,+) on (X,A, µ).

Example 1.2.2. (i) Let U be a bounded open subset of Rd and let F :
U → Rd be a complete C1 vector field. Suppose the divergence of F is
equal to 0 everywhere on U . Then the flow associated to F preserves
the restriction to U of the Lebesgue measure of Rd.

(ii) Let A be an antisymmetric square matrix of size d. Then the asso-
ciate flow on the unit sphere Sd−1 preserves the Riemannian volume of
the sphere.

(iii) Let y be a vector in Rd. Then the associate translation flow on the
torus Td preserves the Haar measure of the torus.

In the sequel, we will make a supplementary assumption on the prob-
ability space (X,A, µ). We will suppose the space L1(X) to be separable:
it is the case in all examples above and, more generally, as soon as X is a
separable locally compact space, µ is a Radon measure on X and A is the
σ-algebra of Borel subsets of X, completed with respect to µ. We shall not
encounter other probability spaces.

Let us fix a measurable flow (ϕt)t∈R on (X,A, µ). We will study the
associate action of (R,+) on the spaces of functions on X. Note that, for
any t in R and 1 ≤ p ≤ ∞, the map f 7→ f ◦ ϕt is a norm preaserving linear
automorphism of Lp(X,A, µ).
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Lemma 1.2.3. For any 1 ≤ p <∞, the map

R× Lp(X,A, µ)→ Lp(X,A, µ)

(t, f) 7→ f ◦ ϕt

is continuous for the norm topology on Lp(X,A, µ).

Remark 1.2.4. When p = ∞, this map is only continuous for the weak-∗
topology on L∞(X,A, µ), viewed as the dual space to L1(X,A, µ).

The proof relies on a lemma on R. Let λ denote the Lebesgue measure of
R. The measure λ is regular, that is, for any Borel subset B of R, we have

λ(B) = sup
K⊂B⊂R

K compact

λ(K) = inf
B⊂U⊂R
U open

λ(U).

Lemma 1.2.5. Let B be a Borel subset of R such that λ(B) > 0. Then 0 in
an interior point of the set B −B.

Proof. By regularity of the measure λ, we can find a compact set K of R such
that K ⊂ B and λ(K) > 0: it suffices to prove the lemma for K. Let U be
an open subset of R such that K ⊂ U and λ(U) < 2λ(K). As K is compact,
there exists a neighborhood V of 0 in R such that K + V ⊂ U . Let us show
that we have V ⊂ K − K. Indeed, if t belongs to V , one has K + t ⊂ U
and λ(K + t) = λ(K) > 1

2
λ(U). Therefore, we have (K + t) ∩K 6= ∅, that

is there exists r and s in K such that r + t = s. Thus, t = s− r belongs to
K −K and the lemma is proved.

Proof of lemma 1.2.3. First, let us prove that, if p = 1 and f belongs to
L1(X,A, µ), the map

R→ L1(X,A, µ)

t 7→ f ◦ ϕt

is continuous at 0. Indeed, let (gk)k∈N be a dense sequence in L1(X,A, µ).
For ε > 0, for any g in L1(X,A, µ), there exists k in N with ‖g − gk‖1 ≤ ε.
For k in N, the map

R×X → R
(t, x) 7→ |f(ϕt(x))− gk(x)|
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is Borel. Therefore, by Fubini theorem, the map

R→ R
t 7→ ‖f ◦ ϕt − gk‖1

is Borel and the set

Bk = {t ∈ R| ‖f ◦ ϕt − gk‖1 ≤ ε}

is a Borel subset of R. As we have

R =
⋃
k∈N

Bk,

we can find a k such that λ(Bk) > 0. By lemma 1.2.5, there exists a neigh-
borhood V of 0 in R such that V ⊂ Bk −Bk. Then, if t belongs to V , there
exists r and s in Bk with t = r − s and we have

‖f ◦ ϕt − f‖1 = ‖(f ◦ ϕr − f ◦ ϕs) ◦ ϕ−s‖1
= ‖f ◦ ϕr − f ◦ ϕs‖1
≤ ‖f ◦ ϕr − gk‖1 + ‖f ◦ ϕs − gk‖1 ≤ 2ε,

since r and s belong to Bk. Hence the map t 7→ f ◦ ϕt is continuous at 0.
Let now p be in [1,∞[ and let us prove that, if f belongs to Lp(X,A, µ),

the map

R→ Lp(X,A, µ)

t 7→ f ◦ ϕt

is continuous at 0. Suppose first that f belongs to L∞(X,A, µ). Then, for t
in R, we have

‖f ◦ ϕt − f‖p ≤ ‖f ◦ ϕt − f‖
p−1

p
∞ ‖f ◦ ϕt − f‖

1
p

1

≤ (2 ‖f‖∞)
p−1

p ‖f ◦ ϕt − f‖
1
p

1

so that the map t 7→ f ◦ ϕt is continuous at 0. Finally, if f belongs to
Lp(X,A, µ), for ε > 0, there exists g in L∞(X,A, µ) such that ‖f − g‖p ≤ ε
and, for any t in R, we have

‖f ◦ ϕt − f‖p ≤ ‖(f − g) ◦ ϕt‖p + ‖g ◦ ϕt − g‖p + ‖f − g‖p
≤ 2ε+ ‖g ◦ ϕt − g‖p ,
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so that the map t 7→ f ◦ ϕt is continuous at 0.
Let t0 be in R and f0 be in Lp(X,A, µ). We will conclude the proof by

proving continuity at (t0, f0) of the map

R× Lp(X,A, µ)→ Lp(X,A, µ)

(t, f) 7→ f ◦ ϕt.

For any t in R and f in Lp(X,A, µ), one has

‖f ◦ ϕt − f0 ◦ ϕt0‖p ≤ ‖(f − f0) ◦ ϕt‖p + ‖f0 ◦ ϕt − f0 ◦ ϕt0‖p
= ‖f − f0‖p + ‖f0 ◦ ϕt−t0 − f0‖p ,

so that continuity at (t0, f0) of (t, f) 7→ f ◦ϕt follows from continuity at 0 of
t 7→ f0 ◦ ϕt.

We will now study invariant functions and Birkhoff theorem for flows.
We need to overcome a technical difficulty with the

Lemma 1.2.6. Let f be a measurable function on X such that, for any t in
R, one has f ◦ϕt = f almost everywhere on X. Then, there exists a function
g on X such that, for any t in R, g ◦ ϕt = g everywhere on X and g = f
almost everywhere on X.

Proof. For all t in R, the set

{x ∈ X|f(ϕt(x)) = f(x)}

has full measure in X. By Fubini theorem, applied to the product measure
λ⊗ µ on R×X, if A denotes the set of x in X such that the set

{t ∈ R|f(ϕt(x)) = f(x)}

has full measure in R, one has µ(A) = 1. A fortiori, the set B of points x
in X such that the Borel function t 7→ f(ϕt(x)) is essentially constant on
R has full measure in X. As the Lebesgue measure of R is invariant under
translations, for any t in R, one has ϕt(B) = B. For x in B, define g(x) to
be the essential value of t 7→ f(ϕt(x)), and, for x /∈ B, set g(x) = 0. Then,
for any t in R, one has g ◦ ϕt = g and, by construction, for any x in A,
one has g(x) = f(x) so that the function g satisfies the requirements of the
lemma.
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We will now focus on the Birkhoff theorem for flows. To construct the
analogue of Birkhoff sums, we need the

Lemma 1.2.7. Let 1 ≤ p ≤ ∞ and let f be in Lp(X,A, µ). Then, for almost
every x in X, the Borel function t 7→ f(ϕt(x)) is locally integrable on R. For

any T > 0, the function x 7→ 1
T

∫ T

0
f(ϕt(x))dt belongs to Lp(X,A, µ) and has

norm ≤ ‖f‖p.

Proof. Let n be an integer. Then, by Fubini theorem, we have∫
[−n,n]×X

|f(ϕt(x))| dtdµ(x) =

∫ n

−n

(∫
X

|f(ϕt(x))| dµ(x)

)
dt

=

∫ n

−n

(∫
X

|f(x)| dµ(x)

)
dt

= 2n ‖f‖1 ,

so that, again by Fubini theorem, for almost every x in X, one has∫ n

−n

|f(ϕt(x))| dt <∞.

As this is true for every n, there exists a set Y in A with µ(Y ) = 1 such
that, for any x in Y , for any compact K in R, one has

∫
K
|f(ϕt(x))| dt <∞.

Let T > 0. If p = ∞, for any t in R, as ϕt preserves the measure µ,
for almost every x, we have |f(ϕt(x))| ≤ ‖f‖∞, so that, by Fubini theorem,
for almost every x, one has |f(ϕt(x))| ≤ ‖f‖∞ almost everywhere on [0, T ]

and, therefore,
∥∥∥ 1

T

∫ T

0
f ◦ ϕtdt

∥∥∥
∞
≤ ‖f‖∞. If p <∞, as the function x 7→ xp

is convex on R+, by Jensen inequality, we have, for almost every x in X,∣∣∣ 1
T

∫ T

0
f(ϕt(x))dt

∣∣∣p ≤ 1
T

∫ T

0
|f(ϕt(x))|p dt, and, again by Fubini theorem,

∥∥∥∥ 1

T

∫ T

0

f ◦ ϕtdt

∥∥∥∥p

p

≤ 1

T

∫ T

0

(∫
X

|f(ϕt(x))|p dµ(x)

)
dt = ‖f‖pp ,

what should be proved.

Let B be a complete sub-σ-algebra of A. For any f in L1(X,A, µ), the
map B 7→

∫
B
fdµ defines a finite measure on B which is absolutely continuous

with respect to µ. By Radon-Nikodym theorem, there exists an unique f̄ in
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L1(X,B, µ) such that, for any B in B, one has
∫
B fdµ =

∫
B f̄dµ. We call f̄ the

conditional expectation of f with respect to B and we denote it by E(f |B).
For any 1 ≤ p ≤ ∞, the map f 7→ E(f |B) induces a norm 1 projection of
Lp(X,A, µ) onto Lp(X,B, µ). For p = 2, this projection is the orthogonal
projection.

Let I denote the sub-algebra of sets I in A such that, for any t in R,
one has I = ϕ−t(I) almost everywhere, that is µ(I∆ϕ−t(I)) = 0, where ∆
denotes symmetric difference. Then, we have a Birkhoff theorem for flows:

Theorem 1.2.8. Let f be in L1(X,A, µ). Then, one has

1

T

∫ T

0

f(ϕt(x))dt −−−→
T→∞

E(f |I)(x)

for almost every x in X. If 1 ≤ p < ∞ and f belongs to Lp(X,A, µ), one
has

1

T

∫ T

0

f ◦ ϕtdt −−−→
T→∞

E(f |I)

in Lp(X,A, µ).

We don’t give the proof of this theorem which is obtained exactly the
same way as in the discrete time case.

Definition 1.2.9. The flow (ϕt) is said to be ergodic if any invariant set is
trivial, that is if, for A in A, if for any t in R one has ϕt(A) = A almost
everywhere, then µ(A) ∈ {0, 1}.

According to Birkhoff theorem, we immediately get the

Proposition 1.2.10. The following are equivalent:

(i) the flow (ϕt) is ergodic.

(ii) for any A,B in A, one has 1
T

∫ T

0
µ(A∩ϕ−t(B))dt −−−→

T→∞
µ(A)µ(B).

(iii) for any f in L1(X,A, µ), one has 1
T

∫ T

0
f(ϕt(x))dt −−−→

T→∞

∫
X
fdµ

for almost every x in X.
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Example 1.2.11. Let y = (y1, . . . , yd) be in Rd and let us study the associate
translation flow on Td with respect to the Lebesgue measure µ of Td. Suppose
that, for any non zero α = (α1, . . . , αd) in Qd, one has α1y1 + . . .+αdyd 6= 0.
Let I be the σ-algebra of invariant subsets for the flow on T d. We will prove
that, for any f in L1(Td), one has E(f |I) =

∫
Td fdµ almost everywhere. By

density, we can suppose f to be of the form x 7→ e2iπ〈x,α〉 where 〈., .〉 denotes
the usual scalar product and α belongs to Zd. Suppose α 6= 0. Then, since
〈y, α〉 6= 0, for any t in R and x in Td, we have

1

T

∫ T

0

f(x+ ty)dt =
1

T

e2iπ〈x,α〉

2iπ〈y, α〉
(
e2iπT 〈y,α〉 − 1

)
−−−→
T→∞

0,

so that, by Birkhoff theorem, E(f |I) = 0 =
∫

Td fdµ. If α = 0, one has f = 1
and E(f |I) = 1 =

∫
Td fdµ. Therefore, the translation flow associate to y is

ergodic. In fact, this proof shows that this flow preserves an unique Borel
probability measure on Td. Conversely, if there exists a non zero α in Qd

such that 〈y, α〉 = 0, one can show that this flow is not ergodic.

As in the discrete time case, we have notions of mixing for dynamical
systems.

Definition 1.2.12. The flow (ϕt) is said to be weakly mixing if, for any A,B

in A, one has 1
T

∫ T

0
|µ(A ∩ ϕ−t(B))− µ(A)µ(B)| dt −−−→

T→∞
0. The flow (ϕt) is

said to be strongly mixing if, for any A,B in A, one has µ(A∩ϕ−t(B)) −−−→
t→∞

µ(A)µ(B).

Remark 1.2.13. By Cesaro phenomenon, strong mixing implies weak mixing,
but the converse is not true.

In most concrete mixing examples, we shall have strong mixing. However,
the most relevant notion for abstract purposes is the one of weak mixing, as
shown by the

Proposition 1.2.14. Let (ϕt) be ergodic. The following are equivalent:

(i) the flow (ϕt) is weakly mixing.

(ii) the diagonal product flow on (X ×X,A⊗A, µ⊗ µ) is ergodic.

(iii) for any ergodic measure preserving flow (ψt) on a probability space
(Y,B, ν), the diagonal product flow on (X×Y,A⊗B, µ⊗ ν) is ergodic.
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(iv) for any t 6= 0 in R, the measure preserving map ϕt on (X,A, µ) is
ergodic.

(v) the flow (ϕt) does not have eigenvectors: for any α in R, if there
exists a non zero function f on X such that, for any t in R, f ◦ ϕt =
e2iπαtf almost everywhere on X, then one has α = 0 and f is constant
almost everywhere.

Remark 1.2.15. Last condition of the proposition can be read as: the system
does not admit a one-dimensional translation flow as a measurable factor.

Remark 1.2.16. There is an analogue notion of weak mixing for measure pre-
serving transformations: a measure preserving transformation T of (X,A, µ)
if weakly mixing if and only if, for any A,B in A, one has

1

n

n−1∑
k=0

∣∣µ(A ∩ T−kB)− µ(A)µ(B)
∣∣ −−−→

n→∞
0.

One can prove a result similar to proposition 1.2.14, except for condition (iv)
of this proposition: for example, all the non trivial powers of an irrational
rotation of the circle T are ergodic, but it is not weakly mixing. As we
shall see in the proof of the proposition, this difference between the discrete
time case and the continuous time case is due to the fact that there exists
injective homomorphisms Z→ T (precisely those of the form n 7→ αn where
α is irrational) whereas every continuous homomorphism R→ T has a kernel.

In the course of the proof, we shall use the

Lemma 1.2.17. Let F be in L2(X × X,A ⊗ A, µ ⊗ µ). For any f in
L2(X,A, µ) set, for almost every y in X,

TF (f)(y) =

∫
X

f(x)F (x, y)dµ(x).

Then TF defines a bounded compact operator of L2(X,A, µ) with norm ≤
‖F‖2. Its adjoint operator is TF∨, where F∨ is the function (x, y) 7→ F (y, x).
If F 6= 0, then TF 6= 0.

Proof. Let f be in L2(X,A, µ). By Fubini theorem, TF (f) is defined almost
everywhere on X and, by Cauchy-Schwarz inequality,∫

X

|TF (f)|2 dµ ≤
∫

X

(∫
X

|F (x, y)|2 dµ(x)

) (∫
X

|f(x)|2 dµ(x)

)
dµ(y)

= ‖F‖22 ‖f‖
2
2 ,
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so that TF is bounded with norm ≤ ‖F‖2. For any g in L2(X,A, µ), we have,
by Fubini theorem,∫

X

gTF (f)dµ =

∫
X×X

g(y)f(x)F (x, y)dµ(x)dµ(y) =

∫
X

TF∨(g)fdµ,

that is TF∨ is the adjoint operator to TF .

Let us suppose now F to be of the form (x, y) 7→ h(x)k(y) where h and
k are in L2(X,A, µ). Then, for any f in L2(X,A, µ), one has

TF (f) =

(∫
X

hfdµ

)
k

and TF , being a rank one operator, is compact. As the set of functions of
this form spans a dense subset of L2(X ×X,A⊗A, µ⊗ µ), and as the map
F 7→ TF is linear and continuous, for any F , TF is compact.

Finally, let us suppose TF = 0. Then for any f and g in L2(X,A, µ), one
has ∫

X×X

f(x)g(y)F (x, y)dµ(x)dµ(y) =

∫
X

TF (f)(y)g(y)dµ(y) = 0.

Again, as the set of functions of the form (x, y) 7→ f(x)g(y) spans a dense
subset of L2(X ×X,A⊗A, µ⊗ µ), one has F = 0.

Proof of proposition 1.2.14. Note that we have clearly (iii)⇒(ii). We shall
first prove (i)⇒(iii) and (ii)⇒(i), then (iv)⇒(v) and (v)⇒(iv) and, lastly,
(ii)⇒(v) and (v)⇒(ii).

(i)⇒(iii). Let A,B be in A and C,D be in B. For any T > 0, we have

1

T

∫ T

0

(µ⊗ ν)((A ∩ ϕ−t(B))× (C ∩ ψ−t(D)))dt

=
1

T

∫ T

0

(µ(A ∩ ϕ−t(B))− µ(A)µ(B))ν(C ∩ ψ−t(D))dt

+
1

T
µ(A)µ(B)

∫ T

0

ν(C ∩ ψ−t(D))dt,
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so that∣∣∣∣ 1

T

∫ T

0

(µ⊗ ν)((A ∩ ϕ−t(B))× (C ∩ ψ−t(D)))dt− µ(A)µ(B)ν(C)ν(D)

∣∣∣∣
≤ 1

T

∫ T

0

|µ(A ∩ ϕ−t(B))− µ(A)µ(B)| dt

+

∣∣∣∣ 1

T
µ(A)µ(B)

(∫ T

0

ν(C ∩ ψ−t(D))dt− ν(C)ν(D)

)∣∣∣∣ .
Thus, as the flow (ϕt) is weakly mixing and (ψt) is ergodic,

1

T

∫ T

0

(µ⊗ ν)((A ∩ ϕ−t(B))× (C ∩ ψ−t(D)))dt −−−→
T→∞

µ(A)µ(B)ν(C)ν(D).

By density of the characteristic functions of product subsets, it implies that,
for any f and g in L2(X × Y,A⊗ B, µ⊗ ν), one has

1

T

∫ T

0

∫
X×Y

f(g ◦ (ϕt⊗ψt))d(µ⊗ ν)dt −−−→
T→∞

∫
X×Y

fd(µ⊗ ν)
∫

X×Y

gd(µ⊗ ν)

Therefore, by Birkhoff theorem, the product flow is ergodic.
(ii)⇒(i). Let A,B be in A. By Jensen inequality, we have(
1

T

∫ T

0

|µ(A ∩ ϕ−t(B))− µ(A)µ(B)| dt
)2

≤ 1

T

∫ T

0

(µ(A ∩ ϕ−t(B))− µ(A)µ(B))2dt

=
1

T

∫ T

0

µ(A ∩ ϕ−t(B))2dt

− 2

T
µ(A)µ(B)

∫ T

0

µ(A ∩ ϕ−t(B))dt+ µ(A)2µ(B)2.

As the diagonal product flow is ergodic, we have

1

T

∫ T

0

µ(A ∩ ϕ−t(B))2dt −−−→
T→∞

µ(A)2µ(B)2

and, as the flow is ergodic,

1

T

∫ T

0

µ(A ∩ ϕ−t(B))dt −−−→
T→∞

µ(A)µ(B).
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Therefore, we have

1

T

∫ T

0

(µ(A ∩ ϕ−t(B))− µ(A)µ(B))2dt −−−→
T→∞

0

and the flow is weakly mixing.
(iv)⇒(v). Let f and α be as in the setting. If α 6= 0, we have f ◦ϕ 1

α
= f .

As the transformation ϕ 1
α

is ergodic, f is constant. As f ◦ ϕ 1
2α

= −f , we
have f = −f , so that f = 0.

(v)⇒(iv). To simplify notations, we will suppose t = 1. Let f be in
L1(X,A, µ) such that f ◦ϕ1 = f . We will show that, for any t in R, we have
f ◦ϕt = f . As the flow (ϕt) is ergodic, this will imply that f is constant. By
changing f on a set of measure 0, we can suppose that, for every x in X, we
have f(ϕ1(x)) = f(x). For k in Z and x in X set

fk(x) =

∫ 1

0

e−2iπksf(ϕs(x))ds.

This function is defined almost everywhere and belongs to L1(X,A, µ) with
norm ≤ ‖f‖1. As f ◦ ϕ1 = f everywhere, the set of x in X such that the
Borel function [0, 1] → C, s 7→ e−2iπksf(ϕs(x)) is integrable is ϕt-invariant
for every t in R so that, for almost every x in X, for every t in R, we have

fk(x) =

∫ t+1

t

e−2iπksf(ϕs(x))ds.

In particular, we have fk ◦ ϕt = e2iπktfk, that is fk is an eigenvector. There-
fore, we have fk = 0 for k 6= 0. Let g be in L∞(X,A, µ). The Borel bounded
function θg : t 7→

∫
X
g(f ◦ ϕt)dµ is 1-periodic on R and, by Fubini theorem,

for any k in Z, one has∫ 1

0

e−2iπksθg(s)ds =

∫
X

gfkdµ.

Therefore, all the Fourier coefficients of θg are zero, except eventually the
one corresponding to k = 0. Thus, θg is constant, that is, for any t in R,∫

X

g(f ◦ ϕt)dµ =

∫
X

gfdµ.

As it is true for any g in L∞(X,A, µ), we have f ◦ϕt = f . Hence, as the flow
(ϕt) is ergodic, f is constant, what should be proved.
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(ii)⇒(v). Suppose α is a real number and f is a non zero α-eigenvector
for ϕt, that is f is a non zero measurable function on X such that, for
any t, f ◦ ϕt = e2iπαtf almost everywhere. Then, consider the function
(x, y) 7→ f(x)f(y) on X × Y . It is invariant by the diagonal product flow.
Hence, it is constant, so that f is constant. In particular, α = 0.

(v)⇒(ii). Let F be an invariant function in L2(X×X,A⊗A, µ⊗µ). We
shall prove that F is constant. After having replaced F by F −

∫
X×X

Fd(µ⊗
µ), we can suppose F to have 0 mean. Let us denote, as in lemma 1.2.17, by
F∨ the function (x, y) 7→ F (y, x). Then, by studying the functions F + F∨

and i(F − F∨), we can suppose that the operator TF of lemma 1.2.17 is
self-adjoint. Suppose F 6= 0. Then, by lemma 1.2.17, TF is a non zero
compact self-adjoint operator of L2(X,A, µ). Therefore (see theorem A.4.4,
there exists a real number ρ 6= 0 such that the eigenspace

H = {f ∈ L2(X,A, µ)|TF (f) = ρf}

is a non zero finite dimensional subspace of L2(X,A, µ). Let t be in R. As
F is invariant, for any f in L2(X,A, µ), we have, for almost every y in X,

TF (f)(ϕt(y)) =

∫
X

f(x)F (x, ϕt(y))dµ(x) =

∫
X

f(x)F (ϕ−t(x), y)dµ(x)

=

∫
X

f(ϕt(x))F (x, y)dµ(x) = TF (f ◦ ϕt)(y),

that is TF commutes with the action of ϕt on L2(X,A, µ). Therefore, the
eigenspace H is stable by ϕt. The family (ϕt)t∈R induces a commutative
family of unitary automorphisms of the finite dimensional Hilbert space H.
Therefore, these unitary automorphisms are simulatenously diagonalizable.
Hence, there exists a non zero f in H and a homomorphism χ : R → T
such that, for any t in R, we have f ◦ ϕt = χ(t)f . By lemma 1.2.3, the
homomorphism χ is continuous. Therefore, there exists α in R such that, for
any t, χ(t) = e2iπαt. By hypothesis, we have α = 0 and f is constant. But,
as TF (f) = ρf , we have∫

X

fdµ =
1

ρ

∫
X×X

f(x)F (x, y)dµ(x)dµ(y) = 0,

since F has zero mean and f is constant. Thus, f = 0, a contradiction.



20 CHAPTER 1. CONTINUOUS TIME DYNAMICS

Remark 1.2.18. The rather intricate last part of this proof could be simplified
by using the following spectral theorem: let t 7→ ut be a homomorphism from
R to the group of unitary automorphisms of a Hilbert space H such that
the map R × H → H, (t, v) 7→ ut(v) is continuous. Suppose there exists a
vector v0 in H such that the set {ut(v)|t ∈ R} spans a dense subspace of H.
Then, there exists a unique Radon measure ν on R such that there exists an
isometry Φ : H → L2(R, ν) which sends v0 to the constant function 1 and such
that, for any t in R and v in H, Φ(ut(v)) is the function ξ 7→ e2iπtξΦ(v)(ξ).
In fact, the compact operator trick we used in the last part of the proof of
proposition 1.2.14 is used in the proof of the spectral theorem too.

1.3 Invariant measures for continuous flows

We shall conclude this review of the basic dynamical properties of flows by
proving, as in the discrete time case, the

Proposition 1.3.1. Let (ϕt) be a continuous flow on the (Hausdorff) com-
pact metric space X. Then, there exists a Borel probability measure µ on X
which is preaserved by ϕt, for any t in R.

Proof. As in the discrete time case, identify, thanks Riesz representation
theorem, the space P of probability Borel measures on X with the set of
positive linear form with norm one on the space of continuous functions on
X. Then, equipped with the weak-∗ topology, P is a compact space, by
Banach-Alaoglu theorem. If ν is any element of P , the limits points as T
goes to infinity of 1

T

∫ T

0
(ϕt)∗νdt are invariant measures for the flow.

Let Pϕ be the convex set of invariant probability Borel measures, equipped
with the weak-∗ topology. As in the discrete time case, an invariant measure
is ergodic if and only if it is an extreme point of P . By Krein-Millman
theorem, we therefore get the

Corollary 1.3.2. There exists ergodic measures for (ϕt).

Definition 1.3.3. Let (ϕt) be a continuous flow on the (Hausdorff) compact
metric space X. We say that (ϕt) is uniquely ergodic if it possesses an unique
invariant Borel probability measure, which is then necessarily ergodic.

As a corollary of the proof of proposition 1.3.1, we get the
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Proposition 1.3.4. Let (ϕt) be a continuous flow on the (Hausdorff) com-
pact metric space X. The following are equivalent

(i) (ϕt) is uniquely ergodic.

(ii) there exists a Borel probability measure µ on X such that, for any
continuous function f on X, one has

1

T

∫ T

0

f(ϕt(x))dt −−−→
T→∞

∫
X

fdµ

uniformly in x ∈ X.

Example 1.3.5. Let y = (y1, . . . , yd) be in Rd such that, for any non zero
α = (α1, . . . , αd) in Qd, one has α1y1 + . . . + αdyd 6= 0. Then the associate
translation flow on Td is uniquely ergodic.

1.4 Exercices

1.4.1 Continuous morphisms

Prove that every continuous morphism R→ R is of the form t 7→ αt for some
α ∈ R. Deduce from it that every continuous morphism R → T is of the
form t 7→ e2iπαt for some α ∈ R.

1.4.2 Quotients by proper actions

Recall that, if X is a topological space, ∼ an equivalence relation on X and
π : X → X/ ∼ the associate quotient map, the quotient topology on X/ ∼
is the topology for which a subset U of X/ ∼ is open if and only if π−1(U) is
open in X. This is the weakest topology that makes π continuous.

Let X be a locally compact Hausdorff topological space X. Let Γ be
a group acting continuously on X, that is, for any γ in Γ, the map x 7→
γx,X → X is a homeomorphism of X. We say that the action of Γ is proper
if, for any compact subset K of X, the set {γ ∈ Γ|γK ∩K 6= ∅} is a finite
subset of Γ.

Suppose Γ acts properly continuously on X.
1. Prove that the quotient space Γ\X, equipped with the quotient topol-

ogy, is a locally compact Hausdorff space.
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2. Let C0
c (X) be the space of continuous compactly supported functions

on X. For any ϕ in C0
c (X), for any x in X, set

ϕ(x) =
∑
γ∈Γ

ϕ(γx)

and consider ϕ as a function on Γ\X. Prove that ϕ belongs to C0
c (Γ\X)

and that the map ϕ 7→ ϕ induces a positive surjective linear map C0
c (X) →

C0
c (Γ\X) (use partitions of identity).

3. Let µ be a Γ-invariant Radon measure on X. Prove that there exists
an unique Radon measure µ on Γ\X such that, for any ϕ in C0

c (X), one has∫
X
ϕdµ =

∫
Γ\X ϕdµ. Prove that the map µ 7→ µ establishes a one-to-one

correspondance between the set of Γ-invariant Radon measures on X and
the set of Radon measures on Γ\X.

1.4.3 Suspension flows

Let X be a compact Hausdorff topological space, T : X → X a homeomor-
phism of X and f : X → R∗

+ a continuous positive function. Denote by X̃

the space X × R and, for any (x, s) in X̃, set T̃ (x, s) = (Tx, s− f(x)).
1. Prove that T̃ is a homeomorphism of X̃ and that the Z action on X̃

generated by T̃ is proper.
We letX be the quotient of X̃ by this action and we denote by π : X̃ → X

the natural projection.
2. Prove that there exists an unique continuous flow (ϕt) on X such that,

for any t in R and (x, s) in X̃, one has ϕt(π(x, s)) = π(x, t+ s).
3. Prove that there exists an injective continuous map ι : X → X such

that, for any x in X, the set {t > 0|ϕt(ι(x)) ∈ ι(X)} admits f(x) as its
smallest element. What are the other elements of this set ? Prove that, for
any y in X, there exists 0 ≤ t < maxX f such that ϕt(y) belongs to ι(X)
(don’t forget to draw a picture).

We call (ϕt) the suspension flow of T with deck function f .

1.4.4 Diophantine and Liouville numbers

Let ρ be a real number. We denote by Eρ the set of real numbers α such
that there exists an infinity of integers p in Z and q in N∗ with∣∣∣∣α− p

q

∣∣∣∣ < 1

qρ
.
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1. Denote by (β) the fractional part of a real number β, that is the unique
element of [0, 1) for which there exists an integer p with β = (β) + p. Let q
be a positive integer. By considering the partition

[0, 1) =

q−1⋃
r=0

[
r

q
,
r + 1

q

)
,

prove that, for any α in R, there exists 0 ≤ q1 < q2 ≤ q with

|(q1α)− (q2α)| < 1

q
.

2. Prove that E2 = R.
3. Let ρ > 2 and set, for any integer q > 0,

F q
ρ =

{
α ∈ R

∣∣∣∣∃p ∈ Z
∣∣∣∣α− p

q

∣∣∣∣ < 1

qρ

}
.

Prove that one has

Eρ =
⋂

q0∈N∗

⋃
q≥q0

F q
ρ .

Let λ be the Lebesgue measure of R. Prove that, for any integer q > 0, one
has

λ
(
F q

ρ ∩ [0, 1]
)
≤ 2

q + 1

qρ
.

Deduce from it that, for any ρ > 2, one has λ(Eρ) = 0.
The real numbers that don’t belong to any of the Eρ, ρ > 2, are called

diophantine numbers.
4. Prove that, for any ρ in R, the set Eρ contains a dense Gδ subset of R.
The real numbers that belong to some Eρ, ρ > 2, are called Liouville

numbers.

1.4.5 Suspended rotations

Let α be an irrational number, rα : T → T be the rotation of angle α and
f : T→ R∗

+ be a continuous positive function on T.
1. Prove that the suspension flow of (T, rα) with deck function f is

uniquely ergodic.
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2. Let l be a nonnegative integer and let h be a Cl function on T. For
any integer k set

ĥ(k) =

∫ 1

0

e−2iπkth(t)dt

the k-th Fourier coefficient of h. Prove that there exists a real number C ≥ 0

such that, for any integer k, one has
∣∣∣ĥ(k)∣∣∣ ≤ C(1 + |k|)−l.

Suppose α is diophantine.
3. Prove that, if h is a C3 function on T with

∫ 1

0
h(t)dt = 0, there exists

a continuous function g on T such that h = g − g ◦ rα. What are the other
solutions of this equation ?

4. Suppose f is C3. Prove that the suspension flow of (T, rα) with deck
function f is topologically conjugated to a translation flow on the torus T2.

1.4.6 Translation flows on tori

Recall the following theorem from the algebra course: if M is a free abelian
group of finite rank r and N is a subgroup of M , there exists s ≤ r, a
basis (e1, e2, . . . , er) and positive integers n1|n2| . . . |ns such that the family
(n1e1, n2e2, . . . , nses) is a basis of N .

Let y be in Rd.
1. Prove that there exists a smallest sub vector space V of Rd such that

V is spanned by vectors with rational coefficients and that y belongs to V .
Let V be this subspace and let Γ = V ∩ Zd.
2. Prove that Γ is cocompact in V , that is the quotient V/Γ is compact.
3. Prove that there exists a subgroup Λ of Zd such that, as abelian groups,

one has Zd = Γ⊕ Λ.
Let us fix such a Λ and let W be the R-vector subspace of R spanned by

Λ.
4. Prove that Λ is cocompact in W and that the decomposition Rd =

V ⊕W induces a topological group isomorphism Td → (V/Γ)× (W/Λ).
5. Prove that the space of ergodic invariant measures of the translation

flow associated to y is homeomorphic to W/Λ.



Chapter 2

Topological groups and lattices

In this chapter, we will introduce objects which will be used in the sequel to
extend the notion of translations and translations of tori which appeared as
basic examples of dynamical systems.

2.1 Topological groups

Definition 2.1.1. A topological group is a groupG equipped with a topology
such that the product map G × G → G and the inverse map G → G are
continuous.

We shall always deal with locally compact topological groups.

Example 2.1.2. The groups Rd and Td are locally compact abelian topological
groups. The group GLd(R), viewed as an open subset of the space of square
matrices of size d, and the group SLd(R), viewed as a closed subgroup of
GLd(R), are locally compact topological groups (they are non-abelian as
soon as d ≥ 2). The group O(d) of orthogonal matrices is compact.

If G is a topological group and g is an element of G, we denote by Lg

the map G → G, h 7→ gh and by Rg the map G → G, h 7→ hg. We call
Lg the left translation by g and Rg the right translation by G. Both are
homeomorphisms of G. In particular, if V is a neighborhood of e, gV and
V g are neighborhoods of g.

Definition 2.1.3. Let X be a topological space and G be a topological
group. A continuous action of G on X is an action of G on the set X such
that the action map G×X → X is continuous.

25
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Example 2.1.4. The classical linear action of GLd(R) on Rd is continuous.

Definition 2.1.5. Let X be a locally compact topological space and G be
a locally compact topological group acting on X. The action is said to be
proper if, for any compact subset K of X, the set

{g ∈ G|gK ∩K 6= ∅}

is compact.

Example 2.1.6. The action of a group on itself by left translations is proper.
The action of GLd(R) on Rd is not proper, since every point has a non
compact stabilizer.

Proper actions have nice quotients:

Proposition 2.1.7. Let X be a locally compact topological space, G be a
locally compact topological group acting continuously on X and G\X be the
quotient space of this action, equipped with the quotient topology. Then the
projection map π : X → G\X is open. If the action is proper, the space G\X
is Hausdorff and locally compact.

Proof. Let us first show that π is open. Let U ⊂ X be en open subset. Then
one has

π−1π(U) = {x ∈ X|Gx ∩ U 6= ∅} =
⋃
g∈G

gU.

As G acts by homeomorphisms, this is an union of open sets, hence open.
Thus, π(U) is open, by definition of the quotient topology.

Suppose now the action is proper. Let us show that G\X is Hausdorff.
Let x and y be in X such that π(x) 6= π(y), that is y /∈ Gx. As the quotient
map is open, we have to exhibit neighborhoods U of x and V of y such that
U ∩ GV = ∅. Let U and V be compact neighborhoods of x and y. As the
action is proper, the set K = {g ∈ G|U ∩ gV 6= ∅} is compact. For any k
in K, since x 6= ky, there exists a neighborhood Uk of x and a neighborhood
Wk of kx such that Uk ∩Wk 6= ∅. As the action is continuous, there exists
a neighborhood Vk of y in X and a neighborhood Ak of k in G such that
AkVk ⊂ Wk. As the set K is compact, we can pick points k1, . . . , kn in K
such that K ⊂

⋃n
p=1Aki

. Then, set

U = U ∩
n⋂

p=1

Uki
and V = V ∩

n⋂
p=1

Vki
.
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For any g in G, we have U ∩ gV = ∅. Indeed, if g does not belong to K,
we have U ∩ gV = ∅. Else, there exists some p such that g belongs to Akp

and then we have gV ⊂ gVkp ⊂ Wkp and, by definition, Wkp ∩ U = ∅. Thus,

π(U) ∩ π(V ) = ∅ and G\X is Hausdorff.
Finally, let U be a compact neighborhood of some x in X. Then, as π

is open, π(U) is a compact neighborhood of π(x), so that G\X is locally
compact.

Corollary 2.1.8. Let G be a locally compact group and H be a closed sub-
group of G. Then the quotient space G/H, equipped with the quotient topol-
ogy, is a locally compact Hausdorff space. If H is normal, it is a locally
compact topological group.

Example 2.1.9. The space Rd − {0} may be seen as the quotient of GLd(R)
by the closed subgroup which is the stabilizer of (1, 0, . . . , 0). The torus Td

is the quotient of Rd by the closed subgroup Zd.

Proof. Consider the action of H on G by right translations: for any h in H,
we let h act by Rh−1 (the inverse makes the action a left action). For any
compact subset K of G, we have

{h ∈ H|Rh−1K ∩K 6= ∅} = H ∩ (KK−1),

which is a compact subset of H. The corollary follows now from proposition
2.1.7, since G/H is exactly the quotient of G by this action.

2.2 Haar measure

In this section, we shall associate to any locally compact group a natural
measure on it, which plays the role of the Lebesgue measure on R or the
counting measure on Z.

Let G be a locally compact topological group.

Theorem 2.2.1. There exists a non zero Radon measure µ on G which
is invariant by all left translations of G. Any other left-invariant Radon
measure on G is proportional to µ.

Definition 2.2.2. The left Haar measure of G is the (up to multiplication
by a scalar) unique left-invariant Radon measure on G.
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Usually, when having fixed a Haar measure µ on G, we shall write, for
any µ-integrable function ϕ on G,

∫
G
ϕ(g)dg for

∫
G
ϕ(g)dµ(g).

Example 2.2.3. The Haar measure of Rd is the Lebesgue measure. The Haar
measure of Td is the image in Td of the restriction of the Lebesgue measure
to [0, 1]d. The Haar measure of GLd(R) is χλ where λ is the restriction to
GLd(R) of the Lebesgue measure of the space of square matrices and χ is
the function g 7→ |det g|−d. In particular the Haar measure of the group R∗

is the restriction of the Lebesgue measure of R, multiplied by the function
x 7→ 1

|x| .

Theorem 2.2.1 is, in some sense, unuseful: indeed, as seen in the examples,
for every concrete locally compact group, its Haar measure is explicit. We
shall however give its proof. The idea of the this proof is to estimate the
measure of a compact set K by the minimal number of left translates of a
small fixed compact set U with nonempty interior that are necessary to cover
K. By normalizing conveniently and letting U shrink, we get the measure.
Let us study more precisely this covering process.

Lemma 2.2.4. Let U be compact subset of G with nonempty interior. For
any compact subset K of G, define (K : U) to be the minimal integer p such
that there exists g1, . . . , gp in G with K ⊂ g1U ∪ . . . ∪ gpU . Then we have,

(i) for any compact set K in G and for any g in G, (gK : U) = (K : U).

(ii) for any compact sets K ⊂ L in G, (K : U) ≤ (L : U).

(iii) for any compact sets K and L in G, (K∪L : U) ≤ (K : U)+(L : U)
and, if (KU−1) ∩ (LU−1) = ∅, (K ∪ L : U) = (K : U) + (L : U).

(iv) for any compact subset V of G with nonempty interior, (K : U) ≤
(K : V )(V : U).

Proof. The first point comes from the fact that the definition of (K : U) is
made up to translation by elements of G. The second point is clear, since a
covering of L is a fortiori a covering of K.

For the third point, since the concatenation of a covering of K and of a
covering of L is a covering of K ∪ L, we have the inequality. Now, note that

KU−1 = {g ∈ G|gU ∩K 6= ∅} and LU−1 = {g ∈ G|gU ∩ L 6= ∅},
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so that, if (KU−1) ∩ (LU−1) = ∅, for any, g1, . . . , gp in G with K ∪ L ⊂
g1U ∪ . . . ∪ gpU , the sets

Q = {1 ≤ q ≤ p|gqU ∩K 6= ∅} and R = {1 ≤ r ≤ p|grU ∩ L 6= ∅},

are disjoint. As K ⊂
⋃

q∈Q(gqU ∩ K) and L ⊂
⋃

r∈R(grU ∩ L), we have
]Q ≥ (K : U) and ]R ≥ (L : U), so that

p ≥ ]Q+ ]R ≥ (K : U) + (L : U),

what should be proved.

Finally, for the fourth point, suppose we have K ⊂ g1V ∪ . . . ∪ gpV and
V ⊂ h1U ∪ . . . ∪ hqU , then

K ⊂
⋃

1≤i≤q
1≤j≤r

gihjU,

so that pq ≥ (K : U), what should be proved.

We can separate compact sets in G:

Lemma 2.2.5. Let K and L be compact subsets of G with K∩L = ∅. There
exists a neighborhood U of e in G such that (KU) ∩ (LU) = ∅.

Proof. The set L−1K is a compact subset of G that does not contain e.
Therefore, there exists a neighborhood V of e such that V ∩L−1K = ∅. There
exists a neighborhood U of e such that UU−1 ⊂ V , so that UU−1∩L−1K = ∅,
which is equivalent to (KU) ∩ (LU) = ∅.

Proof of theorem 2.2.1. Let us prove the existence of the measure. Recall the
following version of Riesz representation theorem: if X is a locally compact
space and µ is a finite nonnegative function on the set of compact subsets of
X such that

(i) for any compact sets K ⊂ L in X, µ(K) ≤ µ(L),

(ii) for any compact sets K and L in X, µ(K ∪L) ≤ µ(K) + µ(L) and,
if K ∩ L = ∅, µ(K ∪ L) = µ(K) + µ(L),
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then there exists an unique Radon measure on X which extends µ. By lemma
2.2.4 the functions K 7→ (K : U) almost satisfy these hypothesis, except for
the additivity assumption. To satisfy this additivity assumption, we have to
let U shrink and to use lemma 2.2.5.

Let us be more precise. Let us fixe once for all a compact subset V of G
with nonempty interior. Let K be the set of compact subsets of G and let
M be the set of the functions m : K → R such that,

(i) for any K in K and for any g in G, m(gK) = m(K),

(ii) for any K,L in K, with K ⊂ L, m(K) ≤ m(L),

(iii) for any K,L in K, m(K ∪ L) ≤ m(K) +m(L),

(iv) for any K in K, 0 ≤ m(K) ≤ (K : V ),

equipped with the product topology. By Tychonoff theorem,M is compact.
For any compact neighborhood U of e, let us denote by mU the function

K → R+

K 7→ (K : U)

(V : U)
.

One has mU(V ) = 1 and, by lemma 2.2.4, mU ∈ M. Set MU = {mW |W ⊂
U}. For any compact neighborhoods U1, . . . , Up of e, one has

MU1∩...∩Up ⊂MU1 ∩ . . . ∩MUp .

Therefore, by compactness, the intersection, as U ranges over all the neigh-
borhood of e, of the closures of the sets MU in M is nonempty. Let µ be a
point in this intersection. One has µ(V ) = 1, so that µ is nonzero. Moreover,
if K and L are compact subsets of G with K ∩L = ∅, by lemma 2.2.5, there
exists a neighborhood U of e such that (KU−1) ∩ (LU−1) = ∅, so that, by
lemma 2.2.4, for any neighborhood W ⊂ U , mW (K∪L) = mW (K)+mW (L).
Hence, we have µ(K ∪L) = µ(K) + µ(L) and, by Riesz representation theo-
rem, there exists an unique Radon measure which extends µ. As µ is invariant
by left translations, so does this extension, by uniqueness.

The uniqueness part of the theorem relies on a combinatorial trick. Let
us fix a non zero left-invariant Radon measure µ on G. Note that, if K
is a compact subset of G and U an open subset, there exists g1, . . . , gp in
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G such that K ⊂ g1U ∪ . . . ∪ gpU so that µ(K) ≤ pµ(U). In particular,
we have µ(U) 6= 0 since µ 6= 0. So, if ψ is a fixed non zero nonnegative
function on G with compact support, the function θ : h 7→

∫
G
ψ(gh)dµ(g)

takes only positive values on G. Moreover, this function is continuous, by
Lebesgue continuity theorem. Now, let ν be an other left-invariant Radon
measure on G. By Fubini theorem, the measure µ⊗ ν on G×G is invariant
by the transformations (g, h) 7→ (g, gh) and (g, h) 7→ (h−1g, g), so that it is
invariant by the transformation (g, h) 7→ (h−1, gh), which is the composite of
both. Hence, if ϕ is a continuous function with compact support on G, we
have, by Fubini theorem,∫

G

ϕ(g)dµ(g)

∫
G

ψ(h)dν(h) =

∫
G×G

ϕ(h−1)ψ(gh)dµ(g)dν(h)

=

∫
G

ϕ(h−1)θ(h)dν(h).

Replacing ϕ by the continuous function h 7→ ϕ(h−1)θ(h), we get, for every
continuous function ϕ with compact support,∫

G

ϕ(g−1)

θ(g−1)
dµ(g)

∫
G

ψ(h)dν(h) =

∫
G

ϕ(h)dν(h).

Applying this to the case where ν = µ, we also get,∫
G

ϕ(g−1)

θ(g−1)
dµ(g) =

1∫
G
ψ(h)dµ(h)

∫
G

ϕ(h)dµ(h),

so that, finally, for any ν, for every continuous function ϕ with compact
support, we have∫

G

ϕ(h)dν(h) =

∫
G
ψ(h)dν(h)∫

G
ψ(h)dµ(h)

∫
G

ϕ(h)dµ(h),

that is the measures are proportional.

From the beginning of our study of invariant measures, we have only been
dealing with left-invariant ones. Let us study what happens when letting G
act on the right on a left-invariant measure.
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Proposition 2.2.6. There exists an unique continuous homomorphism ∆G :
G→ R∗

+ such that, for any left-invariant Haar measure µ on G, for any g in
G, one has (Rg−1)∗µ = ∆G(g)µ, that is, in other words, for any continuous
function ϕ with compact support on G,∫

G

ϕ(hg−1)dh = ∆G(g)

∫
G

ϕ(h)dh.

Moreover, for any continuous function ϕ with compact support, one has∫
G

ϕ(g−1)dg =

∫
G

ϕ(g)

∆G(g)
dg.

Definition 2.2.7. The homomorphism ∆G is called the modular function of
G. The group G is said to be unimodular if ∆G = 1, that is if G admits left
and right-invariant measures.

When there are no ambiguities, we shall write ∆ for ∆G.

Example 2.2.8. Abelian groups are clearly unimodular. Discrete groups are
unimodular: their Haar measures are counting measures which are invariant
under any bijection. Compact groups are unimodular: indeed, if G is com-
pact, if µ is a left-invariant Haar measure on G, µ is finite and, for any g
in G, one has µ(G) = µ(Gg) = µ(Rg(G)) so that ∆G(g) = 1. By the exact
computation of its Haar measure, the group GLd(R) is unimodular. However,
there exists non unimodular groups: let us consider the group P of matrices
of the form (

a b
0 c

)
,

with a, c 6= 0 and b in R. Then, in this systems of coordinates, the measure
1

|a2c|dadbdc is left-invariant, but it is not right-invariant. One checks that, for
a, c 6= 0 and b in R, one has

∆P

(
a b
0 c

)
=

∣∣∣ c
a

∣∣∣ .
Proof of proposition 2.2.6. For any g in G, (Rg−1)∗µ is a non zero left-inva-
riant measure on G. By theorem 2.2.1, it is of the form ∆G(g)µ, for some
uniquely defined ∆G(g) > 0. By uniqueness, the map ∆G is a homomorphism
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G → R. Finally, let us pick some non zero nonnegative function ϕ with
compact support on G. We have, for any h in G,

∆G(g) =

∫
G
ϕ(hg−1)dh∫
G
ϕ(h)dh

,

so that, by Lebesgue continuity theorem, ∆G is continuous.
For the second formula, let us recall that, from the uniqueness part of the

proof of theorem 2.2.1, for any continuous functions ϕ and ψ with compact
support on G, we have∫

G

ϕ(g)dg

∫
G

ψ(h)dh =

∫
G×G

ϕ(h−1)ψ(gh)dgdh.

Therefore, by Fubini theorem and the definition of ∆G, we have∫
G

ϕ(g)dg

∫
G

ψ(h)dh =

∫
G

ϕ(h−1)

(∫
G

ψ(gh)dg

)
dh

=

∫
G

ψ(g)dg

∫
G

ϕ(h−1)∆G(h)−1dh,

which proves the formula.

We shall now finish this section by studying the measures on quotient
spaces of G. Let H be a closed subgroup of G and let us fix some left-
invariant Haar measures on G and H. For any continuous function ϕ on G
with compact support, set, for any g,

ϕ(g) =

∫
H

ϕ(gh)dh.

By construction, this function is right-H-invariant on G, so that it may be
seen as a continuous function with compact support on the homogeneous
space G/H. Moreover, let us note that, for any h in H, we have

ϕ ◦Rh−1(g) = ∆H(h)ϕ(g).

Proposition 2.2.9. The map

ϕ 7→ ϕ

C0
c (G)→ C0

c (G/H)
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is surjective. If ν is a Radon measure on G such that, for any h in H,
(Rh−1)∗ν = ∆H(h)ν, there exists an unique Radon measure ν on G/H such
that, for any ϕ in C0

c (G), one has∫
G

ϕdν =

∫
G/H

ϕdν.

This correspondance establishes a bijection between the set of Radon measures
on G/H and the set of Radon measures ν on G such that, for any h in H,
(Rh−1)∗ν = ∆H(h)ν.

One more time, we shall use a topological lemma:

Lemma 2.2.10. Let K be a compact subset of G/H. There exists a nonneg-
ative continuous function with compact support Φ on G such that, for any x
in K, there exists g in G such that gH = x and Φ(g) > 0.

Proof. Let π : G→ G/H be the canonical projection and let V be a compact
neighborhood of e in G. We haveK =

⋃
π(g)∈K π(gV ). Therefore, there exists

g1, . . . , gp in G such that K ⊂ π(g1V )∪ . . .∪π(gpV ). Let Ψ be a nonnegative
continuous function with compact support on G which is > 0 on V and set,
for any g in G,

Φ(g) =

p∑
i=1

Ψ(g−1
i g).

Then, for any x in K, there exists g in G and 1 ≤ i ≤ p such that π(x) = g
and g ∈ giV , so that Φ(g) ≥ Ψ(g−1

i g) > 0.

Proof of proposition 2.2.9. Let us prove that the map ϕ 7→ ϕ is surjective.
Let ψ be in C0

c (G/H). Let K be the support of ψ and let Φ be as in lemma
2.2.10. By construction, the compactly supported function g 7→ Φ(g)ψ(gH)
has its support contained in the open set {g ∈ G|Φ(g) > 0}. For any g in G,
set

ϕ(g) =
Φ(g)

Φ(g)
ψ(gH)

if Φ(g) > 0 and ϕ(g) = 0 else. Then ϕ is a continuous function with compact
support on G and ϕ = ψ.

Let λ be a Radon measure on G/H and let λ̃ be the Radon measure on
G such that, for every ϕ in C0

c (G), one has
∫

G
ϕdλ̃ =

∫
G/H

ϕdλ. For any h in
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H and ϕ in C0
c (G), we have∫

G

ϕd((Rh−1)∗λ̃) =

∫
G

ϕ ◦Rh−1dλ̃ =

∫
G/H

ϕ ◦Rh−1dλ

= ∆H(h)

∫
G/H

ϕdλ = ∆H(h)

∫
G

ϕdλ̃.

Moreover, as the map ϕ 7→ ϕ is surjective, the map λ 7→ λ̃ is injective. To
finish the proof, we have to prove that it is surjective. Let us pick some
Radon measure ν on G such that, for any h in H, (Rh−1)∗ν = ∆H(h)ν and
let us show that there exists a Radon measure λ on G/H such that λ̃ = ν.
For any ψ in C0

c (G/H), we want to set
∫

G/H
ψdλ =

∫
G
ϕdν where ϕ is in

C0
c (G) with ϕ = ψ. Thus, we only have to check that, for any ϕ in C0

c (G)
with ϕ = 0, we have

∫
G
ϕdν = 0. We shall more or less repeat the trick we

used to prove the uniqueness of Haar measure. Indeed, if ϕ and ψ belong to
C0

c (G), we have, by Fubini theorem,∫
G

ϕ(g)ψ(g)dν(g) =

∫
H

(∫
G

ϕ(gh)ψ(g)dν(g)

)
dh

=

∫
H

1

∆H(h)

(∫
G

ϕ(g)ψ(gh−1)dν(g)

)
dh

=

∫
G

ϕ(g)

(∫
H

ψ(gh−1)

∆H(h)
dh

)
dν(g)

=

∫
G

ϕ(g)ψ(g)dν(g).

Now, if ϕ = 0, we have, for any ψ,
∫

G
ϕψdν = 0. In particular, as the map

ψ 7→ ψ is surjective, we can find ψ in C0
c (G) such that ψ = 1 on the support

of ϕ. We then get
∫

G
ϕdν = 0, what should be proved.

Corollary 2.2.11. There exists a non zero G-invariant Radon measure on
G/H if and only if, for any h in H, one has ∆G(h) = ∆H(h). If it is the
case, this measure ν is unique up to multiplication by a positive scalar and
can be normalized in such a way that, for any ϕ in C0

c (G), one has∫
G

ϕ(g)dg =

∫
G/H

ϕdν.
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Proof. Let ν 7→ ν be the correspondance of proposition 2.2.9. For g in G, let
us still denote by Lg the translation by g acting on the left in G/H. Then,

for any Radon measure ν on G, we have (Lg)∗ν = (Lg)∗ν. Therefore, ν is
G-invariant if and only if ν is a Haar measure on G. But in this case, we
have, for any h in H, (Rh−1)∗ν = ∆G(h)ν. Therefore, by proposition 2.2.9,
such a ν exists if and only if ∆G = ∆H on H. If this is the case, we have the
formula by definition of ν.

Corollary 2.2.12. Suppose G and H are unimodular. Then the quotient
space G/H possesses an (up to scalar multiplication) unique non zero G-
invariant Radon measure.

Example 2.2.13. Let P be as in example 2.2.8. Then the quotient GL2(R)/P
is the projective line P1

R. One easily checks that the action of GL2(R) on P1
R

does not preserve a non zero Radon measure.

2.3 Lattices

Let G be a locally compact topological group.

Proposition 2.3.1. Let Γ be a subgroup of G. Then Γ is discrete for the
induced topology if and only if there exists a neighborhood U of e in G such
that, for any γ 6= η in Γ, γU ∩ ηU = ∅. If this is the case, Γ is closed in G.

Remark 2.3.2. Note that in general a discrete subset of a topological space
is not closed: think, for example, to the set { 1

n
|n ∈ N∗} in R.

Proof. If such a neighborhood exists, then Γ is discrete since, for any γ in Γ,
we have Γ∩γU = {γ}. Reciprocally, suppose Γ is discrete. Then, there exists
a neighborhood V of e in G such that Γ∩V = {e}. Let U be a neighborhood
of e in G such that UU−1 ⊂ V . For any γ, η in Γ, if u and v are in U and
γu = ηv, we have η−1γ = vu−1 ∈ V , so that η = γ, what should be proved.

Let Γ be discrete, let still U be such a neighborhood and let g be in G,
with g /∈ Γ. We want to find a neighborhood of g that does not encounter Γ.
If g /∈ ΓU , we have gU−1 ∩ Γ = ∅. If g ∈ ΓU , there exists an unique γ in Γ
such that g ∈ γU . As g 6= γ, there exists a neighborhood W of e such that
γ /∈ gW . We get g(U−1 ∩W ) ∩ Γ = ∅, what should be proved.
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Example 2.3.3. Let e1, . . . , ed be the canonical basis of Rd. For any 0 ≤ r ≤ d,
the group Ze1 ⊕ . . .⊕ Zer is discrete in Rd. The group GLd(Z) is discrete in
GLd(R).

Definition 2.3.4. A discrete subgroup Γ of G is cocompact (or uniform) if
the quotient space G/Γ is compact.

Example 2.3.5. For 0 ≤ r ≤ d, the group Ze1⊕ . . .⊕Zer is cocompact in Rd

if and only if r = d. The group GLd(Z) is not cocompact in GLd(R). Let H
be the Heisenberg group, that is the group of 3 by 3 matrices of the form1 x z

0 1 y
0 0 1


with x, y, z in R, and let Λ be the subgroup ofH constituted of those elements
for which x, y, z are in Z. Then Λ is cocompact in H.

Proposition 2.3.6. Suppose G admits a cocompact discrete subgroup Γ.
Then G is unimodular and the quotient space G/Γ possesses an unique G-
invariant Radon probability measure.

Proof. Note that, by corollary 2.2.11, if such a probability measure exists, it
is necessarily unique.

Let ν be a right-invariant Haar measure on G (for example, chose a left-
invariant Haar measure µ and set, for any Borel set B in G, ν(B) = µ(B−1)).
Then, for any g in G, one checks easily that (Lg)∗ν = ∆(g)ν, where ∆ is
the modular function of G. Since ν is right-invariant, for any γ in Γ, one
has (Rγ−1)∗ν = ν. As Γ is unimodular (since it is discrete), by proposition
2.2.9, there exists an unique Radon measure ν on G/Γ such that, for any ϕ
in C0

c (G), one has
∫

G/Γ
ϕdν =

∫
G
ϕdν, where we set, for g in G,

ϕ(g) =
∑
γ∈Γ

ϕ(gγ).

Now, by uniqueness, for any g in G, we have (Lg)∗ν = ∆(g)ν. But, as G/Γ
is compact, ν is finite and we also have ν(G/Γ) = ((Lg)∗ν)(G/Γ), so that
∆(g) = 1. Thus, G is unimodular and ν is G-invariant.

Definition 2.3.7. A discrete subgroup Γ of G is a lattice if and only if the
quotient space G/Γ possesses a finite G-invariant Radon measure.
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Example 2.3.8. A cocompact discrete subgroup is a lattice, by proposition
2.3.6. We shall see later that, for d ≥ 2, the group SLd(Z) is a lattice in
SLd(R), but it is not cocompact. In fact, the existence of this example is
the major reason why we will deal with general lattices rather than with
cocompact ones.

Remark 2.3.9. If Γ is a lattice in G, the invariant Radon probability measure
of G/Γ is necessarily unique, by proposition 2.2.11.

Proposition 2.3.10. Suppose G possesses a lattice. Then G is unimodular.

Proof. Let Γ be a lattice in G and let ∆ be the modular function of G. As
a discrete group, Γ is unimodular. Therefore, by proposition 2.2.9, we have
∆ = 1 on Γ, so that, if N is the kernel of the continuous morphism ∆ : G→
R∗

+, we have Γ ⊂ N . Let ν be the invariant Radon probability measure on
G/Γ and let µ be its image on G/N by the natural map G/Γ→ G/N . Then
µ is invariant by the left action of G on G/N . But, as N is normal in G,
G/N has a natural structure of locally compact topological group and G acts
on the left on G/N via the action on the left of G/N on itself. Therefore, the
probability Radon measure µ on G/N is invariant by the left translations
of G/N . Hence, µ is the Haar measure of G/N . As it is finite, G/N is
compact. Since ∆ factors through a continuous morphism G/N → R∗

+, the
set ∆(G) is a compact subgroup of R∗

+. Thus, we have ∆(G) = 1 and G is
unimodular.

Example 2.3.11. The group P of examples 2.2.8 and 2.2.13 does not admit
lattices.

Remark 2.3.12. If G is a locally compact topological group and Γ a lattice in
G, for any g in G, the left translation by g is a measure preserving transfor-
mation of the space G/Γ, equipped with its unique G-invariant probability
measure. In the sequel of the course, we shall be concerned with the study
of this kind of transformations from a dynamical point of view.

2.4 Exercices

2.4.1 Connected and open subgroups

Let G be a topological group.
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1. Prove that the connected component of e in G is a normal subgroup
of G.

2. Prove that every open subgroup of G is closed. Prove that every closed
subgroup with finite index in G is open.

3. Suppose G is connected. Prove that every neighborhood of e in G
spans G.

2.4.2 Projective limits

Let I be a set with an order relation ≺ such that, for every i, j in I, there
exists k in I such that i ≺ k and j ≺ k. Suppose we are given a family (Gi)i∈I

of groups and, for any i ≺ j in I, a surjective morphism ϕi,j : Gj → Gi such
that, for any i ≺ j ≺ k in I, one has ϕi,j ◦ ϕj,k = ϕi,k. Then, we say that
((Gi)i∈I , (ϕi,j)i≺j) is a projective system of groups.

1. Let p be a prime integer. Equip N with the usual order relation and,
for any n in N, set Pn = Z/pnZ and, for any n ≤ m, denote by ϕn,m the
natural morphism Z/pmZ → Z/pnZ. Prove that ((Pn)n∈N, (ϕn,m)n≤m) is a
projective system of groups. We call this system the p-adic system.

2. Equip N∗ with the division order relation, that is, for any positive
integers n and m, set n|m if m

n
is an integer. Then, for any n in N∗, denote by

Qn the group Z/nZ and, for any n|m, denote by ϕn,m the natural morphism
Z/mZ → Z/nZ. Prove that ((Qn)n∈N∗ , (ϕn,m)n|m) is a projective system of
groups. We call this system the Prüfer system.

If ((Gi)i∈I , (ϕi,j)i≺j) is a projective system of groups, we define the pro-
jective limit of the system ((Gi)i∈I , (ϕi,j)i≺j) as the group G of the elements
(gi)i∈I of the product group

∏
i∈I Gi such that, for any i ≺ j in I, one has

ϕi,j(gj) = gi. We write
G = lim←−−

i∈I

Gi.

Suppose now each of the Gi is a compact topological group and the mor-
phisms (ϕi,j)i≺j are continuous. Then, we equip G with the topology induced
by the product topology on

∏
i∈I Gi.

3. Prove that G is a compact topological group and that, for any i
in I, the coordinate morphism ψi : G → Gi is surjective (use the finite
intersection property in compact spaces). Prove that, for any i ≺ j in I, one
has ϕi,j ◦ ψj = ψi.

4. Let H be a compact topological group and, for any i in I, let θi

be a continuous morphism H → Gi such that, for any i ≺ j in I, one
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has ϕi,j ◦ θj = θi. Prove that there exists an unique continuous morphism
θ : H → G such that, for any i in I, one has θi = ψi ◦ θ.

5. We equip each of the Z/pnZ, n ∈ N, with the discrete topology and we
denote by Zp the projective limit of the p-adic system. We call Zp the group
of p-adic integers. Prove that there exists an unique morphism θ : Z → Zp

such that, for any n in N, the component in Z/pnZ of θ(1) is the image of 1
in Z/pnZ. Prove that θ is injective and has dense image.

6. We equip each of the Z/nZ, n ∈ N∗, with the discrete topology and we
denote by Ẑ the projective limit of the Prüfer system. We call Ẑ the group
of Prüfer integers. Prove that there exists an unique morphism θ : Z → Ẑ
such that, for any n in N∗, the component in Z/nZ of θ(1) is the image of 1
in Z/nZ. Prove that θ is injective and has dense image.

In the sequel, we shall always consider Z as a subgroup of Zp and Ẑ.

7. Prove that, as topological groups, one has

Ẑ '
∏

p prime

Zp

(use the chinese remainder lemma !)

2.4.3 Kronecker systems

Let G be a compact abelian group and let x be an element of G.

1. Suppose that the subgroup spanned by x is dense in G. Prove that
the translation Lx : y 7→ x + y,G → G is minimal and uniquely ergodic on
G and that its unique invariant measure is the Haar measure of G.

2. In the general case, denote by H the closure in G of the subgroup
spanned by x. Prove that the ergodic invariant measures of the translation
Lx are the measures of the form (Ly)∗ν where y is an element of G and ν is
the Haar measure of H.

4. Let α be an irrational element of R. Prove that the rotation associated
to α on T = R/Z is minimal and uniquely ergodic.

3. Prove that the map x 7→ x + 1,Zp → Zp is minimal and uniquely

ergodic. Prove that the map x 7→ x + 1, Ẑ → Ẑ is minimal and uniquely
ergodic.
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2.4.4 Dynamics of isometries

Let X be a compact metric space and let G be the group of isometries of X,
that is the group of all the homeomorphisms g of X such that, for any x and
y in X, one has d(gx, gy) = d(x, y). We equip G with the uniform distance,
that is, for any g and h in G, we set

d∞(g, h) = max
x∈X

d(gx, hx).

1. Prove that the topology associate to the distance d∞ makes G a com-
pact topological group (use Ascoli theorem).

2. Let g be in G. Prove that, for any x in X, the action of g on the
closure of the g-orbite of x is minimal.

2.4.5 Subgroups of Rd

Let Γ be a closed subgroup of Rd.
1. Suppose Γ is discrete. Fix a norm ‖.‖ on Rd and let x be an element

of Γ with minimal norm. Prove that the image of Γ in the quotient vector
space Rd/(Rx) is discrete. Deduce from it, by induction on d, that there
exists r ≤ d and a R-free system e1, . . . , er in Γ with

Γ = Ze1 ⊕ . . .⊕ Zer.

2. Suppose Γ is not discrete. Prove that Γ contains a vector line.
3. In the general case, prove that there exists nonnegative integers r, s

with r + s ≤ d and a R-free system e1, . . . , er+s in Γ such that

Γ = Ze1 ⊕ . . .⊕ Zer ⊕ Rer+1 ⊕ . . .⊕ Rer+s.

4. Prove that Γ is a lattice in Rd if and only if it is discrete and cocompact
and that, in this case, there exists g in GLd(R) with Γ = gZd.

2.4.6 Lattices in subgroups

Let G be an unimodular locally compact group. Let H be a closed unimod-
ular subgroup of G and Γ a discrete subgroup of G such that H ∩ Γ is a
lattice in H. We equip the space H/H ∩Γ with its unique H-invariant Borel
probability measure κ and we chose G-invariant Radon measures λ, µ and ν
on the spaces G/(H ∩ Γ), G/H and G/Γ.



42 CHAPTER 2. TOPOLOGICAL GROUPS AND LATTICES

1. Suppose H ∩ Γ is a cocompact lattice in H. Prove that the natural
map Γ/H ∩ Γ→ G/H is proper.

2. In the general case, prove that, after an eventual normalization of the
measures, for any nonnegative continuous compactly supported functions ϕ
on G/H and ψ on G/Γ, one has

∫
G/Γ

ψ(x)

 ∑
γ∈Γ/H∩Γ

ϕ(xγ)

 dν(x) =

∫
G/H∩Γ

ϕψdλ

=

∫
G/H

ϕ(y)

(∫
H/H∩Γ

ψ(yz)dκ(z)

)
dµ(y).

In particular, prove that, for ν-almost x in G/Γ, one has∑
γ∈Γ/H∩Γ

ϕ(xγ) <∞.

3. Prove that the natural maps Γ/H ∩ Γ → G/H and H/H ∩ Γ → G/Γ
are proper.

2.4.7 Lattices and normal subgroups

Let G be a locally compact group and N be a closed normal subgroup of G.
Set G = G/N and denote by π : G→ G the natural map.

1. Let µ be a Haar measure of N . Prove that there exists a continuous
homomorphism χ : G → R∗

+ such that, for any g in G, one has (Adg)∗µ =
χ(g)µ, where Adg is the map h 7→ ghg−1. Prove that ∆G = χ(∆G ◦ π).

Let Γ be a discrete subgroup of G such that N ∩ Γ is a lattice in N and
that Γ = π(Γ) is discrete and is a lattice of G. We will prove that Γ is a
lattice in G.

2. Prove that G is unimodular.
3. Prove that the natural map N/N ∩ Γ→ G/Γ is proper.
We let µ be the image under this map of the N -invariant Borel probability

measure of N/N ∩ Γ. Let ϕ be a continuous function with compact support
on G/Γ. For any g in G, set

ϕ(g) =

∫
G/Γ

ϕ ◦ Lgdµ.
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4. Prove that ϕ is right-ΓN -invariant.

Let ν be the G-invariant Borel probability measure of G/Γ and λ be the
unique Borel probability measure on G/Γ such that, for any ϕ in C0

c (G/Γ),∫
G/Γ

ϕdλ =

∫
G/Γ

ϕdν.

5. Prove that λ is G-invariant and that Γ is a lattice in G.

6. Prove that, if N ∩ Γ is cocompact in N and Γ = π(Γ) is cocompact in
G, Γ is cocompact in G.

2.4.8 Lattices in solvable groups

Let G and H be a locally compact topological groups. A continuous action of
G on H is a homomorphism θ from G into the group of automorphisms group
of H such that the associate map G×H → H, (g, h) 7→ θg(h) is continuous.
Given such an action, define the associate semi-direct product GnθH as the
set G×H equipped with the product topology and the map

(G×H)× (G×H)→ G×H

((g1, h1), (g2, h2)) 7→
(
g1g2, θg−1

2
(h1)h2

)
.

1. Prove that G nθ H is a locally compact topological group and that
the maps G → G nθ H, g 7→ (g, e) and H → G nθ H, h 7→ (e, h) are proper
injective continuous morphisms. In the sequel we shall consider G and H
as closed subgroups of G nθ H. Prove that H is a normal subgroup of
G nθ H, that GH = G nθ H and that, for any g in G and h in H, one has
ghg−1 = θg(h).

Let A be a hyperbolic matrix in SL2(R).

2. Prove that there exists an unique continuous action of R on R2 such
that 1 acts on R2 via the matrix A.

For any t in R, we denote by At the linear automorphism of R2 associate to
t by this action. The semi-direct product coming from the action is denoted
by R nA R2.

3. Prove that the Haar measure of RnAR2 is the product of the Lebesgue
measure of R and of the Lebesgue measure of R2. Prove that R nA R2 is
unimodular.
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Suppose now A belongs to SL2(Z) and denote by ZnA Z2 the semi-direct
product associate to the action of the integer powers of A on Z2. Consider
Γ = Z nA Z2 as a subgroup of G = R nA R2, via the natural embedding.

4. Prove that Γ is a cocompact lattice of G and that there exists a
surjective continuous map $ : G/Γ → T such that, for any x in T, $−1(x)
is homeomorphic to a 2-dimensional torus.

5. Prove that (LAt)t∈R is a continuous flow on G/Γ and that this flow is
topologically conjugate to the suspension of the action of A on T2 with deck
function 1.

6. Prove that the G-invariant measure of G/Γ is invariant and ergodic
for the flow (LAt)t∈R.

7. Prove that the set of ergodic invariant measures on G/Γ for the flow
(LAt)t∈R is uncountable.



Chapter 3

Dynamics on Heisenberg
quotients

In all this chapter, we let H be the Heisenberg group, that is the group of 3
by 3 matrices of the form

hx,y,z =

1 x z
0 1 y
0 0 1


with x, y, z in R. We will study the action of one-parameter subgroups of H
in the quotients H/Γ, where Γ is a lattice in H.

3.1 Structure of the Heisenberg group

Let us write precisely some algebraic relations in H:

Lemma 3.1.1. Let x, y, z and x′, y′, z′ be in R. One has

(i) hx,y,zhx′,y′,z′ = hx+x′,y+y′,z+z′+xy′.

(ii) h−1
x,y,z = h−x,−y,xy−z.

(iii) hx,y,zhx′,y′,z′h
−1
x,y,z = hx′,y′,z′+xy′−x′y.

(iv) hx,y,zhx′,y′,z′h
−1
x,y,zh

−1
x′,y′,z′ = h0,0,xy′−x′y.

Proof. By direct computations.

45



46 CHAPTER 3. DYNAMICS ON HEISENBERG QUOTIENTS

Corollary 3.1.2. The image of the Lebesgue measure of R3 under the map
(x, y, z) 7→ hx,y,z is a Haar measure on H. In particular, H is unimodular.

Proof. Let θ be in C0
c (H). By lemma 3.1.1, for any x′, y′, z′ in R, one has∫

R3

θ(hx′,y′,z′hx,y,z)dxdydz =

∫
R3

θ(hx′+x,y′+y,z′+z+x′y)dxdydz

=

∫
R3

θ(hx,y,z)dxdydz

=

∫
R3

θ(hx,y,zhx′,y′,z′)dxdydz,

so that the image of the Lebesgue measure of R3 is left and right-invariant.
The corollary follows.

The map z 7→ h0,0,z is a group homomorphism from R into H. Let Z be
its image. We immediately get the

Corollary 3.1.3. The subgroup Z is the center of H. The quotient H/Z is
isomorphic to the group R2.

Proof. Let x, y, z be in R. Then, by lemma 3.1.1, hx,y,z is central if and only
if, for any x′, y′ in R, one has xy′ − x′y = 0, that is if and only if x = 0 and
y = 0.

Let π be the natural map H → H/Z. Then, for any x, y, z and x′, y′, z′

in R, one has π(hx,y,z) = π(hx′,y′,z′) if and only if there exists z′′ in R with
hx,y,z = hx′,y′,z′h0,0,z′′ . By lemma 3.1.1, this happens if and only if x = x′

and y = y′. Therefore, the map θ : (x, y) 7→ π(hx,y,0) is a homeomorphism
from R2 onto G/Z. Still by lemma 3.1.1, for any x, y and x′, y′ in R, one has
hx,y,0hx′,y′,0 = hx+x′,y+y′,0h0,0,xy′ , so that θ is a group isomorphism.

In abstract terms, we would say we have an exact sequence

{e} → Z → H → H/Z → {e},

where Z is isomorphic to R and H/Z is isomorphic to R2. We shall always
denote by π : H → H/Z the natural projection.

Let us make an other easy observation:
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Lemma 3.1.4. Let g be in H. Then there exists an unique continuous mor-
phism

t 7→ gt

R→ H

which value at 1 is g. It is proper. If g does not belong to Z, the centralizer
Zg of g in H is exactly the group of elements of the form gtz, where t is in
R and z is in Z, and the map

R× Z → Zg

(t, z) 7→ gtz

is a continuous isomorphism. The group Zg is normal in H and the quotient
H/Zg is isomorphic to R.

In the sequel, we will always denote this morphism by t 7→ gt and the
centralizer of g by Zg.

Proof. Let x, y, z be such that g = hx,y,z. We set, for any t,

gt = htx,ty,tz+ 1
2
t(t−1)xy

and one verifies easily that the map t 7→ gt is a proper continuous group ho-
momorphism. Let ϕ : R→ H be an other continuous group homomorphism
with ϕ(1) = g.

Suppose first g belongs to Z. Then, ψ = π ◦ ϕ is a continous homomor-
phism R→ H/Z ' R2 and, for any p in Z, we have ψ(p) = π(gp) = e. Hence
we have ψ = e, that is, for any t, ϕ(t) ∈ Z. As Z is isomorphic to R, unicity
follows.

Suppose now g /∈ Z, that is (x, y) 6= (0, 0), and let us first describe the
centralizer Zg of g. Let x′, y′, z′ be in R such that g and hx′,y′,z′ commute.
From lemma 3.1.1, we get xy′ − x′y = 0, that is there exists t in R such
that x′ = tx and y′ = ty. Thus, we get hx′,y′,z′ ∈ gtZ. As such elements
clearly commute with g, we have Zg = gRZ. As, for any t, gt does not
belong to Z, the map (t, z) 7→ gtz is clearly an isomorphism. In particular,
Zg is isomorphic to R2. Now, for any t, g and ϕ(t) commute. Therefore,
ϕ(t) belongs to Zg. Once more, uniqueness follows from the description
of continuous morphisms R → R2. Finally, as Zg contains Z and as every
subgroup of H/Z is normal, Zg is normal in H and H/Zg ' (H/Z)/(Zg/Z) '
R.
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Corollary 3.1.5. Let F be a closed connected subgroup of H. Then either F
is H, Z or {e} or there exists a non central g in H with F = gR or F = Zg.
In particular, for any g in F and t in R, we have gt ∈ F .

Proof. Let F be different from Z or {e} and let g be a non central element
of H belongin to F . We will show that, if H is neither gR nor Zg, we have
F = H. First, let us note that, by lemma 3.1.1, for any h in H, we have
ghg−1h−1 ∈ Z. Consider the continuous map θ : F → Z, h 7→ ghg−1h−1. As
F is connected, θ(F ) is a connected subset of Z, which is contained in Z∩F .
As F 6⊂ Zg, we have θ(F ) 6= {e}. Therefore, θ(F ) has nonempty interior and
the group Z ∩ F is open in Z. As Z is connected, we have Z ⊂ F . Now
π(F ) is a closed connected subgroup of H/Z ' R2 which is not reduced to a
vector line, that is π(F ) = H/Z and F = H.

3.2 Lattices in the Heisenberg group

As for the case of closed connected subgroups, we have a complete description
of lattices of H:

Proposition 3.2.1. Let Γ be a discrete subgroup of H. Then Γ is a lattice
in H if and only if there does not exists a closed connected strict subgroup F
of H with Γ ⊂ F . If Γ is a lattice in H, then Γ is cocompact in H, Γ ∩ Z is
cocompact in Z and Γ/(Γ∩Z) = (ΓZ)/Z is discrete and cocompact in H/Z.

Proof. By lemma 3.1.5, every closed connected subgroup of H has infinite
covolume and, hence, it can not contain a lattice of H. Conversely, let Γ be
a discrete subgroup of H that is not contained in any closed connected strict
subgroup. Let γ be an element of Γ that is not central in H and let η be an
element of Γ that does not belong to Zγ. Then, by lemma 3.1.1, γηγ−1η−1 is
a non zero element of Z. Therefore Γ∩Z is a cocompact lattice in Z. Hence,
the map Γ/(Γ∩Z)→ H/Z is proper and Γ/(Γ∩Z) is a discrete subgroup of
H/Z which is not contained in any closed connected strict subgroup of H/Z.
As H/Z is isomorphic to R2, this implies that Γ/(Γ ∩ Z) is a cocompact
lattice in H/Z. Thus, Γ is a cocompact lattice in H.

Remark 3.2.2. Let Γ be a lattice in H. Then, the space

H/(ΓZ) = (H/Z)/(Γ/(Γ ∩ Z))
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is homeomorphic to a two-dimensional torus T2. For any x in H/(ΓZ), the
inverse image of x under the natural map H/Γ → H/(ΓZ) identifies with
Z/(Γ ∩ Z) which is homeomorphic to a one-dimensional torus T.

Example 3.2.3. For any n in N∗, let Λn be the set of elements of H of the
form 1 x z

0 1 y
0 0 1


with x, y in Z and z in 1

n
Z. Then Λn is a lattice in H. For any lattice Γ

in H, there exists an unique n in N∗ such that there exists a continuous
automorphism θ of H with θ(Γ) = Λn.

3.3 Unique ergodicity on compact quotients

Let us fix a lattice Γ in H. We will prove the

Theorem 3.3.1. Let g be a non central element of H. Then the following
are equivalent

(i) the group Γ ∩ Zg is not a lattice in Zg.

(ii) the flow (Lgt)t∈R is uniquely ergodic on H/Γ.

(iii) the flow (Lgt)t∈R is uniquely ergodic on H/(ΓZ).

In particular, if they are satisfied, the unique invariant measure of (Lgt)t∈R
on H/Γ is the H-invariant measure.

Remark 3.3.2. Note that, with the notations of the theorem, the space
H/(ΓZ) is homeormorphic to a torus T2 and the flow (Lgt)t∈R is conjugate
to a translation flow.

The proof uses a general version of Birkhoff theorem, uniformized by
Egorov theorem:

Lemma 3.3.3. Let (ϕt)t∈R be a continuous flow on the locally compact and
separable topological space X. Let µ be a Borel invariant ergodic probability
for (ϕt)t∈R. Then, for any 0 < ε ≤ 1, there exists a Borel subset A in X with
µ(A) ≥ 1− ε such that, for any θ in C0

c (X), one has

1

T

∫ T

0

θ(ϕt(x))dt −−−→
T→∞

∫
X

θdµ,
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uniformly for x in A.

Proof. Let us first prove the lemma for a fixed continuous compactly sup-
ported function θ. Fix an integer p ≥ 1. Then, by Birkhoff theorem, we
have

µ

 ⋃
S∈N∗

⋂
T∈R
T≥S

{
x ∈ X

∣∣∣∣∣∣∣∣ 1

T

∫ T

0

θ(ϕt(x))dt−
∫

X

θdµ

∣∣∣∣ ≤ 1

p

} = 1.

Note that, as θ is continous, the function T 7→ 1
T

∫ T

0
θ(ϕt(x))dt is continuous,

so that, for any S,

⋂
T∈R
T≥S

{
x ∈ X

∣∣∣∣∣∣∣∣ 1

T

∫ T

0

θ(ϕt(x))dt−
∫

X

θdµ

∣∣∣∣ ≤ 1

p

}

=
⋂
T∈Q
T≥S

{
x ∈ X

∣∣∣∣∣∣∣∣ 1

T

∫ T

0

θ(ϕt(x))dt−
∫

X

θdµ

∣∣∣∣ ≤ 1

p

}

is a measurable set. As this family is increasing in S, we can find Sp in N∗

such that

µ

 ⋂
T≥Sp

{
x ∈ X

∣∣∣∣∣∣∣∣ 1

T

∫ T

0

θ(ϕt(x))dt−
∫

X

θdµ

∣∣∣∣ ≤ 1

p

} ≥ 1− ε2−p.

We therefore get

µ

 ⋂
p∈N∗

⋂
T≥Sp

{
x ∈ X

∣∣∣∣∣∣∣∣ 1

T

∫ T

0

θ(ϕt(x))dt−
∫

X

θdµ

∣∣∣∣ ≤ 1

p

} ≥ 1−
∞∑

p=1

ε2−p

= 1− ε.

In other words, there exists a Borel subset Aθ in X with µ(Aθ) ≥ 1− ε such
that

1

T

∫ T

0

θ(ϕt(x))dt −−−→
T→∞

∫
X

θdµ,

uniformly for x in Aθ.
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As X is separable, we can find a sequence (θn) of elements of C0
c (X) which

is dense for the topology of uniform convergence. For any n, fix a Borel set
Aθn in X such that µ(Aθn) ≥ 1− ε2−n−1 and

1

T

∫ T

0

θn(ϕt(x))dt −−−→
T→∞

∫
X

θndµ,

uniformly for x in Aθn . Set A =
⋂

n∈NAθn , so that

µ(A) ≥ 1−
∞∑

n=0

ε2−n−1 = 1− ε

and let us prove that A satisfies the requirements of the lemma. Indeed,
if θ is in C0

c (X), for any η > 0, there exists n in N such that |θ − θn| ≤ η
everywhere on X. There exists S > 0 such that, for any x in A ⊂ Aθn and
T ≥ S, one has ∣∣∣∣ 1

T

∫ T

0

θn(ϕt(x))dt−
∫

X

θndµ

∣∣∣∣ ≤ η

and, hence, ∣∣∣∣ 1

T

∫ T

0

θ(ϕt(x))dt−
∫

X

θdµ

∣∣∣∣ ≤ 3η.

Thus, 1
T

∫ T

0
θ(ϕt(x))dt −−−→

T→∞

∫
X
θdµ uniformly on A, what should be proved.

Now we will give a criterium for a measure on H/Γ to be the H-invariant
measure:

Lemma 3.3.4. Let Γ be a lattice in H and let µ be a Borel probability
measure on H/Γ. Suppose µ is Z-invariant and the image of µ by the natural
projection H/Γ→ H/ΓZ is H-invariant. Then µ is the H-invariant measure
of H/Γ.

Proof. As Γ is unimodular, there exists a left-H-equivariant bijection between
the set of Radon measures on H/Γ and the set of right-Γ-invariant measures
on H. As Z is central in H, this bijection sends left-Z-invariant measures
on H/Γ to right-ΓZ-invariant measures on H. As ΓZ is unimodular (since,
for example, it admits Γ as a lattice), there is a left-H-equivariant bijection
between the set of right-ΓZ-invariant measures on H and the set of measures
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on H/ΓZ. Hence, there is a left-H-equivariant bijection between the set of
left-Z-invariant measures on H/Γ and the set of measures on H/ΓZ. One
verifies that, by construction, this bijection is, up to a constant multiple, the
map that sends a measure to its image by the natural map H/Γ → H/ΓZ.
The lemma follows.

We can now proceed to the

Proof of theorem 3.3.1. First, note that (i) and (iii) are equivalent. Indeed,
as Γ∩Z is cocompact in Z, the map (ΓZ)/Z = Γ/(Γ∩Z)→ H/Z is proper
and Γ ∩ Zg is a lattice in Zg if and only if ((ΓZ)/Z) ∩ (Zg/Z) is a lattice
in Zg/Z and, by classical settings in the study of translation flows on tori,
this is equivalent to the fact that the the flow (Lgt)t∈R is uniquely ergodic on
H/(ΓZ). In particular, if this is true, the unique invariant measure of this
flow is the H-invariant measure of H/(ΓZ).

Now, as the action of (Lgt)t∈R in H/(ΓZ) is a factor of its action on H/Γ,
if the action in H/Γ is uniquely ergodic, the one on H/(ΓZ) is a fortiori
uniquely ergodic, so that (ii) implies (iii).

What we have to prove is the strong converse statement, that is (iii)
implies (ii). So, suppose the translation flow (Lgt)t∈R on H/(ΓZ) is uniquely
ergodic and fix an invariant ergodic probability measure for (Lgt)t∈R on H/Γ.
The projection of µ on H/(ΓZ) is H-invariant, so that, by lemma 3.3.4, we
only have to prove that µ is Z-invariant.

First, let us remark that, if A is a Borel subset of H/Γ with µ(A) > 0,
there exists a point x in A and a sequence (kn) of elements of H − Zg such
that kn −−−→

n→∞
e and that, for any n, knx belongs to A. Indeed, if this not

true, let K be a compact subset in A such that µ(K) > 0. Then, for every x
in K, there exists a neighborhood Vx of e in H with Vxx ∩K ⊂ Zgx. As K
is compact, there exists x1, . . . , xp in K with K ⊂ Vx1x1 ∪ . . . ∪ Vxpxp and,
hence, K ⊂ Zgx1 ∪ . . . ∪ Zgxp. In particular, there exists 1 ≤ i ≤ p with
µ(Zgxi) > 0, which is not possible, since the projection of µ on H/(ΓZ) is
the H-invariant measure.

By lemma 3.3.3, there exists a Borel set A in H/Γ with µ(A) > 0 such
that, for any continuous function θ on H/Γ,

1

T

∫ T

0

θ(gtx)dt −−−−→
T→±∞

∫
X

θdµ,
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uniformly for x in A. Note that, for any a < b we have, for T > 0,

1

(b− a)T

∫ bT

aT

θ(gtx)dt =
1

(b− a)T

(∫ bT

0

θ(gtx)dt−
∫ aT

0

θ(gtx)dt

)
,

so that
1

(b− a)T

∫ bT

aT

θ(gtx)dt −−−→
T→∞

∫
X

θdµ,

uniformly for x in A.
Now, fix a point x in A and a sequence (kn) of elements of H − Zg such

that kn −−−→
n→∞

e and that, for any n, knx belongs to A. By lemma 3.1.1, there

exists a sequence (zn) of non zero real numbers such that zn −−−→
n→∞

0 and

that, for any n, for any real number t, one has gtkn = kng
th0,0,znt. Let θ be

a continuous function on H/Γ and a be a real number. We will prove that
we have

∫
H/Γ

θdµ =
∫

H/Γ
θ(h0,0,ay)dµ(y). Fix ε > 0. By uniform continuity,

there exists η > 0 and a neighborhood V of e in H such that, for any |z| ≤ η
and k in V , for any x in H/Γ, one has |θ(h0,0,zky)− θ(y)| ≤ ε. Let b = a+η.
Observe that, for any n in N and T ≥ 0, we have

1

(b− a)T

∫ bT

aT

θ(gtknx)dt =
1

(b− a)T

∫ bT

aT

θ(h0,0,zntkng
tx)dt.

Therefore, setting T = 1
zn

, we get, for sufficiently large n,∣∣∣∣∣ zn

(b− a)

∫ b
zn

a
zn

θ(gtknx)dt−
zn

(b− a)

∫ b
zn

a
zn

θ(h0,0,ag
tx)dt

∣∣∣∣∣ ≤ ε.

But, as the (knx) belong to A, we have

zn

(b− a)

∫ b
zn

a
zn

θ(gtknx)dt −−−→
n→∞

∫
X

θdµ

and, in the same way, as x belongs to A,

zn

(b− a)

∫ b
zn

a
zn

θ(h0,0,ag
tx)dt −−−→

n→∞

∫
X

θ ◦ Lh0,0,adµ.

Thus, we have
∣∣∫

X
θ ◦ Lh0,0,adµ−

∫
X
θdµ

∣∣ ≤ ε and, as this is true for any ε >
0, the measure µ is Lh0,0,a-invariant. Hence µ is Z-invariant and, by lemma
3.3.4, it is H-invariant. Therefore, the flow (Lgt)t∈R is uniquely ergodic on
H/Γ and its unique invariant measure is the H-invariant measure, what
should be proved.
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3.4 Exercices

3.4.1 Classification of invariant measures

Let Γ be a lattice in the Heisenberg group H and let g be in H. Describe
all the invariant probability measures for the action of the translation flow
(Lgt)t∈R in H/Γ.

3.4.2 Lattice classification in the Heisenberg group

1. Let g and h be two non-commutating elements of H. Prove that there
exists an unique continuous automorphism θ of H such that θ(g) = h1,0,0 and
θ(h) = h0,1,0.

Let Γ be a lattice in H.

2. Prove that there exists g and h in Γ such that, if ∆ is the subgroup of
Γ spanned by g and h, one has Γ/(Γ ∩ Z) = ∆/(∆ ∩ Z).

For any n in N∗, let Λn be the set of the elements of H of the form1 x z
0 1 y
0 0 1


with x, y in Z and z in 1

n
Z. If G is a group, denote by Z(G) the center of

G and by [G,G] the subgroup of G spanned by the elements of the form
[g, h] = ghg−1h−1 where g and h belong to G.

3. Prove that, for any n in N∗, Λn is a lattice in H and that the index of
[Λn,Λn] in Z(Λn) is n.

4. Prove that there exists an unique n in N∗ such that there exists a
continuous automorphism θ of H with θ(Γ) = Λn.

3.4.3 Higher Heisenberg groups

Let d ≥ 1 and let Hd be the group of matrices of the form

hx,z =

1 x iz − ‖x‖2
2

0 Id −xt

0 0 1

 ,
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where x is a vector in Cd, z a real number, x 7→ x denotes complex conjuga-
tion, t denotes matrix transposition and ‖.‖ is the usual hermitian norm on
Cd.

1. Prove that Hd is a closed subgroup of GLd+2(C) and that H1 is topo-
logically isomorphic to the Heisenberg group.

The group Hd is called the d-th Heisenberg group.

2. Prove that the center Z of Hd is topologically isomorphic to R and
that Hd/Z is topologically isomorphic to R2d.

3. Let g be in Hd. Prove that there exists an unique continuous morphism
g 7→ gt from R into Hd such that g1 = g. Prove that, if g is not central in
Hd, the centralizer Zg of g in H is normal in H and isomorphic to R2d and
that one has H/Zg ' R.

4. Exhibit a lattice in Hd.

5. Prove that lattices in Hd are cocompact.

6. Let Γ be a lattice in Hd and let g be an element of Hd such that
the translation flow (Lgt)t∈R on Hd/(ΓZ) is uniquely ergodic. Prove that
(Lgt)t∈R is uniquely ergodic on Hd/Γ and that its unique invariant measure
is the Hd-invariant measure.

3.4.4 Kronecker factor of Heisenberg minimal flows

Let (X,A, µ) be a probability space with L1(X,µ) separable and let (ϕt) be
an ergodic measure preserving flow on X. Let λ be a non zero real number.
We will suppose (ϕt) admits a non zero λ-eigenvector, that is there exists
a non zero measurable function ρ on X such that, for any t in R, one has
ρ ◦ ϕt = e2iπλtρ.

1. Prove that ρ has constant modulus and that every other λ-eigenvector
is of the form cρ for some almost constant function c.

In the sequel, we will assume |ρ| = 1 almost everywhere and consider ρ
indifferently as a function X → C or X → T = R/Z.

2. Equip T with its Lebesgue measure ν. Prove that the product flow

ϕ̃t : (x, u) 7→ (ϕt(x), u+ λt)

X × T→ X × T

is not ergodic for the product measure µ ⊗ ν. Let I be the σ-algebra of
µ ⊗ ν-almost invariant measurable subsets of X × T. Prove that, for any f



56 CHAPTER 3. DYNAMICS ON HEISENBERG QUOTIENTS

in L1(X × T, µ⊗ ν), for µ⊗ ν-almost (x, u) in X × T, one has

E(f |I)(x, u) =

∫
X

f(y, u− ρ(x) + ρ(y))dµ(y).

3. Let f be in L1(X,µ). Prove that, for µ-almost every x in X, one has

1

T

∫ T

0

f(ϕt(x))e
−2iπλtdt −−−→

T→∞
ρ(x)

∫
X

fρdµ.

4. Let H be the Heisenberg group, Z its center, Γ a lattice in H and
g an element of H such that the translation flow (Lgt) on H/Γ is uniquely
ergodic. Let ρ be a non zero λ-eigenvector for this flow with respect to
its unique invariant measure µ. Prove that ρ is Z-invariant. Conversely,
prove that the space of Z-invariant functions in L1(H/Γ, µ) is spanned by
eigenvectors.



Chapter 4

Dynamics on SL2(R) quotients

In this chapter, we will denote by G the group SL2(R), that is the group of
2 by 2 real matrices of the form (

a b
c d

)
with ad − bc = 1. As we shall see in the exercices, this group admits both
cocompact and non cocompact lattices. We will study the action of one-
parameter subgroups of G in the quotients G/Γ, where Γ is a lattice.

4.1 Structure of SL2(R)

We will have to introduce classical notations for remarkable subgroups of G.
First, for all s in R, we set

as =

(
es 0
0 e−s

)
.

The map s 7→ as is a proper continuous homomorphism from R into G. We
denote its image by A: in other words, A is the group of diagonal matrices
with positive coefficients and determinant 1.

For t in R, we set

ut =

(
1 t
0 1

)
and vt =

(
1 0
t 1

)
.

57
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Again, the maps t 7→ ut and t 7→ vt are proper continuous homomorphisms
from R into G. Let U = {ut|t ∈ R} and V = {vt|t ∈ R}: U (resp. V )
is the group of upper-triangular (resp. lower-triangular) matrices which all
eigenvalues are equal to 1. Note that, for any s, t in R, we have

asuta−s = ue2st and asvta−s = ve−2st.

This relations will play a crucial role in the sequel. As U (resp. V ) is the
stabilizer of (1, 0) (resp. (0, 1)) for the canonical linear action of G on R2,
the homogeneous space G/U (resp. G/V ) identifies with R2 − {0}.

Let us use these groups to prove the

Lemma 4.1.1. The group G is unimodular.

Proof. We shall in fact prove much more, that is every (abstract) morphism
from G to an abelian group is trivial, so that the modular function of G is
trivial. Indeed, if A is an abelian group and ϕ : G → A is a morphism, for
any g and h in G, we have ϕ(ghg−1h−1) = e. For any s and t in R, we have
asuta−su−t = u(e2s−1)t. Thus, for any t in R, ϕ(ut) = e. In the same way,
ϕ(V ) = e.

To conclude, we will prove that U and V span G has a group. Let H be
the subgroup of G spanned by U and V and let us study the action of H on
R2. Let (x, y) be in R2 − {(0, 0)}. If y 6= 0, we have u 1−x

y
(x, y) = (1, z) for

some z in R. Thus, v−zu 1−x
y

(x, y) = (1, 0) and (1, 0) ∈ H(x, y). If y = 0, for

any t 6= 0, vt(x, 0) = (x, tx) has non zero second coordinate, so that, once
more, (1, 0) ∈ H(x, y). Hence H acts transitively on R2 − {0} = G/U , so
that G = HU . As U is contained in H, we get G = H. In particular, ϕ = e,
what should be proved.

Let M be the group {±e} in G. The group M is the center of G. As A
normalizes U , the set AU is a subgroup of G. We set P = MAU : P is the
group of upper-triangular matrices with determinant 1. As P is the stabilizer
of R(1, 0) for the canonical projective action of G on the projective line P1

R,
the homogeneous space G/P identifies with P1

R.
Finally, for any θ in R, we set

kθ =

(
cos(2πθ) − sin(2πθ)
sin(2πθ) cos(2πθ)

)
.

The map θ 7→ kθ induces a continuous injective morphism from T = R/Z
into G. Its image is the group SO(2), that we shall denote by K in the sequel.
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The structure results about G we will use are summarized in the

Proposition 4.1.2. The group G admits the following decompositions:

(i) Bruhat decomposition: the map

V ×M × A× U → G

(v,m, a, u) 7→ vmau

induces a homeomorphism from V ×M×A×U onto its image which is
the dense open set of elements g in G with upper left coefficient g1,1 6= 0.

The complement of this open set is the coset

(
0 −1
1 0

)
P .

(ii) Iwasawa decomposition: the map

K × A× U → G

(k, a, u) 7→ kau

is a homeomorphism.

(iii) polar decomposition: let S be the set of positive definite matrices
with determinant 1, then the map

K × S → G

(k, σ) 7→ kσ

is a homeomorphism.

(iv) Cartan decomposition: let A+ = {as|s ≥ 0}, then the map

K × A+ ×K → G

(k, a, l) 7→ kal

is proper and onto and, for any g in G, there exists an unique s ≥ 0
with g ∈ KasK.

For the study of polar decomposition, we shall use the

Lemma 4.1.3. Let S be the set of positive definite matrices with determinant
1. The map σ 7→ σ2 is a homeomorphism of S.



60 CHAPTER 4. DYNAMICS ON SL2(R) QUOTIENTS

Proof. Let us prove that this map is bijective. Let σ be in S. As σ is
diagonalizable in an orthonormal basis and as it is positive definite with
determinant 1, there exists k in K ans s in R+ with σ = kask

−1, so that
σ2 = ka2sk

−1. In particular, if σ2 = 1, one has σ = 1. Let τ = ka 1
2
sk
−1. We

have τ 2 = σ, so that the square map is onto. Suppose ρ is an other element
of S with ρ2 = σ. Then, if σ = 1, one has ρ2 = 1 and, as noted before, this
implies ρ = 1. If σ 6= 1, σ and ρ commute, that is k−1ρk commutes with as

and s 6= 0. Hence k−1ρk is diagonal. As (k−1ρk)2 = as and k−1ρk is positive
definite, we have k−1ρk = a 1

2
s, that is ρ = τ and the square map is injective.

As it is clearly continuous, to prove that it is a homeomorphism, we need
to prove that it is proper. Let us describe the compact subsets of S. Let ‖.‖
be the usual euclidean norm on R2 and let still denote by ‖.‖ the associate
operator norm. For any s ≥ 0 and k in K, we have ‖kask

−1‖ = es so that
Ls = {σ ∈ S| ‖σ‖ ≤ es} = {katk

−1|0 ≤ t ≤ s, k ∈ K} is a compact subset
of S. Moreover, if L is a compact subset of S, the norm function is bounded
on L, so that there exists s ≥ 0 with L ⊂ Ls. Finally, we have immediately
L2

s = L2s and the map σ 7→ σ2 is proper. Thus, it is an homeomorphism and
the lemma is proved.

Proof of proposition 4.1.2. Bruhat decomposition for elements g of G with
g1,1 6= 0 is a version of Gauss elimination. If g1,1 = 0, one has g(1, 0) ∈

R∗(0, 1) =

(
0 −1
1 0

)
R∗(1, 0), so that g ∈

(
0 −1
1 0

)
P .

Iwasawa decomposition is a matrix translation of Gram-Schmidt orthog-
onalisation process.

Let us prove polar decomposition. Let g be in G. The matrix gtg (where
g 7→ gt denotes matrix transposition) belongs to S. By lemma 4.1.3, there
exists an unique σ in S with σ2 = gtg and σ depends continuously on g.
We have (gσ−1)t(gσ−1) = 1, that is k = gσ−1 belongs to O(2). As k has
determinant 1, k belongs to K = SO(2) and we have g = kσ and k and
σ depend continuously on g. Uniqueness of the decomposition follows from
uniqueness of the square root in S of an element of S.

Finally, for Cartan decomposition, we use first polar decomposition g =
kσ and then diagonalize σ in an orthonormal basis. We thus get existence.
As K is compact, the map K × A+ × K → G is clearly proper. Finally,
for any s ≥ 0, if g belongs to KasK, we have ‖g‖ = es and s is uniquely
determined by g.
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From polar (or Iwasawa) decomposition, we perfectly now the topology
of G:

Corollary 4.1.4. The group G is homeomorphic to R2 × T. In particular,
it is connected.

4.2 Unitary representations of SL2(R)

Let us define some abstract notions.

Definition 4.2.1. Let F be a locally compact topological group and let H
be a Hilbert space. An unitary representation of F in H is a homomorphism
of F into the group of unitary automorphisms of H such that the associate
map F ×H → H is continuous.

Example 4.2.2. (i) The natural action by left or by right translations
of F on the space L2(F ) of square-integrable functions on F with re-
spect to Haar measure is an unitary representation. If Γ is a lattice
in F , the action of F on the space L2(F/Γ) of square-summable func-
tions on F/Γ with respect to the F -invariant measure is an unitary
representation. Given a measure preserving action of F on a measure
space (X,A, µ) (that is an action such that each element F preserves
the measure and that the map F ×X → X is Borel), reasoning as in
lemma 1.2.3, one proves that the associate action on L2(X,A, µ) is an
unitary representation (as soon as L2(X,A, µ) is separable).

(ii) An unitary representation of Z in H is just the data of an unitary
automorphism of H. For example, if ν is a Radon measure on T, the
map that sends each function f in L2(T, ν) to the function ξ 7→ e2iπξf(ξ)
is an unitary automorphism and induces an unitary representation of
Z in L2(T, ν). The spectral theorem asserts that every representation
of Z is an orthogonal direct sum of representations of this form.

(iii) Let ν be a Radon measure on R. For any t in R, let ϕt be the
map that sends any f in L2(R, ν) to the function ξ 7→ e2iπtξf(ξ). Then
t 7→ ϕt is an unitary representation of R in L2(R, ν). The R-version
of the spectral theorem asserts that every representation of R is an
orthogonal direct sum of representations of this form.



62 CHAPTER 4. DYNAMICS ON SL2(R) QUOTIENTS

(iv) Let λ be the Lebesgue measure on R. With the notations of chap-
ter 3, define, for x, y, z in R, ρhx,y,z as the map that sends any f in
L2(R, λ) to the function ξ 7→ e2iπ(z+xξ)f(y + ξ). Then ρ is an unitary
representation of H in L2(R, λ).

In this section, we will be interested with unitary representations of G =
SL2(R). There is an analogue of the spectral theorem for this group, but
we will need a different information which is provided by the Howe-Moore
theorem:

Theorem 4.2.3. Let H be a Hilbert space equipped with an unitary repre-
sentation of G. Suppose the space of invariant vectors

HG = {v ∈ H|∀g ∈ G gv = v}

is reduced to {0}. Then, for any v and w in H, one has

〈gv, w〉 −−−→
g→∞

0,

that is, for every ε > 0, there exists a compact subset L of G such that, for
any g in G− L, one has |〈gv, w〉| ≤ ε.

Remark 4.2.4. Let (X,A, µ) be a probability space (with L1(X,A, µ) sepa-
rable), equipped with a measure preserving action of G. Suppose the action
is ergodic, that is, if A ∈ A is G-invariant, one has µ(A) ∈ {0, 1}. Then the
theorem asserts that the one-parameter subgroups (as)s∈R and (ut)t∈R act
on (X,A, µ) as mixing measure preserving flows! In particular, the theorem
is very specific of G: we know that the groups Z and R possess a lot of
non-mixing ergodic actions.

Fix a Hilbert space H, equipped with an unitary representation of G.
Recall that the weak topology of H is the weakest topology of H making the
scalar products by a fixed vector continuous (see section A.3 of the appendix).
In particular, the conclusion of the theorem can be written as follows: for any
v in H, one has gv −−−→

g→∞
0 weakly in H. Now, for any g, we have ‖gv‖ = ‖v‖

so that the map g 7→ gv has bounded image. By Banach-Alaoglu theorem,
bounded sets of H are weakly compact. Hence, to prove the theorem, we will
study the limit points of Gv. We shall need two lemmas.

Lemma 4.2.5. Let (vn) be a sequence of vectors in H, weakly converging to
a vector v. Let (Tn) and T be bounded operators of H such that, for any w in
H, the sequence (T ∗nw) strongly converges to T ∗w (where T ∗ stands for the
adjoint operator of T ). Then, the sequence (Tnvn) weakly converges to Tv.
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Proof. For any w in H, we have, for any n,

〈Tnvn, w〉 = 〈vn, T
∗
nw〉 = 〈vn, T

∗w〉+ 〈vn, T
∗
nw − T ∗w〉.

As (vn) weakly converges to v, we have 〈vn, T
∗w〉 −−−→

n→∞
〈v, T ∗w〉 = 〈Tv, w〉.

Moreover, by Banach-Steinhaus theorem, (vn) is bounded. Hence, as

‖T ∗nw − T ∗w‖ −−−→
n→∞

0,

we have 〈vn, T
∗
nw − T ∗w〉 −−−→

n→∞
0 and the lemma is proved.

Lemma 4.2.6. Let (vn) be a sequence of vectors in H, strongly converging
to a vector v. Let (Tn) be a bounded sequence of bounded operators such that
(Tnvn) weakly converges to some vector u in H. Then, the sequence (Tnv)
weakly converges to u.

Proof. For any w in H, we have

〈Tnv, w〉 = 〈Tnvn, w〉+ 〈Tn(v − vn), w〉.

As (Tnvn) weakly converges to u, we have 〈Tnvn, w〉 −−−→
n→∞

〈u,w〉. As

‖v − vn‖ −−−→
n→∞

0,

and the sequence (Tn) is bounded, we have 〈Tn(v − vn), w〉 −−−→
n→∞

0 and the

lemma is proved.

Proof of theorem 4.2.3. As G is separable, it suffices to prove that, for any
sequence (gn) in G going to infinity (that is leaving every compact subset of
G), for any v and w in H, if (gnv) weakly converges to w, one has w = 0
(see the proof of corollary A.3.11 in the appendix). Fix these notations and
write, for any n, gn = knanln a Cartan decomposition of gn, that is kn and ln
belong to K and an belongs to A+. The sequence (an) goes to infinity in A+.
As K is compact, after eventually extracting a subsequence, we can suppose
there exists k, l in K with kn −−−→

n→∞
k and ln −−−→

n→∞
l.

For any n, we have anlnv = k−1
n gnv. As (gnv) weakly converges to w and

kn −−−→
n→∞

k we get, by lemma 4.2.5, anlnv −−−→
n→∞

k−1w weakly. In the same

way, the sequence (lnv) strongly converges to lv and the sequence (an) is
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bounded for the operator norm, so that, by lemma 4.2.6, we get anlv −−−→
n→∞

k−1w weakly. In other words, after having replaced v by lv and w by k−1w,
we can suppose that, for any n, gn = an belongs to A+.

Now, let us prove that w is U -invariant. Indeed, for u in U , for any n, we
have uanv = an(a−1

n uan)v. As a−1
n uan −−−→

n→∞
e in G, we have (a−1

n uan)v −−−→
n→∞

v strongly in H. On the other hand, as u acts as a continuous operator on
H, we have uanv −−−→

n→∞
uw weakly in H, so that, by lemma 4.2.6, we get

anv −−−→
n→∞

uw weakly in H and, thus, uw = w.

We will now prove that, as w is U -invariant, it is necessary G-invariant:
by the hypothesis, this will imply w = 0 and we will be done. Consider the
continuous function

f : G→ C
g 7→ 〈gw,w〉.

For any u, u′ in U and g in G, we have

f(ugu′) = 〈ugu′w,w〉 = 〈gu′w, u−1w〉 = 〈gw,w〉 = f(g)

as w is U -invariant. In other words, the function f is left and right-G-
invariant. We can consider it as a continuous U -invariant function on G/U '
R2 − {0}. For any (x, y) in R2 with y 6= 0, the U -orbit of (x, y) is the set
R×{y}. Hence, f is constant on each of these sets. As it is continuous, it is
constant on R∗ × {0} = MA(1, 0). Thus, for any g in ma, we have

〈gw,w〉 = 〈w,w〉.

As ‖gw‖ = ‖w‖, by Cauchy-Schwarz inequality, this implies gw = w. Hence,
w is P = MAU -invariant and the function f is left and right-P -invariant.
Thus, we may consider f as a continuous P -invariant function on G/P ' P1

R.
But in P1

R the P -orbit of the line R(0, 1) is P1
R − {R(1, 0)}. Therefore, f is

constant, that is, for any g in G,

〈gw,w〉 = 〈w,w〉

and, again by Cauchy-Schwarz inequality, w is G-invariant. Hence w = 0,
what should be proved.

As we shall see in the exercices, the group SL2(Z) is a non cocompact
lattice in G = SL2(R). Hence, from Howe-Moore theorem, we immediately
deduce the
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Corollary 4.2.7. The flows (Las)s∈R and (Lut)t∈R on SL2(R)/SL2(Z) are
mixing with respect to the SL2(R)-invariant probability measure.

Remark 4.2.8. For geometric reasons this flows are respectively called geode-
sic and horocyclic flow.

Remark 4.2.9. From the relations

asuta−s = ue2st and asvta−s = ve−2st,

we can see the flow (Las)s∈R as a continuous analogue of a hyperbolic trans-
formation. Indeed, there is a notion of an Anosov flow and the standard
example of such a flow is the action of (Las)s∈R in quotients G/Γ, where Γ
is a cocompact lattice in G. For such flows, there is a theory of Markov par-
titions. In particular this flows are very chaotic and possess a lot of closed
invariant subsets and invariant measures. We shall now see that the flow
(Lut)t∈R is much more rigid.

4.3 Unique ergodicity of the horocyclic flow

on compact quotients of SL2(R)

The group SL2(Z) is a lattice in G. As it contains u1, the flow (Lut)t∈R has
a periodic orbit in SL2(R)/SL2(Z). Moreover, since A permutes the periodic
orbits of (Lut)t∈R, there are infinitely many periodic orbits for the action of
(Lut)t∈R in SL2(R)/SL2(Z).

The case of cocompact lattices is different, in view of the following theo-
rem by Fürstenberg:

Theorem 4.3.1. Let Γ be a cocompact lattice in G. Then the flow (Lut)t∈R
is uniquely ergodic on G/Γ.

Remark 4.3.2. In fact, a more general result is true: if Γ is any lattice in G,
for any x in G/Γ, either x is a fixed point for some Lut , t ∈ R, or, for any
compactly supported continuous function θ on G/Γ, one has

1

T

∫ T

0

θ(utx)dt −−−→
T→∞

∫
G/Γ

θdµ,

where µ is the G-invariant probability on G/Γ.
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We shall need to describe the Haar measure of G, viewed through the
Bruhat decomposition:

Lemma 4.3.3. Equip G with a Haar measure. Then, up to a renormaliza-
tion, for any compactly supported continuous function θ on V AU , we have∫

V AU

θ(g)dg =

∫
R3

e2sθ(vrasut)drdsdt.

Proof. Let Q be the closed subgroup V A of G. By a direct computation, the
left Haar measure of Q may be normalized in such a way that, for any θ in
C0

c (Q), one has ∫
Q

θ(q)dq =

∫
R2

e2sθ(vras)drds.

Now, consider the action of the group Q×U on V AU such that, for any (q, u)
in Q×U , (q, u) acts by the map g 7→ qgu−1. By Bruhat decomposition, this
action is simply transitive, that is, taking g = e as a base point, it identifies
V AU and Q×U . Now G is unimodular, so that the action of Q×U on V AU
leaves the restriction of the Haar measure of G to V AU invariant. Hence,
through the identification between V AU and Q×U , the Haar measure of G
becomes the Haar measure of Q × U . Therefore, for any θ in C0

c (V AU), we
get, after renormalization,∫

V AU

θ(g)dg =

∫
R3

e2sθ(vrasu−t)drdsdt =

∫
R3

e2sθ(vrasut)drdsdt,

what should be proved.

We will also need an uniform version of mixing:

Lemma 4.3.4. Let H be a Hilbert space, equipped with an unitary represen-
tation of a locally compact group F . Let w be a vector of H such that, for
any v in H, one has

〈gv, w〉 −−−→
g→∞

0.

Then, for any compact subset L of H, the convergence is uniform for v in L.

Proof. Let L be a compact subset of H. Fix ε > 0. Then, there exists
v1, . . . , vp in L with L ⊂ B(v1, ε) ∪ . . . ∪B(vp, ε). Now, for any v in L, there
exists 1 ≤ i ≤ p such that ‖v − vi‖ ≤ ε and we get, for any g in F ,

|〈gv, w〉| ≤ |〈g(v − vi), w〉|+ |〈gvi, w〉| ≤ ε ‖w‖+ max
1≤j≤p

|〈gvj, w〉| .

The lemma follows.
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Finally, we shall use a natural formula for the computation of certain
integrals on G/Γ:

Lemma 4.3.5. Let F be a locally compact topological group and let Λ be a
lattice in F . Fix a Haar measure on F and equip F/Λ with the F -invariant
measure µ associate with the Haar measure of F and the counting measure
on Λ. Then, for any x in F/Λ, if B is a Borel subset of F such that the
map B → F/Λ, g 7→ gx is injective, we have, for any continuous compactly
supported function θ on F/Λ,∫

Bx

θdµ =

∫
B

θ(gx)dg.

Proof. First let us prove the result for x = Λ, the image of e in F/Λ. In this
case, by the hypothesis on B, we have, for any g in F , if y = gΛ,∑

γ∈Λ

1B(gγ)θ(y) = 1BΛ(y)θ(y),

so that the formula comes from the definition of the measure µ.
Now, in the general case, chose h in F with x = hΛ and note that, as µ

is F -invariant, one has ∫
Bx

θdµ =

∫
h−1Bx

θ(hy)dµ(y).

Since the map B → F/Λ, g 7→ gx is injective, the map h−1Bh → F/Λ, g 7→
gΛ is injective and we get, from the case x = Λ,∫

Bx

θdµ =

∫
h−1Bh

θ(hgΛ)dg =

∫
h−1Bh

θ(hgh−1x)dg.

The lemma follows since, F being unimodular, its Haar measure is invariant
under conjugation by h.

Proof of theorem 4.3.1. Let µ be the G-invariant probability of G/Γ. We
will prove directly the equidistribution of orbits, that is, for any continuous
function θ on G/Γ,

1

T

∫ T

0

θ(utx)dt −−−→
T→∞

∫
G/Γ

θdµ,
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uniformly for x in G/Γ. Fix θ in C0(Γ) and ε > 0. By uniform continuity,
there exists a neighborhood W of e in G such that, for any x in G/Γ, for any
w in W , one has |θ(wx)− θ(x)| ≤ ε.

Now we claim that there exists a neighborhood W ′′ of e in G such that,
for any x in G/Γ, the map w 7→ wx,W ′′ → G/Γ is injective. Indeed, as the
group Γ is discrete, there exists a neighborhood W ′ of e such that, for any γ
in Γ, γ 6= e, one has W ′ ∩W ′γ = ∅. Then, chose a compact set L in G such
that the natural map L → G/Γ is surjective and set W ′′ =

⋂
g∈L gW

′g−1.
As L is compact, it is still a neighborhood of e. Let us prove that it is
convenient. Let x be in G/Γ and chose g in L such that x = gΓ. Let w and
w′ be in W ′′ with wx = w′x. There exists γ in Γ such that wg = w′gγ, that
is g−1wg = g−1w′gγ. As g−1wg and g−1w′g belong to W ′, we get γ = e and
w = w′, what should be proved.

Let us now remark that, for any Borel subset B ofW ′′, for any 1 ≤ p <∞,
the map βp : G/Γ → Lp(G/Γ, µ) which sends an element x of G/Γ to the
characteristic function 1Bx of the set Bx is continuous. Indeed, since the
right action of G on L1(G) is continuous, the map β̃1 : G→ L1(G), g 7→ 1Bg

is continuous. For any ϕ in L1(G), for any x = gΓ in G/Γ, set $(ϕ)(x) =∑
γ∈Γ ϕ(gγ): the sum does not depend on the choice of g. By the construction

of the measure µ, $(ϕ)(x) is defined for µ-almost every x in G/Γ and one has
‖$(ϕ)‖1 ≤ ‖ϕ‖1, so that the map $ : L1(G) → L1(G/Γ, µ) is continuous.
Now, as for any g in G and γ 6= e in Γ one has Bgγ ∩ Bg = ∅, we have
β1(gΓ) = $(β̃1(g)), so that the map β1 is continuous. Finally, for any x
in G/Γ, we have ‖1Bx‖∞ ≤ 1, so that we get the continuity of βp from the

inequality ‖ψ‖p ≤ ‖ψ‖
1
p

1 ‖ψ‖
p−1

p
∞ , ψ ∈ L∞(G/Γ, µ).

For any η > 0, set Uη = {ut|0 ≤ t ≤ η}, Vη = {vt|0 ≤ t ≤ η} and
Aη = {as|0 ≤ s ≤ η} and chose η sufficiently small so that Bη = VηAηUη ⊂
W ∩W ′′. As Bη ⊂ W ′′, for any x in G/Γ, by lemma 4.3.5, µ(Bηx) is, up to
a constant multiple, equal to the Haar measure of Bη. Set ϕx = 1

µ(Bηx)
1Bηx,

so that the map x 7→ ϕx, G/Γ→ L2(G/Γ, µ) is continuous. As the image of
this map is compact, since G/Γ is compact, we get, by Howe-Moore theorem
and by lemma 4.3.4,∫

G/Γ

ϕx(a−sy)θ(y)dµ(y) −−−→
s→∞

∫
G/Γ

θdµ

uniformly for x in G/Γ. To finish the proof, we will now compute the integral∫
G/Γ

ϕx(a−sy)θ(y)dµ(y) and prove that it is very close to an integral of the
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form 1
T

∫ T

0
θ(utasx)dt. Indeed, for any s in R and x in G/Γ, we have∫

G/Γ

ϕx(a−sy)θ(y)dµ(y) =

∫
G/Γ

ϕx(y)θ(asy)dµ(y)

=
1

µ(Bηx)

∫
Bηx

θ(asy)dµ(y).

As the map Bη → G/Γ, g 7→ gx is injective, by lemma 4.3.5, we get

1

µ(Bηx)

∫
Bηx

θ(asy)dµ(y) =
1∫

Bη
dg

∫
Bη

θ(asgx)dg.

As G is unimodular, its Haar measure is invariant under conjugation by as,
so that

1∫
Bη

dg

∫
Bη

θ(asgx)dg =
1∫

Bη
dg

∫
asBηa−s

θ(gasx)dg.

Now, we have asBηa−s = Ve−2sηAηUe2sη, so that, by lemma 4.3.3, we get

1∫
Bη

dg

∫
asBηa−s

θ(gasx)dg

=
1

η2
∫ η

0
e2σdσ

∫ e−2sη

0

∫ η

0

∫ e2sη

0

e2σθ(vraσutasx)drdσdt.

For s ≥ 0, we have Ve−2sηAη ⊂ W , so that, for any 0 ≤ r ≤ e−2sη, 0 ≤ σ ≤ η
and 0 ≤ t ≤ e2sη, |θ(vraσutasx)− θ(utasx)| ≤ ε and hence, for any s ≥ 0
and x in G/Γ,∣∣∣∣∣

∫
G/Γ

ϕx(a−sy)θ(y)dµ(y)− 1

e2sη

∫ e2sη

0

θ(utasx)dt

∣∣∣∣∣ ≤ ε

Letting s→∞, we thus get

lim sup
T→∞

∣∣∣∣∫
G/Γ

θdµ− 1

T

∫ T

0

θ(utx)dt

∣∣∣∣ ≤ ε

uniformly for x in G/Γ. As this is true for any ε > 0, the proof is complete.
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4.4 Exercices

4.4.1 Regular representations

Let G be a locally compact topological group and H be a closed subgroup of
G such that the quotient space G/H admits an invariant Radon measure µ.
Prove that the natural action of G in L2(G/H) is an unitary representation.

4.4.2 The lattice SL2(Z)

Equip R2 with the usual scalar product and determinant.
1. Let Λ be a lattice in R2 and let (x, y) be a basis of Λ. Prove that

|det(x, y)| does not depend on (x, y).
The quantity |det(x, y)|, where (x, y) is a basis of Λ, is called the covolume

of Λ.
2. Prove that the covolume of Λ is the total measure of R2/Λ for the

R2-invariant measure associate to the usual Lebesgue measure of R2.
3. Prove that the map g 7→ gZ2 identifies SL2(R)/SL2(Z) and the set of

covolume 1 lattices in R2.
4. Let x be in R2 with ‖x‖ >

(
4
3

) 1
4 and let y be in R2 with det(x, y) = 1.

Prove that there exists n in Z with ‖y + nx‖ < ‖x‖.
For α, θ in R∗

+, set

Aα =

{(
a 0
0 a−1

)∣∣∣∣ 0 < a ≤ α

}
and Uθ =

{(
1 t
0 1

)∣∣∣∣ 0 ≤ t ≤ θ

}
.

5. Prove that USL2(Z) = U1SL2(Z) and that, for α =
(

4
3

) 1
4 , one has

SL2(R) = KAαUSL2(Z) = KAαU1SL2(Z).
6. Prove the following integral formula for the Iwasawa decomposition:

after a suitable renormalization of the Haar measures on K and G, one has,
for every θ in C0

c (G),∫
G

θ(g)dg =

∫
K×R×R

e2sθ(kasut)dkdsdt.

7. A topological space X is said to be σ-compact if there exists a se-
quence (Kn)n∈N of compact subsets of X with X =

⋃
n∈NKn. Let F be a

unimodular locally compact and σ-compact topological group and Λ be a
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discrete subgroup of F . Prove that Λ is a lattice of F if and only if there
exists a Borel subset B of F with finite Haar measure such that F = BΛ.

8. Prove that SL2(Z) is a lattice of SL2(R).
9. Prove that, for every ε > 0, there exists x in SL2(R)/SL2(Z) with

uεx = x.
10. Prove that SL2(Z) is not cocompact in SL2(R).

4.4.3 A cocompact lattice in SL2(R)

1. Let X, Y, Z be in Q such that X2 − 2Y 2 − 3Z2 = 0. Prove that X = Y =
Z = 0 (suppose first X, Y, Z are in Z and relatively prime, then prove that 3
divides both X and Y ).

For any v = (x, y, z, t) in R4, set

gv =

(
x+ y

√
2

√
3(z − t

√
2)√

3(z + t
√

2) x− y
√

2

)
.

2. Let v = (x, y, z, t) be in R4. Prove that, if det(gv) = 0, one has
X2 − 2Y 2 − 3Z2 = 0, with X = xz + 2yt, Y = xt + yz and Z = z2 − 2t2

(multiply by z2 − 2t2).
Let A = {gv|v ∈ Z4} and Γ = {a ∈ A| det(a) = 1}.
3. Prove that, for any v 6= 0 in Q4, gv belongs to GL2(R), that A is stable

by matrix product and that Γ is a discrete subgroup of SL2(R).
4. Minkowski theorem. Let λ be the Lebesgue measure on Rd. Prove

that, if Λ is a lattice of covolume 1 in Rd and if C is a symmetric closed
convex subset of Rd with λ(C) > 2d, then C contains a non zero element of
Λ (note that the projection map 1

2
C → Rd/Λ is not injective).

5. Prove that there exists a compact subset C of the spaceM2(R) of real
2 by 2 square matrices such that, for any g in SL2(R), there exists a in A,
a 6= 0, with ga ∈ C.

6. Let g be in Md(Z) with det(g) = n 6= 0. Prove that there exists γ in
SLd(Z) such that h = gγ satisfies h1,j = 0 for any 2 ≤ j ≤ d (note that, for
any 1 ≤ i 6= j ≤ d, the matrix 1 + ei,j belongs to SLd(Z), where (ei,j) is the
canonical basis of Md(Z)). Prove, by induction on d ≥ 1, that there exists
η in SLd(Z) such that k = gη satisfies ki,j = 0 for any 1 ≤ i < j ≤ d and
|ki,j| < |ki,i| for any 1 ≤ j < i ≤ d.

7. Prove that, for any n in Z, there exists a finite subset F of An = {a ∈
A| det(a) = n} with An = FΓ (consider multiplication by a fixed element of
An as an endomorphism of the abelian group A, which is isomorphic to Z4).
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8. Prove that Γ is a cocompact lattice in SL2(R).

4.4.4 Ratner theorem for SL2(R)

In this exercice, we will prove Ratner theorem for the classification of in-
variant measures of unipotent actions in the case of SL2(R), that is, we will
prove that, if Γ is a discrete subgroup of SL2(R), if µ is an ergodic invariant
probability measure for the flow (Lut)t∈R on SL2(R)/Γ, either there exists x
in SL2(R)/Γ which is periodic for (Lut)t∈R and such that µ(Ux) = 1, or Γ is
a lattice and µ is the SL2(R)-invariant probability.

1. Let g =

(
α β
γ δ

)
be in SL2(R). Prove that, for any t such that

α+ tγ 6= 0, one has the Bruhat decomposition

utg = v γ
α+tγ

aα+tγu β+tδ
α+tγ

.

2. Suppose γ 6= 0. Let p and q be real numbers such that −α /∈ [p, q].
Prove that, for ϕ in C0(R), one has

∫ q
γ

p
γ

ϕ

(
β + tδ

α+ tγ

)
dt =

∫ β+q δ
γ

α+q

β+p δ
γ

α+p

ϕ(u)
du

(γu− δ)2
.

Let Γ be a discrete subgroup of SL2(R) and let µ be an ergodic invariant
probability measure for the flow (Lut)t∈R on SL2(R)/Γ.

3. Suppose there exists x in SL2(R)/Γ with µ(Ux) 6= 0. Prove that x is
U periodic and that µ is the unique (Lut)t∈R-invariant probability measure
with µ(Ux) = 1

We suppose now that, for any x in SL2(R)/Γ, we have µ(Ux) = 0 and we
will prove that µ is SL2(R)-invariant.

3. Prove that, for any x in SL2(R)/Γ, we have µ(Px) = 0.
4. Let X be a Borel subset of SL2(R)/Γ such that µ(X) > 0. Prove that

there exists x in X and a sequence

(
gn =

(
αn βn

γn δn

))
of elements of SL2(R)

such that gn −−−→
n→∞

e and that, for any n, one has gnx ∈ X and γn 6= 0.

5. Prove that µ is A-invariant (keep in mind the proof of unique ergodicity
for Heisenberg flows).

7. Prove that the flow (Las)s∈R is ergodic with respect to µ (remind the
proof of Howe-Moore theorem).
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For θ in C0
c (SL2(R)/Γ) we set, for any x in SL2(R)/Γ,

θ̂(x) = lim inf
S→∞

1

S

∫ S

0

θ(a−sx)ds.

8. Prove that, for any θ in C0
c (SL2(R)/Γ), t in R and x in SL2(R)/Γ, one

has θ̂(vtx) = θ̂(x).
9. Let X be a Borel subset of SL2(R)/Γ such that µ(X) = 1. Prove that,

for µ-almost every x in SL2(R)/Γ, for Lebesgue-almost every (s, t) in R2, one
has asutx ∈ X.

We let λ be a Haar measure on SL2(R) and λ be the associate SL2(R)-
invariant measure on SL2(R)/Γ.

10. Let X be a Borel subset of SL2(R) such that, for any t in R, vtX = X.
Suppose there exists g in X such that, for Lebesgue-almost every (s, t) in R2,
one has asutg ∈ X. Prove that λ(V AUg −X) = 0.

11. Prove that, for any θ in C0
c (SL2(R)/Γ), there exists x in SL2(R)/Γ

such that θ̂ is constant λ-almost everywhere on V AUx.
Recall Fatou lemma: if (M,A, ν) is a measure space and (fn) a sequence

of positive measurable functions on M , one has∫
M

lim inf
n→∞

fndν ≤ lim inf
n→∞

∫
M

fndν.

11. Prove that there exists x in SL2(R)/Γ such that λ(V AUx) < ∞.
Deduce that Γ is a lattice in G.

After normalizing, we suppose now λ(SL2(R)/Γ) = 1.
12. Prove that, for any θ in C0

c (SL2(R)/Γ), one has

θ̂ =

∫
SL2(R)/Γ

θdλ

λ-almost everywhere on SL2(R)/Γ.
13. Prove that µ = λ.
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Appendix A

Basic elements of functional
analysis

We will remind there the notions of functional analysis that will be necessary
to the full understanding of the course.

All the vector spaces are assumed to be complex vector spaces.

A.1 Compact operators

If X is a metric space space, x belongs to X and r is a positive real number,
we shall denote by BX(x, r) (or B(x, r) when there are no ambiguities) the
closed ball with center x and radius r in X.

Definition A.1.1. Let E and F be Banach spaces. A continuous linear
operator T : E → F is said to be compact if the set TBE(0, 1) is relatively
compact in F , that is if its closure TBE(0, 1) in F is compact.

Example A.1.2. As the unit ball of a finite dimensional Banach space is
compact, if T has finite rank it is compact. Equip the spaces C0([0, 1]) and
C1([0, 1]) with their natural structures of Banach spaces. Then, by Ascoli
theorem, the natural map C1([0, 1])→ C0([0, 1]) is a compact operator.

Proposition A.1.3. Let E and F be Banach spaces and let L(E,F ) be the
Banach space of continuous linear operators E → F . Then the set K(E,F )
of compact operators E → F is a closed sub-vector space of L(E,F ).

The proof that K(E,F ) is closed relies on the

75
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Lemma A.1.4. Let (X, d) be a complete metric space. Suppose, for any
r > 0, X is a finite union of ball with radius r, that is there exists x1, . . . , xp

in X with X = B(x1, r) ∪ . . . ∪B(xp, r). Then X is compact.

Proof. We use the Bolzano-Weierstrass criterion for compacity, so that we
have to prove that every sequence (yn)n∈N of elements of X has a converging
subsequence. Let (yn)n∈N be such a sequence. We will construct, by induction
on k, a increasing sequence (nk)k∈N of nonnegative integers with the following
properties:

(i) for any 0 ≤ l ≤ k, one has d(ynk
, ynl

) ≤ 1
l+1

.

(ii) for any k ≥ 0, the set of n in N with, for any 0 ≤ l ≤ k, d(ynl
, yn) ≤

1
l+1

is infinite.

Suppose this subsequence is constructed. Then, for any 0 ≤ l ≤ k, we have
d(ynk

, ynl
) ≤ 1

l+1
, so that the sequence (ynk

)k∈N is a Cauchy sequence. As X
is complete, this sequence is convergent, that is (yn)n∈N admits a convergent
subsequence and we are done.

Let us now construct (nk)k∈N. For k = 0, chose x1, . . . , xp in X such that
one has X = B(x1,

1
2
) ∪ . . . ∪ B(xp,

1
2
). Then, there exists 1 ≤ i ≤ p such

that the set of n ∈ N with d(yn, xi) ≤ 1
2

is infinite. Let n0 be any integer
with yn0 ∈ B(xi,

1
2
). Then, for any n with yn ∈ B(xi,

1
2
), we have d(yn0 , yn) ≤

d(yn0 , xi)+d(xi, yn) ≤ 1, so that the set of n ∈ N with d(yn0 , yn) ≤ 1 is infinite
and n0 satisfies our requirements. Now suppose n0, . . . , nk are constructed.

Pick x1, . . . , xp in X with X = B
(
x1,

1
2(k+1)

)
∪ . . . ∪ B

(
xp,

1
2(k+1)

)
. By

induction, the set of n in N with, for any 0 ≤ l ≤ k, d(ynl
, yn) ≤ 1

l+1
is

infinite. Hence, there exists some 1 ≤ i ≤ p such that the set of n in N
with d(yn, xi) ≤ 1

2(k+2)
and, for any 0 ≤ l ≤ k, d(ynl

, yn) ≤ 1
l+1

is infinite.
Let nk+1 be any element which is > nk in this set. Then nk+1 satisfies the
requirements of the induction. The construction follows.

Proof of proposition A.1.3. First, let us prove that K(E,F ) is a sub-vector
space. As the multiplication of a compact operator by a scalar is clearly a
compact operator, it suffices to prove that the sum of two compact operators
is a compact operator. So, let T and S be compact operators E → F . As
the sum F × F → F is a continuous map, we have

(T + S)BE(0, 1) ⊂ TBE(0, 1) + SBE(0, 1) ⊂ TBE(0, 1) + SBE(0, 1)
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and, still by continuity of the addition in F , the set TBE(0, 1)+SBE(0, 1) is
compact in F . Now, (T + S)(BE(0, 1)), being a closed subset of a compact
set, is compact and T + S is a compact operator.

Let now T belong to the closure of K(E,F ) and let us prove that T is
compact. By lemma A.1.4, it suffices to prove that, for any r > 0, there
exists y1, . . . , yp in TBE(0, 1) with

TBE(0, 1) ⊂ BF (y1, r) ∪ . . . ∪BF (yp, r).

Let r > 0 be given. Then, there exists a compact operator S : E → F with
‖T − S‖ ≤ r. As S is compact, there exists y1, . . . , yp in SBE(0, 1) with

SBE(0, 1) ⊂ BF (y1, r) ∪ . . . ∪BF (yp, r).

For any 1 ≤ i ≤ p, there exists xi in BE(0, 1) with ‖Sxi − yi‖ ≤ r, so that
we have

SBE(0, 1) ⊂ BF (Sx1, 2r) ∪ . . . ∪BF (Sxp, 2r).

Now, let x be in BE(0, 1) and pick 1 ≤ i ≤ p with ‖Sx− Sxi‖ ≤ 2r. We
have

‖Tx− Txi‖ ≤ ‖Tx− Sx‖+ ‖Sx− Sxi‖+ ‖Sxi − Txi‖ ≤ 4r.

Hence, we get

TBE(0, 1) ⊂ BF (Tx1, 4r) ∪ . . . ∪BF (Txp, 4r).

As the latter is a finite union of closed balls, it is a closed set, so that we
have

TBE(0, 1) ⊂ BF (Tx1, 4r) ∪ . . . ∪BF (Txp, 4r)

and we are done.

A.2 Weak-* topology

We shall use the following fact from general topology:

Lemma A.2.1. Let X be a set and let Y be a topological space. If F is
a set of maps X → Y , there exists a smallest topology on X that makes
all the elements of F continuous. If Z is another topological space, a map
g : Z → X is continuous for this topology if and only if, for any f in F , the
map f ◦ g : Z → Y is continuous.



78 APPENDIX A. FUNCTIONAL ANALYSIS

Proof. Let T be the set of subsets U of X which may be written

U = f−1
1 V1 ∩ . . . ∩ f−1

p Vp

where f1, . . . , fp belong to F and V1, . . . , Vp are open subsets of Y . Then, one
checks easily that T is a topology on X. As any topology S on X making
the elements of F continuous necessarily contains the sets of this form, T is
the smallest topology making the elements of F continuous. The last setting
is easy.

If E is a Banach space, we let E∗ be its (topological) dual space, that is
the space of continuous linear forms on E, equipped with its natural structure
of a Banach space. If F is another Banach space and T : E → F a continuous
linear map, we denote by T ∗ its adjoint, that is the continuous linear map
F ∗ → E∗, ϕ 7→ ϕ ◦ T .

Definition A.2.2. Let E be a Banach space. The weak-* topology on E∗

is the smallest topology on E∗ that makes the maps E∗ → R, ϕ 7→ ϕ(x),
x ∈ E, continuous.

Let us state some elementary properties of this topology.

Lemma A.2.3. Let E be a Banach space. Then the weak-* topology is a
Hausdorff topology on E∗, that makes all the operations of this vector space
continuous. If F is another Banach space and T : E → F a continuous
linear map, the adjoint map T ∗ : F ∗ → E∗ is continuous with respect to the
weak-* topologies of E∗ and F ∗.

Proof. Let ϕ and ψ be in E∗ with ϕ 6= ψ. Then, there exists x in E with
ϕ(x) 6= ψ(x). Set

U =

{
θ ∈ E∗

∣∣∣∣|θ(x)− ϕ(x)| < 1

2
|ϕ(x)− ψ(x)|

}
and

V =

{
θ ∈ E∗

∣∣∣∣|θ(x)− ψ(x)| < 1

2
|ϕ(x)− ψ(x)|

}
.

Then U and V are disjoint weak-* open subsets of E∗ and one has ϕ ∈ U
and ψ ∈ V . Thus, the weak-* topology is Hausdorff.
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Consider now the addition map E∗×E∗ → E∗. For any x in E, the map

E∗ × E∗ → E∗

(ϕ, ψ) 7→ (ϕ+ ψ)(x) = ϕ(x) + ψ(x)

is continuous for the product weak-* topology on E∗×E∗. Hence, the addi-
tion map is weak-* continuous E∗ × E∗ → E∗. In the same way, we prove
continuity of the scalar multiplication map C× E∗ → E∗.

Lastly, let F and T be as in the setting. Then, for any x in E, the map

F ∗ → C
ϕ 7→ (T ∗ϕ)(x) = ϕ(Tx)

is continuous, so that T ∗ : F ∗ → E∗ is weak-* continuous.

Lemma A.2.4. Let E be a separable Banach space. Then the restriction of
the weak-* topology of E∗ to the unit ball BE∗(0, 1) of E∗ is metrizable.

Proof. Let (xn)n∈N be a dense sequence in the unit ball BE(0, 1) of E. Then,
for any ϕ and ψ in BE∗(0, 1), set

d(ϕ, ψ) =
∞∑

n=0

2−n |ϕ(xn)− ψ(xn)|

(the series converges since its general term is bounded by 2−n ‖ϕ− ψ‖). We
claim that this is a distance function that induces the weak-* topology on
BE∗(0, 1).

Indeed, the symmetry and the triangle identity are evident. For the
separation, suppose that ϕ and ψ in BE∗(0, 1) are such that d(ϕ, ψ) = 0.
Then, for any n, one has ϕ(xn) = ψ(xn). As the (xn)n∈N are dense in
B(0, 1), one has therefore ϕ = ψ on B(0, 1) and, hence, ϕ = ψ, what should
be proved.

Finally, let us prove that the topology T induced by this distance is the
weak-* topology of BE∗(0, 1). First, let us prove that T is more fine than the
weak-* topology. Let x be in BE(0, 1) and chose ε > 0. There exists n in N
with ‖x− xn‖ ≤ ε. Let ϕ and ψ be in BE∗(0, 1) such that d(ϕ, ψ) ≤ ε2−n.
We then have

|ϕ(x)− ψ(x)| ≤ |ϕ(x− xn)|+ |ϕ(xn)− ψ(xn)|+ |ψ(xn − x)| ≤ 3ε,
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so that the map BE∗(0, 1) → C, ϕ 7→ ϕ(x) is continuous for the topology
T . Hence, the weak-* topology is smaller than T . Conversely, to prove that
the topology T is smaller than the weak-* topology, we have to prove that,
for any ϕ in BE∗(0, 1), the function ψ 7→ d(ϕ, ψ), BE∗(0, 1) → R+ is weakly
continuous. But, for the weak-* topology, this function is the sum of a series
of continuous functions which converges normally on BE∗(0, 1). Hence it is
continuous and the result follows.

The main result we shall use on the weak-* topology is the Banach-
Alaoglu theorem:

Theorem A.2.5. Let E be a Banach space. Then the unit ball BE∗(0, 1) is
compact for the weak-* topology of E.

Proof. Consider the product topological space P =
∏

x∈E[−‖x‖ , ‖x‖]. By
Tychonoff theorem, this is a compact space. The natural map BE∗(0, 1) →
P, ϕ 7→ (ϕ(x))x∈E induces a bijection between BE∗(0, 1) and the closed subset
of P

Q = {(px)x∈E ∈ P |∀x, y ∈ E ∀λ ∈ C px+λy = px + λpy}.

One easily checks that this bijection is an homeomorphism, when BE∗(0, 1)
is equipped with the weak-* topology and Q with the topology induced by
the product topology. The theorem follows.

A.3 Hilbert spaces

Let us now recall the basic tools of Hilbert spaces theory.

Definition A.3.1. Let E be a vector space. A hermitian sesquilinear form
on E is a map E×E → C, (x, y) 7→ 〈x, y〉 such that, for any x, y, z in E and
λ in C, one has

(i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

(ii) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

(iii) 〈λx, y〉 = λ〈x, y〉.

(iv) 〈x, λy〉 = λ〈x, y〉.
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(v) 〈y, x〉 = 〈x, y〉.

It is said to be a hermitian scalar product if it is positive definite, that is if,
for any x in E, x 6= 0, one has 〈x, x〉 > 0.

One immediately gets the Cauchy-Schwarz inequality:

Proposition A.3.2. Let E be a vector space equipped with a hermitian scalar
product. For any x, y in E, one has

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉,

where equality holds if and only if x and y are colinear vectors.

Proof. Chose α in C with |α| = 1 such that 〈x, αy〉 ∈ R and note that, after
replacing y by αy, it suffices to prove the proposition when 〈x, y〉 is a real
number. We can also suppose that y is not zero, the case y = 0 being trivial.

In this case, for any t in R, one has

0 ≤ 〈x+ ty, x+ ty〉 = 〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉,

so that this quadratic polynomial has a nonpositive discriminant, that is

4〈x, y〉2 − 4〈x, x〉〈y, y〉 ≤ 0,

which proves the inequality. In the equality case, the polynomial has a root,
that is there exists t with 〈x+ ty, x+ ty〉 = 0 and, thus, x = −ty and x and
y are colinear, what should be proved.

From Cauchy-Schwarz inequality, we deduce Minkowski inequality:

Corollary A.3.3. For any x, y in E, one has√
〈x+ y, x+ y〉 ≤

√
〈x, x〉+

√
〈y, y〉,

where equality holds if and only if x and y are positively colinear vectors.

Proof. From Cauchy-Schwarz inequality, one gets

〈x+ y, x+ y〉 = 〈x, x〉+ 2<(〈x, y〉) + 〈y, y〉 ≤
(√
〈x, x〉+

√
〈y, y〉

)2

and equality holds if and only if one has both equality in Cauchy-Schwarz
inequality and 〈x, y〉 ∈ R+, that is, if and only if x and y are positively
colinear.
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By Minkowski inequality, the map x 7→
√
〈x, x〉 is a norm on E. We shall

now denote it by ‖.‖. By Cauchy-Schwarz inequality, the scalar product is a
continuous map E × E → E for the topologies induced by the norm ‖.‖.

Definition A.3.4. A Hilbert space is a vector space H equipped with a
hermitian scalar product such that the associate norm makes H a Banach
space.

Example A.3.5. If (X,A, µ) is a measure space, the usual hermitian product
induces a Hilbert space structure on L2(X,A, µ).

The basic properties of Hilbert spaces rely on the

Proposition A.3.6. Let H be a Hilbert space and let C ⊂ H be a closed
convex set. Then, for any x in H, there exists an unique y in C with
‖x− y‖ = infz∈C ‖x− z‖.

Proof. To simplify the proof, let us suppose x = 0. Let (yn)n∈N be any
sequence of elements of C such that ‖yn‖ −−−→

n→∞
infz∈C ‖z‖. We will prove

that (yn)n∈N is Cauchy: this implies both existence and uniqueness of y. By
a direct computation, we have, for any n and m,

‖yn − ym‖2 + ‖yn + ym‖2 = 2 ‖yn‖2 + 2 ‖ym‖2 ,

so that, as yn+ym

2
belongs to C,

‖yn − ym‖2 = 2 ‖yn‖2 + 2 ‖ym‖2 − 4

∥∥∥∥yn + ym

2

∥∥∥∥2

≤ 2 ‖yn‖2 + 2 ‖ym‖2 − 4 inf
z∈C
‖z‖2 .

Hence the sequence is Cauchy and the proposition follows.

From this proposition, we get a result about orthogonal decompositions:

Corollary A.3.7. Let H be a Hilbert space and let K be a closed subspace
of H. Then one has H = K ⊕K⊥, where K⊥ is the orthogonal space to K,
that is the space of y in H such that 〈x, y〉 = 0 for any x in K.

Proof. Let x be in H and let y be, as in proposition A.3.6, the unique element
of K such that ‖x− y‖ = infz∈K ‖x− z‖. We will prove that x− y belongs
to K⊥: this will imply the result. Indeed, for any z in K, we have

‖x− y‖2 ≤ ‖x− (y − z)‖2 = ‖x− y‖2 + 2<〈x− y, z〉+ ‖z‖2 ,
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so that
2<〈x− y, z〉+ ‖z‖2 ≥ 0.

Replacing z by tz, we get, for any real number t,

2t<〈x− y, z〉+ t2 ‖z‖2 ≥ 0.

Hence, <〈x−y, z〉 = 0. As we also have <〈x−y, iz〉 = 0, we get 〈x−y, z〉 = 0,
what should be proved.

This last result implies in particular the Riesz theorem on linear forms:

Corollary A.3.8. Let H be a Hilbert space. The map that associates to
each x in H the continuous linear form y 7→ 〈x, y〉 on H is a continuous
anti-linear isomorphism from H onto its topological dual space H∗.

In the sequel, we shall always identify a Hilbert space with its topological
dual space through this map.

Proof. Since, for any x 6= 0 in H, one has 〈x, x〉 > 0, this map is injective.
Let us prove that it is surjective. Let ϕ be a non zero continuous linear form
on H and let K be its kernel. As K is a closed subspace of H, we have
H = K ⊕ K⊥. As K has codimension one, we have K⊥ = Cx for some
x 6= 0 in H. As the linear forms ϕ and y 7→ 〈x, y〉 have the same kernel, they
are proportional, so that there exists λ in C such that ϕ is the linear form
y 7→ 〈λx, y〉, what should be proved.

To conclude this introduction to Hilbert spaces, let us say a few words
about weak topologies.

Definition A.3.9. Let H be a Hilbert space. Then the weak topology of
H is the smallest topology making the linear forms y 7→ 〈x, y〉, for x in H,
continuous.

Of course, one can define weak topologies in the general context of Ba-
nach spaces as the smallest topologies making all the continuous linear forms
continuous. But they would be more delicate to handle. For example, to
prove that they are Hausdorff, we would need to use the Hahn-Banach the-
orem. In the context of Hilbert spaces, as the space identifies with its dual,
the weak topology may be viewed as a weak-* topology, so that we get, by
the preceding section, the
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Proposition A.3.10. Let H be a Hilbert space. Then the weak topology of
H is Hausdorff and makes the addition and the scalar multiplication of H
continuous. The closed unit ball of H is compact for the weak topology and,
if H is separable, it is metrizable.

Proof. This is the translation of the results of the section on weak-* topolo-
gies, thanks to the identification of H with its topological dual space.

We shall use this result in the following form.

Corollary A.3.11. Let (xn)n∈N be a bounded sequence of elements of H.
Then (xn)n∈N admits a subsequence which is weakly converging.

Example A.3.12. Let `2(N) be the Hilbert space of square summable se-
quences of integers. For any n in N, denote by 1n the element of `2(N)
with value 1 at n and 0 anywhere else. Then the sequence (1n)n∈N weakly
converges to 0.

Proof. Consider the closed subspace K of H spanned by the (xn)n∈N. This is
a separable Hilbert space and the sequence (xn)n∈N is contained in a closed
ball B of K. As B is weakly compact and metrizable, the sequence (xn)n∈N
admits a subsequence (xnk

)k∈N which is weakly converging to some x in K.
Now, every y in H may be written y = u+ v where u belongs to K and v is
orthogonal to K. Thus we get,

〈xnk
, y〉 = 〈xnk

, u〉 −−−→
k→∞

〈x, u〉 = 〈x, y〉,

that is (xnk
)k∈N weakly converges to x in H.

A.4 Compact self-adjoint operators

We shall use all the general results we have proved in this introduction to
establish the result on compact self-adjoint operators that was used in the
proof of proposition 1.2.14.

Definition A.4.1. Let H and K be Hilbert spaces and let T : H → K be a
continuous linear operator. Then the adjoint of T is the unique continuous
linear operator T ∗ : K → H such that, for any x in H and y in K, one has
〈Tx, y〉 = 〈x, T ∗y〉.



A.4. COMPACT SELF-ADJOINT OPERATORS 85

The existence of the adjoint follows directly from the identification of the
spaces with their topological dual spaces, thanks to Riesz theorem.

Example A.4.2. Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces and let
F be in L2(X × Y,A⊗B, µ⊗ ν). For any f in L2(X,A, µ) and for ν-almost
every y in Y , set

Tf(y) =

∫
X

f(x)F (x, y)dµ(x).

Then the adjoint operator T ∗ of T satisfies, for any g in L2(Y,B, ν) and for
µ-almost every x in X,

T ∗g(x) =

∫
Y

g(y)F (x, y)dν(y).

The operator T is compact (see lemma 1.2.17).

Definition A.4.3. Let H be a Hilbert space and let T be a continuous linear
operator H → H. Then T is said to be self-adjoint if T ∗ = T , that is if, for
any x, y in H, one has 〈Tx, y〉 = 〈x, Ty〉.

Note that, if T is self-adjoint, for any x, one has 〈Tx, x〉 ∈ R. In particu-
lar, the eigenvalues of T belong to R (more generally, one can prove that the
spectrum of T is contained in R).

Theorem A.4.4. Let H be a Hilbert space and let T be a compact self-
adjoint continuous linear operator H → H. Then one has the Hilbert sum
decomposition

H =
⊕
λ∈R

ker(T − λ)

(that is the subspaces are mutually orthogonal and their algebraic direct sum
is dense in H). For any ε > 0, T has but a finite number of eigenvalues in
R− [−ε, ε] and the associate eigenspaces are finite-dimensional.

The core of the proof is the

Lemma A.4.5. Let H be a non zero Hilbert space and let T be a compact
self-adjoint continuous linear operator H → H. Then T admits a non zero
eigenvector in H.
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Proof. Let us first prove that there exists a unitary vector x in H with
‖Tx‖ = ‖T‖. We can suppose that we have T 6= 0. There exists a sequence
(xn)n∈N of unitary vectors of H with ‖Txn‖ −−−→

n→∞
‖T‖. As this sequence

is bounded, we can suppose it admits a weak limit x with ‖x‖ ≤ 1. In the
same way, as T is compact, we can suppose the sequence (Txn)n∈N admits a
norm limit y. As T is continuous, it is weakly continuous and, therefore, we
have Tx = y and, hence, ‖T‖ = ‖Tx‖ ≤ ‖T‖ ‖x‖ so that ‖x‖ = 1 and we
are done.

Now let us prove that x is an eigenvector for T 2 (which is also a self-
adjoint operator), that is T 2x is proportional to x, or T 2x is orthogonal to
every vector y that is orthogonal to x. Indeed, for such a y, we have, for any
real number t,

‖T (x+ ty)‖2 ≤ ‖T‖2 ‖x+ ty‖2 = ‖T‖2 (1 + t2 ‖y‖2).

By expanding and using the fact that T is self-adjoint, we get

‖T (x+ ty)‖2 = ‖Tx‖2 + 2<〈Tx, T (ty)〉+ ‖T (ty)‖2

= ‖T‖2 + 2t<〈T 2x, y〉+ t2 ‖Ty‖2 ,

so that, finally, we have, for any t,

2t<〈T 2x, y〉 ≤ t2(‖T‖2 ‖y‖2 − ‖Ty‖2).

As usual, this implies <〈T 2x, y〉 = 0. As this is also true when we replace y
by iy, we get, for any y that is orthogonal to x, 〈T 2x, y〉 = 0. Thus, x is an
eigenvector for T 2.

We now know that, for some real number λ, the space ker(T 2 − λ) is
not zero. Note (but this not really important) that as, for any y in H, we
have 〈T 2y, y〉 = ‖Ty‖2 ≥ 0, λ is necessarily nonnegative. As T and T 2

commute to each other, the space ker(T 2 − λ) is stable by T , so that we
can suppose H = ker(T 2 − λ). If λ > 0, we then have T 2 − λ = 0, that is
(T −

√
λ)(T +

√
λ) = 0 and, by the kernel lemma from linear algebra, this

implies H = ker(T−
√
λ)⊕ker(T+

√
λ), so that T has a non zero eigenvector.

If λ = 0, we have T 2 = 0, that is, for any y in H, ‖Ty‖2 = 〈T 2y, y〉 = 0 and
T = 0.

We can now proceed to the
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Proof of theorem A.4.4. First, note that the different eigenspaces of T are
mutually orthogonal. Indeed, if λ 6= µ are two real numbers and x and y are
vectors in H with Tx = λx and Ty = µy, we have

λ〈x, y〉 = 〈Tx, y〉 = 〈x, Ty〉 = µ〈x, y〉,

so that 〈x, y〉 = 0.
Let K be the Hilbert sum

⊕
λ∈R ker(T − λ) (that is the closure of the

algebraic direct sum). Then K is stable by T and, hence, its orthogonal
space K⊥ is stable by T . Indeed, for any x in K⊥ and y in K, we have
〈Tx, y〉 = 〈x, Ty〉 = 0, so that Tx belongs to K⊥.

The restriction of T to the Hilbert space K⊥ is a compact self-adjoint
operator that, by definition, does not admit any eigenvector. Hence, by
lemma A.4.5, we have K⊥ = {0}, that is H = K =

⊕
λ∈R ker(T − λ).

Now, to finish the proof, let us fix some ε > 0 and let us prove that T
has but a finite number of eigenvalues in R − [−ε, ε] and that the associate
eigenspaces have finite dimension. This amounts to say that the space Lε =⊕

|λ|>ε ker(T − λ) has finite dimension. To prove this, we will prove that the

closed ball BLε(0, ε) is compact: this implies that Lε is finite dimensional
by the famous Riesz theorem. Let x belong to ker(T − λ) for some λ with
|λ| > ε and set Sεx = λ−1x. We have ‖Sεx‖ ≤ ε−1 ‖x‖. Extend Sε by
linearity to an endomorphism of the algebraic direct sum of the ker(T − λ),
|λ| > ε. As these spaces are mutually orthogonal, we get, for any x in this
algebraic direct sum, ‖Sεx‖ ≤ ε−1 ‖x‖, so that Sε extends to a continuous
endomorphism of Lε with norm ≤ ε−1. As we have TSε = SεT = 1 on a
dense subspace of Lε, T is therefore invertible on Lε and its inverse has norm
≤ ε−1. Hence, we have BLε(0, ε) ⊂ TBLε(0, 1) ⊂ TBH(0, 1) and, as T is
compact, BLε(0, ε) is compact, what should be proved.



88 APPENDIX A. FUNCTIONAL ANALYSIS



Bibliography

[1] E. Ghys, Dynamique des flots unipotents sur les espaces homogènes,
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