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Abstract

In this paper, we completely determine the spectral invariants of

an auto-similar planar 3-regular graph. Using the same methods,

we study the spectral invariants of a natural compactification of this

graph.

1 Introduction

In this whole article, we shall call Pascal graph the infinite, connected and
3-regular graph pictured in figure 1. We let Γ denote it. This graph may
be constructed in the following way. One writes the Pascal triangle and one
erases therein all the even values of binomial coefficients. In this picture,
one links each point to its neighbors that have not been erased. One thus
obtains a graph in which each point has three neighbors, except the vertex
of the triangle which has only two. One then takes two copies of this graph
and joins them by their vertices: one thus do get a 3-regular graph. This is
the graph Γ.

Let ϕ be a complex valued function on Γ. For p in Γ, one sets ∆ϕ(p) =∑
q∼p ϕ(q). The linear operator ∆ is self-adjoint with respect to the counting

measure on Γ, that is, for any finitely supported functions ϕ and ψ, one has∑
p∈Γ ϕ(p)(∆ψ(p)) =

∑
p∈Γ(∆ϕ(p))ψ(p). In this article, we will completely

determine the spectral invariants of the operator ∆ in the space ℓ2(Γ) of
square-integrable functions on Γ.

To set our results, set f : R → R, x 7→ x2 − x − 3. Let Λ be the Julia
set of f , that is, in this case, the set of those x in R for which the sequence
(fn(x))n∈N remains bounded. This is a Cantor set which is contained in

the interval [−2, 3]. More precisely, if one sets I−2 =
[
−2, 1−

√
5

2

]
and I3 =

[
1+

√
5

2
, 3
]
, for any ε = (εn)n∈N in {−2, 3}N, there exists a unique x in Λ

such that, for any n in N, one has fn(x) ∈ Iεn
and the thus defined map
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Figure 1: The Pascal graph

{−2, 3}N → Λ is a bi-Hölder homeomorphism that conjugates f and the
shift map in {−2, 3}N. For x in Λ, set ρ(x) = x

2x−1
and, if ϕ is a continuous

function on Λ, Lρϕ(x) =
∑

f(y)=x ρ(y)ϕ(y). One easily checks that one has

Lρ(1) = 1. Thus, by Ruelle-Perron-Frobenius theorem (see [13, § 2.2]), there
exists a unique Borel probability measure νρ on Λ such that L∗

ρνρ = νρ. The
measure νρ is atom free and f -invariant. Finally, let us note that, if h denotes
the function Λ → R, x 7→ 3−x, one has Lρh = 2 and, therefore,

∫
Λ
hdνρ = 2.

Let p0 and p∨0 denote the two vertices of the infinite triangles that have
been glued to build the graph Γ. Let ϕ0 be the function on Γ with value 1
at p0, −1 at p∨0 and 0 everywhere else. We have the following

Theorem 1.1. The spectrum of ∆ in ℓ2(Γ) is the union of Λ and the set⋃
n∈N

f−n(0). The spectral measure of ϕ0 for ∆ in ℓ2(Γ) is the measure
hνρ, the eigenvalues of ∆ in ℓ2(Γ) are the elements of

⋃
n∈N

f−n(0) and⋃
n∈N

f−n(−2) and the associate eigenspaces are spanned by finitely supported
functions. Finally, the orthogonal complement of the sum of the eigenspaces
of ∆ in ℓ2(Γ) is the cyclic subspace spanned by ϕ0.

The study of the Pascal graph is closely related to the one of the Sierpiński
graph, pictured in figure 2. The spectral theory of the Sierpiński graph, and
more generally the one of self-similar objects, has been intensively studied,
since the original works of Rammal and Toulouse in [14] and Kigami in [10]
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Figure 2: The Sierpiński graph

and [11]. These problems are attacked from a general viewpoint by Sabot in
[16], where numerous references may be found; see also Krön [9]. Asymptotics
of transition probabilities for the simple random walk on the Sierpiński have
been computed by Jones in [8] and Grabner and Woess in [3]. The finitely
supported eigenfunctions for the Laplace operator on the Sierpiński graph
and the associate eigenvalues have been determined by Teplyaev in [18]. The
Sierpiński graph may be seen as the edges graph of the Pascal graph, where
two edges are linked when they have a common point. In particular, our
description of the eigenvalues associate to finitely supported eigenfunctions
on the Pascal graph for the operator ∆ is a consequence of the work of
Teplyaev. However, the exact determination of the cyclic components of
∆ and of its continuous spectrum are new and answer the question asked
by Teplyaev in [18, § 6.6]. In section 14, we shall precisely explain how to
connect the study of the Sierpiński graph to the one of the Pascal graph.

The results cited above rely on the application of the so-called method
of Schur complements. This method has recently been succesfully applied
to get precise computations for numerous self-similar graphs, for example by
Grigorchuk and Zuk [7], Bartholdi and Grigorchuk [1], Bartholdi and Woess
[2] and Grigorchuk and Nekrashevych [6]. In [4] and [5], Grigorchuk and
S̆unik study finite analogues of the Pascal graph. The method we use in
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Figure 3: A covering map Γ → Γ0

this paper is different and rely on the existence of functional equations on
the graph. It not only permits very quick computations of spectra, but also
the computation of continuous spectral measures of some remarkable vectors,
which is the key point in the proof of spectral decomposition theorems. It
probably may be applied to self-similar objects satisfying strong homogeneity
hypothesis as in [9], but this generalization seems quite difficult to handle.

This method allows to describe the spectral theory of other operators
connected to the graph Γ. Let Γ0 denote the complete graph with four
vertices a, b, c and d. The graph Γ is a covering of Γ0, as shown by the figure
3. Let us build, for any integer n, a finite graph in the following way: if
the graph Γn has been built, the graph Γn+1 is the graph which is obtained
by replacing each point of Γn by a triangle (this process gets more formally
detailed in section 2). We still let ∆ denote the operator of summation over
the neighbors, acting on functions on Γn.

Theorem 1.2. For any nonnegative integers m ≥ n, there exists covering
maps Γm → Γn and Γ → Γn. The characteristic polynomial of ∆ in ℓ2(Γn)
is

(X − 3)(X + 1)3
n−1∏

p=0

(f p(X) − 2)3(f p(X))2.3n−1−p

(f p(X) + 2)1+2.3n−1−p

.
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Analogous covering maps to those described by this theorem for the
Sierpiński graph have been recently exhibited by Strichartz in [17]. Close
computations of characteristic polynomials are made by Grigorchuk and
S̆unik in [4] and [5].

Let us now focus on the initial motivation of this article, which was the
study of a phenomenum in dynamical systems. Let X ⊂ (Z/2Z)Z

2

be the
three dot system, that is the set of families (pk,l)(k,l)∈Z2 of elements of Z/2Z

such that, for any integers k and l, one has pk,l+pk+1,l+pk,l+1 = 0 (in Z/2Z).
We equip X with the natural action of Z2, which is spanned by the maps
T : (xk,l) 7→ (xk+1,l) and S : (xk,l) 7→ (xk,l+1). This system, which has been
introduced by Ledrappier in [12], is an analogue of the natural extension of
the angle doubling and tripling on the circle and, as in Fürstenberg conjec-
ture, the problem of the classification of the Borel probabilities on X that
are Z2-invariant is open. Let Y denote the set of p in X such that p0,0 = 1.
If p is a point of Y , there then exists exactly three elements (k, l) in the set
{(1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)} such that T kSlx belongs to Y .
This relation equips the set Y with a 3-regular graph structure (with multi-
ple edges). If p is a point in Y , its connected component Yp for this graph
structure is exactly the set of points of the orbit of p under the action of Z2

that belong to Y , that is the equivalence class of p in the equivalence relation
induced on Y by the action of Z2. For any continuous function ϕ on Y , one
sets, for any p in Y ,

∆̄ϕ(p) =
∑

(k,l)∈{(1,0),(0,1),(−1,1),(−1,0),(0,−1),(1,−1)}
T kSlp∈Y

ϕ(T kSlp).

If λ is a Borel probability which is invariant by the action of Z2 on X and
such that λ(Y ) > 0 (that is λ is not the Dirac mass at the zero family), the
restriction µ of λ to Y satisfies ∆̄∗µ = 3µ and ∆̄ is a self-adjoint operator in
L2(Y, µ).

On the origin of this work, we wished to study the homoclinic intersections
phenomena in X. Recall that, if φ is a diffeomorphism of a compact manifold
M and if p is a hyperbolic fixed point of φ, a homoclinic intersection is an
intersection point q of the stable leaf of p and of its unstable leaf. For such
a point, one has φn(q) −−−−→

n→±∞
p. This notion admits a symbolic dynamics

analogue. Let M denote the space (Z/2Z)Z, φ the shift map and p the point
of M all of whose components are zero. If q is an element of M all but a finite
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number of whose components are zero, one has φn(q) −−−−→
n→±∞

p. In particular,

the point q such that q0 = 1 and all other components are zero possesses this
property. In our situation, one checks that there exists a unique element q in
X such that one has q0,0 = 1, for any k in Z and l ≥ 1, one has qk,l = 0 and,
for any k ≥ 1 and l ≤ −1 − k, one has qk,l = 0. There then exists a graph
isomorphism from the graph Γ onto Yq mapping p0 on q: this is the origin
of the planar representation of Γ pictured in figure 1. We shall now identify
Γ with Yq and p0 with q. Note that, if p is the element of X all of whose
components are zero, for any integers l > k > 0, one has (T−kSl)nq −−−−→

n→±∞
p.

Let Γ̄ be the closure of Γ in Y : one can see Γ̄ as a set of pointed planar graphs.
Our goal is to determine the structures induced on Γ̄ by the action of Z2 on
X. For any p in Γ̄, let Γp stand for Yp. Note that, if Θp is the edges graph
of Γp, the graphs Θp are exactly the graphs that are studied by Teplyaev in
[18]. In particular, by [18, § 5.4], if Γp does not contain p0 or one of its six
images by the natural action of the dihedral group of order 6 on the space
X, the spectrum of the operator ∆ in ℓ2(Γp) is discrete.

Every point p in Γ̄ belongs to a unique triangle in Γp. Let a denote the set
of elements p such that this triangle is {p, T−1p, S−1p}, b the one of points
p for which it is of the form {p, Tp, TS−1p} and c the set of points p for
which this triangle is {p, Sp, T−1Sp}. The set Γ̄ is the disjoint union of a, b
and c. Let us denote by θ1 : Γ̄ → {a, b, c} the natural map associate to this
partition. We shall say that a function ϕ from Γ̄ into C is 1-triangular if it
factors through θ1. We let E1 denote the space of 1-triangular functions ϕ
such that ϕ(a)+ϕ(b)+ϕ(c) = 0: it identifies naturally with C3

0 = {(s, t, u) ∈
C3|s + t + u = 0}. We equip C3

0 with the scalar product which equals one
third of the canonical scalar product.

Let ζ : Λ → R∗
+, x 7→ 1

3
(x+3)(x−1)

2x−1
and, as above, let Lζ denote the transfer

operator associate with ζ for the dynamics of the polynomial f . As Lζ(1) = 1,
there exists a unique Borel probability measure νζ on Λ such that L∗

ζνζ = νζ .

Then, if j designs the function Λ → R, x 7→ 1
3

3−x
x+3

, one has Lζ(j) = 1 and

hence
∫
Λ
jdνζ = 1.

Theorem 1.3. For any p in Γ̄, the set Γp is dense in Γ̄. There exists a
unique Borel probability µ on Γ̄ such that ∆̄∗µ = 3µ and the operator ∆̄ is
self-adjoint in L2

(
Γ̄, µ

)
. The spectrum of the operator ∆̄ in L2

(
Γ̄, µ

)
is the

same as the one of ∆ in ℓ2(Γ). For any ϕ in E1, the spectral measure of ϕ
for ∆̄ in L2

(
Γ̄, µ

)
is ‖ϕ‖2

2 jνζ and the sum of the cyclic spaces spanned by
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the elements of E1 is isometric to L2 (jνζ,C
3
0). The spectrum of ∆̄ in the

orthogonal complement of this subspace is discrete and its eigenvalues are 3,
which is simple, and the elements of

⋃
n∈N

f−n(0) ∪
⋃
n∈N

f−n(−2).

The organization of the article is as follows.
Sections 2, 3, 4, 5 and 6 are devoted to the study of the graph Γ. In section

2, we precisely construct Γ and we establish some elementary properties of
its geometry. In section 3, we determine the spectrum of ∆ in ℓ2(Γ) and,
in section 4, we prove an essential result towards the computation of the
spectral measures of the elements of this space. In section 5, we describe the
structure of the eigenspaces of ∆ in ℓ2(Γ). Finally, in section 6, we apply all
these preliminary results to the proof of theorem 1.1.

In section 7, we use the technics developed above to prove theorem 1.2.
In sections 8, 9, 10, 11, 12 and 13, we study the space Γ̄. In section 8, we

precisely describe the geometry of the space Γ̄ and, in section 9, we introduce
some remarkable spaces of locally constant functions on this space. Section
10 is devoted to the definition of the operator ∆̄ and to the proof of the
uniqueness of its harmonic measure. Section 11 extends to Γ̄ the properties
proved for Γ in sections 3 and 4. In section 12, we study the eigenspaces of
∆̄ in L2

(
Γ̄, µ

)
. Finally, in section 13, we finish the proof of theorem 1.3.

In section 14, we explain shortly how to transfer our results on the Pascal
graph to the Sierpiński graph.

2 Geometric preliminaries

In all the sequel, we shall call graph a set Φ equipped with a symmetric
relation ∼ such that, for any p in Φ, one does not have p ∼ p. For p in
Φ, we call neighbors of p the set of elements q in Φ such that p ∼ q. We
shall say that Φ is k-regular if all the elements of Φ have the same number
k of neighbors. We shall say that Φ is connected if, for any p and q in Φ,
there exists a sequence r0 = p, . . . , rn = q of points of Φ such that, for any
1 ≤ i ≤ n, one has ri−1 ∼ ri. We shall call such a sequence a path from p to
q and the integer n the length of this path. If Φ is connected and ϕ is some
function on Φ such that, for any points p and q in Φ with p ∼ q, one has
ϕ(p) = ϕ(q), then ϕ is constant.

We shall say that a subset T of some graph Φ is a triangle if T contains
exactly three points p, q and r and one has p ∼ q, q ∼ r and r ∼ p.
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Figure 4: Construction of the graph Φ̂

Let Φ be a 3-regular graph. We let Φ̂ denote the set of ordered pairs (p, q)
in Φ with p ∼ q equipped with the graph structure for which, if p is a point
of Φ, with neighbors q, r and s, the neighbors of (p, q) are (q, p), (p, r) and
(p, s). If Φ is connected, Φ̂ is connected. Geometrically, Φ̂ is the graph one
obtains by replacing each point of Φ by a triangle. This process is pictured
in figure 4. We let Π denote the map Φ̂ → Φ, (p, q) 7→ p.

Let ℓ2(Φ) denote the space of functions ϕ : Φ → C such that
∑

p∈Φ |ϕ(p)|2 <
∞, equipped with its natural structure of a Hilbert space 〈., .〉. If Φ is 3-
regular, the map Π induces a bounded linear map with norm

√
3, Π∗ : ϕ 7→

ϕ ◦Π, ℓ2(Φ) → ℓ2
(
Φ̂
)
. We still let Π denote the adjoint operator of Π∗: this

is the bounded operator ℓ2
(
Φ̂
)
→ ℓ2(Φ) which, to some function ϕ in ℓ2

(
Φ̂
)
,

associates the function whose value at some point p in Φ is
∑

q∼p ϕ(p, q). One
has ΠΠ∗ = 3.

Let extend the definition of the triangles graph to more general graphs.
We shall say that a graph Φ is 3-regular with boundary if every point of Φ
has two or three neighbors. In this case, we call the set of points of Φ that
have two neighbors the boundary of Φ and we let ∂Φ denote it. If Φ is a
3-regular graph with boundary, we let Φ̂ denote the set which is the union
of ∂Φ and of the set of ordered pairs (p, q) of elements of Φ with p ∼ q. We
equip Φ̂ with the graph structure for which, if p is a point of Φ − ∂Φ, with
neighbors q, r and s, the neighbors of (p, q) are (q, p), (p, r) and (p, s) and, if
p is a point of ∂Φ, with neighbors q and r, the neighbors of p in Φ̂ are (p, q)
and (p, r) and the neighbors of (p, q) are (q, p), p and (p, r). Thus, Φ̂ is itself
a 3-regular graph with boundary and there exists a natural bijection between
the boundary of Φ̂ and the one of Φ (see figure 5 for an example when Φ is
a triangle). We still let Π denote the natural map Φ̂ → Φ and Π∗ and Π the

8



Figure 5: The graph Φ̂ when Φ is a triangle

associate bounded operators ℓ2(Φ) → ℓ2
(
Φ̂
)

and ℓ2
(
Φ̂
)
→ ℓ2(Φ).

Lemma 2.1. Let Φ be a 3-regular graph with boundary. Then, the triangles
of Φ̂ are exactly the subsets of the form Π−1(p) where p is some point in Φ.
In particular, every point of Φ̂ belongs to a unique triangle.

Proof. If p is a point of Φ, the set Π−1(p) is clearly a triangle. Conversely,
pick some point p in Φ−∂Φ, with neighbors q, r and s. Then, the neighbors of
(p, q) are (q, p), (p, r) and (p, s). By definition, as p 6= q, the point (q, p) can
not be a neighbor of (p, r) or of (p, s). Therefore, the only triangle containing
(p, q) is Π−1(p). In the same way, if p belongs to ∂Φ, and if the neighbors
of p are q and r, as p only has two neighbors in Φ̂, p belongs to only one
triangle and, as p 6= q, no neighbor of (q, p) is also a neighbor of (p, q) and
hence (p, q) belongs to only one triangle.

If Φ is a graph, we shall say that a bijection σ : Φ → Φ is an automorphism
of the graph Φ if, for any p and q in Φ with p ∼ q, one has σ(p) ∼ σ(q).
The set of automorphisms of Φ is a subgroup of the permutation group
of Φ that is denoted by Aut Φ. If Φ is 3-regular with boundary and if σ
is an automorphism of Φ, one has σ(∂Φ) = ∂Φ and there exists a unique
automorphism σ̂ of Φ̂ such that Πσ̂ = σΠ.

Lemma 2.2. Let Φ be a 3-regular graph with boundary. The map σ 7→
σ̂,AutΦ → Aut Φ̂ is a group isomorphism.

Proof. As this map is clearly a monomorphism, it suffices to prove that it is
onto. Let thus τ be an automorphism of Φ̂. As τ exchanges triangles of Φ̂,
by lemma 2.1, there exists a unique bijection σ : Φ → Φ such that Πσ̂ = σΠ.
Let p and q be points of Φ such that p ∼ q. One then as (p, q) ∼ (q, p), hence
τ(p, q) ∼ τ(q, p) and, as these points of Φ̂ do not belong to a common triangle,
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σ(p) = Πτ(p, q) ∼ Πτ(q, p) = σ(q). Therefore, σ is an automorphism of Φ
and τ = σ̂, what should be proved.

We shall now define an important family of 3-regular graphs with bound-
ary. If a, b and c are three distinct elements, we let T (a, b, c) = T1(a, b, c)
denote the set {a, b, c} equipped with the graph structure for which one has
a ∼ b, b ∼ c and c ∼ a and one says that T (a, b, c) is the triangle or the
1-triangle with vertices a, b and c. We consider it as a 3-regular graph with
boundary. One then defines by induction a family of 3-regular graphs with

boundary by setting, for any n ≥ 1, Tn+1(a, b, c) = ̂Tn(a, b, c). For any n ≥ 1,
one calls Tn(a, b, c) the n-triangle with vertices a, b and c.

One let S(a, b, c) denote the permutation group of the set {a, b, c}. By
definition and by lemma 2.2, one has the following

Lemma 2.3. Let a, b and c be three distinct elements. Then, for any n ≥ 1,
Tn(a, b, c) is a connected 3-regular graph with boundary and ∂Tn(a, b, c) =
{a, b, c} . The map that sends an automorphism of Tn(a, b, c) to its restriction
to {a, b, c} induces a group isomorphism from AutTn(a, b, c) onto S(a, b, c).

If Φ is a graph and n ≥ 1 an integer, we shall say that a subset T of Φ
is a n-triangle if there exists points p, q and r in T such that the subset T ,
endowed with the restriction of the relation ∼, is isomorphic to the graph
Tn(p, q, r). By abuse of language, we shall call 0-triangles the points of Φ.

Let Φ be a 3-regular graph with boundary. Set Φ̂(0) = Φ, Φ̂(1) = Φ̂ and, for

any nonnegative integer n, Φ̂(n+1) =
̂̂
Φ(n). By induction, for any nonnegative

integer n, an automorphism σ of Φ induces a unique automorphism σ̂(n) of
Φ̂(n) such that Πnσ̂(n) = σΠn.

By lemmas 2.1 and 2.2, one immediately deduces, by induction, the fol-
lowing

Lemma 2.4. Let Φ be a 3-regular graph with boundary and n be a non-
negative integer. The n-triangles of Φ̂(n) are exactly the subsets of the form
Π−n(p) where p is a point of Φ. In particular, every point of Φ̂(n) belongs
to a unique n-triangle. The map σ 7→ σ(n),Aut Φ → Aut Φ̂(n) is a group
isomorphism.

Corollary 2.5. Let Φ be a 3-regular graph with boundary, n ≥ m ≥ 1 be
integers, p be a point of Φ̂(n), T be the n-triangle containing p and S be the
m-triangle containing p. One has S ⊂ T . If p is a vertex of T and if p does
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not belong to ∂Φ̂(n), the unique neighbor of p in Φ̂(n) that does not belong to
the 1-triangle containing p is itself the vertex of some n-triangle of Φ̂(n).

Proof. By lemma 2.4, one has T = Π−n(Πnp) and S = Π−m(Πmp), hence
S ⊂ T . Suppose p belongs to ∂T − ∂Φ̂(n). Then, p has a unique neighbor
in Φ̂(n) that does not belong to T . Let q be a neighbor of p and R be the
n-triangle containing q. If q is not a vertex of R, all the neighbors of q belong
to R and hence p ∈ R. As, by lemma 2.4, p belongs to a unique n-triangle
of Φ̂(n), one has T = R and hence q belongs to T . Therefore, the neighbor
of p that does not belong to T is a vertex of the n-triangle which it belongs
to.

Corollary 2.6. Let n ≥ 2 be an integer and a, b and c be three distinct
elements. Then, there exists unique elements ab, ba, ac, ca, bc and cb of
Tn(a, b, c) such that Tn(a, b, c) is the union of the three (n − 1)-triangles
Tn−1(a, ab, ac), Tn−1(b, ba, bc) and Tn−1(c, ca, cb) and that one has ab ∼ ba,
ac ∼ ca and bc ∼ cb.

Proof. The corollary may be proven directly for n = 2. This case implies the
general one by lemma 2.4.

Pick now an element a and two sequences of distinct elements (bn)n≥1

and (cn)n≥1 such that, for any n ≥ 1, one has bn 6= a, cn 6= a and bn 6= cn.
By corollary 2.6, for any n ≥ 1, one can identify Tn(a, bn, cn) to a subset
of Tn+1(a, bn+1, cn+1) thanks to the unique graph isomorphism sending a to
a, bn to abn+1 and cn to acn+1. One then calls the set

⋃
n≥1 Tn(a, bn, cn),

equipped with the graph structure that induces its n-triangle structure on
each Tn(a, bn, cn), n ≥ 1, the infinite triangle with vertex a and one let it be
denoted by T∞(a). From the preceding results one deduces the following

Lemma 2.7. Let a be an element. The graph T∞(a) is connected, 3-regular
with boundary and ∂T∞(a) = {a}. If b and c are the two neighbors of a in

T∞(a), there exists a unique isomorphism from T∞(a) onto T̂∞(a) that sends
a to (a, b) and c to (a, c). For any nonnegative integer n, this isomorphism
induces a natural bijection between the points of T∞(a) and the n-triangles
of T∞(a) and every point of T∞(a) belongs to a unique n-triangle. Finally,
T∞(a) admits a unique non trivial automorphism; this automorphism is an
involution that fixes a and that, for any n ≥ 1, exchanges the two vertices of
the n-triangle containing a that are different from a.

11



In all this article, we fix two distincts elements p0 and p∨0 . One calls
Pascal graph the set T∞(p0)∪T∞(p∨0 ) endowed with the graph structure that
induces the infinite triangle structure on T∞(p0) and T∞(p∨0 ) and for which
p0 ∼ p∨0 . We let Γ denote the Pascal graph. From lemma 2.7, one deduces
the following

Proposition 2.8. The Pascal graph is an infinite, connected and 3-regular
graph. If q0 and r0 are the two neighbors of p0 in T∞(p0) and q∨0 and r∨0 the
two neighbors of p∨0 in T∞(p∨0 ), there exists a unique isomorphism from Γ onto
Γ̂ that sends p0 to (p0, p

∨
0 ), p∨0 to (p∨0 , p0), q0 to (p0, q0), r0 to (p0, r0), q

∨
0 to

(p∨0 , q
∨
0 ) and r∨0 to (p∨0 , r

∨
0 ). For any nonnegative integer n, this isomorphism

induces a natural bijection between the points of Γ and the n-triangles of Γ
and every point of Γ belongs to a unique n-triangle.

A planar representation of the Pascal graph is given in figure 1.
One shall now identify Γ and Γ̂ by the isomorphism described in proposi-

tion 2.8. In particular, from now on, one shall consider Π and Π∗ as bounded
endomorphisms in ℓ2(Γ).

Let Θ denote the edges graph of Γ. More precisely, Θ is the set of non
ordered pairs {p, q} of elements of Γ with p ∼ q, endowed with the relation
for which, if p and q are two neighbor points in Γ, if r and s are the two
other neighbors of p and t and u the two other neighbors of q, the neighbors
of {p, q} are {p, r}, {p, s}, {q, t} and {q, u}. We call Θ the Sierpiński graph.
It is an infinite, connected and 4-regular graph. A planar representation of
it is given in figure 2.

If Φ is a k-regular graph, for any function ϕ from Φ into C, one let ∆ϕ
denote the function p 7→

∑
q∼p ϕ(q). Then, ∆ induces a bounded self-adjoint

operator of the space ℓ2(Φ) with norm ≤ k. We call the spectrum of this
operator the spectrum of Φ.

3 The spectrum of Γ

Let Φ be a 3-regular graph. In this section, we shall study the link between
the spectral properties of Φ and those of Φ̂. Our study is based on the

Lemma 3.1. One has (∆2 − ∆ − 3)Π∗ = Π∗∆ and Π(∆2 − ∆ − 3) = ∆Π.

Proof. Let ϕ be a function on Φ, p be a point of Φ and q, r, s be the three
neighbors of p. Suppose ϕ(p) = a, ϕ(q) = b, ϕ(r) = c and ϕ(s) = d. Then,
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one has Π∗ϕ(p, q) = a, ∆Π∗ϕ(p, q) = 2a + b and ∆2Π∗ϕ(p, q) = (2b + a) +
(2a+ c) + (2a+ d) = 5a+ 2b+ c+ d. We thus have (∆2 −∆− 3)Π∗ϕ(p, q) =
b + c + d = Π∗∆ϕ(p, q). The second relation is obtained by switching to
adjoint operators in the first one.

We shall now use lemma 3.1 to determine the spectrum of ∆ in ℓ2
(
Φ̂
)
.

We shall use elementary results from functional analysis.

Lemma 3.2. Let E be a Banach space and T be a bounded linear operator in
E. Suppose all elements of the spectrum of T have positive real part. Then,
if F ⊂ E is a subspace which is stable by T 2, F is stable by T .

Proof. Let 0 < α < β and γ > 0 be such that the spectrum S of T is
contained in the interior of the rectangle R = [α, β]+[−γ, γ]i and U ⊃ R and
V be open subsets of C such that the map λ 7→ λ2 induces a biholomorphism
from U onto V . There exists a holomorphic function r on V such that, for
any λ in U , one has r(λ2) = λ. As R is simply connected, by Runge theorem,
there exists a sequence (rn)n∈N of polynomials in C[X] that converges to r
on R2. As the spectrum of T 2 is S2, which is contained in the interior of R2,
the sequence rn(T

2) then converges to T in the space of endomorphisms of
E. For any integer n, rn(T

2) stabilizes F , hence T stabilizes F .

Lemma 3.3. Let H be a Hilbert space, T be a bounded self-adjoint endomor-
phism and π be a real polynomial with degree 2. Suppose there exists a closed
subspace K of H such that π(T )K ⊂ K and K and TK span H. Then, the
image by π of the spectrum of T in H equals the spectrum of π(T ) in K and,
if one moreover has T−1K ∩K = {0}, the spectrum of T in H is exactly the
set of λ in R such that π(λ) belongs to the spectrum of π(T ) in K.

Proof. Once π has been written under its canonical form, one can suppose
π(X) = X2. Let E denote the spectral resolution of T : for any Borel subset
B of R, E(B) is a projection of H that commutes with T . Let B be a
Borel subset of R such that B = −B. Then, for any Radon measure µ on
R, in L2(µ), the indicator function of B is the limit of a sequence of even
polynomials. One hence has E(B)K ⊂ K.

The spectrum of T 2 in H is exactly the set of squares of elements of the
spectrum of T in H . As T 2 is self-adjoint andK is stable by T 2, the spectrum
of T 2 in K is contained in its spectrum in H , and hence in the set of squares
of elements of the spectrum of T . Conversely, suppose there exists elements

13



of the spectrum of T whose square does not belong to the spectrum of T 2 in
K. Then, there exists a symmetric open subset V of R such that V contains
elements of the spectrum of T in H but that V 2 does not contain elements
of the one of T 2 in K. One has E(V )K ⊂ K, but, as V 2 does not contain
elements of the spectrum of T 2 in K, E(V )K = 0. Now, as K and TK
span H , E(V )K and TE(V )K = E(V )TK span E(V )H . Hence, one has
E(V )H = 0, which contradicts the fact that V contains spectral values of T .
Therefore, the spectrum of T 2 in K is exactly the set of squares of elements
of the spectrum of T in H .

Suppose now one has T−1K ∩ K = {0}. To conclude, it remains to
prove that the spectrum of T is symmetric. Suppose this is not the case.
Then, one can, after eventually having replaced T by −T , find real numbers
0 < α < β such that U =]α, β[ contains elements of the spectrum of T but
that −U does not contain any. But one then has E(U) = E(U ∪ (−U))
and hence E(U)K ⊂ K. If L is the image of H by E(U), one has therefore
T 2(K∩L) ⊂ K∩L. As the spectrum of the restriction of T to L is contained
in R∗

+, one has, by lemma 3.2, T (K∩L) ⊂ K∩L and hence, by the hypothesis,
K ∩ L = 0. As E(U)K ⊂ K, one thus has E(U) = 0 on K. As K and TK
span H , one has E(U) = 0, which contradicts the fact that U contains
elements of the spectrum of T . Therefore, the spectrum of T is symmetric.
The lemma follows.

In order to apply these results to spaces of square integrable functions on
graphs, we will need results on the geometry of graphs. Let Φ be a connected
graph and P and Q be two disjoint subsets of Φ such that Φ = P ∪ Q. We
shall say that Φ is split by the partition {P,Q} if any neighbor of an element
of P belongs to Q and any neighbor of an element of Q belongs to P . We
shall say that Φ is splitable (or bipartite) if there exists a partition of Φ into
two subsets that splits it. One easily checks that Φ is splitable if and only if,
for any p and q in Φ, the paths joining p to q either all have even length or
all have odd length. In particular, if Φ is splitable, the partition {P,Q} that
split Φ is unique, two points p and q belonging to the same atom if and only
if they may be joined by a path with even length.

Lemma 3.4. Let Φ be a connected graph and L be the space of functions ϕ
on Φ such that, for any p in Φ, ϕ is constant on the neighbors of p. Then,
if Φ is not splitable, L equals the space of constant functions. If Φ is split by
the partition {P,Q}, L is spanned by constant functions and by the function
1P − 1Q.
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Proof. Let ϕ be in L, p and q be points of Φ and r0 = p, r1, . . . , rn = q a
path from p to q. For any 1 ≤ i ≤ n − 1, one has ri−1 ∼ ri ∼ ri+1, hence
ϕ(ri−1) = ϕ(ri+1) and, if n is even, ϕ(p) = ϕ(q). Therefore, if ϕ(p) 6= ϕ(q)
and if P = {r ∈ Φ|ϕ(r) = ϕ(p)} and Q = {r ∈ Φ|ϕ(r) = ϕ(q)}, the partition
{P,Q} splits Φ. The lemma easily follows.

We shall use this lemma in the following setting:

Lemma 3.5. Let Φ be a connected 3-regular graph. Let ϕ be in ℓ2(Φ) such
that ∆ϕ = 3ϕ. If Φ is infinite, one has ϕ = 0 and, if Φ is finite, ϕ is
constant. Let ψ be in ℓ2(Φ) such that ∆ψ = −3ψ. If Φ is infinite or non
splitable, one has ψ = 0 and, if Φ is finite and split by the partition {P,Q},
ψ is proportional to 1P − 1Q.

Proof. As ϕ is in ℓ2(Φ), the set M = {p ∈ Φ|ϕ(p) = maxΦ ϕ} is not empty.
As ∆ϕ = 3ϕ, for any p in M , the neighbors of p all belong to M and,
hence, as Φ is connected, M = Φ and ϕ is constant. If Φ is infinite, as ϕ
is in ℓ2(Φ), it is zero. In the same way, suppose ψ 6= 0 and set P = {p ∈
Φ|ψ(p) = maxΦ ψ} and Q = {q ∈ Φ|ψ(q) = minΦ ψ}. As ∆ψ = −3ψ, one
has minΦ ψ = −maxΦ ψ and the neighbors of the points of P belong to Q,
whereas the neighbors of the points of Q belong to P . By connectedness, one
has P ∪ Q = Φ, the graph Φ is splitable and ψ is proportional to 1P − 1Q.
Finally, as ψ is in ℓ2(Φ), the graph Φ is finite.

Recall we let f denote the polynomial x2 − x − 3. From lemma 3.1, we
deduce the following

Corollary 3.6. Let Φ be a connected 3-regular graph and H be the closed

subspace of ℓ2
(
Φ̂
)

spanned by the image of Π∗ and by the image of ∆Π∗.

Then H is stable by ∆ and the spectrum of the restriction of ∆ to H is,

(i) if Φ is infinite, the inverse image by f of the spectrum of ∆ in ℓ2(Φ).

(ii) if Φ is finite, but non splitable, the inverse image by f of the spec-
trum of ∆ in ℓ2(Φ) deprived from −2.

(iii) if Φ is finite and splitable, the inverse image by f of the spectrum
of ∆ in ℓ2(Φ) deprived from −2 and 0.
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Proof. Let K denote the image of Π∗. As 1√
3
Π∗ induces an isometry from

ℓ2(Φ) onto K, by lemma 3.1, the spectrum of f(∆) in K equals the spectrum
of ∆ in ℓ2(Φ). We will apply lemma 3.3 to the space H and the operator
∆. On this purpose, let us study the space ∆−1K ∩K. Let L be the space
of ϕ in ℓ2(Φ) such that ∆Π∗ϕ belongs to K and let ϕ be in L. If p is a
point of ϕ, with neighbors q, r and s, set ϕ(p) = a, ϕ(q) = b, ϕ(r) = c and
ϕ(s) = d. Then, one has ∆Π∗ϕ(p, q) = 2a + b, ∆Π∗ϕ(p, r) = 2a + c and
∆Π∗ϕ(p, s) = 2a+d. As ∆Π∗ϕ belongs to K, one has b = c = d. Conversely,
if ϕ is an element of ℓ2(Φ) that, for any point p in Φ, is constant on the
neighbors of p, ϕ belongs to L.

If Φ is infinite, by lemma 3.4, one has L = {0} and one can apply lemma
3.3 to H . The spectrum of ∆ in H is therefore the inverse image by f of the
one of ∆ in ℓ2(Φ). If Φ is finite, but non splitable, by lemma 3.4, L is the line
of constant functions on Φ and we can apply lemma 3.3 to the orthogonal
complement of the space of constant functions in H . We get the result, since
f(−2) = f(3) = 3 and, by lemma 3.5, the constant functions are the only
eigenfunctions with eigenvalue 3 in ℓ2(Φ). Finally, if Φ is finite and split by
the partition {P,Q}, by lemma 3.4, L is spanned by constant functions and
by the function 1P−1Q. Then, Π∗(1P−1Q) is an eigenvector with eigenvalue 1
in H . One applies lemma 3.3 to the orthogonal complement of the subspace
of H spanned by the constant functions and by Π∗(1P − 1Q). The result
follows as f(0) = f(1) = −3 and, still by lemma 3.5, the eigenfunctions with
eigenvalue −3 in ℓ2(Φ) are the multiples of 1P − 1Q.

We now have to determine the spectrum of ∆ in the orthogonal comple-
ment of H . This is the aim of the following

Lemma 3.7. Let Φ be a connected 3-regular graph and H be the closed

subspace of ℓ2
(
Φ̂
)

spanned by the image of Π∗ and by the image of ∆Π∗. The

spectrum of ∆ in the orthogonal complement of H is contained in {0,−2}.
The eigenspace associate to the value 0 in ℓ2

(
Φ̂
)

is the space of functions ϕ

in ℓ2
(
Φ̂
)

such that Πϕ = 0 and that, for any p and q which are neighbors

in Φ, one has ϕ(p, q) = ϕ(q, p). The eigenspace associate to the value −2 in

ℓ2
(
Φ̂
)

is the space of functions ϕ in ℓ2
(
Φ̂
)

such that Πϕ = 0 and that, for

any p and q which are neighbors in Φ, one has ϕ(p, q) = −ϕ(q, p).

Proof. Let ϕ be orthogonal to H and let p be a point of Φ, with neighbors
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Figure 6: Eigenfunctions on Φ̂(2)

q, r, s. Set a = ϕ(p, q), b = ϕ(p, r), c = ϕ(q, p) and d = ϕ(r, p). Finally,
denote by ψ the indicator function of the set {p} in Φ. As ϕ is orthogonal
to Π∗ψ and to ∆Π∗ψ, one has ϕ(p, s) = −a− b and ϕ(s, p) = −c− d. Thus
∆ϕ(p, q) = c−a and ∆2ϕ(p, q) = (a−c)+(d−b)+(−c−d+a+b) = 2a−2c.
Hence, in the orthogonal complement of H , one has ∆2 + 2∆ = 0 and, for
ϕ in this subspace, one has ∆ϕ = 0 if and only if, for any p an q which are
neighbors in Φ, ϕ(p, q) = ϕ(q, p) and ∆ϕ = −2ϕ if and only if, for any p an
q which are neighbors in Φ, ϕ(p, q) = −ϕ(q, p).

To finish the proof of the lemma, we have to prove that ∆ does not
have any eigenfunction with eigenvalue 0 or −2 in H . On this purpose,
pick some ϕ in H such that ∆ϕ = −2ϕ. By lemma 3.1, one then has
∆Πϕ = Π(∆2 − ∆ − 3)ϕ = 3Πϕ. If Φ is infinite, by lemma 3.5, Πϕ is zero.
We thus have Πϕ = 0 and Π∆ϕ = −2Πϕ = 0. Therefore, as ϕ belongs to
H which is spanned by the images of Π∗ and of ∆Π∗, one has ϕ = 0. If Φ
is finite, still by lemma 3.5, Πϕ is constant. As ϕ is orthogonal to constant
functions, one again has Πϕ = 0 and Π∆ϕ = 0, which implies ϕ = 0.

If ϕ is now an element of H such that ∆ϕ = 0, one has ∆Πϕ = −3Πϕ.
Again, by lemma 3.5, if Φ is infinite or non splitable, one has Πϕ = 0 and,
hence, ϕ = 0, whereas, if Φ is split by the partition {P,Q}, Πϕ is proportional
to 1P −1Q. But Π∗(1P −1Q) is an eigenvector with eigenvalue 1 for ∆, hence
〈Πϕ, 1P − 1Q〉 = 〈ϕ,Π∗(1P − 1Q)〉 = 0 and Πϕ = 0, so that ϕ = 0.

Recall that, for any nonnegative integer, we let Φ̂(n) denote the graph

obtained by replacing each point of Φ by a n-triangle. The space ℓ2
(
Φ̂(2)

)

contains finitely supported eigenfunctions with eigenvalue −2 and 0, as shown
by figure 6, where only the non zero values of the functions have been repre-
sented.
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We therefore have the following

Lemma 3.8. For any n ≥ 2, the space ℓ2
(
Φ̂(n)

)
contains eigenfunctions

with eigenvalue −2 and 0.

Recall we let Λ denote the Julia set of f . By applying corollary 3.6 and
lemmas 3.7 and 3.8 to Γ, one gets the following

Corollary 3.9. The spectrum of Γ is the union of Λ and of the set
⋃
n∈N

f−n(0).

Proof. By proposition 2.8, Γ̂ is isomorphic to Γ. Therefore, by corollary 3.6
and lemmas 3.7 and 3.8, the spectrum S of ∆ satisfies S = f−1S ∪ {0,−2}.
One easily checks that the set described in the setting of the corollary is the
unique compact subset of R verifying this equation.

4 The spectral measures of Γ

Let still Φ be a connected 3-regular graph. In this section, we will explain

how to compute the spectral measures of some elements of ℓ2
(
Φ̂
)
. On this

purpose, we use the following

Lemma 4.1. One has Π∆Π∗ = 6 + ∆ and hence, for any ϕ and ψ in ℓ2(Φ),

〈∆Π∗ϕ,Π∗ψ〉 = 6〈ϕ, ψ〉+〈∆ϕ, ψ〉 = 2〈Π∗ϕ,Π∗ψ〉+1

3
〈(∆2−∆−3)Π∗ϕ,Π∗ψ〉.

Proof. Let ϕ be in ℓ2(Φ) and p be a point of Φ, with neighbors q, r, s. Set
a = ϕ(p), b = ϕ(q), c = ϕ(r) and d = ϕ(s). Then, one has ∆Π∗ϕ(p, q) =
2a+b and hence Π∆Π∗ϕ(p) = (2a+b)+(2a+c)+(2a+d) = 6a+(b+c+d),
whence the first identity. The second one follows, by applying lemma 3.1 and
the relation ΠΠ∗ = 3.

Let us now study the abstract consequences of this kind of identity.

Lemma 4.2. Let H be a Hilbert space, T a bounded self-adjoint endomor-
phism of H, K a closed subspace of H and π(x) = (x−u)2+m a real unitary
polynomial with degree 2. Suppose one has π(T )K ⊂ K, K and TK span H
and there exists real numbers a and b such that, for any v and w in K, one
has 〈Tv, w〉 = a〈v, w〉 + b〈π(T )v, w〉. Then, for any x 6= u in the spectrum
of T , one has

1 +
a− u+ bπ(x)

x− u
≥ 0.
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Proof. Once π has been written under its canonical form, one may suppose
one has π(x) = x2. Let v be a unitary vector in K. Then, for any real
number s, one has

0 ≤ 〈Tv + sv, Tv + sv〉 = 〈Tv, Tv〉+ 2s〈Tv, v〉 + s2

= 〈T 2v, v〉 + 2s(a+ b〈T 2v, v〉) + s2.

By lemma 3.3, the squares of the elements of the spectrum of T inH belong to
the spectrum of T 2 in K. If x is an element of the spectrum of T , there exists
therefore unitary vectors v of K such that 〈T 2v, v〉 is very close to x2. Hence,
by the remark above, for any real number s, one has x2+2s(a+bx2)+s2 ≥ 0.
The discriminant of this polynomial of degree 2 is thus nonpositive, that is
one has x2 − (a + bx2)2 ≥ 0. The lemma follows.

Let π(x) = (x − u)2 + m a real unitary polynomial with degree 2. Pick
a Borel function θ on R − {u}. Then, if α is a Borel function on R − {u},
one sets, for any y in ]m,∞[, Lπ,θα(y) =

∑
π(x)=y θ(x)α(x). Let µ be a Borel

positive measure on ]m,∞[. If, for µ-almost all y in ]m,∞[, θ is nonnegative
on the two inverse images of y by π, one let L∗

π,θµ denote the Borel measure
ν on R − {u} such that, for any nonnegative Borel function α on R − {u},
one has

∫
R−{u} αdν =

∫
]m,∞[

Lπ,θαdµ.

We have the following

Lemma 4.3. Let H be a Hilbert space, T a bounded self-adjoint endomor-
phism of H, K a closed subspace of H and π(x) = (x−u)2+m a real unitary
polynomial with degree 2. Suppose one has π(T )K ⊂ K, K and TK span
H and there exists real numbers a and b such that, for any v and w in K,
one has 〈Tv, w〉 = a〈v, w〉 + b〈π(T )v, w〉. Then, for any v in K, if µ is the
spectral measure of v for π(T ) and ν its spectral measure for T , if µ(m) = 0,
one has ν(u) = 0 and ν = L∗

π,θµ where, for any x 6= u, one has

θ(x) =
1

2

(
1 +

a− u+ bπ(x)

x− u

)
.

Proof. Note that, as µ(m) = 0, by lemma 3.3, the measure µ is concentrated
on ]m,∞[. Moreover, if w is some vector on H with Tw = uw, one has
π(T )w = mw and, by the hypothesis, 〈v, w〉 = 0. Thus, one has ν(u) = 0.

By lemma 4.2, the function θ is nonnegative on the spectrum of T , de-
prived from {0}. Let n be in N. On one hand, one has

∫

R−{u}
π(x)ndν(x) = 〈π(T )nv, v〉 =

∫

]m,∞[

yndµ(y).
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On the other hand, for any x 6= u, one has θ(x) + θ(2u − x) = 1 and
hence, for any y in ]m,∞[, Lπ,θπ

n(y) = yn. Thus, one has
∫

R−{u} π
ndν =∫

]m,∞[
Lπ,θπ

ndµ. In the same way, for any x in R, set α(x) = xπ(x)n. On one

hand, one then has
∫

R−{u}
α(x)dν(x) = 〈Tπ(T )nv, v〉

= a〈π(T )nv, v〉 + b〈π(T )n+1v, w〉 = a

∫

]m,∞[

yndµ(y) + b

∫

]m,∞[

yn+1dµ(y).

On the other hand, for any x 6= u, as (2u− x) − u = u− x, one has

θ(x)α(x) + θ(2u− x)α(2u− x)

=

(
1

2
(x+ (2u− x)) +

1

2
(x− (2u− x))

(
a− u+ bπ(x)

x− u

))
π(x)n

= aπ(x)n + bπ(x)n+1

and hence, for any y in ]m,∞[, Lπ,θα(y) = ayn + byn+1. Again, one has∫
R−{u} αdν =

∫
]m,∞[

Lπ,θαdµ. Therefore, for any polynomial α, one has∫
R−{u} αdν =

∫
]m,∞[

Lπ,θαdµ. In particular, the positive measure L∗
π,θµ is

finite and hence, for any compactly supported continuous function α on
R − {u}, one still has

∫
R−{u} αdν =

∫
]m,∞[

Lπ,θαdµ, so that ν = L∗
π,θµ.

By applying lemmas 4.1 and 4.3, one gets the following

Corollary 4.4. Let ϕ be in ℓ2(Φ), µ be the spectral measure of ϕ for ∆ in

ℓ2(Φ) and ν be the spectral measure of Π∗ϕ for ∆ in ℓ2
(
Φ̂
)
. Then, one has

ν
(

1
2

)
= 0 and, if, for any x 6= 1

2
, one sets θ(x) = x(x+2)

2x−1
, one has ν = L∗

f,θµ.

Proof. The minimal value on R of the polynomial f is f
(

1
2

)
= −13

4
< −3 ≤

−‖∆‖2. Thus, one has µ
(
−13

4

)
= 0 and the corollary follows from lemmas

4.1 and 4.3 by an elementary computation.

5 Eigenfunctions in ℓ2(Γ)

In this section, we shall complete the informations given by lemma 3.7 by
describing more precisely the eigenspaces of ∆ in ℓ2(Γ) for the eigenvalues
−2 and 0. We shall extend these results to the eigenvalues in

⋃
n∈N

f−n(−2)
and

⋃
n∈N

f−n(0) using the following
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Lemma 5.1. Let Φ be a 3-regular graph and H be the closed subspace of

ℓ2
(
Φ̂
)

spanned by the image of Π∗ and by the one of ∆Π∗. Then, for any

x in R − {0,−2}, x is an eigenvalue of ∆ in H if and only if y = f(x)
is an eigenvalue of ∆ in ℓ2(Φ). In this case, the map Rx which sends an
eigenfunction ϕ with eigenvalue y in ℓ2(Φ) to (x−1)Π∗ϕ+∆Π∗ϕ induces an
isomorphism between the eigenspace associate to the eigenvalue y in ℓ2(Φ)
and the eigenspace associate to the eigenvalue x in H and, for any ϕ, one
has ‖Rxϕ‖2

2 = x(x+ 2)(2x− 1) ‖ϕ‖2
2.

Proof. Let ψ 6= 0 be in H such that ∆ψ = xψ. As ψ is in H , one has
Πψ 6= 0 or Π∆ψ 6= 0. As Π∆ψ = xΠψ, one has Πψ 6= 0. By lemma 3.1, one
has ∆Πψ = yΠψ, hence y is an eigenvalue of ∆ in ℓ2(Φ). In particular, as
f
(

1
2

)
= −13

4
< −3 ≤ −‖∆‖2, one has x 6= 1

2
. Conversely, if ϕ is an element

of ℓ2(Φ) such that ∆ϕ = yϕ, one has, by lemma 3.1,

∆Rxϕ = ∆((x− 1)Π∗ϕ+ ∆Π∗ϕ)

= (x− 1)∆Π∗ϕ+ Π∗∆ϕ + (∆ + 3)Π∗ϕ

= x∆Π∗ϕ+ (x2 − x)Π∗ϕ = xRxϕ.

Now, by lemma 4.1, one has Π∆Π∗ = 6 + ∆, hence, if ∆ϕ = yϕ, one has,
by a direct computation, ΠRxϕ = x(x + 2)ϕ and, as we have supposed
x(x + 2) 6= 0, Rx is one-to-one and closed. It remains to prove that Rx is
onto. In this aim, pick ψ in H such that ∆ψ = xψ but ψ is orthogonal to the
image of Rx. For any ϕ in ℓ2(Φ) such that ∆ϕ = yϕ, one has 〈ψ,Rxϕ〉 = (x−
1)〈Πψ, ϕ〉 + 〈Π∆ψ, ϕ〉 = (2x− 1)〈Πψ, ϕ〉 and hence, as x 6= 1

2
, 〈Πψ, ϕ〉 = 0.

As ∆Πψ = yΠψ, one has Πψ = 0. As ψ is in H , one has ψ = 0. The operator
Rx is thus an isomorphism. The computation of the norm is then direct, by
using lemmas 3.1 and 4.1.

Let us begin by looking at the eigenvalues in
⋃
n∈N

f−n(0). Let n ≥ 1 be
an integer. Recall that, by corollary 2.5, if T is a n-triangle of Γ and if p
is a vertex of T , the neighbor of p that does not belong to T is the vertex
of some n-triangle. We shall call the edges linking vertices of n-triangles
exterior edges to n-triangles. We let Θn denote the set of edges which are
exterior to n-triangles and we endow it with the graph structure for which
two edges are neighbors if two of their end points are vertices of the same n-
triangle. One easily checks that the graph Θn is naturally isomorphic to the
Sierpiński graph, introduced in the end of section 2. We shall from now on
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Figure 7: The eigenfunctions with eigenvalue 0

identify Θn and Θ. If ϕ is a function on Γ which is constant on edges which
are exterior to n-triangles, we let Pnϕ denote the function on Θ whose value
at one point of Θ is the value of ϕ on the associate edge which is exterior to
n-triangles. Finally, let us recall that, as Θ is 4-regular, the norm of ∆ in
ℓ2(Θ) is ≤ 4.

By lemma 3.7, the eigenfunctions with eigenvalue 0 are constant on the
edges which are exterior to 1-triangles. We have the following

Lemma 5.2. The map P2 induces a Banach spaces isomorphism from the
eigenspace of ℓ2(Γ) associate to the eigenvalue 0 onto ℓ2(Θ). Let Q0 denote its
inverse. For any ψ in ℓ2(Θ), one has ‖Q0ψ‖2

ℓ2(Γ) = 3 ‖ψ‖2
ℓ2(Θ)− 1

2
〈∆ψ, ψ〉ℓ2(Θ).

Proof. By using the characterization of lemma 3.7, one easily checks that,
given three values a, b and c on the vertices of some 2-triangle, an eigenfunc-
tion with eigenvalue 0 taking these values at the three vertices must take in
the interior of the triangle the values that are described in picture 7.

Recall that one has identified the graphs Θ and Θ2. For any function ψ on
Θ, let Q0ψ denote the function on Γ that, on each edge which is exterior to
2-triangles, is constant, with value the value of ψ at the point of Θ associate
to this edge, and whose values in the interior of the 2-triangles are those
described by figure 7. By an elementary computation, for any real numbers
a, b and c, the sum of the squares of the values described in figure 7 is

3

2
(a2+b2+c2)−ab−ac−bc =

1

2
(3a2−ab−ac)+1

2
(3b2−ab−bc)+1

2
(3c2−ac−bc),

so that, for any function ψ on Θ, one has ‖Q0ψ‖2
ℓ2(Γ) = 3 ‖ψ‖2

ℓ2(Θ)−1
2
〈∆ψ, ψ〉ℓ2(Θ).

As −4 ‖ψ‖2
ℓ2(Θ) ≤ 〈∆ψ, ψ〉ℓ2(Θ) ≤ 4 ‖ψ‖2

ℓ2(Θ), the function ψ belongs to ℓ2(Θ)

if and only if Q0ψ belongs to ℓ2(Γ). The lemma follows.
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From lemmas 5.1 and 5.2, we shall deduce a description of the eigenspaces
associate to the elements of

⋃
n∈N

f−n(0). For x in
⋃
n∈N

f−n(0), let n(x)
denote the integer n such that fn(x) = 0 and

κ(x) =

n(x)−1∏

k=0

fk(x)(2fk(x) − 1)

fk(x) + 2
.

We have the following

Proposition 5.3. Let x be in
⋃
n∈N

f−n(0). The eigenfunctions with eigen-
value x in ℓ2(Γ) are constant on edges which are exterior to (n(x) + 1)-
triangles in Γ. The map Pn(x)+2 induces a Banach spaces isomorphism
from the eigenspace of ℓ2(Γ) associate to the eigenvalue x onto ℓ2(Θ). Let
Qx denote its inverse. Then, for any ψ in ℓ2(Θ), one has ‖Qxψ‖2

ℓ2(Γ) =

κ(x)
(
3 ‖ψ‖2

ℓ2(Θ) − 1
2
〈∆ψ, ψ〉ℓ2(Θ)

)
.

Proof. We shall prove this result by induction on n(x). The case n(x) = 0 has
been dealt with in lemma 5.2. Suppose the lemma has been proved for n(y)
with y = f(x). Pick ϕ in ℓ2(Γ) such that ∆ϕ = xϕ. Then, as n = n(x) ≥ 1,
one has x /∈ {−2, 0} and hence, by lemma 3.7, ϕ belongs to H . By lemma
5.1, one thus has ϕ = Rxψ, for some function ψ such that ∆ψ = yψ. By
induction, ψ is constant on edges that exterior to n-triangles. Let p be a
vertex of some (n + 1)-triangle in Γ and q its exterior neighbor. The points
Πp and Πq are vertices of some n-triangle in Γ. One hence has Π∗ψ(p) =
ψ(Πp) = ψ(Πq) = Π∗ψ(q) and ∆Π∗ψ(p) = 2ψ(Πp)) + ψ(Πq)) = 3Π∗ψ(p).
Thus, ϕ(p) = Rxψ(p) = (x + 2)ψ(p) = ϕ(q): the function ψ is constant on
edges that are exterior to (n + 1)-triangles and Pn+2ϕ = (x + 2)Pn+1ψ. As,
by induction, Pn+1 induces an isomorphism from the eigenspace associate to
the value y onto ℓ2(Θ), by lemma 5.1, Pn+2 induces an isomorphism from the
eigenspace associate to the value y onto ℓ2(Θ). The norm computation now
follows from the induction and the formula Pn+2Rx = (x+ 2)Pn+1.

Corollary 5.4. For any x in
⋃
n∈N

f−n(0), the eigenspace associate to x in
ℓ2(Γ) has infinite dimension and is spanned by finitely supported functions.

For the elements of
⋃
n∈N

f−n(−2), there is no analogue of proposition
5.3. However, we will extend corollary 5.4. Let us begin by dealing with the
eigenvalue −2. Recall we let p0 and p∨0 denote the vertices of the two infinite
triangles in Γ.
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Figure 8: The eigenfunctions with eigenvalue −2

Lemma 5.5. Let ϕ be an eigenfunction with eigenvalue −2 in ℓ2(Γ). Then,
for any n ≥ 1, the sum of the values of ϕ on the vertices of each n-triangle of
Γ is zero and ϕ(p0) = ϕ(p∨0 ) = 0. The eigenspace associate to the eigenvalue
−2 has infinite dimension and is spanned by finitely supported functions.

Proof. An immediate computation using lemma 3.7 shows that the values of
ϕ on some 2-triangle satisfy the rules described by figure 8. In particular, the
sum of these values on the vertices of each 2-triangle is zero. By induction,
using corollary 2.6, it follows that, for any n ≥ 1, the sum of these values
on the vertices of each n-triangle is zero. Let then, for any n ≥ 1, pn and qn
denote the two other vertices of the n-triangle with vertex p0. As ϕ is square
integrable, one has ϕ(pn) −−−→

n→∞
0 and ϕ(qn) −−−→

n→∞
0. Thus ϕ(p0) = 0 and, in

the same way, ϕ(p∨0 ) = 0. In particular, for any n ≥ 1, ϕ(pn) + ϕ(qn) = 0.
Let us now prove that ϕ is the limit of some sequence of finitely sup-

ported functions. Let still, as in section 2, T∞(p0) denote the infinite triangle
with vertex p0. Then, as ϕ(p0) = 0, ϕ1T∞(p0) is still an eigenvector with
eigenvalue −2 and one can suppose ϕ = 0 on T∞(p∨0 ). For any nonnegative
integer n, let ϕn denote the function on Γ that is zero outside the (n + 1)-
triangle Tn+1(p0, pn+1, qn+1), that equals ϕn on the n-triangle Tn(p0, pn, qn)
and that is invariant by the action of the elements of signature 1 of the
group S(p0, pn+1, qn+1) on the (n + 1)-triangle Tn+1(p0, pn+1, qn+1). In view
of corollary 2.6, the values of ϕn on the vertices of n-triangles are those de-
scribed by figure 9. Then, by lemma 3.7, for any n ≥ 1, ϕn is an eigenvector
with eigenvalue −2 and one has ‖ϕn‖2

2 ≤ 3 ‖ϕ‖2
2. The sequence (ϕn) con-

verges weakly to ϕ in ℓ2(Γ). The function ϕ belongs to the weak closure of
the subspace spanned by finitely supported eigenfunctions with eigenvalue
−2 and hence to its strong closure.
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Figure 9: The function ϕn

Finally, the space of eigenfunctions with eigenvalue −2 has infinite di-
mension since, by figure 6, every 2-triangle contains the support of some
eigenfunction with eigenvalue −2.

For x in
⋃
n∈N

f−n(−2), let n(x) denote the integer n such that fn(x) =
−2. By an induction based on lemma 5.1, one can deduce from lemma 5.5
the following

Corollary 5.6. Let x be in
⋃
n∈N

f−n(−2) and ϕ be an eigenfunction with
eigenvalue x in ℓ2(Γ). Then, the values of ϕ on the edges that are exterior
to (n(x) + 1)-triangles are opposite, for any n ≥ n(x) + 1 the sum of the
values of ϕ on the vertices of each n-triangle is zero and ϕ(p0) = ϕ(p∨0 ) = 0.
The eigenspace associate to the eigenvalue x has infinite dimension and is
spanned by finitely supported functions.

6 Spectral decomposition of ℓ2(Γ)

Let ϕ0 denote the function on Γ that has value 1 at p0, −1 at p∨0 and 0
everywhere else. In this paragraph, we will prove that ℓ2(Γ) is the direct sum
of the eigenspaces associate to the elements of

⋃
n∈N

f−n(−2) ∪
⋃
n∈N

f−n(0)
and the cyclic subspace spanned by ϕ0. Let us begin by studying the latter.
By a direct computation, one gets the following

Lemma 6.1. One has Π∗ϕ0 = (∆ + 2)ϕ0.

This relation and corollary 4.4 will allow the determination of the spec-
tral measure of ϕ0. On this purpose, let us recall the properties of transfer
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operators we will have to use: they follow from the version of Ruelle-Perron-
Frobenius theorem given in [13, § 2.2]. If κ is a Borel function on Λ, one let
Lκ stand for Lf,κ.

Lemma 6.2. Let κ : Λ → R∗
+ be a Hölder continuous function. Equip

the space C0(Λ) with the uniform convergence topology. Then, if λκ > 0 is
the spectral radius of the operator Lκ in C0(Λ), there exists a unique Borel
probability νκ on Λ and a unique continuous positive function lκ on Λ such
that one has Lκlκ = λκlκ, L

∗
κνκ = λκνκ and

∫
Λ
lκdνκ = 1. The spectral radius

of Lκ in the space of functions with zero integral with respect to νκ is < λκ

and, in particular, for any g in C0(Λ), the sequence
(

1
λn

κ
Lnκ(g)

)
n∈N

uniformly

converges to
∫

Λ
gdνκ. The measure νκ is atom free and its support is Λ.

For any x in R, set h(x) = 3−x, k(x) = x+2 and, for x 6= 1
2
, ρ(x) = x

2x−1
.

One has h ◦ f = hk. From lemma 6.1, we deduce, thanks to corollary 4.4,
the following

Corollary 6.3. Let νρ be the unique Borel probability on Λ such that L∗
ρνρ =

νρ. The spectral measure of ϕ0 is hνρ.

Proof. Let µ be the spectral measure of ϕ0. For x 6= 1
2
, set θ(x) = x(x+2)

2x−1
=

k(x)ρ(x). The spectral measure of (∆ + 2)ϕ0 is k2µ. Therefore, by corollary
4.4 and lemma 6.1, one has µ(1

2
) = 0 and k2µ = L∗

θµ. Now, by lemma 5.5, if
ϕ is an eigenfunction with eigenvalue −2 in ℓ2(Γ), one has ϕ(p0) = ϕ(p∨0 ) = 0
and hence 〈ϕ, ϕ0〉 = 0, so that µ(−2) = 0. Therefore, one has L∗

1

k
ρ
µ = µ.

Besides, by lemma 3.5, one has µ(3) = 0. Therefore, as h ◦ f = hk, one
has L∗

ρ(
1
h
µ) = 1

h
L∗

1

k
ρ
(µ) = 1

h
µ.

The Borel measure 1
h
µ on R is concentrated on the spectrum of ∆. Now,

by proposition 5.3, for any x in
⋃
n∈N

f−n(0) and ϕ in ℓ2(Γ) such that ∆ϕ =
xϕ, one has ϕ(p0) = ϕ(p∨0 ) and hence 〈ϕ, ϕ0〉 = 0. Therefore, one has
µ
(⋃

n∈N
f−n(0)

)
= 0 and, by corollary 3.9, µ is concentrated on Λ.

The function ρ is Hölder continuous and positive on Λ and one has
Lρ(1) = 1 on Λ. By lemma 6.2, there exists a unique Borel probability
measure νρ on Λ such that L∗

ρ(νρ) = νρ and, for any continuous function
g on Λ, the sequence (Lnκ(g))n∈N

uniformly converges to the constant func-
tion with value

∫
Λ
gdνρ. Let us prove that the positive Borel measure 1

h
µ

is finite and hence proportional to νρ. Pick some continuous nonnegative
function g on Λ, which is zero in the neighborhood of 3 and such that one
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has 0 <
∫
Λ

1
h
gdµ < ∞. There exists an integer n and a real number ε > 0

such that, for any x in Λ, one has Lnρ(g)(x) ≥ ε. As
∫
Λ

1
h
gdµ =

∫
Λ

1
h
Lnρ (g)dµ,

one has
∫
Λ

1
h
dµ < ∞. Therefore, the measure 1

h
µ is a multiple of νρ. Now,

one has µ(Λ) = ‖ϕ0‖2
2 = 2 and, by a direct computation, Lρ(h) = 2, so that∫

Λ
hdνρ = 2. We hence do have µ = hνρ.

For any polynomial p in C[X], let p̂ denote the function p(∆)ϕ0 on Γ.
By definition, the map g 7→ ĝ extends to an isometry from L2(hνρ) onto the
cyclic subspace Φ of ℓ2(Γ) spanned by ϕ0. Let l denote the function x 7→ x
on Λ. On has the following

Proposition 6.4. The subspace Φ is stable by the operators ∆, Π and Π∗.
For any g in L2(hνρ), one has

∆ĝ = l̂g

Πĝ = L̂ρg

Π∗ĝ = ̂k(g ◦ f).

Proof. By definition, Φ is stable by ∆ and one has the formula concerning
∆.

By a direct computation, one proves that Lρ(l) = 1. Let n be in N. One
has Lρ(f

n) = lnLρ(1) = ln and Lρ(f
nl) = lnLρ(l) = ln. Now, by lemma 3.1,

one has Π(f(∆)nϕ0) = ∆nΠϕ0 and Π(f(∆)n∆ϕ0) = ∆nΠ∆ϕ0 and hence, as
Πϕ0 = Π∆ϕ0 = ϕ0, the subspace Φ is stable by Π and, for any p in C[X],

Πp̂ = L̂ρp. Finally, by convexity, for any measurable function g on Λ, one
has |Lρ(g)|2 ≤ Lρ

(
|g|2
)
, so that, for g in L2(hνρ), one has

∫

Λ

|Lρ(g)|2 hdνρ ≤
∫

Λ

Lρ
(
|g|2
)
hdνρ =

∫

Λ

|g|2 (h ◦ f)dνρ

=

∫

Λ

|g|2 khdνρ ≤ 5

∫

Λ

|g|2 hdνρ,

hence the operator Lρ is continuous in L2(hνρ) and, by density, for any g in

L2(hνρ), Πĝ = L̂ρg.
Finally, by lemmas 3.1 and 6.1, for any polynomial p in C[X], one has

Π∗(p(∆)ϕ0) = p(f(∆))Π∗ϕ0 = p(f(∆))(∆ + 2)ϕ0. Therefore, the subspace

Φ is stable par Π∗ and, for any p in C[X], Π∗p̂ = ̂k(p ◦ f). Now, for any g in
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L2(hνρ), one has

∫

Λ

|k(g ◦ f)|2 hdνρ =

∫

Λ

k |g ◦ f |2 (h ◦ f)dνρ

=

∫

Λ

Lρ(k) |g|2 hdνρ = 3

∫

Λ

|g|2 hdνρ

and hence, by density, for any g in L2(hνρ), Π∗ĝ = ̂k(g ◦ f).

In order to determine the complete spectral structure of ∆, we will analyse
other remarkable elements of ℓ2(Γ). Let us begin by letting ψ0 denote the
function on Γ that takes the value 1 at p0 and p∨0 and 0 everywhere else. We
have the following

Lemma 6.5. One has Π∗ψ0 = ∆ψ0.

From this, we deduce the following

Corollary 6.6. The spectral measure of ψ0 is discrete. More precisely, the
function ψ0 is contained in the direct sum of the eigenspaces of ∆ associate
to the elements of

⋃
n∈N

f−n(0).

Proof. Let µ be the restriction of the spectral measure of ψ0 to Λ. By corol-
lary 3.9, it suffices to prove that µ = 0.

For x /∈
{
0, 1

2

}
, set τ(x) = (x+2)

x(2x−1)
and σ(x) = 1

x(2x−1)
. The function σ is

Hölder continuous and positive on Λ. Proceeding as in the proof of corollary
6.3, one proves that, as 0 /∈ Λ, one has, by lemma 6.5, L∗

τµ = µ. Now, as
h ◦ f = hk, for any x in R, for any integer n, one has Lnτ (h) = hLnσ(1).
Let λσ denote the spectral radius of Lσ and νσ its equilibrium state, as in
lemma 6.2. By a direct computation one shows that, for any x in Λ, one
has Lσ(1)(x) = 1

x+3
. In particular, for x 6= −2, one has Lσ(1)(x) < 1,

so that λσ =
∫
Λ
Lσ(1)dνσ < 1 and hence the sequence (Lnσ(1))n∈N uniformly

converges to 0 on Λ. Therefore, the sequence (Lnτ (h))n∈N uniformly converges
to 0 on Λ and one has

∫
Λ
hdµ = 0, so that µ(Λ − {3}) = 0. By lemma 3.5,

one has µ(3) = 0 and hence µ = 0.

Note that, by using lemma 6.5, one could establish a formula giving, for
any x in

⋃
n∈N

f−n(0), the value of the norm of the projection of ψ0 on the
space of eigenfunctions with eigenvalue x.
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Let us now study the spectral invariants of a last element of ℓ2(Γ). For
this purpose, let q0 and r0 denote the two neighbors of p0 that are different
from p∨0 and χ0 the function on Γ that takes the value 1 at q0, −1 at r0
and 0 everywhere else. In the same way, one let q∨0 and r∨0 denote the two
neighbors of p∨0 that are different from p0 and χ∨

0 the function on Γ that
takes the value 1 at q0, −1 at r0 and 0 everywhere else. One could again
note that one has Π∗χ0 = (∆2 + 2∆)χ0 and study the spectral measure of
χ0 by using the same methods as in corollaries 6.3 and 6.6. We shall follow
another approach, analogous to the one of the proof of lemma 5.5.

By lemma 2.7, there exists a unique automorphism ι of the graph Γ such
that ι(q0) = r0 and ι(q∨0 ) = r∨0 and ι is an involution. Let H denote the space
of elements ϕ in ℓ2(Γ) such that ι(ϕ) = −ϕ and K (resp. K∨) the subspace
of H consisting of those elements which are zero on the infinite triangle with
vertex p∨0 (resp. p0). One has H = K ⊕ K∨, χ0 ∈ K, χ∨

0 ∈ K∨ and the
subspaces K and K∨ are stable by the endomorphisms ∆, Π and Π∗. For
any n ≥ 1, let Tn denote the n-triangle with vertex p0 and T ∨

n the n-triangle
with vertex p∨0 . The permutation groups S(∂Tn) and S(∂T ∨

n ) act on the
triangles Tn and T ∨

n . One let Kn (resp. K∨
n ) denote the space of functions ϕ

on Tn (resp. T ∨
n ) such that, for any s in S(∂Tn) (resp. in S(∂T ∨

n )), one has
sϕ = ε(s)ϕ, where ε is the signature morphism. One identifies Kn and K∨

n

with finite dimensional subspaces of K and K∨. One then has ∆Kn ⊂ Kn,
Π∗Kn ⊂ Kn+1 and, if n ≥ 2, ΠKn ⊂ Kn−1, and the analogous identities in
K∨.

We have the following

Lemma 6.7. The spaces K and K∨ are topologically spanned by the sets⋃
n≥1Kn and

⋃
n≥1K

∨
n .

Proof. Let ϕ be a function in K. For any integer n ≥ 2, one let ϕn denote
the unique element of Kn that equals ϕ on Tn−1. One has ‖ϕn‖2 ≤

√
3 ‖ϕ‖2.

Then, for any ϕ, the sequence (ϕn) weakly converges to ϕ in ℓ2(Γ). Hence,
the set

⋃
n≥1Kn is weakly dense in H and the vector subspace it spans is

therefore strongly dense. The result for K∨ follows, by symmetry.

Corollary 6.8. The spectrum of ∆ in H is discrete. Its eigenvalues are
exactly the elements of the set

⋃
n∈N

f−n(−2) ∪⋃n∈N
f−n(0).

Proof. As, for any n, the subspaces Kn and K∨
n are stable by ∆ and finite

dimensional, the fact that the spectrum of ∆ in H is discrete immediately
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follows from lemma 6.7. The exact determination of the eigenvalues is ob-
tained as in section 3. A formula for the characteristic polynomial of ∆ in
Kn is given in proposition 13.6.

We can now finish the proof of theorem 1.1 with the following

Proposition 6.9. Let Φ⊥ be the orthogonal complement in ℓ2(Γ) of the cyclic
space Φ spanned by ϕ0. Then, the spectrum of ∆ in Φ⊥ is discrete and the
set of its eigenvalues is exactly

⋃
n∈N

f−n(−2) ∪⋃n∈N
f−n(0).

Before to proving this proposition, let us establish a preliminary result.
For ϕ and ψ in ℓ2(Γ), let µϕ,ψ denote the unique complex Borel measure on
R such that, for any polynomial p in C[X], one has

∫
R
pdµϕ,ψ = 〈p(∆)ϕ, ψ〉.

One has the following

Lemma 6.10. For any ϕ and ψ in ℓ2(Γ), one has µΠϕ,ψ = f∗µϕ,Π∗ψ.

Proof. For any p in C[X], one has, by lemma 3.1,
∫

R

pdµΠϕ,ψ = 〈p(∆)Πϕ, ψ〉 = 〈p(f(∆))ϕ,Π∗ψ〉 =

∫

R

(p ◦ f)dµϕ,Π∗ψ.

Proof of proposition 6.9. By corollaries 5.4 and 5.6, the eigenspaces associate
to the elements of

⋃
n∈N

f−n(−2) ∪⋃n∈N
f−n(0) are non zero. Let P denote

the orthogonal projection onto Φ⊥ in ℓ2(Γ). By proposition 6.4, the operator
P commutes with ∆, Π and Π∗. To prove the proposition, it suffices to
establish that, for any finitely supported ϕ, for any ψ in ℓ2(Γ), the measure
µPϕ,ψ is atomic and concentrated on the set

⋃
n∈N

f−n(−2) ∪
⋃
n∈N

f−n(0).
Let still q0, r0, q

∨
0 and r∨0 be the neighbors of p0 and p∨0 and, for any integer

n, Tn be the n-triangle containing p0 and T ∨
n be the n-triangle containing p∨0 .

One let Ln denote the space of functions on Γ whose support is contained in
the union of Tn, T ∨

n and of the neighbors of the vertices of Tn and of T ∨
n . One

has, for n ≥ 1, ΠLn ⊂ Ln−1 and Π∆Ln ⊂ Ln−1. Let us show, by induction
on n, that, for any function ϕ in Ln, for any ψ in ℓ2(Γ), the measure µPϕ,ψ
is atomic and concentrated on the set

⋃
n∈N

f−n(−2) ∪
⋃
n∈N

f−n(0).
For n = 0, L0 is the space of functions which are zero outside the set

{p0, q0, r0, p
∨
0 , q

∨
0 , r

∨
0 }. One easily checks that this space is spanned by the

functions ϕ0, ∆ϕ0, ψ0, ∆ψ0, χ0 and χ∨
0 . In this case, the description of the

spectral measures follows immediately from corollaries 6.3, 6.6 and 6.8.
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If the result is true for some integer n, let us pick some ϕ in Ln+1. Then,
the functions Πϕ and Π∆ϕ are in Ln and, by induction, for any ψ in ℓ2(Γ),
the measures µΠPϕ,ψ = µPΠϕ,ψ and µΠ∆Pϕ,ψ = µPΠ∆ϕ,ψ are atomic and con-
centrated on the set

⋃
n∈N

f−n(−2)∪
⋃
n∈N

f−n(0). By lemma 6.10, the mea-
sures µPϕ,Π∗ψ and µ∆Pϕ,Π∗ψ = µPϕ,∆Π∗ψ are thus atomic and concentrated
on the set

⋃
n≥1 f

−n(−2) ∪
⋃
n≥1 f

−n(0). Now, by lemma 3.7, the spectrum
of ∆ in the orthogonal complement of the subspace of ℓ2(Γ) spanned by
the image of Π∗ and by the one of ∆Π∗ equals {−2, 0}. Therefore, for
any ψ in ℓ2(Γ), the measure µPϕ,ψ is atomic and concentrated on the set⋃
n∈N

f−n(−2) ∪⋃n∈N
f−n(0). The result follows.

7 Finite quotients of Γ

In this section, we apply the previous methods to the description of the
spectrum of certain finite graphs which are strongly related to Γ.

Let Φ and Ψ be graphs. We shall say that a map ̟ : Φ → Ψ is a
covering map if, for any p in Φ, the map ̟ induces a bijection from the set
of neighbors of p onto the set of neighbors of ̟(p). The composition of two
covering maps is a covering map. If Φ and Ψ are 3-regular graphs and if
̟ : Φ → Ψ is a covering map, there exists a unique covering map ˆ̟ : Φ̂ → Ψ̂
such that Π ˆ̟ = ̟Π. Conversely, proceeding as in lemma 2.2, one proves
that every covering map Φ̂ → Ψ̂ is of this form.

Let us fix four distinct elements a, b, c and d. Let Γ0 denote the graph
obtained by endowing the set {a, b, c, d} with the relation that links every
pair of distinct points: this is a 3-regular graph. Its automorphism group
equals the permutation group S(a, b, c, d) of the set {a, b, c, d}.

Lemma 7.1. Let Φ be a 3-regular graph and ̟ : Φ → Γ0 be a covering map.
Then, the map ˜̟ : Φ̂ → Γ0, (p, q) 7→ ̟(q) is a covering map. The map
̟ 7→ ˜̟ is a S(a, b, c, d)-equivariant bijection from the set of covering maps
Φ → Γ0 onto the space of covering maps Φ̂ → Γ0.

The construction of the covering ˜̟ is pictured in figure 10.

Démonstration. Let p be a point of Φ and let q, r and s be the neighbors of
p. After an eventual permutation of the elements of {a, b, c, d}, suppose one
has ̟(p) = a, ̟(q) = b, ̟(r) = c and ̟(s) = d. Then, one has ˜̟ (p, q) = b,
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Figure 10: Construction of the covering map ˜̟

˜̟ (q, p) = a, ˜̟ (p, r) = c and ˜̟ (p, s) = d and hence ˜̟ is really a covering
map.

Conversely, let ω : Φ̂ → Γ0 be a covering map. Let still p be a point of
Φ, with neighbors q, r and s. Again, after an eventual permutation, suppose
one has ω(p, q) = b, ω(p, r) = c and ω(p, s) = d. Then, as ω is a covering
map, one necessarily has ω(q, p) = ω(r, p) = ω(s, p) = a. Thus, there exists
a map ̟ : Φ → Γ0 such that, for any p and q in Φ with p ∼ q, one has
ω(q, p) = ̟(p). By construction, ̟ is a covering map and one has ˜̟ = ω.

For any nonnegative integer n, let Γn = Γ̂(n) be the graph obtained by
replacing each point of Γ0 by a n-triangle. By lemma 2.2, the automor-
phism group of Γn naturally identifies with S(a, b, c, d). From lemma 7.1,
one deduces the following

Corollary 7.2. For any nonnegative integers n ≤ m, there exists covering
maps Γm → Γn. The group S(a, b, c, d) acts simply transitively on the set of
these covering maps.

Proof. Covering maps Γ0 → Γ0 are simply bijections of Γ0 and the corollary
is thus true for m = n = 0. By induction, by lemma 7.1, the corollary is still
true for any nonnegative integer m and n = 0. Finally, as, if Φ and Ψ are
3-regular graphs, there exists a natural bijection between the sets of covering
maps Φ → Ψ and Φ̂ → Ψ̂, again, by induction, the corollary is true for any
nonnegative integers m ≥ n.

Let us now go back to Γ. Let q0 and r0 be the two neighbors of p0 that are
distinct from p∨0 and q∨0 and r∨0 be the two neighbors of p∨0 that are distinct
from p0. We have the following
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Lemma 7.3. There exists a unique covering map ̟ : Γ → Γ0 such that
̟(p0) = a, ̟(q0) = c, ̟(r0) = d, ̟(p∨0 ) = b, ̟(q∨0 ) = c and ̟(r∨0 ) = d.

This covering map is pictured in figure 3.

Proof. Let n ≥ 1 be an integer or the infinity and T be a n-triangle. Let
̟ : T → Γ0. Say that ̟ is a quasi-covering map if, for any point p in T −∂T ,
̟ induces a bijection from the set of neighbors of p onto Γ0 − {̟(p)} and
if, for any point p in ∂T , the values of ̟ on the neighbors of p are distinct
elements of Γ0−{̟(p)}. In this case, one still let ˜̟ denote the map T̂ → Γ0

such that, for any p and q in T with p ∼ q, one has ˜̟ (p, q) = ̟(q) and that,
for any p in ∂T = ∂T̂ , if the neighbors of p in T are q and r, ˜̟ (p) is the unique
element of Γ0−{̟(p), ̟(q), ̟(r)}. Proceeding as in the proof of lemma 7.1,
one easily checks that the map ̟ 7→ ˜̟ is a S(a, b, c, d)-equivariant bijection
from the set of quasi-covering maps T → Γ0 onto the set of quasi-covering
maps T̂ → Γ0.

Therefore, for any n ≥ 1, if Tn is the n-triangle containing p0 in Γ, there
exists a unique quasi-covering map ̟n from Tn into Γ0 such that ̟n(p0) =
a, ̟n(q0) = c and ̟n(r0) = d. By uniqueness, ̟n an ̟n+1 coincide on
Tn. Hence, there exists a unique quasi-covering map ̟∞ from the infinite
triangle T∞ with vertex p0 into Γ0 such that ̟∞(p0) = a, ̟∞(q0) = c and
̟∞(s0) = d. In the same way, if T ∨

∞ is the infinite triangle with vertex
p∨0 , there exists a unique quasi-covering map ̟∨

∞ from T ∨
∞ into Γ0 such that

̟∨
∞(p∨0 ) = b, ̟∨

∞(q∨0 ) = c and ̟∨
∞(s∨0 ) = d. The map ̟ : Γ → Γ0 whose

restriction to T∞ is ̟∞ and whose restriction to T ∨
∞ is ̟∨

∞ is therefore the
unique covering map from Γ into Γ0 enjoying the required properties.

Again, from lemmas 7.1 and 7.3, one deduces the following

Corollary 7.4. For any nonnegative integer n, there exists covering maps
Γ → Γn. The group S(a, b, c, d) acts simply on the set of these covering
maps. This action admits two orbits: on one hand, the set of covering maps
̟ such that ̟(q0) = ̟(q∨0 ), on the other hand, the set of covering maps ̟
such that ̟(q0) = ̟(r∨0 ).

We shall now describe, for any integer n, the spectral theory of the graph
Γn. Let still f denote the polynomial X2−X−3. The methods from sections
3 and 5 allow to prove the following
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Proposition 7.5. For any nonnegative integer n, the characteristic polyno-
mial of ∆ in ℓ2(Γn) is

(X − 3)(X + 1)3
n−1∏

p=0

(f p(X) − 2)3(f p(X))2.3n−1−p

(f p(X) + 2)1+2.3n−1−p

.

Recall that, in section 3.9, we have defined splitable graphs. The proof
uses the following

Lemma 7.6. Let Φ be a 3-regular connected graph. The graph Φ̂ is non
splitable. In particular, for any nonnegative integer n, the graph Γn is non
splitable.

Proof. As every point of Φ̂ is contained in a 1-triangle, every point may be
joined to itself by a path with odd length and hence Φ̂ is non splitable. In
the same way, every point of Γ0 may be joined to itself by a path with odd
length.

Proof of proposition 7.5. We shall prove this result by induction on n. For
n = 0, the space ℓ2(Γ0) has dimension 4 and, for the natural action of
the group S(a, b, c, d), it is the sum of two irreducible non isomorphic sub-
spaces, the space of constant functions and the space of functions ϕ such that
ϕ(a) +ϕ(b) +ϕ(c) +ϕ(d) = 0. The operator ∆ commutes with the action of
S(a, b, c, d) and hence stabilizes both these spaces. In the first one, it acts
by multiplication by 3 and, in the second one, by multiplication by −1. Its
characteristic polynomial is therefore (X − 3)(X + 1)3.

Suppose the result has been proved for n. By lemma 7.6, Γn is non
splitable. Therefore, if H is the subspace of ℓ2(Γn) spanned by the image of
Π∗ and by the one of ∆Π∗, by corollary 3.6 and lemma 5.1, the characteristic
polynomial of ∆ in the orthogonal complement in H of the constant functions
is

(f(X) + 1)3
n−1∏

p=0

(f p+1(X) − 2)3(f p+1(X))2.3n−1−p

(f p+1(X) + 2)1+2.3n−1−p

and hence, as f(X) + 1 = (X + 1)(X − 2), the characteristic polynomial of
∆ in H may be written

(X − 3)(X + 1)3
n∏

p=0

(f p(X) − 2)3
n∏

p=1

(f p(X))2.3n−p

(f p(X) + 2)1+2.3n−p

.
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It remains to determine the dimensions of the eigenspaces associate to
the eigenvalues 0 and −2 in the orthogonal complement of H in ℓ2(Γn+1).
They are described by lemma 3.7. Now, if n ≥ 1, the 2-triangles in Γn+1

are the inverse images by Π2 of the points in Γn−1 and every point in Γn+1

belongs to a unique 2-triangle. Proceeding as in lemma 5.2, one shows that
the eigenspace associate to the eigenvalue 0 in ℓ2(Γn+1) is isomorphic to
the space of functions on the edges of Γn−1. As Γn−1 is a 3-regular graph
containing 4.3n−1 points, it has 2.3n edges and the eigenspace associate to the
eigenvalue 0 has dimension 2.3n. If n = 0, by using the characterization of
lemma 3.7, one checks through a direct computation the eigenspace associate
to the eigenvalue 0 in ℓ2(Γ1) has dimension 2. Then, as, by corollary 3.6
and lemma 5.1, H has dimension 2 dim ℓ2(Γn)− 1 = 8.3n− 1, the orthogonal
complement of the sum of H and of the eigenspace associate to the eigenvalue
0 has dimension 4.3n+1−(8.3n−1)−2.3n = 2.3n+1. By lemma 3.7, this space
is the eigenspace associate to the eigenvalue −2 of ∆ and the characteristic
polynomial of ∆ in ℓ2(Γn+1) has the form which is given in the setting.

8 The planar compactification of Γ

We now consider the set X of those elements (pk,l)(k,l)∈Z2 of (Z/2Z)Z2

such
that, for any integers k and l, one has pk,l + pk+1,l + pk,l+1 = 0 in Z/2Z.
This is a compact topological space for the topology induced by the product
topology. We let T and S denote the two maps from X into X such that,
for any p in X, one has Tp = (pk+1,l)(k,l)∈Z2 and Sp = (pk,l+1)(k,l)∈Z2 . The
homeomorphisms T and S span the natural action of Z2 on X.

For p in X and k and l in Z, one has pk,l + pk−1,l+1 + pk−1,l = 0 and
pk,l + pk,l−1 + pk+1,l−1 = 0. Now, the finite subgroup S of GL2(Z) which

is spanned by the matrices

(
−1 −1
0 1

)
and

(
0 1
−1 −1

)
exchanges the three

pairs of vectors {(1, 0), (0, 1)}, {(−1, 1), (−1, 0)} and {(0,−1), (1,−1)} of Z2.
In particular, the group S acts on X in a natural way: for any p in X and s
in S, for any k and l in Z2, one has (sp)k,l = ps−1(k,l). The action of S on the
three pairs of vectors {(1, 0), (0, 1)}, {(−1, 1), (−1, 0)} and {(0,−1), (1,−1)}
identifies S with the permutation group of this set with 3 elements.

Let Y be the set of points p in X such that p0,0 = 1. The set Y is stable
by the action of S. For any p in Y , one let Yp denote the set of points in
the orbit of p under the action of Z2 that belong to Y . If p is some point in
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Y , one has p1,0 + p0,1 = 1 in Z/2Z and hence one and only one of the points
Tp and Sp belongs to Y . In the same way, one and only one of the points
T−1p and T−1Sp belongs to Y and one and only one of the points S−1p and
TS−1p belongs to Y . For p and q in Y , let us write p ∼ q if q belongs to
the set {Tp, Sp, T−1Sp, T−1p, S−1p, TS−1p}. This relation is symmetric and
S-invariant.

In the same way, if p belongs to Y , one let Ỹp denote the set of (k, l) in Z2

such that pk,l = 1 and, for any (i, j) and (k, l) in Ỹp, one writes (i, j) ∼ (k, l) if
(i−k, j− l) belongs to the set {(1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)}.
Then, Ỹp is a 3-regular graph. If the stabilizer of p in Z2 is trivial, Yp is a
3-regular graph and the natural map Ỹp → Yp is a graph isomorphism.

Let u denote the unique element of (Z/2Z)Z2

such that uk,l = 0 if and
only if k − l equals 0 modulo 3. The element u is periodic under the action
of Z2 and its stabilizer is the set of (k, l) in Z2 such that k − l equals 0
modulo 3. One checks that u belongs to X. Its orbit under the action of Z2

equals {u, Tu, Su} and is stable under the action of S: the elements with
signature 1 in S fix u, Tu and Su and the elements with signature −1 fix u
and exchange Tu and Su. We have the following

Lemma 8.1. Let p be in Y . The graph Ỹp is connected. If p is different from
Tu and Su, the set Yp, endowed with the relation ∼, is a connected 3-regular
graph and the natural map Ỹp → Yp is a covering map.

Proof. Let us show that Ỹp is connected. Let (k, l) be in Yp. After an eventual
permutation under the group S and an exchange of the roles of (0, 0) and
(k, l), one can suppose k and l are nonnegative. In this case, let us prove by
induction on k + l that (k, l) belongs to the same connected component of
Ỹp as (0, 0). If k + l = 0, this is trivial. Suppose now k + l > 0 and consider
ph,k+l−h, for 0 ≤ h ≤ k + l. Would all these elements of Z/2Z equal 1, one
would have, for any nonnegative integers i and j with i+j ≤ k+l−1, pi,j = 0,
which is impossible, since p0,0 = 1. After another eventual permutation by S,
one can therefore suppose there exists some integer 0 ≤ i ≤ l − 1 such that,
for any 0 ≤ j ≤ i, one has pk+j,l−j = 1, but pk+i+1,l−i−1 = 0. This situation
is pictured in figure 11. Then, the points (k + i, l − i) and (k, l) belong
to the same connected component in Ỹp and, as pk+i+1,l−i−1 = 0, one has
pk+i,l−i−1 = 1 and (k+i, l−i−1) belongs to Ỹp. As (k+i)+(l−i−1) = k+l−1,
the result follows by induction.

As the natural map Ỹp → Yp is onto, to conclude, it remains to prove that,
for p /∈ {Tu, Su}, the points of the set {p, Tp, Sp, T−1Sp, T−1p, S−1p, TS−1p}
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(k, l)

(k + i, l − i)
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(k + i, l − i− 1)

Figure 11: Connectedness of Ỹp

are distinct. Set Vp = {Tp, Sp, T−1Sp, T−1p, S−1p, TS−1p} and let us begin
by supposing that p belongs to Vp. Then, after an eventual action of the
group S, one can suppose one has p = Tp and p0,−1 = 1 and hence p1,−1 =
p0,−1 + p0,0 = 0, which contradicts the fact that Tp = p. One thus has
p /∈ Vp. Suppose now two elements of the set Vp equal each other. Again,
after an eventual action of the group S, one can suppose one has Tp = Sp,
Tp = T−1p or Tp = T−1Sp. If Tp = Sp, one has S−1Tp = p and we just
have proved it to be impossible. If Tp = T−1p, one has T 2p = p and the
family q = (p2k,2l)(k,l)∈Z2 belongs to Y and satisfies Tq = q: again, we just
have proved it to be impossible. Finally, if T−2Sp = p, still suppose, after
an eventual permutation, one has p0,−1 = 1. Then, one has p1,−1 = 0, and
hence, as T−2Sp = p, p−1,0 = 0. In the same way, one has p−2,0 = p0,−1 = 1
and p−1,−1 = p0,−1 + p−1,0 = 1. Again, this implies p−3,0 = p−1,−1 = 1,
p−2,−1 = p−1,−1+p−2,0 = 0 and, finally, p−3,−1 = p−2,−1+p−3,0 = 1, so that the
point q = T−3p again satisfies T−2Sq = q and q0,0 = q0,−1 = 1. By induction,
one deduces that, for any integer k ≤ 0, one has pk,0 = 1 if k equals 0 or 1
modulo 3 and that pk,0 = 0 if k equals 2 modulo 3. Proceeding in the same
way, one shows that p−1,1 = p−1,0+p0,0 = 1 and that, as T 2S−1p = p, p1,0 = 1.
Thus, one has p2,0 = p0,1 = p0,0 + p1,0 = 0, hence p3,0 = p1,1 = p1,0 + p2,0 = 1
and p3,−1 = p1,0 = 1. The point r = T 3p therefore also satisfies T−2Sr = r
and r0,0 = r0,−1 = 1, so that, for any k in Z, one has pk,0 = 0 if and only
if k equals 2 modulo 3. In particular, the sequence (pk,0)k∈Z is 3-periodic.
As T−2Sp = p, for any l in Z, the sequence (pk,l)k∈Z is 3-periodic and hence
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(1, 0)
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(−1, 2)a b
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Figure 12: The sets Y a, Y b and Y c

T 3p = p. Therefore, for any k and l in Z, if k− l equals 0 modulo 3, one has
T kSlp = p. As one has p0,0 = u1,0, p−1,0 = u−1,1 and p−1,1 = u−1,2, one has
p = Tu. Therefore, if p does not belong to {Tu, Su}, the relation ∼ induces
a 3-regular graph structure on the set Yp. By definition, the natural map
Ỹp → Yp is then a covering map. In particular, Yp is connected.

Let ε and η be in {0, 1}. Let X(ε,η) denote the set of elements p in X
such that, for any k and l in Z, if (k, l) equals (ε, η) in (Z/2Z)2, one has
pk,l = 0. If p belongs to X(ε,η), for any k and l in Z, one has p2k+1+ε,2l+1+η =
p2k+ε,2l+1+η = p2k+1+ε,2l+η. In particular, for (ε′, η′) 6= (ε, η), one has X(ε,η) ∩
X(ε′,η′) = {0} and, if p is a point in Y (ε,η) = Y ∩ X(ε,η) (one then has
(ε, η) 6= (0, 0)), the point p belongs to a triangle in the graphe Yp.

The groupe S acts on (Z/2Z)2 in a natural way and, for any s in S,
for any (ε, η) in (Z/2Z)2, one has Xs(ε,η) = sX(ε,η). From now on, we set
a = (1, 1), b = (0, 1), c = (1, 0) and T1 = {a, b, c}. We shall consider T1 as
a 1-triangle. The groupe S may be identified with the permutation group
S(a, b, c). One sets Ŷ = Y a ∪ Y b ∪ Y c: this is a disjoint union and the set Ŷ
is S-invariant. The elements of Y a, Y b and Y c are described by figure 12.

Let p be a point of Y . We shall let p̂a, p̂b and p̂c denote the elements of
(Z/2Z)Z

2

such that, for any k and l in Z, one has

(i) p̂a2k,2l = p̂a2k−1,2l = p̂a2k,2l−1 = pk,l and p̂a2k−1,2l−1 = 0.
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(ii) p̂b2k,2l = p̂b2k+1,2l = p̂b2k+1,2l−1 = pk,l and p̂b2k+2,2l−1 = 0.

(iii) p̂c2k,2l = p̂c2k,2l+1 = p̂c2k−1,2l+1 = pk,l and p̂c2k−1,2l+2 = 0.

One checks that, by construction, one has p̂a = T p̂b = Sp̂c and that, for any
s in S, for any d in T1, one has ŝpsd = s

(
p̂d
)
.

Lemma 8.2. Let d be in T1. The map p 7→ p̂d induces a homomorphism
from Y onto Y d. Conversely, a point p of Y − {Tu, Su} belongs to Ŷ if and
only if, for any q in Yp, q belongs to some triangle contained in Yp. In this
case, there exists a unique d in T1 and a unique point r of Y such that p = r̂d

and the triangle containing p is {r̂a, r̂b, r̂c}.

The proof uses the following

Lemma 8.3. Let p be a point of Y − {Tu, Su} such that each point of Yp is
contained in a triangle. Then the triangle containing p is either {p, T−1p, S−1p}
or {p, Tp, TS−1p} or {p, Sp, T−1Sp}. If it is of the form {p, T−1p, S−1p},
the third neighbor q of p is either Tp or Sp. Finally, if q = Tp, the triangle
containing q is {q, T q, TS−1q} and if q = Sp, the triangle containing q is
{q, Sq, T−1Sq}.

Proof. Let p be as in the setting. After an eventual action of S, one can
suppose that the triangle containing p contains the point T−1p. Then, by
definition, the only possible common neighbors of p and T−1p are T−1Sp
and S−1p. Now, as T−1p belongs to Y , one has p−1,0 = 1, hence p−1,1 =
p0,0 + p−1,0 = 0 and T−1Sp /∈ Y . Therefore, the triangle containing p is
{p, T−1p, S−1p}. The other cases follow, by letting S act on the situation.

In case the triangle containing p is {p, T−1p, S−1p}, the third neighbor q
of p is, by construction, necessarily in {Tp, Sp}. Suppose now, still after an
eventual permutation under S, one has q = Tp. Then, one has p0,1 = 0 =
p1,−1 and hence T−1Sq and S−1q do not belong to Y . The triangle containing
q is thus {q, T q, TS−1q}. The other case follows, by symmetry.

Proof of lemma 8.2. One easily checks that, for d in T1, the point p̂d belongs
to Y d and that the thus defined map induces a homeomorphism from Y onto
Y d.

Conversely, let p be a point of Y −{Tu, Su} such that every element of Yp
is contained in a triangle of Yp. Then, by definition and by lemma 8.1, every
point of Ỹp is contained in a triangle of Ỹp. Let (k, l) be a point of Ỹp. By
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lemma 8.3, the triangle containing (k, l) is of the form {(k, l), (k−1, l), (k, l−
1)}, {(k, l), (k + 1, l), (k + 1, l − 1)} or {(k, l), (k, l + 1), (k − 1, l + 1)}. Let
(ε(k, l), η(k, l)) denote the unique element of (Z/2Z)2 that does not equal
one of the elements of this triangle modulo (2Z)2.

Let us prove that, for any (i, j) and (k, l) in Ỹp with (i, j) ∼ (k, l), one
has (ε(i, j), η(i, j)) = (ε(k, l), η(k, l)). If (i, j) and (k, l) belong to the same
triangle, this is clear. Else, after an eventual action of S, by lemma 8.3, one
can suppose that the triangle containing (k, l) is {(k, l), (k− 1, l), (k, l− 1)},
that (i, j) = (k + 1, l) and hence that the triangle containing (i, j) is {(k +
1, l), (k + 2, l), (k + 2, l − 1)}. Then, by definition, one has (ε(i, j), η(i, j)) =
(ε(k, l), η(k, l)).

As, by lemma 8.1, the graph Ỹp is connected, the function (ε, η) is con-
stant. By definition, for any integers k and l, one has p2k+ε,2l+η = 0, hence
p belongs to Y (ε,η). The property on triangles immediately follow from the
definition of the objects.

Let p be a point of Ŷ . One let Π̄p and θ1(p) denote the unique elements of

Y and T1 for which one has ̂̄Πp
θ1(p)

= p. By construction, one has θ1(p) = a
(resp. b, resp. c) if and only if the triangle containing p is {p, T−1p, S−1p}
(resp. {p, Tp, TS−1p}, resp. {p, Sp, T−1Sp}). The maps Π̄ and θ1 are S-
equivariant. The map Π̄ is continuous and θ1 is locally constant. For any p
in Ŷ , θ1 induces a bijection from the 1-triangle containing p onto T1.

Lemma 8.4. Let p be in Y −{Tu, Su}. There exists a unique graph isomor-
phism σ : Ŷp → Π̄−1(Yp) such that Π̄σ = σΠ.

Démonstration. By lemma 2.2, such an isomorphism is necessarily unique.
Let us prove that it exists. Let q be the neighbor of p belonging to {Tp, Sp},
r its neighbor in {T−1p, T−1Sp} and s its neighbor in {S−1p, TS−1p}. One
sets σ(p, q) = p̂a, σ(p, r) = p̂b and σ(p, s) = p̂c. Then, the three points
σ(p, q), σ(p, r) and σ(p, s) are neighbors in Yp. Let us check, for example,
that σ(p, q) is a neighbor of σ(q, p). After an eventual action of S, one can
suppose one has q = Tp. Then, one has p = T−1q and hence σ(q, p) = q̂b. By
construction, one then has T p̂a = q̂b, hence σ(q, p) = Tσ(p, q), what should
be proved.

From now on, we shall, for any p in Ŷ , identify the graphs Ŷp and Π̄−1(Yp).
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We will now construct an element p of Y for which the graph Yp is iso-
morphic to the Pascal graph. Set, for any k, l ≥ 0, p−k,−l = pk+l+1,−l =

(
l+k
k

)

in Z/2Z and, for any k, l in Z with either l > 0 or k ≥ 1 and k + l ≥ 0,
pk,l = 0. One easily checks that p belongs to X and hence to Y since p0,0 = 1.
We have the following

Proposition 8.5. The point p belongs to Ŷ and one has Π̄p = p and θ1(p) =
a. There exists an isomorphism from the Pascal graph Γ onto Yp sending p0

to p and p∨0 to Tp.

This planar representation of the Pascal graph appears in figure 1. The
proof uses the following

Lemma 8.6. Let 0 ≤ k ≤ n be integers. Then, the integers
(
n

k

)
,
(
2n
2k

)
,
(
2n+1
2k

)

and
(
2n+1
2k+1

)
equal each other modulo 2.

Proof. Let A andB be indeterminates. In the characteristic 2 ring Z/2Z[A,B],
one has (A+B)n =

∑n

k=0

(
n

k

)
AkBn−k and hence (A+B)2n =

∑n

k=0

(
n

k

)
A2kB2n−2k.

Therefore, by uniqueness, for any 0 ≤ k ≤ n, one has, in Z/2Z,
(
2n
2k

)
=
(
n

k

)

and
(

2n
2k−1

)
=
(

2n
2k+1

)
= 0. By the classical identity, one then has

(
2n+1
2k

)
=(

2n
2k−1

)
+
(
2n
2k

)
=
(
2n
2k

)
and

(
2n+1
2k+1

)
=
(
2n
2k

)
+
(

2n
2k+1

)
=
(
2n
2k

)
.

Proof of proposition 8.5. By using lemma 8.6, one checks that one has p =
p̂a. Therefore, p belongs to Ŷ , Π̄p = p and θ1(p) = a. By induction, using
lemma 8.4, one deduces that, for any integer n, p is the vertex of a n-triangle
contained in Yp. In the same way, one has Π̄(Tp) = Tp, θ1(Tp) = b and Tp
is the vertex of a n-triangle contained in Yp. By lemma 8.1, the graph Yp is
connected and hence it equals the union of both of these infinite triangles.
The existence of the isomorphism in question follows.

From now on, we shall identify p with p0, Tp with p∨0 and Γ with Yp. One
let Γ̄ denote the closure of Γ in Y and, for any p in Γ̄, one sets Γp = Yp. One
has Π̄Γ̄ = Γ̄.

We will now describe the set Γ̄ in a more detailed way. For this purpose,
let us introduce a partition of Ŷ into six subsets that refines the partition Ŷ =
Y a∪Y b∪Y c. Let b be a point of Ŷ . Then, by lemma 8.3, the set of neighbors
of p is either {Tp, T−1p, S−1p} or {Sp, T−1p, S−1p} or {T−1p, Tp, TS−1p} or
{T−1Sp, Tp, TS−1p} or {S−1p, Sp, T−1Sp} or {TS−1p, Sp, T−1Sp}. Let us
call the set of q in Ŷ for which one has {(k, l) ∈ Z2|T kSlp ∼ p} = {(k, l) ∈
Z2|T kSlq ∼ q} the keel of p. The keels are six closed subsets of Ŷ on which
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the group S act simply transitively. We let B0 denote the keel of p0, i

the element

(
−1 −1
0 1

)
of S and r the element

(
0 1
−1 −1

)
. The element i

identifies with the transposition (ab) of {a, b, c} and r with the cycle (cba).
For any integer n, set Ŷ (n) = Π̄−nY . Then, by a direct induction, by

lemmas 8.2 and 8.4, for any integer n, Ŷ (n) is the set of elements p in Y −
{Tu, Su} for which every point of Yp belongs to a n-triangle in Yp. One hence

has Γ ⊂
⋂
n∈N

Ŷ (n).

Lemma 8.7. Let n be an integer and p and q be in Ŷ (n+1) such that, for any
0 ≤ m ≤ n, Π̄mp and Π̄mq belong to the same keel. Then, for any k and l in
Z with k ≥ −2n, l ≥ −2n and k + l ≤ 2n, one has pk,l = qk,l.

Proof. Let us prove this result by induction on n. For n = 0, suppose, after
an eventual action of S, one has p, q ∈ B0. Then, one has p−1,0 = p0,0 =
p1,0 = p0,−1 = 1, so that p−1,−1 = p−1,0 + p0,−1 = 0 and, in the same way,
p1,−1 = p−1,1 = p0,1 = p−1,2 = 0 and p2,−1 = 1. As this is also true for q, the
lemma is true for n = 0.

Suppose now n ≥ 1 and the lemma has been proved for n−1. Pick p and q
as in the setting. Then, as p and q are in the same keel, one has θ1(p) = θ1(q).
After an eventual action of S, one can suppose one has θ1(p) = a, so that

p = ̂̄Πp
a

and q = ̂̄Πq
a

. The result now follows by induction and by the
definition of the map r 7→ r̂a.

Lemma 8.8. Let p be in Ŷ such that the keel of p is B0. Then, the keel of
p̂a is B0, the one of p̂b is iB0 and the one of p̂c is rB0 and p̂a is the vertex
of a 2-triangle in Γ̄. If q and r are two points in Ŷ (2) such that Π̄q and Π̄r
belong to the same keel, there exists r′ in the 1-triangle containing r in Yr
such that q and r′ belong to the same keel.

Proof. The first point follows directly from the construction of the objects.
Pick q and r as in the setting. After an eventual action of S, one can suppose
that the keel of Π̄q and of Π̄r is B0. The first part of the lemma now clearly
implies the setting.

Let Σ be the set of sequences (sn)n∈N of elements of S such that, for any
integer n, one has sn ∈ {sn+1, sn+1i, sn+1r}. We equip Σ with the topology
induced by the product topology and we let σ : Σ → Σ denote the shift map.
One let S act on Σ by left multiplication on all the components. The set Γ̄
is described by the following
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Proposition 8.9. One has Γ̄ =
⋂
n∈N

Ŷ (n). For any p in Γ̄, for any integer n,
let sn(p) be the unique element of S such that the keel of Π̄np is sn(p)B0. The
thus defined map s induces a S-equivariant homeomorphism from Γ̄ onto Σ
and one has σs = sΠ̄. The image of the point p0 by s is the constant sequence
with value e and the fixed points of Π̄ in Γ̄ are exactly the six images of p0 by
the action of the group S. Finally, for any p in Γ̄, the set Γp is dense in Γ̄.

Proof. As the set Γ is included in
⋂
n∈N

Ŷ (n), so is the set Γ̄. Conversely, let
us note that each of the six points T−1p0, T

−2p0, T
−2S−1p0, T

−1S−2p0, S
−2p0

and S−1p0 belong to a different keel. Therefore, if p is a point of
⋂
n∈N

Ŷ (n),
there exists a point q in Γ such that p and q belong to the same keel. By
induction, using lemma 8.8, one deduces that, for any integer n, there exists
a point qn of Γ such that, for any 0 ≤ m ≤ n, Π̄mp and Π̄mqn belong to the
same keel. By lemma 8.7, one then has qn −−−→

n→∞
p and p belongs to Γ̄.

Let p be in Γ̄. As we have just seen, the point p is completely determined
by the sequence s(p) = (sn(p))n∈N. The map s is clearly continuous and
S-equivariant and, by definition, one has sΠ̄ = σs. Besides, by lemma 8.2, if
p is a point of Γ̄, it admits exactly three antecedents by Π̄ and, by lemma 8.8,
the keels of these antecedents are s0(p)B0, s0(p)iB0 and s0(p)rB0. It follows
that the map s takes its values in Σ and that it induces a homeomorphism
from Γ̄ onto Σ.

By construction, one has s0(p0) = e and, as, by proposition 8.5, Π̄p0 = p0,
for any nonnegative integer n, sn(p0) = e. In particular, the other fixed points
of Π̄ are the images of p0 by the action of S.

Finally, if p is a point of Γ̄, by lemmas 2.4 and 8.4, for any nonnegative
integer n, the n-triangle containing p in Γp is the set Π̄−n (Π̄np

)
. As r and

i span the group S, one easily checks that the subshift of finite type (Σ, σ)
is transitive, so that, for any t in Σ, the set

⋃
n∈N

σ−n(σnt) is dense in Σ.
Therefore, for any p in Γ̄, Γp is dense in Γ̄.

9 Triangular functions and integration on Γ̄

In this section, we study a particular class of locally constant functions on Γ̄.
We use these functions to determine some properties of a remarkable Radon
measure on Γ̄. For p in Γ̄, let still, as in section 8, (sn(p)B0)n∈N denote the
associate keel sequence.

Let n ≥ 1 be an integer and T be a n-triangle in Γ̄. Then, by lemma
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8.4, the set Π̄n−1T is a 1-triangle of Γ̄. Therefore, the map θ1 ◦ Π̄n−1 induces
a bijection from the set of vertices of T onto T1 = {a, b, c}. One let an
(resp. bn, resp. cn) denote the set of vertices p of n-triangles of Γ̄ such that
θ1(Π̄

n−1p) = a (resp. b, resp. c) and θn the map which sends a vertex p
of a n-triangle of Γ̄ to the element of {an, bn, cn} to which it belongs. Let
Tn be the n-triangle Tn(an, bn, cn). By lemma 2.3, the map θn extends in a
unique way to a map Γ̄ → Tn, still denoted by θn, that, on each n-triangle
T of Γ̄, induces a graph isomorphism from T onto Tn. This map is locally
constant. For n = 1, this definition is coherent with the notations of section
8, provided one identifies a with a1, b with b1 and c with c1. By abuse of
language, we will sometimes consider T0 as a set containing only one element
and θ0 as the constant map Γ̄ → T0.

For any n ≥ 1, the group S act on Tn and identifies with S(an, bn, cn).
We shall identify Tn+1 and T̂n through the S-equivariant bijection from
{an, bn, cn} onto {an+1, bn+1, cn+1} that sends an to an+1, bn to bn+1 and cn
to cn+1. In particular, one let Π : Tn+1 → Tn denote the triangle contracting
map coming from this identification and Π∗ and Π the associate operators
ℓ2(Tn) → ℓ2(Tn+1) and ℓ2(Tn+1) → ℓ2(Tn).

Let, for any n ≥ 2, anbn, ancn, bnan, bncn, cnan and cnbn be the points of
Tn defined by corollary 2.6. The principal properties of the maps θn, n ≥ 1,
we shall use in the sequel are described by the following

Lemma 9.1. Let n ≥ 1 be an integer. One has Πθn+1 = θnΠ̄. If p and q are
points of Γ̄ such that θn+1(p) = θn+1(q), one has θn(p) = θn(q). In particular,
one has θn(p) = an if and only if θn+1(p) is an+1, bn+1an+1 or cn+1an+1. Let
p and q be in Γ̄, such that θn(p) = θn(q). For any 0 ≤ m ≤ n, if θn(p) is not
contained in a m-triangle which admits one of the vertices of Tn as a vertex,
one has sm(p) = sm(q).

Proof. Let T be a (n+1)-triangle of Γ̄. The map θn+1 induces an isomorphism
from T onto Tn+1 and the map θn induces an isomorphism from the n-triangle
Π̄T onto Tn. As, by definition, the maps θnΠ̄ and Πθn+1 coincide on the set
∂Tn, one has, by lemma 2.2, Πθn+1 = θnΠ̄.

Let p, q and r be the vertices of T , so that θn+1(p) = an+1, θn+1(q) = bn+1

and θn+1(r) = cn+1. By definition, one has θn(p) = an. Let us prove that
θn(qp) = θn(rp) = an. This amounts to proving that one has θ1

(
Π̄n−1qp

)
=

θ1
(
Π̄n−1rp

)
= a1. Now, as above, one has θ2

(
Π̄n−1qp

)
= Πn−1θn+1(qp) =

b2a2 and θ2
(
Π̄n−1rp

)
= Πn−1θn+1(rp) = c2a2, so that we only have to deal
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with the case where n = 1. Then, with the notations of section 8, if s = Π̄2p,

one checks that one has qp = ̂̂sb
a

and rp = ̂̂sca, whence the result.
In particular, if S is some n-triangle in Γ̄, the restriction of θn to ∂S

is completely determined by the restriction of θn+1 to ∂S. By definition,
the values of θn are thus determined by those of θn+1. Finally, let p and q
be such that θn(p) = θn(q) and let us show the assumption of the lemma
by induction on n ≥ 1. For n = 1, this assumption is empty. Suppose
n ≥ 2 and the assumption has been established for n − 1. Then, one has
θn−1

(
Π̄p
)

= Πθn(p) = Πθn(q) = θn−1

(
Π̄q
)

and, for any integer m with
1 ≤ m ≤ n, if θn(p) does not belong to the m-triangle which admits one
of the vertices of Tn as a vertex, θn−1(Π̄p) does not belong to the (m − 1)-
triangle which admits one of the vertices of Tn−1 as a vertex and hence, by
induction, sm(p) = sm−1

(
Π̄p
)

= sm−1

(
Π̄q
)

= sm(q). It remains to handle
the case where m = 0. Suppose thus θn(p) is not a vertex of Tn and let us
prove that s0(p) = s0(q). Note that, by the first part of the proof, one has
θ1(p) = θ1(q). After an eventual action of S, suppose θ1(p) = a1. Then,
let T be the n-triangle of Γ̄ containing p and p′ be the neighbor of p that
does not belong to the 1-triangle containing p. As p is not a vertex of T , p′

belongs to T and, by lemma 8.3, s0(p) is either B0 or riB0, following θ1(p
′)

is b1 or c1. Now, as θn induces an isomorphism from T onto Tn, θn(p′) only
depends on θn(p) and hence, still by the first part of the lemma, the value of
θ1 at p′ is completely determined by the value of θn at p. Therefore, the value
of s0 at p is determined by the value of θn at p, what should be proved.

For any integer n ≥ 1, by proposition 8.5, one has θn(p0) = an = θn(rip0),
so that the coding of Γ̄ by the maps θn, n ≥ 1 is ambiguous. This ambiguities
are described by the following

Corollary 9.2. Let p and q be in Γ̄ such that, for any integer n, one has
θn(p) = θn(q). Then, if p 6= q, there exists s in S such that p belongs to the
infinite triangle with vertex sp0 in sΓ and q belongs to the infinite triangle
with vertex srip0 in sriΓ.

Proof. Suppose one has p 6= q. Then, by proposition 8.9, there exists some
natural integer m such that sm(p) 6= sm(q). By lemma 9.1, for any integer
n ≥ m, the point θn(p) = θn(q) belongs to the m-triangle which admits one
of the vertices of Tn as a vertex. Set p′ = Π̄mp and q′ = Π̄mq. By lemma
9.1, for any integer n, one has θn(p

′) = Πmθn+m(p) = Πmθn+m(q) = θn(q
′)

and this point is one of the vertices of Tn. As, for any integer n ≥ 1, one has
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θn(an+1) = an, θn(bn+1) = bn and θn(cn+1) = cn, one can suppose, after an
eventual action of S, one has, for any integer n ≥ 1, θn(p

′) = θn(q
′) = an. As

θ1(p
′) = a1, the keel of p′ is B0 or riB0. After another action of S, suppose

this keel is B0. Then, by lemma 8.8, the keel of Π̄p′ is B0, iB0 or r−1B0.
As θ1(Π̄p

′) = Πθ1(p) = a1, the keel of Π̄p′ is B0 and, by induction, for any
integer n, one has sn(p

′) = e, so that, by proposition 8.9, p′ = p0 and p
belongs to the infinite triangle T∞(p0) with vertex p0 in Γ. In the same way,
one has q′ = p0 or q′ = rip0 and q belongs to the infinite triangle with vertex
p0 in Γ or to the infinite triangle with vertex rip0 in riΓ. For any integer n,
the map θn induces a bijection from the n-triangle with vertex p0 in Γ onto
Tn. Therefore, if p′′ is some point in T∞(p0) such that, for any integer n, one
has θn(p

′′) = θn(p), one has p′′ = p. As we supposed p 6= q, q belongs to the
infinite triangle with vertex rip0 in riΓ, what should be proved.

Let n be an integer. We shall say that a function ϕ : Γ̄ → C is n-triangular
if it may be written ϕ = ψ ◦ θn, for some function ψ on Tn. When there is no
ambiguity, to simplify notations, we shall identify ϕ and ψ. By lemma 9.1, a
n-triangular function is (n+1)-triangular. In particular, triangular functions
constitute a subalgebra of the algebra of locally constant functions on Γ̄. As,
for any triangular function ϕ, one has ϕ(p0) = ϕ(rip0), this subalgebra is not
dense in C0

(
Γ̄
)

for the topology of uniform convergence.
From now on, we let µ denote the Borel probability measure on Γ̄ whose

image under the coding map of proposition 8.9 is the maximal entropy mea-
sure for σ on Σ. In other terms, µ is the unique measure such that, for any
sequence t0, . . . , tn of elements of S, if, for any 0 ≤ m ≤ n − 1, one has
tm ∈ {tm+1, tm+1i, tm+1r}, then µ

(
t0B0 ∩ Π̄−1t1B0 ∩ . . . ∩ Π̄−ntnB0

)
= 1

6.3n .
By definition, the measure µ is Π̄-invariant and S-invariant.

For any Borel function ϕ on Γ̄, one sets Π̄∗ϕ = ϕ◦Π̄. For any 1 ≤ p ≤ ∞,
the operator Π̄∗ preserves the norm of Lp

(
Γ̄, µ

)
. One let Π̄ denote its adjoint,

that is, for any Borel function ϕ on Γ̄, one has Π̄ϕ(p) = 1
3

∑
Π̄(q)=p ϕ(q). One

has Π̄1 = 1 and, for any 1 ≤ p ≤ ∞, the operator Π̄ is bounded with norm
1 in Lp

(
Γ̄, µ

)
. Finally, one has Π̄Π̄∗ = 1.

The integral of triangular functions with respect to the measure µ may
be computed in a natural way:

Lemma 9.3. Let n be a nonnegative integer and ϕ be a n-triangular function.
One has

∫
Γ̄
ϕdµ = 1

3n

∑
p∈Tn

ϕ(p).
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In other terms, the image measure of µ by θn is the normalized counting
measure on Tn.

Proof. Let us prove the result by induction on n. If n = 0, ϕ is constant
and the lemma is evident. If n ≥ 1, as, by lemma 9.1, one has Πθn =
θn−1Π̄, the function Π̄ϕ is (n − 1)-triangular and one has, by induction,∫
Γ̄
ϕdµ =

∫
Γ̄

Π̄ϕdµ = 1
3n−1

∑
p∈Tn−1

1
3

∑
Π(q)=p ϕ(q) = 1

3n

∑
p∈Tn

ϕ(p), whence
the result.

From now on, for any integer n, one shall identify θn and the associate
partition of the measure space (Γ̄, µ). By lemma 9.1, this sequence of par-
titions is increasing. As µ is atom free, one has µ

(⋃
s∈S

sΓ
)

= 0 and, by
corollary 9.2, for any p and q in the total measure set Γ̄ −

⋃
s∈S

sΓ, if, for
any integer n, one has θn(p) = θn(q), one has p = q. For any ϕ in L1

(
Γ̄, µ

)
,

for any integer n, one let E(ϕ|θn) denote the conditional expectation of ϕ
knowing θn, that is, for any p in Tn, one has E(ϕ|θn)(p) = 1

µ(θ−1
n (p))

∫
θ−1
n (p)

ϕdµ.

Lemma 9.4. For any 1 ≤ p <∞, for any ϕ in Lp
(
Γ̄, µ

)
, one has E(ϕ|θn) −−−→

n→∞
ϕ in Lp

(
Γ̄, µ

)
. In particular, the space of triangular functions is dense in

Lp
(
Γ̄, µ

)
. In the same way the space of triangular functions that take the

value zero at the vertices of their definition triangle is dense in Lp
(
Γ̄, µ

)
.

Finally, for any integer n, for any ϕ in L1
(
Γ̄, µ

)
, one has E

(
Π̄∗ϕ|θn+1

)
=

Π∗E(ϕ|θn), E
(
Π̄ϕ|θn

)
= 1

3
ΠE(ϕ|θn+1) and, for any p in Tn,

E(ϕ|θn)(p) =
1

3

∑

q∈Tn+1

θn(q)=p

E(ϕ|θn+1)(q).

Démonstration. The convergence in Lp
(
Γ̄, µ

)
follows from the discussion

above and general properties of probability spaces. The density of triangular
functions that are zero at the vertices of their definition triangles follows,
since, by lemma 9.4, for any n ≥ 1, the measure of the set of elements of Γ̄
that are the vertex of some n-triangle is 3n−1. Finally, the formulae linking
conditional expectations knowing θn+1 and θn follow from lemma 9.1 and the
fact that, by lemma 9.3, the image measure of µ by θn is the normalized
counting measure on Tn.

Let us finally describe a homeomorphism Γ̄ → Γ̄ that will be useful in
the sequel. For any p in Γ̄, let α(p) denote the unique neighbor of p that
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does not belong to the triangle containing p. The map α is a fixed point free
involution. By corollary 2.5, for any n ≥ 1, α stabilizes the set of points in Γ̄
that are vertex of some n-triangle. For p in Tn − ∂Tn, let still αn(p) denote
the unique neighbor of p in Tn that does not belong to the triangle containing
p.

Lemma 9.5. For any integer n, for any p in Γ̄, if p is not a vertex of some
n-triangle of Γ̄, one has θn(α(p)) = αn(θn(p)). The map α preserves the
measure µ and, for any n ≥ 1, ϕ in L1

(
Γ̄, µ

)
and p in Tn − ∂Tn, one has

E (ϕ ◦ α|θn) (p) = E(ϕ|θn)(αn(p)).

As triangular functions are not dense in C0
(
Γ̄
)
, to check that α preserves

the measure µ, we shall use the following

Lemma 9.6. Let X be a compact metric space and let A be a complex uni-
formly closed and conjugation stable subalgebra of C0(X). Let Y be the set
of elements x in X for which there exists y 6= x in X such that, for any ϕ in
A, ϕ(y) = ϕ(x). The set Y is Borel and, if λ is a Borel complex measure on
X such that λ|Y = 0 and that, for any ϕ in A,

∫
X
ϕdλ = 0, one has λ = 0.

Proof. Let S be the spectrum of the commutative C∗-algebra A and π : X →
S the surjective continuous map which is dual to the natural injection from
A into C0(X). By the hypothesis, the complex measure π∗λ is zero on S.
Let p denote the projection onto the first component X × X → X and set
D = {(x, x)|x ∈ X} ⊂ X ×X and E = {(x, y) ∈ X ×X|π(x) = π(y)}. One
has Y = p(E−D). As E and D are closed subsets of the compact metrizable
space X, the space E−D is a countable union of compact sets, hence so are
Y and π(Y ). In particular, these subsets are Borel and π induces a Borel
isomorphism from X − Y onto S − π(Y ). Therefore, the restriction of λ to
X − Y is zero. As its restriction to Y is zero, one has λ = 0.

Proof of lemma 9.5. The first part of the lemma follows from the definition
of α and the fact that θn induces a graph isomorphism from the n-triangle
containing p onto Tn.

Let n ≥ 1. As α exchanges the points of Γ̄ that are vertex of some n-
triangle, if ϕ is a n-triangular function which is zero at the vertices of Tn,
one has, by lemma 9.3,

∫
Γ̄
ϕ ◦ αdµ =

∫
Γ̄
ϕdµ. As, again by lemma 9.3, for

any integer n ≥ 1, the measure of the set points of Γ̄ that are vertex of some
n-triangle is 3n−1, one deduces that, for any triangular function ϕ, one has∫
Γ̄
ϕ ◦ αdµ =

∫
Γ̄
ϕdµ.
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Let A ⊂ C0
(
Γ̄
)

be the uniform closure of the algebra of triangular func-
tions. By corollary 9.2, the set of elements p in Γ̄ for which there exists q 6= p
such that, for any ϕ in A, one has ϕ(p) = ϕ(q) is

⋃
s∈S

sΓ. As µ is atom
free, this set has zero measure for µ and for α∗µ. For any ϕ in A, one has∫
Γ̄
ϕ ◦ αdµ =

∫
Γ̄
ϕdµ. By lemma 9.6, one hence has α∗µ = µ.

Finally, let Θ̄ denote the quotient of Γ̄ by the map α, endowed with the
measure λ, which is the image of µ by the natural projection. The space Θ̄
may be seen in a natural way as the set of edges of Γ̄ and may be equipped
with a 4-regular graph structure. The image of Γ in Θ̄ then identifies in a
natural way with the Sierpiński graph Θ and is a dense subset of Θ̄. We call
triangular functions on Θ̄ the functions coming from triangular functions on
Γ̄ that are zero on the vertices of their definition triangle and α-invariant.
Then, the results of this section transfer into analogous results on Θ̄.

10 The operator ∆̄ and its harmonic mea-

sures

We shall now study an operator ∆̄ on Γ̄ which is an analogue of the operator
∆ on Γ.

Let ϕ be a Borel function on Γ̄. For any p in Γ̄, one sets ∆̄ϕ(p) =∑
q∼p ϕ(q). To study the properties of this operator on triangular functions,

set moreover, for any nonnegative integer n, for any function ϕ on Tn, for
any p in Tn − ∂Tn, ∆ϕ(p) =

∑
q∼p ϕ(q) and, for any p in ∂Tn, ∆ϕ(p) =

ϕ(p) +
∑

q∼p ϕ(q).

Lemma 10.1. For any integer n ≥ 1, the operator ∆ is self-adjoint in ℓ2(Tn).
If ϕ is a n-triangular function that is constant on ∂Tn, one has ∆ϕ = ∆̄ϕ.

Proof. One checks easily that ∆̄ is self-adjoint. Besides, as θn induces graph
isomorphisms from n-triangles of Γ̄ onto Tn, for any p in Tn − ∂Tn, one has

∆̄1θ−1
n (p) =

∑

q∼p
1θ−1

n (q) = ∆1θ−1
n (p).

In the same way, as any point p of Γ̄ that is a vertex of some n-triangle, the
unique neighbor of p that does not belong to this n-triangle is itself a vertex
of some n-triangle, one has ∆̄

∑
p∈∂Tn

1θ−1
n (p) = ∆

∑
p∈∂Tn

1θ−1
n (p) and hence,

for any n-triangular function ϕ that is constant on ∂Tn, ∆̄ϕ = ∆ϕ.
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We can now set the principal properties of ∆̄ in the following

Proposition 10.2. The operator ∆̄ commutes with the action of S. It is
continuous with norm 3 in the space of continuous functions on Γ̄ and one
has ∆̄∗µ = 3µ. For any 1 ≤ p ≤ ∞, the operator ∆̄ is continuous with norm
3 in Lp

(
Γ̄, µ

)
and, for 1

p
+ 1

q
= 1, for any ϕ in Lp

(
Γ̄, µ

)
and ψ in Lq

(
Γ̄, µ

)
,

one has 〈∆̄ϕ, ψ〉 = 〈ϕ, ∆̄ψ〉.
Proof. The first assumption is evident. As ∆̄ is positive and ∆̄1 = 3, ∆̄ is
continuous with norm 3 in the space of continuous functions.

Recall one let α denote the map Γ̄ → Γ̄ that sends some point p to its
unique neighbor that does not belong to the 1-triangle containing p. For ϕ
in C0

(
Γ̄
)
, one has ∆̄ϕ = 3Π̄∗Π̄ϕ + ϕ ◦ α − ϕ. As the operators Π̄ and Π̄∗

preserve µ and, by lemma 9.5, the homeomorphism α preserves µ, one has
∆̄∗µ = 3µ.

For any 1 ≤ p ≤ ∞, the positive operator ∆̄ thus acts on Lp
(
Γ̄, µ

)

and it is bounded with norm 3 in this space. Let 1 < p, q <∞ be such that
1
p
+ 1

q
= 1. By lemma 9.4, triangular functions that are zero on the vertices of

their definition triangles are dense in Lp
(
Γ̄, µ

)
and Lq

(
Γ̄, µ

)
. By lemma 9.4,

one hence has, for any ϕ in Lp
(
Γ̄, µ

)
and ψ in Lq

(
Γ̄, µ

)
, 〈∆̄ϕ, ψ〉 = 〈ϕ, ∆̄ψ〉.

As the operators appearing in this identity are continuous in L1
(
Γ̄, µ

)
and

L∞ (Γ̄, µ
)
, it is still true for p = 1 and q = ∞.

We shall now prove that the measure µ is, up to scalar multiplication,
the unique Borel complex measure λ on Γ̄ such that ∆̄∗λ = 3λ. Let us begin
by handling the case where λ is S-invariant.

Lemma 10.3. Let λ be a S-invariant Borel complex measure on Γ̄ with
∆̄∗λ = 3λ. One has λ = λ

(
Γ̄
)
µ.

Proof. Let ϕ : p 7→ λ(p),Γ → C. Then, ϕ belongs to ℓ1(Γ) and one has
∆ϕ = 3ϕ. By the maximum principle, one hence has ϕ = 0. There-
fore, the restriction of ϕ to

⋃
s∈S

sΓ is zero. By corollary 9.2 and lemma
9.6, it thus suffices to check that λ is proportional to µ on the space of
triangular functions. Let n ≥ 1 be an integer and, for any p in Tn, let
ϕn(p) = λ(θ−1

n (p)) =
∫
Γ̄

1θ−1
n (p)dλ. By lemma 10.1, if p is not a vertex of

Tn, one has ∆̄1θ−1
n (p) = ∆1θ−1

n (p) and hence, as ∆̄∗λ = 3λ, ∆ϕn(p) = 3ϕn(p).
Moreover, as λ is S-invariant, ϕn is constant on ∂Tn. By the maximum
principle, ϕn is constant. As

∑
p∈Tn

ϕn(p) = λ
(
Γ̄
)
, one has, for any p in Tn,

ϕn(p) = 1
3nλ

(
Γ̄
)
, whence the result, by lemma 9.3.
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Let us now study the eigenspace associate to the eigenvalue 1 in L1
(
Γ̄, µ

)
.

We will need the following

Lemma 10.4. Let n ≥ 1 be an integer, ϕ be in L1
(
Γ̄, µ

)
and p be in Tn−∂Tn.

One has ∆E(ϕ|θn)(p) = E
(
∆̄ϕ|θn

)
(p).

Proof. Let still α and αn be as in lemma 9.5. One has ∆̄ϕ = 3Π̄∗Π̄ϕ+ϕ◦α−ϕ
and hence, by lemmas 9.4 and 9.5,

E
(
∆̄ϕ|θn

)
(p) = Π∗ΠE (ϕ|θn) (p) + E (ϕ|θn) (αn(p)) − E (ϕ|θn) (p)

= ∆E (ϕ|θn) (p),

what should be proved.

For any n ≥ 1, let Hn denote the space of functions ϕ on Tn such that,
for any p in Tn that is not a vertex, one has ∆ϕ(p) = 3ϕ(p). By lemma 10.4,
for any ϕ in L1

(
Γ̄, µ

)
, if ∆̄ϕ = 3ϕ, one has E(ϕ|θn) ∈ Hn. One identifies

C3 and the space of complex valued function on T1 by considering (1, 0, 0)
(resp. (0, 1, 0), resp. (0, 0, 1)) as the characteristic function of the singleton
{a1} (resp. {b1}, resp. {c1}) and one let ηn denote the S-equivariant linear
map Hn → C3, ϕ 7→ (ϕ(an), ϕ(bn), ϕ(cn)). Besides, one let (sn)n≥1 denote
the real sequence such that s1 = 1 and, for any n ≥ 1, sn+1 = 3sn

3sn+5
. One

easily shows that one has sn −−−→
n→∞

0. Let C3
0 be the set of elements in C3

the sum of whose coordinates is zero. We have the following

Lemma 10.5. Let n ≥ 1. For any ϕ in Hn and p in Tn, one has |ϕ(p)| ≤
max{|ϕ(an)| , |ϕ(bn)| , |ϕ(cn)|}. In particular, the map ηn is an isomorphism.
Suppose n ≥ 2. Let ϕ be in Hn such that ηn(ϕ) belongs to C3

0 and ψ =
E(ϕ|θn−1). Then ψ belongs to Hn−1 and one has ηn−1(ψ) = 2

3sn−1+5
ηn(ϕ).

Proof. The bound follows from the maximum principle, applied to the oper-
ator 1

3
∆. It implies that, for any n ≥ 1, the operator ηn is injective. Let ϕ

be a function on Tn and, for any p in Tn, set δnϕ(p) = ∆ϕ(p) − 3ϕ(p). If p
is not a vertex and δnϕ(p) = ϕ(p) if p is a vertex. As ηn is injective, so is
δn, and hence it is an isomorphism; in particular, ηn is onto, hence it is an
isomorphism.

For any n ≥ 2, set tn = 3sn−1+2
3sn−1+5

and un = 1
3sn−1+5

. Recall that, as in
corollary 2.6, if S is a n-triangle and if p and q are two vertices of S, one let
pq denote the unique point of S belonging to a (n− 1)-triangle containing p
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and admitting a neighbor belonging to the (n− 1)-triangle containing q. Let
dn and en be the two neighbors of an in Tn. Let us prove by induction on
n ≥ 2 that, for any ϕ in Hn, one has ϕ(dn) + ϕ(en) = sn(ϕ(bn) + ϕ(cn)) +
2(1− sn)ϕ(an) and ϕ(anbn) = tnϕ(an) + un(2ϕ(bn) + ϕ(cn)). For n = 2, this
is an immediate computation. If n ≥ 3 and the formula is true for n − 1,
pick some function ϕ in Hn. Then, as ∆ϕ(anbn) = 3ϕ(anbn), by applying the
induction to the restriction of ϕ to the (n − 1)-triangle containing an, one
has

sn−1(ϕ(an) + ϕ(ancn)) + 2(1 − sn−1)ϕ(anbn) + ϕ(bnan) = 3ϕ(anbn).

As ηn is an isomorphism, there exists a unique (x, y, z) in C3 such that, for
any ϕ in Hn, one has ϕ(anbn) = xϕ(an) + yϕ(bn) + zϕ(cn). As ηn is S-
equivariant, one has, for any ϕ in Hn, ϕ(bnan) = xϕ(bn) + yϕ(an) + zϕ(cn)
and ϕ(ancn) = xϕ(an) + yϕ(cn) + zϕ(bn). Thus

sn−1(1 + x) + 2(1 − sn−1)x+ y = 3x

sn−1z + 2(1 − sn−1)y + x = 3y

sn−1y + 2(1 − sn−1)z + z = 3z.

By solving this system, one gets x = tn, y = 2un and z = un. Finally, by
induction, one has

ϕ(dn) + ϕ(en) = sn−1(ϕ(anbn) + ϕ(ancn)) + 2(1 − sn−1)ϕ(an)

= 3sn−1un(ϕ(bn) + ϕ(cn)) + 2(1 − sn−1 + sn−1tn)ϕ(an),

whence the result, since 3sn−1un = sn = sn−1(1 − tn).
Then, if ψ = E(ϕ|θn−1), one has, by lemma 9.4, for any p in Tn−1, ψ(p) =

1
3

∑
θn−1(q)=p ϕ(q). As θn−1 induces a graph isomorphism from each of the

(n − 1)-triangles of Tn onto Tn−1, one deduces that ψ belongs to Hn−1 and
that, in particular, by lemma 9.1, if ηn(ϕ) is in C3

0, one has

ψ(an) =
1

3
(ϕ(an) + ϕ(bnan) + ϕ(cnan))

=
1

3
((1 + 4un)ϕ(an) + (tn + un) (ϕ(bn) + ϕ(cn)))

=
1 + 4un − tn − un

3
ϕ(an) =

2

3sn−1 + 5
ϕ(an),

where, for the penultimate equality, one has used the relation ϕ(an)+ϕ(bn)+
ϕ(cn) = 0. By S-equivariance, one has the analogous formula at the two
other vertices of Tn and hence ηn−1(ψ) = 2

3sn−1+5
ηn(ϕ).
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Corollary 10.6. Let ϕ be in L∞ (Γ̄, µ
)

such that ∆̄ϕ = 3ϕ and that
∑

s∈S
ϕ◦

s = 0. One has ϕ = 0.

Démonstration. For any integer n ≥ 1, set ϕn = E(ϕ|θn). By lemma 10.4, one
has ϕn ∈ Hn. As

∑
s∈S

ϕ ◦ s = 0, one has ηn(ϕn) ∈ C3
0. Therefore, if n ≥ 2,

by lemma 10.5, as ϕn−1 = E(ϕn|θn−1), one has ηn−1(ϕn−1) = 2
3sn−1+5

ηn(ϕn).

Now, for any n ≥ 1, one has ‖ϕn‖∞ ≤ ‖ϕ‖∞ and, as sn −−−→
n→∞

0,
∏∞

n=1
2

3sn+5
=

0. Therefore, one necessarily has, for any n ≥ 1, ηn(ϕn) = 0, hence, by lemma
10.5, ϕn = 0, and, by lemma 9.4, ϕ = 0.

We can now describe the eigenvectors with eigenvalue 3 in L1
(
Γ̄, µ

)
:

Lemma 10.7. Let ϕ be in L1
(
Γ̄, µ

)
such that ∆̄ϕ = 3ϕ. The function ϕ is

constant µ-almost everywhere.

Proof. One can suppose that ϕ takes only real values. Let us prove that it
suffices to handle the case where ϕ is nonnegative. Indeed, as ∆̄ is positive,
one has ∆̄ |ϕ| ≥

∣∣∆̄ϕ
∣∣ = 3 |ϕ| and hence, as ∆̄ has norm 3, ∆̄ |ϕ| = 3 |ϕ|.

By studying the functions |ϕ| − ϕ and |ϕ| + ϕ, one can suppose one has
ϕ ≥ 0. Set ψ =

∑
s∈S

ϕ ◦ s. The measure λ = ψµ is S-invariant and one
has ∆̄∗λ = 3λ. By lemma 10.3, λ is proportional to µ, that is ψ is constant
µ-almost everywhere. In particular, ψ is in L∞ (Γ̄, µ

)
. As one has 0 ≤ ϕ ≤ ψ,

ϕ is in L∞ (Γ̄, µ
)
. Then, by corollary 10.6, on a ϕ− 1

6
ψ = 0.

In order to extend this result to all complex measures on Γ̄, we shall use
a general, surely classical lemma. Let X be a compact metric space. Equip
the space C0(X) with the uniform convergence topology. If λ is a complex
Borel measure on X, recall the total variation |λ| of λ is the finite positive
Borel measure on X such that, for any continuous nonnegative function g on
X, one has ∫

X

gd |λ| = sup
h∈C0(X)
‖h‖

∞
≤1

∣∣∣∣
∫

X

ghdλ

∣∣∣∣

(one may refer to [15, Chapter 6]). In particular, |λ| is the smallest positive
Radon measure such that, for any continuous nonnegative function g on X,
one has

∣∣∫
X
gdλ

∣∣ ≤
∫
X
gd |λ|.

Lemma 10.8. Let X be a compact metric space and P a positive operator
with norm 1 on the space of continuous functions on X. For any Borel
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complex measure λ on X, one has |P ∗λ| ≤ P ∗ |λ|. In particular, if P ∗λ = λ,
one has P ∗ |λ| = |λ|.

Proof. For any nonnegative continuous function g on X, one has Pg ≥ 0,
hence

∣∣∫
X
Pgdλ

∣∣ ≤
∫
X
Pgd |λ|. As the measure P ∗ |λ| is positive, one thus

has |P ∗λ| ≤ P ∗ |λ|. If P ∗λ = λ, one has |λ| ≤ P ∗ |λ|, whence the equality,
since P has norm 1.

We finally deduce the following

Proposition 10.9. Let µ be complex Borel measure on Γ̄ such that ∆̄∗λ =
3λ. One has λ = λ

(
Γ̄
)
µ.

Proof. One can suppose λ takes real values. By applying lemma 10.8 to the
operator 1

3
∆̄, one has ∆̄∗ |λ| = 3 |λ|, so that, by studying the measures |λ|−λ

and |λ|+λ, one can suppose λ is positive. Then, by lemma 10.3, the measure∑
s∈S

s∗λ is proportional to µ. As one has 0 ≤ λ ≤
∑

s∈S
s∗λ, λ is absolutely

continuous with respect to µ. By lemma 10.7, λ is thus proportional to µ.

11 Spectrum and spectral measures of Γ̄

We shall now come to the spectral study of the operator ∆̄. Let us begin by
noting that, as in lemma 3.1, one has the following

Lemma 11.1. One has (∆̄2 − ∆̄ − 3)Π̄∗ = Π̄∗∆̄ and Π̄(∆̄2 − ∆̄ − 3) = ∆̄Π̄.

Recall we let α denote the map that sends a point p of Γ̄ to the neighbor
of p that does not belong to the 1-triangle containing p. As in section 3, from
lemma 11.1, one deduces the following

Corollary 11.2. The spectrum of ∆̄ is the union of Λ and of the set
⋃
n∈N

f−n(0).
The eigenspace associate to the eigenvalue −2 is the space of functions ϕ in
L2
(
Γ̄, µ

)
such that Π̄ϕ = 0 and ϕ ◦α = −ϕ. The eigenspace associate to the

eigenvalue 0 is the space of functions ϕ in L2
(
Γ̄, µ

)
such that Π̄ϕ = 0 and

ϕ ◦ α = ϕ.

Proof. Let, as in corollary 3.6, K = Π̄∗L2
(
Γ̄, µ

)
andH be the closed subspace

of L2
(
Γ̄, µ

)
spanned byK and by ∆̄K. By lemma 11.1, one has f

(
∆̄
)
K ⊂ K

and, as Π̄∗ is an isometry from L2
(
Γ̄, µ

)
onto K, the spectrum of f

(
∆̄
)

in K
equals the spectrum of ∆̄ in L2

(
Γ̄, µ

)
. We will seek to apply lemma 3.3 to the
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operator ∆̄ in H . On this purpose, let us prove that ∆̄−1K∩K only contains
constant functions. Let ϕ and ψ be in L2

(
Γ̄, µ

)
such that ∆̄Π̄∗ϕ = Π̄∗ψ. For

any integer n ≥ 1, set ϕn = E(ϕ|θn) and ψn = E(ψ|θn). By lemmas 9.4
and 10.4, for any p in Tn+1 − ∂Tn+1, one has ∆Π∗ϕn(p) = Π∗ψn(p). By
proceeding as in the proof of corollary 3.6, one deduces that, for any q in
Tn, ϕn is constant on the neighbors of q. As any point of Tn is contained in
a triangle and Tn is connected, ϕn is constant. As, by lemma 9.4, one has
ϕn −−−→

n→∞
ϕ in L2

(
Γ̄, µ

)
, ϕ is constant. Thus, the space ∆̄−1K ∩K equals the

line of constant functions. By lemmas 3.3 and 11.1, the spectrum of ∆̄ in H
thus equals the union of {3} and of the inverse image by f of the spectrum
of ∆̄ in the space of functions with zero integral in L2

(
Γ̄, µ

)
.

Besides, proceeding as in lemma 3.7, one sees that the orthogonal com-
plement L of H in L2

(
Γ̄, µ

)
is the direct sum of the space L−2 of the elements

ϕ in L2
(
Γ̄, µ

)
such that Π̄ϕ = 0 and ϕ ◦ α = −ϕ and of the space L0 of the

elements ϕ in L2
(
Γ̄, µ

)
such that Π̄ϕ = 0 and ϕ ◦ α = ϕ. One has ∆̄ = −2

on L−2 and ∆̄ = 0 on L0. Proceeding as in lemma 3.8 and using lemma
10.1, one sees that these subspaces are not reduced to {0}, since they con-
tain triangular functions. As in the proof of corollary 3.9, one deduces that
the spectrum of ∆̄ in L2

(
Γ̄, µ

)
equals the union of Λ and

⋃
n∈N

f−n(0).
Finally, as in the proof of lemma 3.7, it remains to prove that L−2 and L0

are exactly the eigenspaces of ∆̄ associate to the eigenvalues −2 and 0, that
is ∆̄ does not admit the eigenvalue −2 or 0 in H . Let ϕ be in H such that
∆̄ϕ = −2ϕ. By lemma 11.1, one has ∆̄Π̄ϕ = 3Π̄ϕ and hence by lemma 10.7,
Π̄ϕ is constant. As ϕ is orthogonal to constant functions, one has Π̄ϕ = 0
and Π̄∆̄ϕ = −2Π̄ϕ = 0. As ϕ is in H , one thus has ϕ = 0. In the same way,
if ϕ is in H and if ∆̄ϕ = 0, one has ∆̄Π̄ϕ = −3Π̄ϕ. Now, by an immediate
computation, −3 does not belong to the spectrum of ∆̄. Thus Π̄ϕ = 0 and
hence ϕ = 0, what should be proved.

We also have an analogue of lemma 4.1:

Lemma 11.3. One has Π̄∆̄Π̄∗ = 2 + 1
3
∆̄ and hence, for any ϕ and ψ in

L2
(
Γ̄, µ

)
,

〈
∆̄Π̄∗ϕ, Π̄∗ψ

〉
= 2 〈ϕ, ψ〉 +

1

3

〈
∆̄ϕ, ψ

〉

= 2
〈
Π̄∗ϕ, Π̄∗ψ

〉
+

1

3

〈(
∆̄2 − ∆̄ − 3

)
Π̄∗ϕ, Π̄∗ψ

〉
.
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As in section 4, one deduces the following

Corollary 11.4. Let ϕ be in L2
(
Γ̄, µ

)
, µ be the spectral measure of ϕ for ∆̄

in L2
(
Γ̄, µ

)
and ν be the spectral measure of Π̄∗ϕ for ∆̄ in L2

(
Γ̄, µ

)
. Then,

one has ν(1
2
) = 0 and, if, for any x 6= 1

2
, one sets τ(x) = x(x+2)

3(2x−1)
, one has

ν = L∗
f,τµ.

12 Eigenfunctions in L2
(
Γ̄, µ

)

In this section, we shall follow the plan of section 5, in order to describe the
eigenspaces of ∆̄ in L2

(
Γ̄, µ

)
. As in section 5, by using lemmas 11.1 and

11.3, one proves the following analogue of lemma 5.1:

Lemma 12.1. Let H be the closed subspace of L2
(
Γ̄, µ

)
spanned by the

image of Π̄∗ and by the one of ∆̄Π̄∗. Then, for any x in R − {0,−2}, x
is an eigenvalue of ∆̄ in H if and only if y = f(x) is an eigenvalue of
∆̄ in L2

(
Γ̄, µ

)
. In this case, the map R̄x which sends an eigenfunction ϕ

with eigenvalue y in L2
(
Γ̄, µ

)
to (x − 1)Π̄∗ϕ + ∆̄Π̄∗ϕ induces an isomor-

phism between the eigenspace associate to the eigenvalue y in L2
(
Γ̄, µ

)
and

the eigenspace associate to the eigenvalue x in H and, for any ϕ, one has∥∥R̄xϕ
∥∥2

2
= 1

3
x(x+ 2)(2x− 1) ‖ϕ‖2

2.

To describe the eigenfunctions with eigenvalue in
⋃
n∈N

f−n(0), we shall
proceed as in section 5. On this purpose, note again that, for any integer
n ≥ 1, the space of edges that are exterior to n-triangles of Γ̄ may be identified
in a natural way with Θ̄. If ϕ is a function on Γ̄ which is constant on edges
which are exterior to n-triangles, we shall let P̄nϕ denote the function on Θ̄
whose value at one point of Θ̄ is the value of ϕ on the associate edge which
is exterior to n-triangles of Γ̄. Besides, one still let ∆̄ denote the operator
that sends a function ψ on Θ̄ to the function whose value at some point p of
Θ̄ is

∑
q∼p ψ(q). This operator satisfies ∆̄∗λ = 4λ and it is self-adjoint with

norm 4 in L2
(
Θ̄, λ

)
, where λ is the measure on Θ̄ that has been introduced

at the end of section 9.

Lemma 12.2. The map P̄2 induces a Banach spaces isomorphism from the
eigenspace of L2

(
Γ̄, µ

)
associate to the eigenvalue 0 onto L2

(
Θ̄, λ

)
. Let

Q̄0 denote its inverse. For any ψ in L2
(
Θ̄, λ

)
, one has

∥∥Q̄0ψ
∥∥2

L2(Γ̄,µ) =

1
2
‖ψ‖2

L2(Θ̄,λ) −
1
12
〈∆ψ, ψ〉L2(Θ̄,λ).
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Proof. One proceeds as in lemma 5.2 by using the characterization of eigen-
functions with eigenvalue 0 given in corollary 11.2. The formula may be
easily checked on triangular functions that are zero at the vertices of their
definition triangle and the general case follow by density.

Recall that, for x in
⋃
n∈N

f−n(0), one let n(x) denote the integer n such
that fn(x) = 0 and

κ(x) =

n(x)−1∏

k=0

fk(x)(2fk(x) − 1)

fk(x) + 2
.

From lemmas 12.1 and 12.2, one deduces the following analogue of proposi-
tion 5.3:

Proposition 12.3. Let x be in
⋃
n∈N

f−n(0). The eigenfunctions with eigen-
value x in L2

(
Γ̄, µ

)
are constant on edges which are exterior to (n(x) + 1)-

triangles in Γ̄. The map P̄n(x)+2 induces a Banach spaces isomorphism from
the eigenspace of L2

(
Γ̄, µ

)
associate to the eigenvalue x onto L2

(
Θ̄, λ

)
. Let

Q̄x denote its inverse. Then, for any ψ in L2
(
Θ̄, λ

)
, one has ‖Qxψ‖2

L2(Γ̄,µ) =

κ(x)
(
3 ‖ψ‖2

L2(Θ̄,λ) −
1
2
〈∆ψ, ψ〉L2(Θ̄,λ)

)
.

Corollary 12.4. For any x in
⋃
n∈N

f−n(0), the eigenspace associate to x in
L2
(
Γ̄, µ

)
has infinite dimension and is spanned by triangular functions that

are zero at the vertices of their definition triangle.

As in section 5, the description of the eigenvalues associate to the elements
of
⋃
n∈N

f−n(−2) is less precise.
Let us begin by the case of the eigenvalue −2. We shall need supplemen-

tary informations on triangular functions that are eigenvectors with eigen-
value −2. On this purpose, pick some integer n ≥ 1 and some n-triangle S
and let ES denote the space of functions ϕ on S such that Πϕ = 0 and, for
any point p of S that is not a vertex of S, if q is the neighbor of p that does
not belong to the triangle containing p, one has ϕ(q) = −ϕ(p). If S is Tn,
one let En stand for ETn

. By lemmas 9.4 and 9.5 and corollary 11.2, if ϕ is
an element of L2

(
Γ̄, µ

)
such that ∆̄ϕ = −2ϕ, for any integer n ≥ 1, one has

E(ϕ|θn) ∈ En. Proceeding as in lemma 5.5, one proves the following

Lemma 12.5. Let n ≥ 1, S be a n-triangle with vertices p, q and r and ϕ
be in ES . One has ϕ(p) + ϕ(q) + ϕ(r) = 0.
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The space C3
0 = {(s, t, u) ∈ R3|s + t + u = 0} is stable under the action

of S on C3. We endow it with the S-invariant hermitian norm ‖.‖0 such
that, for any (s, t, u) in C3

0, one has ‖(s, t, u)‖2
0 = 1

3

(
|s|2 + |t|2 + |u|2

)
. For

any n ≥ 1, one let ρn denote the S-equivariant linear map En → C3
0, ϕ 7→

(ϕ(an), ϕ(bn), ϕ(cn)), Fn the kernel of ρn and Gn the orthogonal complement
of Fn in En for the norm of L2

(
Γ̄, µ

)
. By lemma 10.1, the elements of Fn are

eigenvectors with eigenvalue −2 of ∆̄.

Lemma 12.6. Let n ≥ 1. One has dimFn = 1
2
(3n−1 − 1). The map ρn is

onto and, for any ϕ in Gn, one has ‖ϕ‖2
L2(Γ̄,µ) =

(
5
9

)n−1 ‖ρn(ϕ)‖2
0. Finally,

if n ≥ 2 and if ψ = E(ϕ|θn−1), ψ belongs to Gn−1 and ρn−1(ψ) = 2
3
ρn(ϕ).

Proof. Let n ≥, S be a n-triangle and p and q be distinct vertices of S. Define
a function ϕp,qS on S in the following way. If n = 1, one sets ϕp,qS (p) = 1,
ϕp,qS (q) = −1 and one says that ϕp,qS is zero at the third point of S. If
n ≥ 2, let still pq and qp denote the points defined in corollary 2.6: the
point pq belongs to the (n − 1)-triangle P containing p in S, the point qp
belongs to the (n − 1)-triangle Q containing q in S and the points pq and
qp are neighbors. One defines ϕp,qS as the function whose restriction to P
is ϕp,pqP , whose restriction to Q is ϕqp,qQ and whose restriction to the third
(n − 1)-triangle of S is zero. One easily checks that ϕp,qS belongs to ES . If
S = Tn, one let ϕp,qn stand for ϕp,qTn

. As one has ρn(ϕ
an,bn
n ) = (1,−1, 0) and

ρn(ϕ
an,cn
n ) = (1, 0,−1), the map ρn is onto.

For n ≥ 2, let ψn denote the function on Tn whose restriction to the
(n − 1)-triangle An (resp. Bn, resp. Cn) containing an (resp. bn, resp. cn)
equals ϕan,bn

n (resp. ϕbn,cnn , resp. ϕcn,an
n ). Then, one easily checks that ψn

belongs to Fn.
These functions are pictured in figure 13.
Let us now establish by induction on n ≥ 1 the formulae of the lemma

on the dimension of Fn and the norm of the elements of Gn. For n = 1,
one has F1 = {0} and the map ρ1 is an isomorphism, so that the formula
on norms follows from lemma 9.3. Let thus suppose n ≥ 2 and the formulae
have been proved for n− 1. We will explicitely construct the inverse map of
ρn, depending on the one of ρn−1. For any triangle S, let FS be the set of
elements of ES that are zero at the vertices of S and GS be the orthogonal
complement of FS with respect to the natural scalar product on ℓ2(S). For
any (s, t, u) in C3

0, let τ(s, t, u) be the unique function on Tn that takes the
value s at an, t at bn, u at cn,

t−s
3

at anbn,
u−s
3

at ancn,
s−t
3

at bnan,
u−t
3

at
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Figure 13: The functions ϕa2,b22 and ψ2

bncn,
s−u
3

at cnan and t−u
3

at cnbn and whose restriction to An (resp. Bn, resp.
Cn) belongs to GAn

(resp. GBn
, resp. GCn

). Then τ(s, t, u) clearly belongs
to En and ρn(τ(s, t, u)) = (s, t, u). Besides, one has, by lemma 9.3 and by
induction,

〈τ(s, t, u), ψn〉L2(Γ̄,µ) =
1

3n

(〈
τ(s, t, u), ϕanbn,ancn

An

〉
ℓ2(An)

+
〈
τ(s, t, u), ϕbncn,bnan

Bn

〉
ℓ2(Bn)

+
〈
τ(s, t, u), ϕcnan,cnbn

Cn

〉
ℓ2(Cn)

)

=
1

3

5n−2

9n−1
((t− s) − (u− s) + (u− t) − (s− t)

+(s− u) − (t− u)) = 0

Conversely, one easily checks, by an analogous scalar product computation,
that, if ϕ is an element of En that is orthogonal to ψn and whose restriction
to An (resp. Bn, resp. Cn) is in GAn

(resp. GBn
, resp. GCn

), then ϕ belongs
to the image of τ . As both these spaces have dimension 2, they coincide
and τ is the inverse map of ρn. In particular, Fn is spanned by ψn and the
elements that are zero at the vertices of (n− 1)-triangles, so that dimFn =
3 dimFn−1 + 1, whence the dimension computation, by induction. Besides,
again by lemma 9.3 and by induction, for any ϕ in Gn, if ρn(ϕ) = (s, t, u),
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one has, by the definition of τ ,

‖ϕ‖2
L2(Γ̄,µ) =

5n−2

9n−1

(
|s|2 + |t|2 + |u|2 + 2

∣∣∣∣
s− t

3

∣∣∣∣
2

+ 2

∣∣∣∣
t− u

3

∣∣∣∣
2

+ 2

∣∣∣∣
s− u

3

∣∣∣∣
2
)

=
1

3

5n−1

9n−1

(
|s|2 + |t|2 + |u|2

)

(taking in account, for the last equality, that s+ t+ u = 0). The formula on
norms follows, by induction.

Finally, for n ≥ 2, pick ϕ in Gn and set ψ = E(ϕ|θn−1). As in the
proof of lemma 10.5, one deduces from lemma 9.4 and the fact that θn−1

induces graph isomorphisms between the (n − 1)-triangles of Tn and Tn−1

that, as ϕ belongs to En, ψ belongs to En−1. As the elements of Fn−1 are
zero at the vertices of the (n − 1)-triangles, they belong to Fn too, hence
they are orthogonal to ϕ, so that ψ belongs to Gn−1. By lemmas 9.1 and 9.4,
one has ψ(an) = 1

3
(ϕ(an) + ϕ(bnan) + ϕ(cnan)) and hence, by the formulae

above, if ρn(ϕ) = (s, t, u), one has ψ(an) = 1
3
(s + s−t

3
+ s−u

3
) = 2

3
s and

ρn−1(ψ) = 2
3
ρn(ϕ).

We can now describe the eigenspace of ∆̄ associate to the eigenvalue −2:

Lemma 12.7. The eigenspace associate to the eigenvalue −2 of ∆̄ has in-
finite dimension and is spanned by triangular functions that are zero at the
vertices of their definition triangle.

Proof. As, by lemma 12.6, for any n ≥ 1, the space Fn has dimension 1
2
(3n−1−

1) and, by lemma 10.1, its elements are eigenfunctions with eigenvalue −2,
the eigenspace associate to the eigenvalue −2 has infinite dimension.

Let ϕ be an eigenfunction with eigenvalue −2 in L2
(
Γ̄, µ

)
that is orthog-

onal to the eigenfunctions that are triangular and zero at the vertices of their
definition triangle. Let us prove that ϕ is zero. For any integer n ≥ 1, let
ϕn = E(ϕ|θn). By corollary 11.2, one has Π̄ϕ = 0 and ϕ◦α = −ϕ and hence,
by lemmas 9.4 and 9.5, for any n ≥ 1, ϕn belongs to En. As ϕ is orthogonal
to the elements of Fn, ϕn belongs to Gn. If n ≥ 2, as ϕn−1 = E(ϕn|θn−1), by
lemma 12.7, one has ρn−1(ϕn−1) = 2

3
ρn(ϕn). Hence, there exists v in C3

0 such

that, for any n ≥ 1, one has ρn(ϕn) =
(

3
2

)n−1
v, so that, again by lemma

12.7,

‖ϕn‖2
L2(Γ̄,µ) =

(
5

9

)n−1

‖ρn(ϕn)‖2
0 =

(
5

4

)n−1

‖v‖2
0 .
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Figure 14: Values of ϕ and of ∆̄ϕ

As, by lemma 9.4, one has ϕn −−−→
n→∞

ϕ in L2
(
Γ̄, µ

)
, one thus has necessarily

v = 0, hence, for any n ≥ 1, ϕn = 0 and ϕ = 0, what should be proved.

From lemmas 12.1 and 12.7, one deduces by induction the following

Corollary 12.8. For any x in
⋃
n∈N

f−n(−2), the eigenspace associate to the
eigenvalue x has infinite dimension and is spanned by triangular functions
that are zero at the vertices of their definition triangle.

13 Spectral decomposition of L2
(
Γ̄, µ

)

In this section, we shall prove that L2
(
Γ̄, µ

)
is the orthogonal direct sum of

the space of constant functions, the eigenspaces associate to the elements of
the set

⋃
n∈N

f−n(−2) ∪
⋃
n∈N

f−n(0) and the cyclic subspaces spanned by
1-triangular functions ϕ such that Π̄ϕ = 0. Let us begin by describing these
cyclic subspaces.

Lemma 13.1. Let ϕ be in E1. One has
(
∆̄ + 2

)
ϕ =

(
∆̄ − 1

)
Π̄∗ϕ and

Π̄∆̄ϕ =
(
1 + 1

3
∆̄
)
ϕ.

Proof. Let (s, t, u) = (ϕ(a1), ϕ(b1), ϕ(c1)). One has, by definition, s+ t+u =
0. Let p be in Γ̄. After an eventual action of the group S, one can suppose
that Π̄p belongs to the keel B0 from section 8. Then, the values of ϕ and of
∆̄ϕ on the 1-triangle containing p and on its neighbors are those described
by figure 14. In the same way, the values of Π̄∗ϕ and of ∆̄Π̄∗ϕ on the 1-
triangle containing p and on its neighbors are those described by figure 15. If
θ1(p) = a1 or θ1(p) = b1, one hence has

(
∆̄ + 2

)
ϕ(p) = 2s+ 2t+ u = s+ t =(

∆̄ − 1
)
Π̄∗ϕ(p); if θ1(p) = c1, one has

(
∆̄ + 2

)
ϕ(p) = 2s+ t+ 2u = s+ u =(

∆̄ − 1
)
Π̄∗ϕ(p). Thus, we do have

(
∆̄ + 2

)
ϕ =

(
∆̄ − 1

)
Π̄∗ϕ.
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Figure 15: Values of Π̄∗ϕ and of ∆̄Π̄∗ϕ

By definition, one has Π̄ϕ = 0, so that, by applying Π̄ to the preceding
identity, one gets Π̄∆̄ϕ = Π̄

(
∆̄ + 2

)
ϕ = Π̄∆̄Π̄∗ϕ− ϕ =

(
1 + 1

3
∆̄
)
ϕ, where,

for the last equality, we made use of lemma 11.3.

Thanks to lemma 13.1, we shall proceed as in section 6 to determine the
spectral measures of the elements of E1. Let us begin by proving that these
measures do not give mass to the points −2 and 0.

Lemma 13.2. Let ϕ be in E1 and ψ be an eigenfunction with eigenvalue −2
or 0 in L2

(
Γ̄, µ

)
. One has 〈ϕ, ψ〉 = 0.

Proof. Suppose ψ is an eigenvector with eigenvalue 0. By corollary 11.2, one
has Π̄ψ = 0 and ψ◦α = ψ and, by corollary 12.4, one can suppose that, for a
certain integer n ≥ 2, ψ is n-triangular, with value 0 at the vertices of Tn. Let
p, q and r be the vertices of a 2-triangle S of Tn and let pq, qp, pr, rp, qr and
rq be the other points of S, with the convention from corollary 2.6. Then,
one has ψ(qp) = ψ(pq) and ψ(rp) = ψ(pr), hence ψ(p) + ψ(qp) + ψ(rp) = 0
and, by using the analogous identities on the other 1-triangles of S, by lemma
9.1, as ϕ is 1-triangular, one has

∑

s∈S
ϕ(s)ψ(s) = ϕ(p) (ψ(p) + ψ(qp) + ψ(rp))

+ ϕ(q) (ψ(q) + ψ(pq) + ψ(rq)) + ϕ(r) (ψ(r) + ψ(pr) + ψ(qr)) = 0

and hence, by lemma 9.3, 〈ϕ, ψ〉 = 0.
Let us now handle the case of the eigenvalue −2. For any n ≥ 1, let En

and Fn be as in section 12. Let (s, t, u) = (ϕ(a1), ϕ(b1), ϕ(c1)). Let us prove
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by induction on n that, if ψ belongs to En, one has
∑

p∈Tn

ϕ(p)ψ(p) = 2n−1(sψ(an) + tψ(bn) + uψ(cn)).

For n = 1, the result is trivial. Suppose n ≥ 2 and the result has been
established for n. Then, by applying the induction to the restriction of ψ to
(n− 1)-triangles of Tn, one gets, as ϕ is 1-triangular, by lemma 9.1,

∑

p∈Tn

ϕ(p)ψ(p) = 2n−2(ψ(an)s+ ψ(anbn)t+ ψ(ancn)u

+ ψ(bn)t+ ψ(bnan)s+ ψ(bncn)u+ ψ(cn)u+ ψ(cnan)s+ ψ(cnbn)t).

Now, one has ψ(anbn) +ψ(bnan) = 0 and, by lemma 12.5, ψ(an) +ψ(anbn) +
ψ(ancn) = 0, so that ψ(bnan) + ψ(cnan) = ψ(an). By using this identity and
the analogous formulae at the other vertices of Tn, we get

∑

p∈Tn

ϕ(p)ψ(p) = 2n−1(sψ(an) + tψ(bn) + uψ(cn)),

what should be proved. In particular, for ψ in Fn, one has, by lemma 9.3,
〈ϕ, ψ〉 = 0 and hence, by lemma 12.7, this is still true for any eigenvector ψ
with eigenvalue −2.

Corollary 13.3. Let ϕ be in E1 and ψ be an eigenfunction with eigenvalue
in
⋃
n∈N

f−n(−2) ∪
⋃
n∈N

f−n(0). One has 〈ϕ, ψ〉 = 0.

Proof. By corollary 11.2 and lemmas 12.1 and 13.2, it suffices to prove that,
for x in R, if ψ is an eigenvector with eigenvalue x and if 〈ϕ, ψ〉 = 0, one
has

〈
ϕ, Π̄∗ψ

〉
=
〈
ϕ, ∆̄Π̄∗ψ

〉
= 0. Now, by definition, one has Π̄ϕ = 0, hence〈

ϕ, Π̄∗ψ
〉

= 0. Besides, by lemma 13.1, one has

〈
ϕ, ∆̄Π̄∗ψ

〉
=
〈
Π̄∆̄ϕ, ψ

〉
=

〈
ϕ,

(
1 +

1

3
∆̄

)
ψ

〉
=
(
1 +

x

3

)
〈ϕ, ψ〉 = 0,

what should be proved.

Set, for any x 6= −3, j(x) = 1
3

3−x
x+3

and, for x 6= 1
2
, ζ(x) = 1

3
(x+3)(x−1)

2x−1
. As

for corollary 6.3, we deduce from lemma 13.1 and corollary 11.4 the following

Corollary 13.4. Let νζ the unique Borel probability on Λ such that one has
L∗
ζνζ = νζ . For any ϕ in E1, the spectral measure of ϕ is ‖ϕ‖2

2 jνζ .
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Proof. As the proof of this result is analogous to the one of corollary 6.3,
we just give its big steps. Let λ be the spectral measure of ϕ. By lemma

13.2, one has λ(−2) = 0. Set, for x /∈
{
−2, 1

2

}
, θ(x) = x(x−1)2

3(x+2)(2x−1)
. One

has θ = j

j◦f ζ and, by corollary 11.4 and lemma 13.1, λ = L∗
θλ. By lemma

9.3, ϕ is orthogonal to constant functions. Therefore, by lemma 10.7, one
has λ(3) = 0. Moreover, by corollaries 11.2 and 13.3, the measure λ is
concentrated on Λ.

The function ζ is positive on Λ and Lζ(1) = 1. By lemma 6.2, there
exists a unique Borel probability νζ on Λ such that L∗

ζνζ = νζ . Proceeding
as in the proof of corollary 6.3, one proves that the measures λ and jνζ are
proportional. As one has Lζj = 1, one gets λ = ‖ϕ‖2

2 jνζ .

Let l denote the function x 7→ x on Λ and set, for x 6= 1, m(x) = x+2
x−1

and, for x 6= 1
2
, ξ(x) = 1

3
x(x−1)
2x−1

. Let Φ̄ denote the closed subspace of L2
(
Γ̄, µ

)

spanned by the elements of E1 and their images by the powers of ∆̄ and,
as in section 12, let ρ1 design the S-equivariant isomorphism from E1 onto
C3

0. Still endow C3
0 with the hermitian norm that equals one third of the

canonical norm and denote by 〈., .〉0 the associate scalar product. By lemma
9.3, the map ρ1 is an isometry. Identify the Hilbert spaces L2 (jνζ ,C

3
0) and

L2 (jνζ) ⊗ C3
0 and, for any polynomial p in C[X] and for any v in C3

0, set

p̂⊗ v = p
(
∆̄
)
ρ−1

1 (v). We have an analogue of proposition 6.4:

Proposition 13.5. The map g 7→ ĝ induces a S-equivariant isometry from
L2 (jνζ ,C

3
0) onto Φ̄. The subspace Φ̄ is stable by the operators ∆̄, Π̄ and Π̄∗.

For any g in L2 (jνζ ,C
3
0), one has

∆̄ĝ = l̂g

Π̄ĝ = L̂ξg

Π̄∗ĝ = m̂(g ◦ f).

Proof. Let p be in C[X]. The map

C3
0 × C3

0 → C

(v, w) 7→
〈
p
(
∆̄
)
ρ−1

1 (v), ρ−1
1 (w)

〉
L2(Γ̄,µ)

is a S-invariant sesquilinear form. As the representation of S on C3
0 is

irreducible, this sesquilinear form is proportional to the scalar product 〈., .〉0.
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By lemma 9.3 and corollary 13.4, for v in C3
0, one has

〈
p
(
∆̄
)
ρ−1

1 (v), ρ−1
1 (v)

〉
L2(Γ̄,µ) = ‖v‖2

0

∫

Γ̄

pjdνζ ,

therefore, for any p and q in C[X], for any v and w in C3
0, one has

〈
p̂⊗ v, q̂ ⊗ w

〉
L2(Γ̄,µ)

= 〈v, w〉0〈p, q〉L2(jνζ)

and hence the map g 7→ ĝ induces an isometry from L2 (jνζ ,C
3
0) onto a closed

subspace of L2
(
Γ̄, µ

)
. As this subspace is spanned by the elements of E1 and

their images by the powers of ∆̄, by definition, it equals Φ̄.
The rest of the proof is analogous to the one of proposition 6.4.
The stability of Φ̄ by ∆̄ and the formula for ∆̄ result from the very

definition of the objects in question.
A direct computation shows that Lξ(1) = 0 and that Lξ(l) = 1 + 1

3
l,

so that, for any nonnegative integer n, one has Lξ(f
n) = 0 and Lξ(f

nl) =
ln
(
1 + 1

3
l
)
. Now, by lemmas 11.1 and 13.1, for any ϕ in E1, one has Π̄

(
f
(
∆̄
)n
ϕ
)

=

0 and Π̄
(
f
(
∆̄
)n

∆̄ϕ
)

= ∆̄n
(
1 + 1

3
∆̄
)
ϕ. The space Φ̄ is thus stable by Π̄

and, for any p in C[X] and v in C3
0, one has Π̄p̂⊗ v = ̂Lξ(p) ⊗ v. As ζ

is positive on Λ, there exists a real number c > 0 such that, for any x in
Λ, one has |ξ(x)| ≤ cζ(x), so that, for any Borel function g on Λ, one has
|Lξ(g)| ≤ cLζ (|g|). Proceeding as in the proof of proposition 6.4, one proves
that Lζ is bounded in L2(jνζ). One deduces that Lξ is bounded and the
identity concerning Π̄ follows, by density.

Finally, by lemmas 11.1 and 13.1, for any p in C[X] and ϕ in E1, one has(
∆̄ − 1

)
Π̄∗ (p

(
∆̄
)
ϕ
)

= p
(
f
(
∆̄
)) (

∆̄ + 2
)
ϕ. By corollary 11.2, 1 does not

belong to the spectrum of ∆̄, so that, by density, for any rational function
p whose poles do not belong to the spectrum of ∆̄, one has Π̄∗ (p

(
∆̄
)
ϕ
)

=
(m(p ◦ f))

(
∆̄
)
ϕ and hence the space Φ̄ is stable by Π̄∗. Moreover, as, for

any x in Λ, one has m(x)2 j(x)
j(f(x))

= x(x+2)
(x−1)(x+3)

, one gets, by an elementary

computation, Lζ

(
m2 j

j◦f

)
= 1 and, for any g in L2(jνζ),

∫

Λ

|m(g ◦ f)|2 jdνζ =

∫

Λ

(
m2 j

j ◦ f

)
|g ◦ f |2 (j ◦ f)dνζ =

∫

Λ

|g|2 jdνζ .

The formula for Π̄∗ follows, by density.
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Let us now deal with the other S-isotypic components of the space
L2
(
Γ̄, µ

)
. Let ε : S → {−1, 1} denote the signature morphism. We shall

say that a function ϕ on Γ̄ is (S, ε)-semi-invariant if, for any s in S, one has
ϕ ◦ s = ε(s)ϕ.

Proposition 13.6. For any integer n ≥ 1, the space of S-invariant n-
triangular functions on Γ̄ is stable by ∆̄ and the characteristic polynomial of
∆̄ in this space is

(X − 3)

n−2∏

p=0

(f p(X))
3
n−2−p

+2n−2p−1

4 (f p(X) + 2)
3
n−2−p

−2n+2p+3

4 .

For any integer n ≥ 2, the space of (S, ε)-semi-invariant n-triangular func-
tions on Γ̄ is stable by ∆̄ and the characteristic polynomial of ∆̄ in this space
is

n−2∏

p=0

(l ◦ f p(X))
3n−2−p

−2n+2p+3

4 (k ◦ f p(X))
3n−2−p+2n−2p−1

4 .

Proof. These spaces are stable by lemma 10.1. The computation of the char-
acteristic polynomials is obtained proceeding as in the proof of proposition
7.5.

From this proposition, we deduce, using lemma 9.4, the following:

Corollary 13.7. The spectrum of ∆̄ in the space of S-invariant elements of
L2
(
Γ̄, µ

)
is discrete. The eigenvalues of ∆̄ in this space are 3, which is simple,

and the elements of
⋃
n∈N

f−n(−2)∪⋃n∈N
f−n(0). The spectrum of ∆̄ in the

space of (S, ε)-semi-invariant elements of L2
(
Γ̄, µ

)
is discrete. The eigen-

values of ∆̄ in this space are the elements of
⋃
n∈N

f−n(−2) ∪
⋃
n∈N

f−n(0).

The proof of theorem 1.3 ends with the following

Proposition 13.8. Let Φ̄⊥ be the orthogonal complement of Φ̄ in L2
(
Γ̄, µ

)
.

The spectrum of ∆̄ in Φ̄⊥ is discrete. Its eigenvalues in this space are 3,
which is simple, and the elements of

⋃
n∈N

f−n(−2) ∪
⋃
n∈N

f−n(0).

The proof of this proposition is analogous to the one of proposition 6.9. It
needs us to introduce objects that will play the role of the spaces Ln, n ∈ N,
of this proof.
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Let us use the notations from section 8 and recall that, by construction,
if p is a point of Γ̄ such that θ1(p) = a1, the keel of p is B0 or riB0. For any
integer n ≥ 1, let Bn be the set which is the union of Tn − ∂Tn and of the
set of the six pairs of the form (d,B) where d belongs to ∂Tn and B is one
of the two keels for which there exists points p of B with θn(p) = d. Denote
by τn the locally constant map Γ̄ → Bn such that, for any p in Γ̄, if p is not
a vertex of some n-triangle, one has τn(p) = θn(p) and, if p is a vertex of
some n-triangle, τn(p) is the pair (θn(p), B) where B is the keel containing p.
Finally, let say that a function ϕ on Γ̄ is τn-measurable if one has ϕ = ψ ◦ τn,
where ψ is some function defined on Bn. The interest of this definition comes
from the following

Lemma 13.9. Let n ≥ 1 be an integer and ϕ be a τn+1-mesurable function
on Γ̄. Then, the functions Π̄ϕ and Π̄∆̄ϕ are τn-mesurable.

Proof. Let p be a point of Γ̄. If p is not a vertex of some n-triangle, the
triangle Π̄−1p does not contain a vertex of some (n+1)-triangle. In the same
way, none of the neighbors of Π̄−1p is a vertex of some (n+1)-triangle. Thus,
for any of the points q appearing in the computation of Π̄ϕ(p) and Π̄∆̄ϕ(p),
one has τn(q) = θn(q). Therefore, by the definition of θn and by lemma 9.1,
Π̄ϕ(p) and Π̄∆̄ϕ(p) only depend on θn(p).

If p is now a vertex of some n-triangle, the neighbor q of p that does
not belong to this n-triangle is itself a vertex of some n-triangle and, by
lemma 8.3, the keel of q is determined by the one of p. In particular, τn(q) is
determined by τn(p). Only one of the antecedents of the point p by the map
Π̄ is a vertex of some (n + 1)-triangle. By lemma 8.8, it is the one whose
keel equals the one of p. In particular, the image by τn+1 of this point r
is determined by τn(p). In the same way, the image by τn+1 of the unique
antecedent s of q that is a vertex of some (n + 1)-triangle only depends on
τn(q), and so on τn(p). The point s is the neighbor of r that does not belong
to Π̄−1p. Finally, the two other points of Π̄−1p and their neighbors that do
not belong to Π̄−1p are not vertices of some (n+ 1)-triangle and hence their
image by τn+1 is their image by θn+1 that only depend on θn(p). Again,
Π̄ϕ(p) and Π̄∆̄ϕ(p) only depend on θn(p).

Proof of proposition 13.8. By lemma 10.7, the eigenvalue 3 of ∆̄ is simple.
By corollaries 12.4 and 12.8, the eigenspaces associate to the elements of⋃
n∈N

f−n(−2) ∪
⋃
n∈N

f−n(0) are non zero. Let P̄ denote the orthogonal
projector from L2

(
Γ̄, µ

)
onto Φ̄⊥ and, for any ϕ and ψ in L2

(
Γ̄, µ

)
, denote by
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λϕ,ψ the unique complex Borel measure on R such that, for any polynomial p
in C[X], one has

∫
R
pdλϕ,ψ =

〈
p
(
∆̄
)
ϕ, ψ

〉
. By proposition 13.5, the operator

P̄ commutes with ∆̄, Π̄ and Π̄∗. By lemma 9.4, to prove the proposition, it
suffices to establish that, for any integer n ≥ 1, for any τn-mesurable function
ϕ, for any ψ in L2

(
Γ̄, µ

)
, the measure λP̄ ϕ,ψ is atomic and concentrated on

the set
⋃
n∈N

f−n(3) ∪
⋃
n∈N

f−n(0). Let us prove this result by induction on
n.

For n = 1, the τ1-mesurables functions are those functions that only
depend on the keel. One easily checks that this space is spanned by the
constant functions, a line of (S, ε)-semi-invariant functions, the elements of
E1 and their images by ∆̄. In this case, the description of spectral measures
immediately follows from corollaries 13.4 and 13.7.

If the result is true for an integer n ≥ 1, let us pick some τn+1-measurable
function ϕ. Then, by lemma 13.9, the functions Π̄ϕ and Π̄∆̄ϕ are τn-
measurable and, by induction, for any ψ in L2

(
Γ̄, µ

)
, the measures λΠ̄P̄ ϕ,ψ =

λP̄ Π̄ϕ,ψ and λΠ̄∆̄P̄ϕ,ψ = λP̄ Π̄∆̄ϕ,ψ are atomic and concentrated on the set⋃
n∈N

f−n(3) ∪
⋃
n∈N

f−n(0). Proceeding as in lemma 6.10, one deduces that
the measures λP̄ ϕ,Π̄∗ψ and λ∆̄P̄ ϕ,Π̄∗ψ = λP̄ ϕ,∆̄Π̄∗ψ are atomic and concentrated
on the set

⋃
n∈N

f−n(3)∪
⋃
n≥1 f

−n(0). Now, by corollary 11.2, the spectrum

of ∆̄ in the orthogonal complement of the subspace of L2
(
Γ̄, µ

)
spanned

by the image of Π̄∗ and by the one of ∆̄Π̄∗ equals {−2, 0}. Therefore, for
any ψ in L2

(
Γ̄, µ

)
, the measure λP̄ ϕ,ψ is atomic and concentrated on the set⋃

n∈N
f−n(3) ∪

⋃
n∈N

f−n(0). The result follows.

14 The Sierpiński graph

In this section, we will quickly explain how the results that have been ob-
tained in this article for the Pascal graph Γ may be transfered to the Sierpiński
graph Θ pictured in figure 2. As explained in section 2, the graph Θ identifies
with the edges graph of Γ. If ϕ is some function on Γ, one let Ξ∗ϕ denote
the function on Θ such that, for any neighbor points p and q in Γ, the value
of Ξ∗ϕ on the edge associate to p and q is ϕ(p) +ϕ(q). One let Ξ denote the
adjoint of Ξ∗ and one immediately verifies the following

Lemma 14.1. One has (∆−1)Ξ∗ = Ξ∗∆ and ΞΞ∗ = 3+∆. The restriction
of ∆ to the orthogonal complement of the image of Ξ∗ in ℓ2(Θ) is the operator
of multiplication by −2.
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Through this lemma, all the results of this article transfer from the Pascal
graph to the Sierpiński graph. They could also be obtained directly in the
Sierpiński graph, by considering the suitable operators in ℓ2(Θ). We will
only describe the continuous spectrum of Θ and translate theorem 1.1: this
answers the question asked by Teplyaev in [18, § 6.6].

For x in R, set k(x) = x + 2 and t(x) = x + 1. From lemma 14.1, one
deduces the following

Lemma 14.2. Let ϕ be in ℓ2(Γ), µ be the spectral measure of ϕ for ∆ in
ℓ2(Γ) and λ the spectral measure of Ξ∗ϕ for ∆ in ℓ2(Θ). Then, one has
λ = k(t∗µ).

For any x in R, set g(x) = x2−3x = f(x−1)+1. One let Σ = t(Λ) denote
the Julia set of g. For any x in R, let c(x) = (x + 2)(4 − x) = k(x)h(x − 1)
and, for x 6= 3

2
, γ(x) = x−1

2x−3
= ρ(x− 1). One let νγ = t∗νρ denote the unique

Lg,γ-invariant probability measure on Σ.
Let still ϕ0 denote the function on Γ that appears in section 6 and set

θ0 = Ξ∗ϕ0 (this is the function which is denoted by 1∂∂V in [18, § 6]). From
theorem 1.1 and lemmas 14.1 and 14.2, one deduces the following theorem,
that completes the description of the spectrum of Θ by Teplyaev in [18]:

Theorem 14.3. The spectrum of ∆ in ℓ2(Θ) is the union of Σ and the
set

⋃
n∈N

g−n(−2). The spectral measure of θ0 for ∆ in ℓ2(Θ) is the mea-
sure cνγ, the eigenvalues of ∆ in ℓ2(Θ) are the elements of

⋃
n∈N

f−n(−2) ∪⋃
n∈N

f−n(−1) and the associate eigenspaces are spanned by finitely supported
functions. Finally, the orthogonal complement of the sum of the eigenspaces
of ∆ in ℓ2(Θ) is the cyclic subspace spanned by θ0.
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