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Abstract

In this paper, we completely determine the spectral invariants of
an auto-similar planar 3-regular graph. Using the same methods,
we study the spectral invariants of a natural compactification of this
graph.

1 Introduction

In this whole article, we shall call Pascal graph the infinite, connected and
3-regular graph pictured in figure 1. We let I' denote it. This graph may
be constructed in the following way. One writes the Pascal triangle and one
erases therein all the even values of binomial coefficients. In this picture,
one links each point to its neighbors that have not been erased. One thus
obtains a graph in which each point has three neighbors, except the vertex
of the triangle which has only two. One then takes two copies of this graph
and joins them by their vertices: one thus do get a 3-regular graph. This is
the graph T.

Let ¢ be a complex valued function on I'. For p in T, one sets Ap(p) =
> o~ ©(q). The linear operator A is self-adjoint with respect to the counting
measure on ') that is, for any finitely supported functions ¢ and 1, one has
> per P(D)(AY(p)) = 32 er(Ap(p))(p). In this article, we will completely
determine the spectral invariants of the operator A in the space *(T") of
square-integrable functions on I'.

To set our results, set f : R — R,z — 22 — 2 — 3. Let A be the Julia
set of f, that is, in this case, the set of those x in R for which the sequence
(f"(x))nen remains bounded. This is a Cantor set which is contained in

the interval [—2,3]. More precisely, if one sets [_5 = [—2, 1’\/5] and I3 =

2
[1+\/3
2

such that, for any n in N, one has f"(x) € I., and the thus defined map

,3}, for any € = (g,)nen in {—2,3}Y, there exists a unique z in A



N

Figure 1: The Pascal graph

{—2,3}" — A is a bi-Hélder homeomorphism that conjugates f and the
shift map in {—2,3}". For z in A, set p(x) = 725 and, if ¢ is a continuous
function on A, Lyp(x) = >, = P(y)#(y). One easily checks that one has
L,(1) = 1. Thus, by Ruelle-Perron-Frobenius theorem (see [13, § 2.2]), there
exists a unique Borel probability measure v, on A such that Ly, = v,. The
measure v, is atom free and f-invariant. Finally, let us note that, if 4 denotes
the function A — R, x — 3 —x, one has L,h = 2 and, therefore, fA hdv, = 2.

Let po and py denote the two vertices of the infinite triangles that have
been glued to build the graph I'. Let ¢y be the function on I" with value 1

at po, —1 at py and 0 everywhere else. We have the following

Theorem 1.1. The spectrum of A in (*(T) is the union of A and the set
Unen /7(0).  The spectral measure of o for A in (*(T) is the measure
hv,, the eigenvalues of A in (*(T) are the elements of U, oy f7"(0) and
U,hen f7"(=2) and the associate eigenspaces are spanned by finitely supported
functions. Finally, the orthogonal complement of the sum of the eigenspaces
of A in (2(T) is the cyclic subspace spanned by .

The study of the Pascal graph is closely related to the one of the Sierpinski
graph, pictured in figure 2. The spectral theory of the Sierpinski graph, and
more generally the one of self-similar objects, has been intensively studied,
since the original works of Rammal and Toulouse in [14] and Kigami in [10]
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Figure 2: The Sierpinski graph

and [11]. These problems are attacked from a general viewpoint by Sabot in
[16], where numerous references may be found; see also Kron [9]. Asymptotics
of transition probabilities for the simple random walk on the Sierpinski have
been computed by Jones in [8] and Grabner and Woess in [3]. The finitely
supported eigenfunctions for the Laplace operator on the Sierpinski graph
and the associate eigenvalues have been determined by Teplyaev in [18]. The
Sierpinski graph may be seen as the edges graph of the Pascal graph, where
two edges are linked when they have a common point. In particular, our
description of the eigenvalues associate to finitely supported eigenfunctions
on the Pascal graph for the operator A is a consequence of the work of
Teplyaev. However, the exact determination of the cyclic components of
A and of its continuous spectrum are new and answer the question asked
by Teplyaev in [18, § 6.6]. In section 14, we shall precisely explain how to
connect the study of the Sierpinski graph to the one of the Pascal graph.
The results cited above rely on the application of the so-called method
of Schur complements. This method has recently been succesfully applied
to get precise computations for numerous self-similar graphs, for example by
Grigorchuk and Zuk [7], Bartholdi and Grigorchuk [1], Bartholdi and Woess
2] and Grigorchuk and Nekrashevych [6]. In [4] and [5], Grigorchuk and
Sunik study finite analogues of the Pascal graph. The method we use in



Figure 3: A covering map I' — I’y

this paper is different and rely on the existence of functional equations on
the graph. It not only permits very quick computations of spectra, but also
the computation of continuous spectral measures of some remarkable vectors,
which is the key point in the proof of spectral decomposition theorems. It
probably may be applied to self-similar objects satisfying strong homogeneity
hypothesis as in [9], but this generalization seems quite difficult to handle.

This method allows to describe the spectral theory of other operators
connected to the graph I". Let I'y denote the complete graph with four
vertices a, b, ¢ and d. The graph I is a covering of [y, as shown by the figure
3. Let us build, for any integer n, a finite graph in the following way: if
the graph I',, has been built, the graph I',,,; is the graph which is obtained
by replacing each point of I',, by a triangle (this process gets more formally
detailed in section 2). We still let A denote the operator of summation over
the neighbors, acting on functions on I',,.

Theorem 1.2. For any nonnegative integers m > n, there exists covering
maps T, — Ty, and T — T,,. The characteristic polynomial of A in (*(T,,)
15
n—1
(X =3)(X + 1 TT(P(X) = 2 (fP (X)) (fP(X) +2) 25

p=0



Analogous covering maps to those described by this theorem for the
Sierpiniski graph have been recently exhibited by Strichartz in [17]. Close
computations of characteristic polynomials are made by Grigorchuk and
Sunik in [4] and [5].

Let us now focus on the initial motivation of this article, which was the
study of a phenomenum in dynamical systems. Let X C (Z/2Z)% be the
three dot system, that is the set of families (py),yez2 of elements of Z/27Z
such that, for any integers k and [, one has py;+pry1+pri+1 = 0 (in Z/2Z).
We equip X with the natural action of Z?, which is spanned by the maps
T : (xgy) — (ps1) and S @ (xg;) — (g41). This system, which has been
introduced by Ledrappier in [12], is an analogue of the natural extension of
the angle doubling and tripling on the circle and, as in Fiirstenberg conjec-
ture, the problem of the classification of the Borel probabilities on X that
are Z*-invariant is open. Let Y denote the set of p in X such that pyo = 1.
If p is a point of Y, there then exists exactly three elements (k,1) in the set
{(1,0),(0,1),(=1,1),(-=1,0), (0,—1), (1, 1)} such that T*S'z belongs to Y.
This relation equips the set Y with a 3-regular graph structure (with multi-
ple edges). If p is a point in Y, its connected component Y, for this graph
structure is exactly the set of points of the orbit of p under the action of Z?
that belong to Y, that is the equivalence class of p in the equivalence relation
induced on Y by the action of Z2. For any continuous function ¢ on Y, one
sets, for any pin Y,

Ap(p) = > p(T"S'p).

(k,l)E{(l,O),(O,l),(71,1),(71,0),(0,71),(1,71)}
TkSlpey

If X is a Borel probability which is invariant by the action of Z2? on X and
such that A(Y") > 0 (that is A is not the Dirac mass at the zero family), the
restriction y of A to Y satisfies A*ju = 3p and A is a self-adjoint operator in
L2(Y, ).

On the origin of this work, we wished to study the homoclinic intersections
phenomena in X. Recall that, if ¢ is a diffeomorphism of a compact manifold
M and if p is a hyperbolic fixed point of ¢, a homoclinic intersection is an
intersection point ¢ of the stable leaf of p and of its unstable leaf. For such
a point, one has ¢"(q) — D This notion admits a symbolic dynamics

analogue. Let M denote the space (Z/QZ)Z, ¢ the shift map and p the point
of M all of whose components are zero. If ¢ is an element of M all but a finite



number of whose components are zero, one has ¢"(q) — P In particular,
n—mrzoo

the point ¢ such that ¢y = 1 and all other components are zero possesses this
property. In our situation, one checks that there exists a unique element ¢ in
X such that one has gy = 1, for any £ in Z and [ > 1, one has gx; = 0 and,
for any £k > 1 and | < —1 — k, one has g,; = 0. There then exists a graph
isomorphism from the graph I' onto Y, mapping py on ¢: this is the origin
of the planar representation of I' pictured in figure 1. We shall now identify
I' with Y, and p, with ¢q. Note that, if p is the element of X all of whose

components are zero, for any integers [ > k > 0, one has (T*5")"q — P

Let T be the closure of ' in Y: one can see I as a set of pointed planar graphs.
Our goal is to determine the structures induced on I' by the action of Z? on
X. For any p in T, let T, stand for Y,. Note that, if ©, is the edges graph
of I',, the graphs ©, are exactly the graphs that are studied by Teplyaev in
[18]. In particular, by [18, § 5.4], if ', does not contain py or one of its six
images by the natural action of the dihedral group of order 6 on the space
X, the spectrum of the operator A in ¢*(T,) is discrete.

Every point p in T belongs to a unique triangle in T',. Let a denote the set
of elements p such that this triangle is {p, T~'p, S~!p}, b the one of points
p for which it is of the form {p,Tp, TS~'p} and c the set of points p for
which this triangle is {p, Sp, T~'Sp}. The set I is the disjoint union of a, b
and c. Let us denote by 6; : I' — {a,b, c} the natural map associate to this
partition. We shall say that a function ¢ from I into C is 1-triangular if it
factors through 6;. We let F; denote the space of 1-triangular functions ¢
such that ¢(a) +¢(b) +¢(c) = 0: it identifies naturally with C3 = {(s,t,u) €
C3ls+t+u = 0}. We equip C3 with the scalar product which equals one
third of the canonical scalar product.

Let (: A — R,z %% and, as above, let L, denote the transfer
operator associate with ¢ for the dynamics of the polynomial f. As L¢(1) = 1,
there exists a unique Borel probability measure v on A such that Live = v¢.

13—z

Then, if j designs the function A — R,z + 5%, one has L¢(j) = 1 and

hence fAjdl/C =1.

Theorem 1.3. For any p in T, the set T, is dense in I'. There exists a
unique Borel probability jv on T such that A*u = 3u and the operator A is
self-adjoint in L2 (f, ,u). The spectrum of the operator A in L2 (f, ,u) 15 the
same as the one of A in (*(T'). For any ¢ in E), the spectral measure of ¢
for A in L? (T, p) is ”(pngljc and the sum of the cyclic spaces spanned by



the elements of Ey is isometric to L? (jue, C3). The spectrum of A in the
orthogonal complement of this subspace is discrete and its eigenvalues are 3,
which is simple, and the elements of |, cn f7"(0) U U, en f 7 (—2).

The organization of the article is as follows.

Sections 2, 3, 4, 5 and 6 are devoted to the study of the graph I'. In section
2, we precisely construct I' and we establish some elementary properties of
its geometry. In section 3, we determine the spectrum of A in ¢*(T") and,
in section 4, we prove an essential result towards the computation of the
spectral measures of the elements of this space. In section 5, we describe the
structure of the eigenspaces of A in ¢?(T'). Finally, in section 6, we apply all
these preliminary results to the proof of theorem 1.1.

In section 7, we use the technics developed above to prove theorem 1.2.

In sections 8, 9, 10, 11, 12 and 13, we study the space I'. In section 8, we
precisely describe the geometry of the space I' and, in section 9, we introduce
some remarkable spaces of locally constant functions on this space. Section
10 is devoted to the definition of the operator A and to the proof of the
uniqueness of its harmonic measure. Section 11 extends to I' the properties
proved for I' in sections 3 and 4. In section 12, we study the eigenspaces of
Ain L2 (T, u). Finally, in section 13, we finish the proof of theorem 1.3.

In section 14, we explain shortly how to transfer our results on the Pascal
graph to the Sierpinski graph.

2 Geometric preliminaries

In all the sequel, we shall call graph a set ® equipped with a symmetric
relation ~ such that, for any p in ®, one does not have p ~ p. For p in
®, we call neighbors of p the set of elements ¢ in & such that p ~ ¢q. We
shall say that ® is k-regular if all the elements of ® have the same number
k of neighbors. We shall say that ® is connected if, for any p and ¢ in @,
there exists a sequence rg = p,...,r, = q of points of ® such that, for any
1 <i < n, one has r;_; ~ r;. We shall call such a sequence a path from p to
q and the integer n the length of this path. If ® is connected and ¢ is some
function on ® such that, for any points p and ¢ in ® with p ~ ¢, one has
©(p) = v(q), then ¢ is constant.

We shall say that a subset 7 of some graph ® is a triangle if 7" contains
exactly three points p, ¢ and r and one has p ~ ¢, ¢ ~ r and r ~ p.
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Figure 4: Construction of the graph i)

Let ® be a 3-regular graph. We let d denote the set of ordered pairs (p, q)
in & with p ~ ¢ equipped with the graph structure for which, if p is a point
of ®, with neighbors ¢, 7 and s, the neighbors of (p, q) are (¢,p), (p,r) and
(p,s). If @ is connected, ® is connected. Geometrically, d is the graph one
obtains by replacing each point of ® by a triangle. This process is pictured
in figure 4. We let II denote the map ® — @, (p, ¢) — p.

Let £2(®) denote the space of functions ¢ : ® — Csuch that Y 4 [¢(p) ? <
oo, equipped with its natural structure of a Hilbert space (.,.). If ® is 3-
regular, the map II induces a bounded linear map with norm /3, IT* : ¢ —

@ oll, 2(®) — ¢* <<i>) We still let IT denote the adjoint operator of IT*: this

is the bounded operator 2 (é) — (*(®) which, to some function ¢ in 2 (@) ,

associates the function whose value at some point p in ® is Zqu ©(p,q). One
has TIIT* = 3.

Let extend the definition of the triangles graph to more general graphs.
We shall say that a graph ® is 3-regular with boundary if every point of ®
has two or three neighbors. In this case, we call the set of points of ® that
have two neighbors the boundary of ® and we let 0® denote it. If ® is a
3-regular graph with boundary, we let d denote the set which is the union
of 0P and of the set of ordered pairs (p, q) of elements of ® with p ~ q. We
equip @ with the graph structure for which, if p is a point of ® — 9P, with
neighbors ¢, r and s, the neighbors of (p, q) are (¢, p), (p,r) and (p, s) and, if
p is a point of 0P, with neighbors ¢ and r, the neighbors of p in d are (p,q)
and (p,r) and the neighbors of (p, ) are (¢,p), p and (p,r). Thus, ® is itself
a 3-regular graph with boundary and there exists a natural bijection between
the boundary of ® and the one of ® (see figure 5 for an example when ® is
a triangle). We still let II denote the natural map ® — ® and ITI* and II the
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Figure 5: The graph ® when @ is a triangle

associate bounded operators (*(®) — (2 (é) and (? (@) — (%(D).

Lemma 2.1. Let ® be a 3-reqular graph with boundary. Then, the triangles
of ® are exactly the subsets of the form I171(p) where p is some point in .
In particular, every point of ® belongs to a unique triangle.

Proof. 1If p is a point of ®, the set II7!(p) is clearly a triangle. Conversely,
pick some point p in ®—0®, with neighbors ¢,  and s. Then, the neighbors of
(p,q) are (q,p), (p,) and (p, s). By definition, as p # ¢, the point (¢, p) can
not be a neighbor of (p, ) or of (p, s). Therefore, the only triangle containing
(p,q) is TI7Y(p). In the same way, if p belongs to 9®, and if the neighbors
of p are ¢ and r, as p only has two neighbors in o, p belongs to only one
triangle and, as p # ¢, no neighbor of (g, p) is also a neighbor of (p, q) and
hence (p, q) belongs to only one triangle. O

If ® is a graph, we shall say that a bijection o : ® — ® is an automorphism
of the graph @ if, for any p and ¢ in ® with p ~ ¢, one has o(p) ~ o(q).
The set of automorphisms of ® is a subgroup of the permutation group
of ® that is denoted by Aut®. If ® is 3-regular with boundary and if o
is an automorphism of ®, one has ¢(0P) = 9P and there exists a unique
automorphism & of ® such that I16 = olL.

Lemma 2.2. Let ® be a 3-regular graph with boundary. The map o +—
o, Aut ® — Aut ® is a group isomorphism.

Proof. As this map is clearly a monomorphism, it suffices to prove that it is
onto. Let thus 7 be an automorphism of . As T exchanges triangles of P,
by lemma 2.1, there exists a unique bijection o :  — & such that I16 = oII.
Let p and ¢ be points of ® such that p ~ ¢. One then as (p, q) ~ (¢, p), hence
7(p,q) ~ 7(q,p) and, as these points of ® do not belong to a common triangle,
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o(p) = r(p,q) ~ IIr(q,p) = o(q). Therefore, o is an automorphism of @
and 7 = &, what should be proved. O

We shall now define an important family of 3-regular graphs with bound-
ary. If a, b and ¢ are three distinct elements, we let 7 (a,b,c¢) = 7i(a, b, c)
denote the set {a,b, c} equipped with the graph structure for which one has
a~ b, b~ cand ¢ ~ a and one says that 7 (a,b,c) is the triangle or the
1-triangle with vertices a, b and c. We consider it as a 3-regular graph with
boundary. One then defines by induction a family ogiegular graphs with
boundary by setting, for any n > 1, 7,11(a, b, ¢) = T,(a, b, c). For any n > 1,
one calls 7, (a, b, ¢) the n-triangle with vertices a, b and c.

One let S(a, b, c) denote the permutation group of the set {a,b,c}. By
definition and by lemma 2.2, one has the following

Lemma 2.3. Let a, b and ¢ be three distinct elements. Then, for anyn > 1,
T.(a,b,c) is a connected 3-regular graph with boundary and 07, (a,b,c) =
{a,b,c} . The map that sends an automorphism of T, (a, b, c) to its restriction
to {a,b, c} induces a group isomorphism from Aut 7T, (a,b,c) onto S(a,b,c).

If ® is a graph and n > 1 an integer, we shall say that a subset 7 of ®
is a n-triangle if there exists points p, ¢ and r in 7 such that the subset 7,
endowed with the restriction of the relation ~, is isomorphic to the graph
7.(p,q,r). By abuse of language, we shall call 0-triangles the points of ®.

Let @ be a 3-regular graph with boundary. Set PO = &, M = & and, for

any nonnegative integer n, 1) = $(). By induction, for any nonnegative
integer n, an automorphism o of ¢ induces a unique automorphism ™ of
&™) such that "6 = oII".

By lemmas 2.1 and 2.2, one immediately deduces, by induction, the fol-
lowing

Lemma 2.4. Let ® be a 3-regular graph with boundary and n be a non-
negative integer. The n-triangles of O™ gre exactly the subsets of the form
[I7"(p) where p is a point of ®. In particular, every point of o) belongs
to a unique n-triangle. The map o — o™ Aut® — Aut ™ s q group
isomorphism.

Corollary 2.5. Let @ be a 3-regular graph with boundary, n > m > 1 be
integers, p be a point of ®™ | T be the n-triangle containing p and S be the
m-triangle containing p. One has S C T . If p is a vertex of T and if p does
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not belong to OD™ | the unique neighbor of p in ®™ that does not belong to
the 1-triangle containing p is itself the vertex of some n-triangle of ®™.

Proof. By lemma 2.4, one has 7 = [I""(II"p) and S = II"™"(II"p), hence
S C T. Suppose p belongs to 907 — d®™ . Then, p has a unique neighbor
in @™ that does not belong to 7. Let ¢ be a neighbor of p and R be the
n-triangle containing ¢q. If ¢ is not a vertex of R, all the neighbors of ¢ belong
to R and hence p € R. As, by lemma 2.4, p belongs to a unique n-triangle
of ®™ one has 7 = R and hence ¢ belongs to 7. Therefore, the neighbor
of p that does not belong to 7 is a vertex of the n-triangle which it belongs
to. U

Corollary 2.6. Let n > 2 be an integer and a, b and c be three distinct
elements. Then, there exists unique elements ab, ba, ac, ca, bc and cb of
T.(a,b,c) such that T,(a,b,c) is the union of the three (n — 1)-triangles
To-1(a,ab,ac), T,_1(b,ba,bc) and T, 1(c,ca,cb) and that one has ab ~ ba,

ac ~ ca and be ~ cb.

Proof. The corollary may be proven directly for n = 2. This case implies the
general one by lemma 2.4. O

Pick now an element a and two sequences of distinct elements (by,)n>1
and (¢, )n>1 such that, for any n > 1, one has b, # a, ¢, # a and b, # ¢,.
By corollary 2.6, for any n > 1, one can identify 7,(a, b,,c,) to a subset
of Z,4+1(a,byi1, cpyq) thanks to the unique graph isomorphism sending a to
a, b, to ab,41 and ¢, to ac,y1. One then calls the set |, <, 7, (a, by, cp),
equipped with the graph structure that induces its n-triangle structure on
each 7,(a, by, c,), n > 1, the infinite triangle with vertex a and one let it be
denoted by 7., (a). From the preceding results one deduces the following

Lemma 2.7. Let a be an element. The graph T, (a) is connected, 3-reqular
with boundary and 0Ty (a) = {a}. If b and c are the two neighbors of a in

—

T(a), there exists a unique isomorphism from Ty (a) onto T (a) that sends
a to (a,b) and c to (a,c). For any nonnegative integer n, this isomorphism
induces a natural bijection between the points of Too(a) and the n-triangles
of To(a) and every point of To(a) belongs to a unique n-triangle. Finally,
Too(a) admits a unique non trivial automorphism; this automorphism is an
involution that fixes a and that, for any n > 1, exchanges the two vertices of
the n-triangle containing a that are different from a.
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In all this article, we fix two distincts elements py and py. One calls
Pascal graph the set 7o (po) U7 (py) endowed with the graph structure that
induces the infinite triangle structure on 7. (py) and 7. (py) and for which
po ~ py. We let I' denote the Pascal graph. From lemma 2.7, one deduces
the following

Proposition 2.8. The Pascal graph is an infinite, connected and 3-reqular
graph. If qo and ro are the two neighbors of py in Too(po) and qf and ry the
two neighbors of py in T (py), there exists a unique isomorphism from T onto
I' that sends po to (po,py), vy to (py,P0)s o to (Posqo), To to (Po,70), q to
(py,qy) and g to (py,ry). For any nonnegative integer n, this isomorphism
induces a natural bijection between the points of I' and the n-triangles of T’
and every point of I' belongs to a unique n-triangle.

A planar representation of the Pascal graph is given in figure 1.

One shall now identify I" and r by the isomorphism described in proposi-
tion 2.8. In particular, from now on, one shall consider IT and IT* as bounded
endomorphisms in ¢*(T).

Let © denote the edges graph of I'. More precisely, © is the set of non
ordered pairs {p, ¢} of elements of I' with p ~ ¢, endowed with the relation
for which, if p and ¢ are two neighbor points in I, if » and s are the two
other neighbors of p and ¢ and u the two other neighbors of ¢, the neighbors
of {p,q} are {p,r}, {p, s}, {q,t} and {q,u}. We call © the Sierpinski graph.
It is an infinite, connected and 4-regular graph. A planar representation of
it is given in figure 2.

If ® is a k-regular graph, for any function ¢ from ® into C, one let Ayp
denote the function p — Zqu ©(q). Then, A induces a bounded self-adjoint
operator of the space £*(®) with norm < k. We call the spectrum of this
operator the spectrum of ®.

3 The spectrum of I’

Let @ be a 3-regular graph. In this section, we shall study the link between
the spectral properties of ® and those of . Our study is based on the

Lemma 3.1. One has (A% — A — 3)IT* = [I*A and TI(A? — A — 3) = AIL

Proof. Let ¢ be a function on ®, p be a point of ® and ¢, r, s be the three
neighbors of p. Suppose ¢(p) = a, p(q) = b, p(r) = ¢ and ¢(s) = d. Then,
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one has IT*¢(p, q) = a, All*o(p,q) = 2a + b and A%IT*o(p,q) = (2b + a) +
(2a+c¢) + (2a+d) = 5a+ 2b+ c+ d. We thus have (A% — A — 3)[T*¢o(p, q) =
b+ c+d = II"Ap(p,q). The second relation is obtained by switching to
adjoint operators in the first one. O

We shall now use lemma 3.1 to determine the spectrum of A in (2 (@)
We shall use elementary results from functional analysis.

Lemma 3.2. Let E be a Banach space and T be a bounded linear operator in
E. Suppose all elements of the spectrum of T have positive real part. Then,
if F C E is a subspace which is stable by T?, F is stable by T.

Proof. Let 0 < a < (8 and v > 0 be such that the spectrum S of T is
contained in the interior of the rectangle R = [a, 5]+ [—7,~]i and U D R and
V be open subsets of C such that the map A — A\? induces a biholomorphism
from U onto V. There exists a holomorphic function r on V' such that, for
any A in U, one has r(A\?) = X\. As R is simply connected, by Runge theorem,
there exists a sequence (7,)nen of polynomials in C[X]| that converges to r
on R?. As the spectrum of T2 is S?, which is contained in the interior of R?,
the sequence 7, (T?) then converges to T in the space of endomorphisms of
E. For any integer n, r,(T?) stabilizes F', hence T stabilizes F. O

Lemma 3.3. Let H be a Hilbert space, T' be a bounded self-adjoint endomor-
phism and 7 be a real polynomial with degree 2. Suppose there exists a closed
subspace K of H such that 7(T)K C K and K and TK span H. Then, the
image by ™ of the spectrum of T in H equals the spectrum of w(T') in K and,
if one moreover has T™*K N K = {0}, the spectrum of T in H is exactly the
set of A in R such that w(\) belongs to the spectrum of w(T) in K.

Proof. Once 7 has been written under its canonical form, one can suppose
7(X) = X% Let E denote the spectral resolution of T for any Borel subset
B of R, E(B) is a projection of H that commutes with 7. Let B be a
Borel subset of R such that B = —B. Then, for any Radon measure y on
R, in L2(u), the indicator function of B is the limit of a sequence of even
polynomials. One hence has E(B)K C K.

The spectrum of T2 in H is exactly the set of squares of elements of the
spectrum of T in H. As T? is self-adjoint and K is stable by T2, the spectrum
of T? in K is contained in its spectrum in H, and hence in the set of squares
of elements of the spectrum of T". Conversely, suppose there exists elements
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of the spectrum of 7" whose square does not belong to the spectrum of 72 in
K. Then, there exists a symmetric open subset V' of R such that V' contains
elements of the spectrum of T'in H but that V? does not contain elements
of the one of 7% in K. One has F(V)K C K, but, as VV? does not contain
elements of the spectrum of 7% in K, E(V)K = 0. Now, as K and TK
span H, E(V)K and TE(V)K = E(V)TK span E(V)H. Hence, one has
E(V)H = 0, which contradicts the fact that V' contains spectral values of T'.
Therefore, the spectrum of 72 in K is exactly the set of squares of elements
of the spectrum of 7" in H.

Suppose now one has T-'!K N K = {0}. To conclude, it remains to
prove that the spectrum of 7" is symmetric. Suppose this is not the case.
Then, one can, after eventually having replaced T' by —T', find real numbers
0 < a < (8 such that U =]a, 8] contains elements of the spectrum of T but
that —U does not contain any. But one then has E(U) = E(U U (=U))
and hence E(U)K C K. If L is the image of H by E(U), one has therefore
T*(KNL) C KNL. As the spectrum of the restriction of T to L is contained
in R* , one has, by lemma 3.2, T(KNL) C KNL and hence, by the hypothesis,
KNL=0.As E(U)K C K, one thus has E(U) =0 on K. As K and TK
span H, one has E(U) = 0, which contradicts the fact that U contains
elements of the spectrum of T'. Therefore, the spectrum of T is symmetric.
The lemma follows. ]

In order to apply these results to spaces of square integrable functions on
graphs, we will need results on the geometry of graphs. Let ® be a connected
graph and P and () be two disjoint subsets of ® such that ® = PU Q. We
shall say that ® is split by the partition {P, @} if any neighbor of an element
of P belongs to ) and any neighbor of an element of () belongs to P. We
shall say that ® is splitable (or bipartite) if there exists a partition of ® into
two subsets that splits it. One easily checks that ® is splitable if and only if,
for any p and ¢ in ®, the paths joining p to g either all have even length or
all have odd length. In particular, if ® is splitable, the partition { P, @} that
split @ is unique, two points p and ¢ belonging to the same atom if and only
if they may be joined by a path with even length.

Lemma 3.4. Let ® be a connected graph and L be the space of functions ¢
on ® such that, for any p in ®, ¢ is constant on the neighbors of p. Then,
if @ is not splitable, L equals the space of constant functions. If ® is split by
the partition {P,Q}, L is spanned by constant functions and by the function
1P — 1Q'
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Proof. Let ¢ be in L, p and ¢ be points of ® and r¢ = p,r1,...,7, = q a
path from p to q. For any 1 < ¢ <n —1, one has r;_1 ~ r; ~ r;y1, hence
o(ri—1) = @(ri1) and, if n is even, ¢(p) = ¢(q). Therefore, if p(p) # w(q)
and if P = {r € ®|p(r) = ¢(p)} and Q = {r € ®|p(r) = v(q)}, the partition
{P,Q} splits ®. The lemma easily follows. O

We shall use this lemma in the following setting:

Lemma 3.5. Let ® be a connected 3-regular graph. Let ¢ be in (*(®) such
that Ap = 3. If ® is infinite, one has ¢ = 0 and, if ¢ is finite, ¢ is
constant. Let 1) be in (*(®) such that Ap = —31. If ® is infinite or non
splitable, one has ¥ = 0 and, if ® is finite and split by the partition {P,Q},
Y is proportional to 1p — 1¢.

Proof. As ¢ is in £%(®), the set M = {p € ®|p(p) = maxg p} is not empty.
As Ap = 3y, for any p in M, the neighbors of p all belong to M and,
hence, as ® is connected, M = ® and ¢ is constant. If ® is infinite, as ¢
is in (%(®), it is zero. In the same way, suppose ¥ # 0 and set P = {p €
®|Y(p) = maxe v} and Q = {q € ®|Y(q) = ming}. As Ay = —31, one
has ming ©» = — maxg ¢ and the neighbors of the points of P belong to @,
whereas the neighbors of the points of ) belong to P. By connectedness, one
has P U Q = ®, the graph & is splitable and ¢ is proportional to 1p — 1¢.
Finally, as v is in £2(®), the graph ® is finite. O

Recall we let f denote the polynomial 22 — 2 — 3. From lemma 3.1, we
deduce the following

Corollary 3.6. Let ® be a connected 3-regular graph and H be the closed
subspace of (2 <(i>) spanned by the image of II* and by the image of AIT*.
Then H is stable by A and the spectrum of the restriction of A to H is,

(1) if ® is infinite, the inverse image by f of the spectrum of A in (*(®).

(i1) if © is finite, but non splitable, the inverse image by f of the spec-
trum of A in (*(®) deprived from —2.

(111) if @ is finite and splitable, the inverse image by f of the spectrum
of A in (2(®) deprived from —2 and 0.
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Proof. Let K denote the image of II*. As %H* induces an isometry from
(*(®) onto K, by lemma 3.1, the spectrum of f(A) in K equals the spectrum
of A in ¢*(®). We will apply lemma 3.3 to the space H and the operator
A. On this purpose, let us study the space A=K N K. Let L be the space
of ¢ in £*(®) such that All*¢ belongs to K and let ¢ be in L. If p is a
point of ¢, with neighbors ¢, r and s, set ¢(p) = a, p(q) = b, p(r) = ¢ and
©(s) = d. Then, one has All*p(p,q) = 2a + b, All*p(p,r) = 2a + ¢ and
AlT*p(p, s) = 2a+d. As All*¢ belongs to K, one has b = ¢ = d. Conversely,
if ¢ is an element of ¢?(®) that, for any point p in ®, is constant on the
neighbors of p, ¢ belongs to L.

If @ is infinite, by lemma 3.4, one has L = {0} and one can apply lemma
3.3 to H. The spectrum of A in H is therefore the inverse image by f of the
one of A in /2(®). If ® is finite, but non splitable, by lemma 3.4, L is the line
of constant functions on ® and we can apply lemma 3.3 to the orthogonal
complement of the space of constant functions in H. We get the result, since
f(—=2) = f(3) = 3 and, by lemma 3.5, the constant functions are the only
eigenfunctions with eigenvalue 3 in /?(®). Finally, if @ is finite and split by
the partition {P, @}, by lemma 3.4, L is spanned by constant functions and
by the function 1p—1¢. Then, IT*(1p—1¢) is an eigenvector with eigenvalue 1
in H. One applies lemma 3.3 to the orthogonal complement of the subspace
of H spanned by the constant functions and by II*(1p — 1g). The result
follows as f(0) = f(1) = —3 and, still by lemma 3.5, the eigenfunctions with
eigenvalue —3 in (?(®) are the multiples of 1p — 1. O

We now have to determine the spectrum of A in the orthogonal comple-
ment of H. This is the aim of the following

Lemma 3.7. Let ® be a connected 3-reqular graph and H be the closed
subspace of <<i>) spanned by the image of IT* and by the image of AIT*. The
spectrum of A in the orthogonal complement of H is contained in {0, —2}.

The eigenspace associate to the value 0 in ¢ (é) is the space of functions ¢

in 0 (Cf)) such that Il = 0 and that, for any p and q which are neighbors
in ®, one has o(p,q) = ¢(q,p). The eigenspace associate to the value —2 in
(2 (@) is the space of functions o in (? <<i>) such that 1l = 0 and that, for
any p and q which are neighbors in ®, one has ¢(p,q) = —p(q, ).

Proof. Let ¢ be orthogonal to H and let p be a point of ®, with neighbors
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Figure 6: Eigenfunctions on e

q,r,5. Set a = o(p,q), b = w(p,7), ¢ = p(q,p) and d = ¢(r,p). Finally,
denote by v the indicator function of the set {p} in ®. As ¢ is orthogonal

to 11"y and to AIl*1, one has ¢(p,s) = —a — b and ¢(s,p) = —c — d. Thus
Ap(p,q) = c—a and A%p(p,q) = (a—c)+(d—b)+(—c—d+a+b) = 2a—2c.
Hence, in the orthogonal complement of H, one has A% 4+ 2A = 0 and, for
@ in this subspace, one has Ay = 0 if and only if, for any p an ¢ which are
neighbors in @, p(p, q) = ¢(q,p) and Ap = —2¢p if and only if, for any p an
g which are neighbors in @, ¢(p,q) = —¢(q,p).

To finish the proof of the lemma, we have to prove that A does not
have any eigenfunction with eigenvalue 0 or —2 in H. On this purpose,
pick some ¢ in H such that Ap = —2¢. By lemma 3.1, one then has
Allp = TI(A? — A — 3)p = 3Ilp. If @ is infinite, by lemma 3.5, Iy is zero.
We thus have Il = 0 and [TAp = —2Ilp = 0. Therefore, as ¢ belongs to
H which is spanned by the images of IT* and of AIl*, one has ¢ = 0. If ®
is finite, still by lemma 3.5, Ily is constant. As ¢ is orthogonal to constant
functions, one again has Ilp = 0 and IIAp = 0, which implies ¢ = 0.

If ¢ is now an element of H such that Ay = 0, one has Allp = —3llgp.
Again, by lemma 3.5, if ® is infinite or non splitable, one has Il = 0 and,
hence, ¢ = 0, whereas, if ® is split by the partition { P, Q}, 1y is proportional
to 1p —1g. But II*(1p — 1) is an eigenvector with eigenvalue 1 for A, hence
(I, 1p — 1) = (p, II*(1p — 1)) = 0 and Iy = 0, so that ¢ = 0. O

Recall that, for any nonnegative integer, we let ®™ denote the graph
obtained by replacing each point of ® by a n-triangle. The space ¢? (@(2))

contains finitely supported eigenfunctions with eigenvalue —2 and 0, as shown
by figure 6, where only the non zero values of the functions have been repre-
sented.
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We therefore have the following

Lemma 3.8. For any n > 2, the space (> (i(")> contains eigenfunctions
with eigenvalue —2 and 0.

Recall we let A denote the Julia set of f. By applying corollary 3.6 and
lemmas 3.7 and 3.8 to I', one gets the following

Corollary 3.9. The spectrum of I' is the union of A and of the set| ],y f7"(0).

Proof. By proposition 2.8, T is isomorphic to I'. Therefore, by corollary 3.6
and lemmas 3.7 and 3.8, the spectrum S of A satisfies S = f~15 U {0, —2}.
One easily checks that the set described in the setting of the corollary is the
unique compact subset of R verifying this equation. O

4 The spectral measures of I’

Let still ® be a connected 3-regular graph. In this section, we will explain
how to compute the spectral measures of some elements of (2 <<i>) On this

purpose, we use the following

Lemma 4.1. One has IAIT* = 6 + A and hence, for any ¢ and v in (*(P),

(ATP,T4) = 6(p, 9)-+ (A, ) = 2T, ) + (A= A=3)IT'p, Iy,

Proof. Let o be in £?(®) and p be a point of ®, with neighbors ¢, r,s. Set
a = p(p), b =¢(q), c =¢(r) and d = ¢(s). Then, one has All*p(p,q) =
2a+0b and hence I[TAIT*p(p) = (2a+b) + (2a+¢) + (2a+d) = 6a+ (b+c+d),
whence the first identity. The second one follows, by applying lemma 3.1 and
the relation IIII* = 3. O

Let us now study the abstract consequences of this kind of identity.

Lemma 4.2. Let H be a Hilbert space, T a bounded self-adjoint endomor-
phism of H, K a closed subspace of H and w(z) = (x—u)*+m a real unitary
polynomial with degree 2. Suppose one has m(T)K C K, K and TK span H
and there exists real numbers a and b such that, for any v and w in K, one
has (Tv,w) = a{v,w) + b(w(T)v,w). Then, for any x # u in the spectrum
of T, one has

a—u+bn(z)

r—u

> 0.

1+
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Proof. Once 7 has been written under its canonical form, one may suppose
one has 7(z) = z°. Let v be a unitary vector in K. Then, for any real
number s, one has

0 < (Tv+ sv,Tv+ sv) = (Tv, Tv) + 25(Tv,v) + s
= (T?v,v) + 2s(a + b{T?v,v)) + s*.

By lemma 3.3, the squares of the elements of the spectrum of 7" in H belong to
the spectrum of 72 in K. If z is an element of the spectrum of 7', there exists
therefore unitary vectors v of K such that (T?v,v) is very close to z%. Hence,
by the remark above, for any real number s, one has 2>+ 2s(a+bx?)+s? > 0.
The discriminant of this polynomial of degree 2 is thus nonpositive, that is
one has 2* — (a + bz*)?> > 0. The lemma follows. O

Let m(x) = (x — u)? + m a real unitary polynomial with degree 2. Pick
a Borel function # on R — {u}. Then, if o is a Borel function on R — {u},
one sets, for any y in |m, oo, Lrpa(y) = >_ ()=, O(x)a(x). Let pu be a Borel
positive measure on |m, oo[. If, for p-almost all y in |m, o], # is nonnegative
on the two inverse images of y by 7, one let L ,u denote the Borel measure
v on R — {u} such that, for any nonnegative Borel function & on R — {u},
one has fR_{u} adry = f]mpo[ L padp.

We have the following
Lemma 4.3. Let H be a Hilbert space, T a bounded self-adjoint endomor-
phism of H, K a closed subspace of H and w(z) = (x—u)*+m a real unitary
polynomial with degree 2. Suppose one has 7(T)K C K, K and TK span
H and there exists real numbers a and b such that, for any v and w in K,
one has (Tv,w) = a{v,w) + b{(m(T)v,w). Then, for any v in K, if u is the
spectral measure of v for n(T') and v its spectral measure for T, if u(m) =0,
one has v(u) =0 and v = L}, opv where, for any x # u, one has

o) = 5 (14 ),

Proof. Note that, as u(m) = 0, by lemma 3.3, the measure p is concentrated
on |m,oo[. Moreover, if w is some vector on H with Tw = ww, one has
m(T)w = mw and, by the hypothesis, (v,w) = 0. Thus, one has v(u) = 0.

By lemma 4.2, the function € is nonnegative on the spectrum of 7', de-
prived from {0}. Let n be in N. On one hand, one has

w(x)"dv(x) = (7 (T)"v,v) = "d .
[, m@rae = wren = [

Jm, ool
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On the other hand, for any x # w, one has 6(z) + 0(2u — z) = 1 and
hence, for any y in |m,o00[, L,em"(y) = y". Thus, one has fRf{u} 7dy =
f}m’oo[ L, pm™dp. In the same way, for any x in R, set a(x) = zm(x)™. On one
hand, one then has

/ a(z)dv(z) = (Tn(T)"v,v)
R—{u}

= a(m(T)"v,v) + b{x(T)" v, w) = a/

Jm,o0]

y"du(y) + b / y"Hdu(y).

Jm,o0]
On the other hand, for any = # u, as (2u — ) — v = u — z, one has

b(x)a(x) +6(2u — x)o(2u — )
- (% (o4 (2u—2)) + 5 (a— (2u 1)) (—“ —ut bm))) ()"

T—u
= am(z)" + br(z)" ™!

and hence, for any y in Jm,o0[, Lrea(y) = ay™ + by™*'. Again, one has

fR_{u} adv = f]moo[ngozd,u. Therefore, for any polynomial «, one has

fR_{u} adr = f}mm[ngadu. In particular, the positive measure L} gu is

finite and hence, for any compactly supported continuous function o on

R — {u}, one still has [ o adv = [ Lrpadp, so that v =Ly g O

By applying lemmas 4.1 and 4.3, one gets the following

Corollary 4.4. Let ¢ be in (*(®), u be the spectral measure of © for A in
(%(®) and v be the spectral measure of IT*¢ for A in (? (é) Then, one has

v (%) =0 and, if, for any x # %, one sets 0(x) = 2@t - one has v = L pht-

20—1 7
Proof. The minimal value on R of the polynomial f is f (%) = —% <-3<
— ||AJl,. Thus, one has p (—12) = 0 and the corollary follows from lemmas
4.1 and 4.3 by an elementary computation. O

5 Eigenfunctions in /()

In this section, we shall complete the informations given by lemma 3.7 by
describing more precisely the eigenspaces of A in ¢2(T") for the eigenvalues
—2 and 0. We shall extend these results to the eigenvalues in (J, . f7"(—2)
and | J,,cy f7"(0) using the following
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Lemma 5.1. Let ® be a 3-reqular graph and H be the closed subspace of
(2 (@) spanned by the image of II* and by the one of AIl*. Then, for any
x in R —{0,—-2}, = is an eigenvalue of A in H if and only if y = f(x)
is an eigenvalue of A in (*(®). In this case, the map R, which sends an
eigenfunction © with eigenvalue y in (*(®) to (x — 1)IT*¢ + All*p induces an
isomorphism between the eigenspace associate to the eigenvalue y in (*(P)

and the eigenspace associate to the eigenvalue x in H and, for any @, one
2 2
has | Raolly = 2(z 4+ 2)(22 — 1) [[ol5-

Proof. Let v # 0 be in H such that Ay = 2. As 9 is in H, one has
[Ty # 0 or ITAY # 0. As ITAy = xIl, one has 111 # 0. By lemma 3.1, one
has Ally = yIly, hence y is an eigenvalue of A in (?(®). In particular, as
f(3) =% <=3<—|Al,, one has z # 3. Conversely, if ¢ is an element
of 2(®) such that Ay = yp, one has, by lemma 3.1,

AR, = A((x — 1)IT"p + All*p)
= (x — DAl + IT"Ap + (A + 3)IT"p
= 2 AIl*p + (2° — 2)[T*p = 2R, .

Now, by lemma 4.1, one has ITAIT* = 6 + A, hence, if Ay = yy, one has,
by a direct computation, IIR,p = z(x + 2)¢ and, as we have supposed
x(z 4+ 2) # 0, R, is one-to-one and closed. It remains to prove that R, is
onto. In this aim, pick ¢ in H such that Aty = xv but v is orthogonal to the
image of R,. For any ¢ in ?(®) such that Ap = y¢, one has (1, R,¢) = (z—
(I, ) + (IIAY, p) = (22 — 1)(I1, ¢) and hence, as z # 1, (Ilyh, p) = 0.
As Al = ylly, one has [Ty = 0. As ¢ isin H, one has ) = 0. The operator
R, is thus an isomorphism. The computation of the norm is then direct, by
using lemmas 3.1 and 4.1. O

Let us begin by looking at the eigenvalues in (J, . f/7"(0). Let n > 1 be
an integer. Recall that, by corollary 2.5, if 7 is a n-triangle of I' and if p
is a vertex of 7, the neighbor of p that does not belong to 7 is the vertex
of some n-triangle. We shall call the edges linking vertices of n-triangles
exterior edges to n-triangles. We let ©,, denote the set of edges which are
exterior to n-triangles and we endow it with the graph structure for which
two edges are neighbors if two of their end points are vertices of the same n-
triangle. One easily checks that the graph ©,, is naturally isomorphic to the
Sierpinski graph, introduced in the end of section 2. We shall from now on
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Figure 7: The eigenfunctions with eigenvalue 0

identify ©,, and ©. If ¢ is a function on I' which is constant on edges which
are exterior to n-triangles, we let P,y denote the function on © whose value
at one point of © is the value of ¢ on the associate edge which is exterior to
n-triangles. Finally, let us recall that, as © is 4-regular, the norm of A in
(%(0) is < 4.

By lemma 3.7, the eigenfunctions with eigenvalue 0 are constant on the
edges which are exterior to 1-triangles. We have the following

Lemma 5.2. The map P, induces a Banach spaces isomorphism from the
eigenspace of (*(T') associate to the eigenvalue 0 onto (%(©). Let Qqy denote its

inverse. For any 1 in (*(©), one has HQOM@Q(F) =3 ]WH?Q(@)—%(AQ/;, V) 20)-

Proof. By using the characterization of lemma 3.7, one easily checks that,
given three values a, b and ¢ on the vertices of some 2-triangle, an eigenfunc-
tion with eigenvalue 0 taking these values at the three vertices must take in
the interior of the triangle the values that are described in picture 7.

Recall that one has identified the graphs © and ©,. For any function ¢ on
0, let Q1 denote the function on I' that, on each edge which is exterior to
2-triangles, is constant, with value the value of ¢ at the point of © associate
to this edge, and whose values in the interior of the 2-triangles are those
described by figure 7. By an elementary computation, for any real numbers
a, b and ¢, the sum of the squares of the values described in figure 7 is

1 1 1
g (a*+b*+c?)—ab—ac—bc = 3 (3a*—ab—ac)+ 3 (3b*—ab—bc)+ 3 (3¢*—ac—bc),

so that, for any function ¢ on ©, one has ”QOW@(P) =3 Hlpng(@)—aAi/i, V)2 (0)-
As —4 ||@/)||§2(®) < (AY, )@y < 4 ||1/1||§2(e), the function v belongs to ¢*(©)
if and only if Qpy belongs to £*(T"). The lemma follows. O
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From lemmas 5.1 and 5.2, we shall deduce a description of the eigenspaces
associate to the elements of | J, .y f7"(0). For z in (J, oy f7"(0), let n(x)
denote the integer n such that f"(xz) =0 and

n(z)—1 k k
_ fr@)2f(x) = 1)
wz) = kI_IO )2

We have the following

Proposition 5.3. Let x be in | J, .y f7"(0). The eigenfunctions with eigen-
value = in (*(T') are constant on edges which are exterior to (n(z) + 1)-
triangles in I'. . The map P42 induces a Banach spaces isomorphism
from the eigenspace of (*(T') associate to the eigenvalue x onto (*(©). Let
Q. denote its inverse. Then, for any v in (*(0), one has HQﬂ/}H?z(F) =

£(2) (3 111e) — (A%, V)ege) ).

Proof. We shall prove this result by induction on n(z). The case n(x) = 0 has
been dealt with in lemma 5.2. Suppose the lemma has been proved for n(y)
with y = f(z). Pick ¢ in ¢*(T') such that Ap = xp. Then, as n = n(x) > 1,
one has ¢ {—2,0} and hence, by lemma 3.7, ¢ belongs to H. By lemma
5.1, one thus has ¢ = R, for some function ¢ such that Ay = yi. By
induction, 1 is constant on edges that exterior to n-triangles. Let p be a
vertex of some (n + 1)-triangle in I" and ¢ its exterior neighbor. The points
[Ip and Ilg are vertices of some n-triangle in I'. One hence has 11" (p) =
¥(Ilp) = ¢(Ilg) = II*(g) and All*yp(p) = 2¢(Ilp)) + (Ilg)) = 3" (p).
Thus, ¢(p) = R.¥(p) = (x + 2)Y(p) = ¢(q): the function 9 is constant on
edges that are exterior to (n + 1)-triangles and P20 = (z + 2)P,111. As,
by induction, P,;; induces an isomorphism from the eigenspace associate to
the value y onto ¢*(©), by lemma 5.1, P, induces an isomorphism from the
eigenspace associate to the value y onto ¢?(0). The norm computation now
follows from the induction and the formula P, oR, = (z + 2)P,41. O

Corollary 5.4. For any x in |J, .y f7"(0), the eigenspace associate to x in
(*(T') has infinite dimension and is spanned by finitely supported functions.

For the elements of J, . f~"(—2), there is no analogue of proposition
5.3. However, we will extend corollary 5.4. Let us begin by dealing with the
eigenvalue —2. Recall we let pg and pg denote the vertices of the two infinite
triangles in I'.
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Figure 8: The eigenfunctions with eigenvalue —2

Lemma 5.5. Let ¢ be an eigenfunction with eigenvalue —2 in (*(T"). Then,
for any n > 1, the sum of the values of ¢ on the vertices of each n-triangle of
[ is zero and p(po) = @(py) = 0. The eigenspace associate to the eigenvalue
—2 has infinite dimension and is spanned by finitely supported functions.

Proof. An immediate computation using lemma 3.7 shows that the values of
© on some 2-triangle satisfy the rules described by figure 8. In particular, the
sum of these values on the vertices of each 2-triangle is zero. By induction,
using corollary 2.6, it follows that, for any n > 1, the sum of these values
on the vertices of each n-triangle is zero. Let then, for any n > 1, p,, and ¢,
denote the two other vertices of the n-triangle with vertex py. As ¢ is square
integrable, one has ¢(p,,) — 0 and ¢(q,) — 0. Thus ¢(po) = 0 and, in

the same way, ¢(py) = 0. In particular, for any n > 1, ¢(p,) + ¢(¢.) = 0.

Let us now prove that ¢ is the limit of some sequence of finitely sup-
ported functions. Let still, as in section 2, 7., (po) denote the infinite triangle
with vertex py. Then, as p(py) = 0, @l is still an eigenvector with
eigenvalue —2 and one can suppose ¢ = 0 on 7 (pg). For any nonnegative
integer n, let ¢, denote the function on I' that is zero outside the (n + 1)-
triangle 7,,11(po, Pnt1, @ne1), that equals ¢, on the n-triangle 7, (po, pn, ¢n)
and that is invariant by the action of the elements of signature 1 of the
group S(po, Pni1, Gur1) on the (n + 1)-triangle 7,1 1(po, Pus1, Gnr1). In view
of corollary 2.6, the values of ¢, on the vertices of n-triangles are those de-
scribed by figure 9. Then, by lemma 3.7, for any n > 1, ¢,, is an eigenvector
with eigenvalue —2 and one has |[¢,]|> < 3|¢|l2. The sequence (p,) con-
verges weakly to o in £2(T"). The function ¢ belongs to the weak closure of
the subspace spanned by finitely supported eigenfunctions with eigenvalue
—2 and hence to its strong closure.
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0 @(pn) —¢(pn)0

Figure 9: The function ¢,

Finally, the space of eigenfunctions with eigenvalue —2 has infinite di-
mension since, by figure 6, every 2-triangle contains the support of some
eigenfunction with eigenvalue —2. O

For  in {J,,cy f7"(=2), let n(x) denote the integer n such that f"(x) =
—2. By an induction based on lemma 5.1, one can deduce from lemma 5.5
the following

Corollary 5.6. Let x be in |J,cy 7" (=2) and ¢ be an eigenfunction with
eigenvalue x in (*(T). Then, the values of ¢ on the edges that are exterior
to (n(x) + 1)-triangles are opposite, for any n > n(x) + 1 the sum of the
values of ¢ on the vertices of each n-triangle is zero and ¢(py) = w(py) = 0.
The eigenspace associate to the eigenvalue x has infinite dimension and is
spanned by finitely supported functions.

6 Spectral decomposition of ¢*(T")

Let ¢o denote the function on I' that has value 1 at py, —1 at pj and 0
everywhere else. In this paragraph, we will prove that ¢*(T') is the direct sum
of the eigenspaces associate to the elements of (J, o /7" (=2) U U, cn f77(0)
and the cyclic subspace spanned by ¢q. Let us begin by studying the latter.
By a direct computation, one gets the following

Lemma 6.1. One has IT*pg = (A + 2)¢p.

This relation and corollary 4.4 will allow the determination of the spec-
tral measure of ¢y. On this purpose, let us recall the properties of transfer
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operators we will have to use: they follow from the version of Ruelle-Perron-
Frobenius theorem given in [13, § 2.2]. If x is a Borel function on A, one let
L, stand for Ly,.

Lemma 6.2. Let k : A — R be a Holder continuous function. Equip
the space C°(A) with the uniform convergence topology. Then, if A, > 0 is
the spectral radius of the operator L, in C°(A), there erists a unique Borel
probability v, on A and a unique continuous positive function l,. on A such
that one has L, = N\gly, Liv, = A\ and fA l.dv, = 1. The spectral radius
of L. in the space of functions with zero integral with respect to v, is < A4
and, in particular, for any g in C°(A), the sequence (ﬁL:(g)) . uniformly

converges to f A 9dv,. The measure v, is atom free and its support is A.

For any = in R, set h(z) = 3—z, k(z) = z+2 and, for z # 3, p(z) = 3%.

One has ho f = hk. From lemma 6.1, we deduce, thanks to corollary 4.4,
the following

Corollary 6.3. Let v, be the unique Borel probability on A such that Ly, =
v,. The spectral measure of g is hv,,.

Proof. Let pu be the spectral measure of ¢y. For x # %, set O(x) = mé;’jﬁ)

k(x)p(x). The spectral measure of (A + 2)¢q is k*uu. Therefore, by corollary
4.4 and lemma 6.1, one has ;(3) = 0 and k*u = Ljp. Now, by lemma 5.5, if
 is an eigenfunction with eigenvalue —2 in ¢*(T'), one has ¢(py) = @(pg) =0
and hence (p, @) = 0, so that p(—2) = 0. Therefore, one has L*%pu = L.

Besides, by lemma 3.5, one has 1(3) = 0. Therefore, as h o f = hk, one
has Lj(ju) = 311 (1) = 4

The Borel measure % i on R is concentrated on the spectrum of A. Now,
by proposition 5.3, for any = in J, .y f~"(0) and ¢ in ¢*(I") such that Ay =
xe, one has p(py) = (py) and hence (p,po) = 0. Therefore, one has
1 (U,ex £7™(0)) = 0 and, by corollary 3.9, p is concentrated on A.

The function p is Holder continuous and positive on A and one has
L,(1) = 1 on A. By lemma 6.2, there exists a unique Borel probability
measure v, on A such that L;(v,) = v, and, for any continuous function
g on A, the sequence (L}(g)),cy uniformly converges to the constant func-
tion with value | A 9dv,. Let us prove that the positive Borel measure %u
is finite and hence proportional to v,. Pick some continuous nonnegative
function g on A, which is zero in the neighborhood of 3 and such that one
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has 0 < fA %gdu < 00. There exists an integer n and a real number € > 0
such that, for any 2 in A, one has L7(g)(z) > e. As [, tgdu = [, +L2(g)dp,
one has |, %d,u < 00. Therefore, the measure %u is a multiple of v,. Now,

one has z(A) = |j¢ol2 = 2 and, by a direct computation, L,(h) =2, so that
[, hdv, = 2. We hence do have p = h,,. O

For any polynomial p in C[X], let p denote the function p(A)ye on T
By definition, the map g — § extends to an isometry from L*(hv,) onto the
cyclic subspace @ of ¢*(T") spanned by ¢g. Let | denote the function z — x
on A. On has the following

Proposition 6.4. The subspace @ is stable by the operators A, 11 and IT*.
For any g in L?(hv,), one has

~

Na)
I

&

A
II L,g

g =k(go f).

N
I

Proof. By definition, ® is stable by A and one has the formula concerning
A.

By a direct computation, one proves that L,(l) = 1. Let n be in N. One
has L,(f") =1"L,(1) = 1" and L,(f"l) =1"L,(I) = I". Now, by lemma 3.1,
one has II(f(A)"po) = A™lpy and II(f(A)"Apy) = A"IIAp, and hence, as
[Tpy = TTApy = ¢o, the subspace @ is stable by IT and, for any p in C[X],
Ip = f;). Finally, by convexity, for any measurable function g on A, one
has |L,(9)]> < L, (\g|2), so that, for g in L*(hv,), one has

/A IL,(9)? hilw, < / L, (1gf?) hdv, = / 192 (ho f)dv,

:/\g|2khdup§5/\g|2hd7/p7
A A

hence the operator L, is continuous in L?(hv,) and, by density, for any g in
L2(hv,), 11§ = L,g.

Finally, by lemmas 3.1 and 6.1, for any polynomial p in C[X], one has
IT*(p(A)po) = p(f(A))IT e = p(f(A))(A + 2)@0./”FErefore, the subspace

® is stable par IT* and, for any p in C[X], [I*p = k(p o f). Now, for any g in
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L?(hv,), one has

[ tgonPrav, = [ kige 1 (ho fa,
A A
:/ALp(k) lg] hdl/p:3/1\|g| hdv,

and hence, by density, for any g in L?(hv,), ITI*§ = k(;o\f) O

In order to determine the complete spectral structure of A, we will analyse
other remarkable elements of ¢*(T"). Let us begin by letting 1)y denote the
function on I' that takes the value 1 at pg and py and 0 everywhere else. We
have the following

Lemma 6.5. One has IT*)y = A)y.
From this, we deduce the following

Corollary 6.6. The spectral measure of 1 is discrete. More precisely, the
function g is contained in the direct sum of the eigenspaces of A associate
to the elements of e J7"(0).

Proof. Let p be the restriction of the spectral measure of ¢y to A. By corol-
lary 3.9, it suffices to prove that p = 0.

For = ¢ {0,1}, set 7(z) = mg:f)l) and o(z) = m The function o is
Holder continuous and positive on A. Proceeding as in the proof of corollary
6.3, one proves that, as 0 ¢ A, one has, by lemma 6.5, L* = p. Now, as
ho f = hk, for any = in R, for any integer n, one has L?(h) = hL(1).
Let A\, denote the spectral radius of L, and v, its equilibrium state, as in
lemma 6.2. By a direct computation one shows that, for any x in A, one
has L,(1)(z) = #3 In particular, for x # —2, one has L,(1)(z) < 1,
so that A, = [, L,(1)dv, < 1 and hence the sequence (L}(1)),en uniformly
converges to 0 on A. Therefore, the sequence (L?(h)),en uniformly converges
to 0 on A and one has [, hdyu = 0, so that u(A — {3}) = 0. By lemma 3.5,
one has 1(3) = 0 and hence = 0. O

Note that, by using lemma 6.5, one could establish a formula giving, for
any x in {J, o f7"(0), the value of the norm of the projection of )y on the
space of eigenfunctions with eigenvalue .
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Let us now study the spectral invariants of a last element of ¢*(T"). For
this purpose, let ¢o and ry denote the two neighbors of py that are different
from py and xo the function on I' that takes the value 1 at gy, —1 at rg
and 0 everywhere else. In the same way, one let ¢y and 7§ denote the two
neighbors of py that are different from py and yg the function on I' that
takes the value 1 at g9, —1 at 7y and 0 everywhere else. One could again
note that one has IT*yy, = (A% + 2A)xo and study the spectral measure of
Xo by using the same methods as in corollaries 6.3 and 6.6. We shall follow
another approach, analogous to the one of the proof of lemma 5.5.

By lemma 2.7, there exists a unique automorphism ¢ of the graph I" such
that ¢(qo) = 70 and (g ) = ry and ¢ is an involution. Let H denote the space
of elements ¢ in £*(T") such that t(¢) = —p and K (resp. K) the subspace
of H consisting of those elements which are zero on the infinite triangle with
vertex py (resp. pg). One has H = K @ KV, xo € K, xj € K" and the
subspaces K and KV are stable by the endomorphisms A, II and IT*. For
any n > 1, let 7, denote the n-triangle with vertex py and 7, the n-triangle
with vertex py. The permutation groups &(097,) and &(97,”) act on the
triangles 7,, and 7,Y. One let K, (resp. K,') denote the space of functions ¢
on 7, (resp. 7,’) such that, for any s in &(97,,) (resp. in &(97,’)), one has
sp = £(s)p, where ¢ is the signature morphism. One identifies K,, and K/
with finite dimensional subspaces of K and KV. One then has AK, C K,
I"K, C K,;; and, if n > 2, [1K,, C K,,_1, and the analogous identities in
KY.

We have the following

Lemma 6.7. The spaces K and K" are topologically spanned by the sets
UnZl K, and UnZl K.

Proof. Let ¢ be a function in K. For any integer n > 2, one let ¢,, denote
the unique element of K, that equals ¢ on 7,,_;. One has [@.|l, < V3 [|¢]l,.
Then, for any ¢, the sequence (ip,,) weakly converges to ¢ in ¢*(T'). Hence,
the set |J,~, K, is weakly dense in H and the vector subspace it spans is
therefore strongly dense. The result for KV follows, by symmetry. O

Corollary 6.8. The spectrum of A in H is discrete. Its eigenvalues are
ezactly the elements of the set |, o f7"(—=2) U U, e f(0).

Proof. As, for any n, the subspaces K, and K, are stable by A and finite
dimensional, the fact that the spectrum of A in H is discrete immediately
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follows from lemma 6.7. The exact determination of the eigenvalues is ob-
tained as in section 3. A formula for the characteristic polynomial of A in
K, is given in proposition 13.6. U

We can now finish the proof of theorem 1.1 with the following

Proposition 6.9. Let &+ be the orthogonal complement in (*(T') of the cyclic
space ® spanned by po. Then, the spectrum of A in ®* is discrete and the

set of its eigenvalues is exactly J, oy 7" (=2) U U, en f7(0).

Before to proving this proposition, let us establish a preliminary result.
For ¢ and ¢ in (*(T), let 4 denote the unique complex Borel measure on
R such that, for any polynomial p in C[X], one has [, pdju,y = (p(A)p, ).
One has the following

Lemma 6.10. For any ¢ and ¢ in (*(T), one has pipyp = fuflo 110
Proof. For any p in C[X], one has, by lemma 3.1,

/R pdins = (AT, ) = (p(F(A))p, I = / (0o Hiditpmes.

O

Proof of proposition 6.9. By corollaries 5.4 and 5.6, the eigenspaces associate
to the elements of (J, .y /7" (—=2) U U, ey /7 ™(0) are non zero. Let P denote
the orthogonal projection onto ®* in ¢2(I"). By proposition 6.4, the operator
P commutes with A, II and IT*. To prove the proposition, it suffices to
establish that, for any finitely supported ¢, for any ¢ in ¢*(T'), the measure
Py, is atomic and concentrated on the set J, oy f7"(—=2) U U, en f7(0).

Let still go, 70, ¢ and ry be the neighbors of py and py and, for any integer
n, 7, be the n-triangle containing py and 7, be the n-triangle containing py .
One let L,, denote the space of functions on I' whose support is contained in
the union of 7,,, 7, and of the neighbors of the vertices of 7;, and of 7,Y. One
has, for n > 1, IIL, C L,,_; and IIAL, C L, ;. Let us show, by induction
on n, that, for any function ¢ in L,, for any ¢ in ¢*(T'), the measure jipy 4
is atomic and concentrated on the set | J, oy /7" (=2) U U, e f7(0).

For n = 0, Ly is the space of functions which are zero outside the set
{po, 90,70, 1¢, a5 ,7¢ - One easily checks that this space is spanned by the
functions ¢o, Apg, o, Athy, xo and x. In this case, the description of the
spectral measures follows immediately from corollaries 6.3, 6.6 and 6.8.

30



If the result is true for some integer n, let us pick some ¢ in L, ;. Then,
the functions [Ty and ITA¢g are in L, and, by induction, for any + in ¢*(T),
the measures firpy.y = Upripy a0d fiAPey = [PTIApy are atomic and con-
centrated on the set (J,,cn /7" (—=2) UU,en f7™(0). By lemma 6.10, the mea-
sures ftpy iy and fapory = [ppan+p are thus atomic and concentrated
on the set |-, f"(—2) UU,~; f7™(0). Now, by lemma 3.7, the spectrum
of A in the orthogonal complement of the subspace of ¢?(I') spanned by
the image of IT* and by the one of AIl* equals {—2,0}. Therefore, for
any ¢ in (*(I'), the measure fip,, is atomic and concentrated on the set
Unen f7"(=2) UU,en f77(0). The result follows. O

7 Finite quotients of I

In this section, we apply the previous methods to the description of the
spectrum of certain finite graphs which are strongly related to I'.

Let ® and ¥ be graphs. We shall say that a map w : & — ¥ is a
covering map if, for any p in ®, the map w induces a bijection from the set
of neighbors of p onto the set of neighbors of w(p). The composition of two
covering maps is a covering map. If & and U are 3-regular graphs and if
w : ® — VU is a covering map, there exists a unique covering map @ : d—
such that IIco = wll. Conversely, proceeding as in lemma 2.2, one proves
that every covering map d — U is of this form.

Let us fix four distinct elements a, b, ¢ and d. Let I'y denote the graph
obtained by endowing the set {a,b,c,d} with the relation that links every
pair of distinct points: this is a 3-regular graph. Its automorphism group
equals the permutation group &(a,b, ¢, d) of the set {a,b,c,d}.

Lemma 7.1. Let ® be a 3-reqular graph and w :  — T’y be a covering map.
Then, the map @ : ® — T, (p,q) — w(q) is a covering map. The map
w — w is a S(a,b, c,d)-equivariant bijection from the set of covering maps
® — T’y onto the space of covering maps d — Ty.

The construction of the covering @ is pictured in figure 10.
Démonstration. Let p be a point of ® and let ¢, » and s be the neighbors of

p. After an eventual permutation of the elements of {a, b, ¢, d}, suppose one
has @w(p) = a, w(q) = b, w(r) = c and w(s) = d. Then, one has w(p, q) = b,
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c d a a

Figure 10: Construction of the covering map w

@w(q,p) = a, @w(p,r) = ¢ and w(p,s) = d and hence @ is really a covering
map.

Conversely, let w : d — Ty be a covering map. Let still p be a point of
®, with neighbors ¢, r and s. Again, after an eventual permutation, suppose
one has w(p,q) = b, w(p,r) = c and w(p,s) = d. Then, as w is a covering
map, one necessarily has w(q,p) = w(r,p) = w(s,p) = a. Thus, there exists
amap w : & — [y such that, for any p and ¢ in ® with p ~ ¢, one has
w(q,p) = w(p). By construction, w is a covering map and one has @ = w.
[

For any nonnegative integer n, let I, = '™ be the graph obtained by
replacing each point of I'y by a n-triangle. By lemma 2.2, the automor-
phism group of I',, naturally identifies with &(a,b,c,d). From lemma 7.1,
one deduces the following

Corollary 7.2. For any nonnegative integers n < m, there exists covering
maps 'y, — Ty, The group &(a, b, c,d) acts simply transitively on the set of
these covering maps.

Proof. Covering maps 'y — I'y are simply bijections of Iy and the corollary
is thus true for m = n = 0. By induction, by lemma 7.1, the corollary is still
true for any nonnegative integer m and n = 0. Finally, as, if & and ¥ are
3-regular graphs, there exists a natural bijection between the sets of covering
maps ¢ — ¥ and b — U, again, by induction, the corollary is true for any
nonnegative integers m > n. O

Let us now go back to I'. Let gg and r be the two neighbors of p, that are
distinct from pg and ¢j and ry be the two neighbors of py that are distinct
from py. We have the following
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Lemma 7.3. There exists a unique covering map w : I' — ['g such that
w(po) = a, w(q) =c¢, w(ro) =d, w(py) =b, w(q) =c and w(ry) = d.

This covering map is pictured in figure 3.

Proof. Let n > 1 be an integer or the infinity and 7 be a n-triangle. Let
w : T — T'y. Say that w is a quasi-covering map if, for any point p in 7 —07,
w induces a bijection from the set of neighbors of p onto I'y — {w(p)} and
if, for any point p in 07, the values of @w on the neighbors of p are distinct
elements of Ty — {w(p)}. In this case, one still let & denote the map 7 — I
such that, for any p and ¢ in 7 with p ~ ¢, one has @ (p, q) = w(q) and that,
for any pin T = 7, if the neighbors of p in T are ¢ and r, @(p) is the unique
element of I'y — {w(p), w(q), w(r)}. Proceeding as in the proof of lemma 7.1,
one easily checks that the map w +— @ is a &(a, b, ¢, d)-equivariant bijection
from the set of quasi-covering maps 7 — I’y onto the set of quasi-covering
maps T — T,.

Therefore, for any n > 1, if 7, is the n-triangle containing po in I', there
exists a unique quasi-covering map w, from 7, into Iy such that @, (py) =
a, wy(q) = ¢ and w,(ro) = d. By uniqueness, w, an w,; coincide on
7T,. Hence, there exists a unique quasi-covering map we, from the infinite
triangle 7., with vertex py into I'g such that we(po) = a, @Ww(qo) = ¢ and
Weo(S0) = d. In the same way, if 7/ is the infinite triangle with vertex
pg, there exists a unique quasi-covering map wy, from 7Y into I'y such that
wl(py) = b, wl(q)) = cand wl(sy) = d. The map w : I' — I’y whose
restriction to 7., is @w., and whose restriction to 7./ is wY, is therefore the
unique covering map from I' into 'y enjoying the required properties. U

Again, from lemmas 7.1 and 7.3, one deduces the following

Corollary 7.4. For any nonnegative integer n, there exists covering maps
I' - I'. The group S(a,b,c,d) acts simply on the set of these covering
maps. This action admits two orbits: on one hand, the set of covering maps
w such that w(qo) = w(qy), on the other hand, the set of covering maps w
such that w(qy) = w(ry).

We shall now describe, for any integer n, the spectral theory of the graph
[',. Let still f denote the polynomial X?— X —3. The methods from sections
3 and 5 allow to prove the following

33



Proposition 7.5. For any nonnegative integer n, the characteristic polyno-
mial of A in (*(T,,) is

(X - 3)(X + 1)3 H(fp(X) — 2)3(fp(X))2.3"*1*p(fp(X) + 2)1—1—2.3”*17;7.

=0

Recall that, in section 3.9, we have defined splitable graphs. The proof
uses the following

Lemma 7.6. Let ® be a 3-reqular connected graph. The graph d is non
splitable. In particular, for any nonnegative integer n, the graph T, is non
splitable.

Proof. As every point of ® is contained in a 1-triangle, every point may be
joined to itself by a path with odd length and hence ® is non splitable. In
the same way, every point of Iy may be joined to itself by a path with odd
length. O

Proof of proposition 7.5. We shall prove this result by induction on n. For
n = 0, the space ¢*(T'y) has dimension 4 and, for the natural action of
the group &(a,b,c,d), it is the sum of two irreducible non isomorphic sub-
spaces, the space of constant functions and the space of functions ¢ such that
o(a)+ ¢(b) + ¢(c) +¢(d) = 0. The operator A commutes with the action of
S(a, b, ¢, d) and hence stabilizes both these spaces. In the first one, it acts
by multiplication by 3 and, in the second one, by multiplication by —1. Its
characteristic polynomial is therefore (X — 3)(X + 1)3.

Suppose the result has been proved for n. By lemma 7.6, I',, is non
splitable. Therefore, if H is the subspace of ¢?(T,,) spanned by the image of
IT* and by the one of AIl*, by corollary 3.6 and lemma 5.1, the characteristic
polynomial of A in the orthogonal complement in H of the constant functions
is

n—1

(FX)+ 1P TTU7H ) = 2 (0P (P (X) + 22

p=0

and hence, as f(X)+ 1= (X 4 1)(X — 2), the characteristic polynomial of
A in H may be written

(X =3)(X + )P [J(P(0) =2 [T PO 7 (f7(X) +2)H 257

p=0 p=1
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It remains to determine the dimensions of the eigenspaces associate to
the eigenvalues 0 and —2 in the orthogonal complement of H in ¢*(T,,1).
They are described by lemma 3.7. Now, if n > 1, the 2-triangles in I',,4;
are the inverse images by II? of the points in I',,_; and every point in I',,;;
belongs to a unique 2-triangle. Proceeding as in lemma 5.2, one shows that
the eigenspace associate to the eigenvalue 0 in ¢*(T',41) is isomorphic to
the space of functions on the edges of I',,_;. As I',,_; is a 3-regular graph
containing 4.3" ! points, it has 2.3" edges and the eigenspace associate to the
eigenvalue 0 has dimension 2.3". If n = 0, by using the characterization of
lemma 3.7, one checks through a direct computation the eigenspace associate
to the eigenvalue 0 in ¢*(T';) has dimension 2. Then, as, by corollary 3.6
and lemma 5.1, H has dimension 2dim ¢*(T",,)) — 1 = 8.3" — 1, the orthogonal
complement of the sum of H and of the eigenspace associate to the eigenvalue
0 has dimension 4.3""! —(8.3" —1)—2.3" = 2.3"+1. By lemma 3.7, this space
is the eigenspace associate to the eigenvalue —2 of A and the characteristic
polynomial of A in ¢*(T,,,1) has the form which is given in the setting. O

8 The planar compactification of I

We now consider the set X of those elements (py;)yez2 of (Z./27)" such
that, for any integers k and [, one has pg; + prr1s + Priy1 = 0 in Z/2Z.
This is a compact topological space for the topology induced by the product
topology. We let T" and S denote the two maps from X into X such that,
for any p in X, one has Tp = (prs1,1)(kpezz and Sp = (Pri+1)kpyez2- The
homeomorphisms 7" and S span the natural action of Z? on X.

For p in X and k and [ in Z, one has py; + pr—1441 + Pr—1;, = 0 and
Dkt + Pri—1 + Per14-1 = 0. Now, the finite subgroup & of GLy(Z) which
is spanned by the matrices <_01 _11) and <_01 _11) exchanges the three
pairs of vectors {(1,0), (0,1)}, {(—=1,1),(=1,0)} and {(0,—1), (1,—1)} of Z*.
In particular, the group & acts on X in a natural way: for any p in X and s
in &, for any k and [ in Z?, one has (sp)x, = Ps—1(k)- The action of & on the
three pairs of vectors {(1,0),(0,1)}, {(-1,1),(—=1,0)} and {(0,—1),(1,—-1)}
identifies & with the permutation group of this set with 3 elements.

Let Y be the set of points p in X such that pyo = 1. The set Y is stable
by the action of &. For any p in Y, one let Y, denote the set of points in
the orbit of p under the action of Z? that belong to Y. If p is some point in
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Y, one has py o+ poy = 1 in Z/27 and hence one and only one of the points
T'p and Sp belongs to Y. In the same way, one and only one of the points
T~ p and T~1Sp belongs to Y and one and only one of the points S~1p and
TS~ 'p belongs to Y. For p and ¢ in Y, let us write p ~ ¢ if ¢ belongs to
the set {T'p, Sp, T~'Sp, T 1p, S~'p, TS~!p}. This relation is symmetric and
G-invariant.

In the same way, if p belongs to Y, one let ffp denote the set of (k,[) in Z?
such that py,; = 1 and, for any (i, j) and (k, ) in Y}, one writes (i,5) ~ (k, 1) if
(1—k,j—1) belongs to the set {(1,0), (0,1),(—1,1),(—=1,0),(0,—1),(1,—1)}.
Then, f/p is a 3-regular graph. If the stabilizer of p in Z? is trivial, Y, is a
3-regular graph and the natural map ffp — Y}, is a graph isomorphism.

Let u denote the unique element of (Z/27)% such that uy; = 0 if and
only if kK — [ equals 0 modulo 3. The element u is periodic under the action
of Z? and its stabilizer is the set of (k,l) in Z? such that k — [ equals 0
modulo 3. One checks that u belongs to X. Its orbit under the action of Z>
equals {u,Tu,Su} and is stable under the action of &: the elements with
signature 1 in 6 fix u, Tw and Su and the elements with signature —1 fix u
and exchange T'uw and Su. We have the following

Lemma 8.1. Let p be in' Y. The graph ?}2 1s connected. If p is different from
Tu and Su, the set'Y,, endowed with the relation ~, is a connected 3-reqular
graph and the natural map Y, — Y, is a covering map.

Proof. Let us show that Y, is connected. Let (k,1) beinY,. After an eventual
permutation under the group & and an exchange of the roles of (0,0) and
(k,1), one can suppose k and [ are nonnegative. In this case, let us prove by
induction on k + [ that (k,1) belongs to the same connected component of
Y, as (0,0). If k +1 =0, this is trivial. Suppose now k + 1 > 0 and consider
Dhsti—n, for 0 < h <k + (. Would all these elements of Z/2Z equal 1, one
would have, for any nonnegative integers 7 and j with 45 < k+{—1, p; ; = 0,
which is impossible, since pg o = 1. After another eventual permutation by &,
one can therefore suppose there exists some integer 0 < i <[ — 1 such that,
for any 0 < j <4, one has pyyj;—; = 1, but pgyit1;-i—1 = 0. This situation
is pictured in figure 11. Then, the points (k + i,0 — i) and (k,[l) belong
to the same connected component in Yfp and, as ppyit1-i—1 = 0, one has
Prsit—i1 = Land (k+i,1—i—1) belongs to Y,. As (k+i)+(1—i—1) = k+1—1,
the result follows by induction.

As the natural map ffp — Y}, is onto, to conclude, it remains to prove that,
for p ¢ {Tu, Su}, the points of the set {p, T'p, Sp, T~'Sp, T 1p, S~ 'p, TS 'p}
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(k+i,0— i)
(k+i,0—i—1)

(0,0)

Figure 11: Connectedness of f/p

are distinct. Set V, = {T'p, Sp, T~*Sp, T 'p,S~'p, TS~ 'p} and let us begin
by supposing that p belongs to V,. Then, after an eventual action of the
group &, one can suppose one has p = T'p and py_; = 1 and hence p; _; =
Po.—1 + poo = 0, which contradicts the fact that Tp = p. One thus has
p ¢ V,. Suppose now two elements of the set V,, equal each other. Again,
after an eventual action of the group &, one can suppose one has Tp = Sp,
Tp =T 'porTp=T"'Sp. If Tp = Sp, one has S™'Tp = p and we just
have proved it to be impossible. If Tp = T~ !p, one has T?p = p and the
family ¢ = (par.21) (k,1)ez2 belongs to Y and satisfies T'q¢ = ¢: again, we just
have proved it to be impossible. Finally, if T-2Sp = p, still suppose, after
an eventual permutation, one has py 1 = 1. Then, one has p; 1 = 0, and
hence, as T~2Sp = p, p_10 = 0. In the same way, one has p_s9 =po_1 = 1
and p_1 1 = po—1+p-10 = 1. Again, this implies p 39 = p_1 1 = 1,
D21 =pP_1,-1+p_20 = 0and, finally, p_3 1 =p_o_1+p_30 = 1, so that the
point ¢ = T3p again satisfies T~25¢ = ¢ and o0 = qo,_1 = 1. By induction,
one deduces that, for any integer £ < 0, one has pyo = 1 if k equals 0 or 1
modulo 3 and that p; o = 0 if k& equals 2 modulo 3. Proceeding in the same
way, one shows that p_1 1 = p_10+poo = 1 and that, as T>S™'p = p, p1o = 1.
Thus, one has pao = po1 = poo + P10 = 0, hence p3p = p11 =p1o+p20=1
and p3_; = p1o = 1. The point r = T3p therefore also satisfies T-2Sr = r
and rop = r9—1 = 1, so that, for any k in Z, one has pyo = 0 if and only
if k equals 2 modulo 3. In particular, the sequence (pjo)rez is 3-periodic.
As T72Sp = p, for any [ in Z, the sequence (py;)rez is 3-periodic and hence
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Figure 12: The sets Y%, Y and Y*©

T3p = p. Therefore, for any k and [ in Z, if k — [ equals 0 modulo 3, one has
TkS'p = p. As one has D00 = U1,0, P10 = U_11 and p_11 = U_1 2, one has
p = Tu. Therefore, if p does not belong to {Tu, Su}, the relation ~ induces
a 3-regular graph structure on the set Y,. By definition, the natural map
f/p — Y, is then a covering map. In particular, Y, is connected. O

Let ¢ and 7 be in {0,1}. Let X7 denote the set of elements p in X
such that, for any k and [ in Z, if (k1) equals (¢,n) in (Z/2Z)% one has
pry = 0. If p belongs to X for any k and [ in Z, one has Dok 14e,20414n =
Doktenititn = Daktitesitn. In particular, for (¢,1') # (g,7m), one has X &M N
XEM) = {0} and, if p is a point in YW = Y N X (one then has
(e,m) # (0,0)), the point p belongs to a triangle in the graphe Y.

The groupe & acts on (Z/2Z)* in a natural way and, for any s in &,
for any (g,7) in (Z/27Z)?, one has X*" = sX©E7 . From now on, we set
a=(1,1),b=(0,1), ¢ = (1,0) and 73 = {a,b,c}. We shall consider 7; as
a 1-triangle. The groupe G may be identified with the permutation group
S(a,b,c). One sets Y = Y*UYPUY*: this is a disjoint union and the set ¥
is G-invariant. The elements of Y Y? and Y are described by figure 12.

Let p be a point of Y. We shall let p%, p* and p¢ denote the elements of
(Z/2Z)% such that, for any k and [ in Z, one has

. ~a — Aa — Aa I Aa .
(i) Pop o1 = Pog—1,21 = Pok,21-1 = Pkl and Pop—101-1 = 0.
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oy sb b _ b _ ~b _
(ii) Popor = Pog+1,21 = Poak+1,21-1 = Pkl and Popyo0i—1 = 0.
AC __ AC __ AC _ AC J—
(i) DPor,2r = Pag2i+1 = Pok—1,2141 = Pkl and DPok—1,2142 = 0.

One checks that, by construction, one has p® = Tp” = Sp¢ and that, for any
sin G, for any d in 75, one has 5p°? = s (p?).

Lemma 8.2. Let d be in T,. The map p — p? induces a homomorphism
from'Y onto Y. Conversely, a point p of Y — {Tu, Su} belongs to Y if and
only if, for any q in'Y,, q belongs to some triangle contained in Y,. In this
case, there exists a unique d in T, and a unique point r of Y such that p = 7?
and the triangle containing p is {F®, 7 7°}.

The proof uses the following

Lemma 8.3. Let p be a point of Y — {T'u, Su} such that each point of Y, is
contained in a triangle. Then the triangle containing p is either {p, T 1p, S~1p}
or {p, Tp, TS 'p} or {p,Sp, T~1Sp}. If it is of the form {p, T 'p, S 1p},
the third neighbor q of p is either T'p or Sp. Finally, if ¢ = T'p, the triangle
containing q is {q,Tq, TS q} and if ¢ = Sp, the triangle containing q is
{q,5¢,T7'Sq}.

Proof. Let p be as in the setting. After an eventual action of &, one can
suppose that the triangle containing p contains the point 7 'p. Then, by
definition, the only possible common neighbors of p and T~ 'p are T-'Sp
and S™!'p. Now, as T~ !p belongs to Y, one has p_;o = 1, hence p_1; =
Poo +p-10 = 0 and T7'Sp ¢ Y. Therefore, the triangle containing p is
{p, T~1p,S71p}. The other cases follow, by letting & act on the situation.
In case the triangle containing p is {p, T~ 'p, S~'p}, the third neighbor ¢
of p is, by construction, necessarily in {T'p, Sp}. Suppose now, still after an
eventual permutation under &, one has ¢ = T'p. Then, one has py; = 0 =
p1.—1 and hence T71Sq and S~'q do not belong to Y. The triangle containing
q is thus {q,Tq, TS~ 'q}. The other case follows, by symmetry. O

Proof of lemma 8.2. One easily checks that, for d in 77, the point p¢ belongs
to Y? and that the thus defined map induces a homeomorphism from Y onto
Yy,

Conversely, let p be a point of Y — {T'u, Su} such that every element of Y,
is contained in a triangle of Y,,. Then, by definition and by lemma 8.1, every
point of Y, is contained in a triangle of Y,. Let (k,[) be a point of Y,. By
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lemma 8.3, the triangle containing (k, () is of the form {(k,1), (k—1,1), (k,1—
D} Ak D), (E+1,0),(k+1,1—=1)} or {(k, 1), (k,1+1),(k—1,1+1)}. Let
(e(k,1),n(k,1)) denote the unique element of (Z/2Z)* that does not equal
one of the elements of this triangle modulo (27Z)2.

Let us prove that, for any (i,7) and (k,l) in Y, with (i,5) ~ (k,1), one
has (e(i,7),n(i,7)) = (e(k,1),n(k,1)). If (i,5) and (k,1) belong to the same
triangle, this is clear. Else, after an eventual action of &, by lemma 8.3, one
can suppose that the triangle containing (k, 1) is {(k,1), (k—1,1), (k, 1 — 1)},
that (¢,7) = (k+ 1,1) and hence that the triangle containing (i, 5) is {(k +
1,0),(k+2,0),(k+ 2,0l —1)}. Then, by definition, one has (&(7, j),n(i,j)) =
(=, ).k, ). N

As, by lemma 8.1, the graph Y}, is connected, the function (e,7) is con-
stant. By definition, for any integers £ and [, one has poic 214y, = 0, hence
p belongs to Y& The property on triangles immediately follow from the

definition of the objects. O

Let p be a point of Y. One let IIp and 6, (p) denote the unique elements of
—01(p)

Y and 7; for which one has IIp g p. By construction, one has 60;(p) = a

(resp. b, resp. c) if and only if the triangle containing p is {p, T 'p, S~1p}
(resp. {p,Tp, TS~ 'p}, resp. {p,Sp,T~'Sp}). The maps II and 6, are &-
equivariant. The map II is continuous and 6, is locally constant. For any p
in Y, 6, induces a bijection from the 1-triangle containing p onto 7.

Lemma 8.4. Letp be in Y — {Tu, §u} There exists a unique graph isomor-
phism o : Y, — II71(Y,,) such that Tlo = oTI.

Démonstration. By lemma 2.2, such an isomorphism is necessarily unique.
Let us prove that it exists. Let ¢ be the neighbor of p belonging to {T'p, Sp},
r its neighbor in {T'p, T-1Sp} and s its neighbor in {S~1p, T'S~!p}. One
sets a(p,q) = p% o(p,r) = p® and o(p,s) = p°. Then, the three points
o(p,q), o(p,r) and o(p,s) are neighbors in Y,. Let us check, for example,
that o(p, q) is a neighbor of o(q,p). After an eventual action of &, one can
suppose one has ¢ = T’p. Then, one has p = T~ 1q and hence o(q, p) = ¢°. By
construction, one then has Tp* = ¢°, hence o(q, p) = T'o(p,q), what should
be proved. [J

From now on, we shall, for any p in Y, identify the graphs }A/p and [171(Y,,).
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We will now construct an element p of Y for which the graph Y, is iso-
morphic to the Pascal graph. Set, for any k,1 > 0, p_x. i = Drti41,—1 = (Hl;k)
in Z/27Z and, for any k,l in Z with either [ > O or k¥ > 1 and k +1 > 0,
Pk = 0. One easily checks that p belongs to X and hence to Y since pgo = 1.

We have the following

Proposition 8.5. The point p belongs to Y and one has Ilp = p and 6, (p) =
a. There exists an isomorphism from the Pascal graph I' onto Y, sending po
to p and pg§ to Tp.

This planar representation of the Pascal graph appears in figure 1. The
proof uses the following

Lemma 8.6. Let 0 < k < n be integers. Then, the integers (Z), (2") (2"“)

2k) \ 2k
and @Zﬁ) equal each other modulo 2.

Proof. Let A and B be indeterminates. In the characteristic 2 ring Z/2Z[A, B],
one has (A+B)" = Y"1 _ (1) A¥B" " and hence (A+B)*" = 3", _, (7) A2 B* =2,
Therefore, by uniqueness, for any 0 < k < n, one has, in Z/2Z, (37) = (})

k
and (% 1) = (2/?11) = 0. By the classical identity, one then has (2221) =
(270) + Gi) = Gi) and (i) = Gi) + () = G): -

Proof of proposition 8.5. By using lemma 8.6, one checks that one has p =
p®. Therefore, p belongs to Y, IIp = p and 01( ) = a. By induction, using
lemma 8.4, one deduces that, for any integer n, p is the vertex of a n-triangle
contained in Y,. In the same way, one has II(Tp) = Tp, 6;(Tp) = b and Tp
is the vertex of a n-triangle contained in Y,. By lemma 8.1, the graph Y, is
connected and hence it equals the union of both of these infinite triangles.
The existence of the isomorphism in question follows. O

From now on, we shall identify p with py, T'p with py and I" with Y. One
let T' denote the closure of ' in Y and, for any p in T, one sets I', = Y. One
has III' =T,

We will now describe the set I' in a more detailed way. For this purpose,
let us introduce a partition of ¥ into six subsets that refines the partition Y =
YUY UY®. Let b be a point of Y. Then, by lemma 8.3, the set of neighbors
of p is either {T'p, T'p, S~ 'p} or {Sp, T 'p, S~ p} or {T'p, Tp, TS 1p} or
{T-*Sp, Tp, TS p} or {S~1p, Sp, T~1Sp} or {TS'p, Sp, T~ 1Sp}. Let us
call the set of ¢ in Y for which one has {(k,1) € Z2|T*S'p ~ p} = {(k,1) €
Z2|T*S'q ~ q} the keel of p. The keels are six closed subsets of ¥ on which
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the group & act simply transitively. We let By denote the keel of pg, ¢
the element (_01 _11> of & and r the element (_01 _11) The element ¢
identifies with the transposition (ab) of {a, b, c} and r with the cycle (cba).
For any integer n, set Y (™ = ™Y, Then, by a direct induction, by
lemmas 8.2 and 8.4, for any integer n, Y™ is the set of elements p in ¥ —
{T'u, Su} for which every point of Y, belongs to a n-triangle in Y,,. One hence

has I' C ),y Y ™.

Lemma 8.7. Let n be an integer and p and q be in YD) such that, for any

0<m <n, I™p and II™q belong to the same keel. Then, for any k and | in
Z with k> =2", 1 > =2" and k +1 < 2", one has pr; = qx,-

Proof. Let us prove this result by induction on n. For n = 0, suppose, after
an eventual action of &, one has p,q € By. Then, one has p_; o = poo =
P1o = Po—1 = 1, so that p_; _; = p_10+ po—1 = 0 and, in the same way,
P11 =D-11 =Do1 = pP-12 = 0 and py _; = 1. As this is also true for ¢, the
lemma is true for n = 0.

Suppose now n > 1 and the lemma has been proved for n—1. Pick p and ¢
as in the setting. Then, as p and ¢ are in the same keel, one has 0 (p) = 6:(q).
After an eventual action of &, one can suppose one has 6;(p) = a, so that

p = Ip and ¢ = Ilg . The result now follows by induction and by the
definition of the map r +— 7. O

Lemma 8.8. Let p be in Y such that the keel of p is By. Then, the keel of
P is By, the one of p° is iBy and the one of p¢ is rBy and p® is the vertex
of a 2-triangle in . If ¢ and r are two points in Y® such that Tl and TIr
belong to the same keel, there exists r' in the 1-triangle containing r in Y,
such that ¢ and r' belong to the same keel.

Proof. The first point follows directly from the construction of the objects.
Pick ¢ and r as in the setting. After an eventual action of &, one can suppose
that the keel of Ilg and of IIr is By. The first part of the lemma now clearly
implies the setting. O

Let 3 be the set of sequences (s,)nen of elements of & such that, for any
integer n, one has s, € {s,11, Sp11%, Snr17}. We equip X with the topology
induced by the product topology and we let ¢ : ¥ — ¥ denote the shift map.
One let & act on ¥ by left multiplication on all the components. The set T’
is described by the following
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Proposition 8.9. One hasT = Mnen Y™ . For any p in T, for any integer n,
let s,,(p) be the unique element of & such that the keel of II"p is s,(p)By. The
thus defined map s induces a S-equivariant homeomorphism from T' onto X
and one has os = sIl. The image of the point po by s is the constant sequence
with value e and the fized points of I1 in T are exactly the siz images of py by
the action of the group &. Finally, for any p in T, the set T, is dense in T.

Proof. As the set I' is included in (1), o Y™, so is the set T Conversely, let
us note that each of the six points T~ 'py, T 2po, T2 'po, T~1S2py, S 2py
and S~'py belong to a different keel. Therefore, if p is a point of (), oy y®,
there exists a point ¢ in I' such that p and ¢ belong to the same keel. By
induction, using lemma 8.8, one deduces that, for any integer n, there exists
a point ¢, of I' such that, for any 0 < m < n, II™p and II™g, belong to the
same keel. By lemma 8.7, one then has g, — D and p belongs to I

Let p be in I'. As we have just seen, the point p is completely determined
by the sequence s(p) = (s,(p))nen. The map s is clearly continuous and
G-equivariant and, by definition, one has sII = os. Besides, by lemma 8.2, if
p is a point of I', it admits exactly three antecedents by II and, by lemma 8.8,
the keels of these antecedents are so(p) By, so(p)iBy and so(p)rBy. It follows
that the map s takes its values in ¥ and that it induces a homeomorphism
from I" onto X.

By construction, one has so(pg) = e and, as, by proposition 8.5, IIpy = po,
for any nonnegative integer n, s, (po) = e. In particular, the other fixed points
of IT are the images of py by the action of &.

Finally, if p is a point of ', by lemmas 2.4 and 8.4, for any nonnegative
integer n, the n-triangle containing p in ', is the set 1" (ﬁ”p). As r and
i span the group &, one easily checks that the subshift of finite type (3, 0)
is transitive, so that, for any ¢ in X, the set |J, g0 "(0"t) is dense in X.
Therefore, for any p in I', I', is dense in I'. O

9 'Triangular functions and integration on I'

In this section, we study a particular class of locally constant functions on I
We use these functions to determine some properties of a remarkable Radon
measure on ['. For p in T, let still, as in section 8, (s, (p)Bo)nen denote the
associate keel sequence.

Let n > 1 be an integer and 7 be a n-triangle in I'. Then, by lemma
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8.4, the set II""'T is a 1-triangle of I'. Therefore, the map #; o II"~! induces
a bijection from the set of vertices of 7 onto 7; = {a,b,c}. One let a,
(resp. by, resp. ¢,) denote the set of vertices p of n-triangles of I' such that
0, (I1""'p) = a (resp. b, resp. c¢) and 6, the map which sends a vertex p
of a n-triangle of I' to the element of {an, by, c,} to which it belongs. Let
7, be the n-triangle 7, (ay,, by, ¢,). By lemma 2.3, the map 6,, extends in a
unique way to a map ' — 7,,, still denoted by 6, that, on each n-triangle
T of T, induces a graph isomorphism from 7" onto 7,. This map is locally
constant. For n = 1, this definition is coherent with the notations of section
8, provided one identifies a with a;, b with b; and ¢ with ¢;. By abuse of
language, we will sometimes consider 7, as a set containing only one element
and 6, as the constant map I' — 7.

For any n > 1, the group & act on 7, and identifies with S(a,, by, c,).
We shall identify 7,,; and 7T, through the &-equivariant bijection from
{an, by, cy} onto {ani1,bpi1, cryr} that sends a, to a,yq, b, to byyq and ¢,
to ¢,y1. In particular, one let Il : 7,1 — 7, denote the triangle contracting
map coming from this identification and IT* and II the associate operators
(T,) = ((Tysr) and E(Tyy1) — (T,).

Let, for any n > 2, a,b,, a,c,, byay, b,c,, c,a, and ¢,b, be the points of
7T, defined by corollary 2.6. The principal properties of the maps 6,,, n > 1,
we shall use in the sequel are described by the following

Lemma 9.1. Let n > 1 be an integer. One has 110, ., = 0,I1. If p and q are
points of I such that 0,1(p) = 0,41(q), one has 0,(p) = 0,,(¢). In particular,
one has 0,,(p) = a,, if and only if 0,,.1(p) s ani1, bpr1ani1 OF Coy1Gnyq. Let
p and q be in T, such that 0,(p) = 0,(q). For any 0 < m < n, if 0,(p) is not
contained in a m-triangle which admits one of the vertices of T, as a vertex,
one has s, (p) = sm(q).

Proof. Let T be a (n+1)-triangle of . The map 6,1 induces an isomorphism
from 7 onto 7,1 and the map 6, induces an isomorphism from the n-triangle
II7 onto 7,. As, by definition, the maps 6,11 and 116, coincide on the set
07, one has, by lemma 2.2, 116, ; = 6, I1.

Let p, g and r be the vertices of 7, so that 6,,41(p) = ani1, Onr1(q) = bpia
and 0,,.1(r) = ¢,41. By definition, one has 0, (p) = a,. Let us prove that
0,.(qp) = 0,,(rp) = a,. This amounts to proving that one has 6; (ﬁ"‘lqp) =
0, (ﬁ"flrp) = a;. Now, as above, one has 6, (ﬁ”flqp) = 11""10,11(qp) =
beay and O (ﬁ"flrp) = I1""%0,,,1(rp) = a9, so that we only have to deal
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with the case where n = 1. Then, with the notations of section 8, if s = 1p,
one checks that one has gp = 2" and rp = §Ca, whence the result.

In particular, if S is some n-triangle in T, the restriction of 6, to 0S
is completely determined by the restriction of 6,.1 to dS. By definition,
the values of 6,, are thus determined by those of 6,,,. Finally, let p and ¢
be such that 6,(p) = 0,(¢) and let us show the assumption of the lemma
by induction on n > 1. For n = 1, this assumption is empty. Suppose
n > 2 and the assumption has been established for n — 1. Then, one has
0,1 (I:Ip) = M6,(p) = 10,(q) = 0,1 (I:Iq) and, for any integer m with
1 < m < n, if 0,(p) does not belong to the m-triangle which admits one
of the vertices of 7, as a vertex, 6,_;(IIp) does not belong to the (m — 1)-
triangle which admits one of the vertices of 7, 1 as a vertex and hence, by
induction, $,,(p) = sm_1 (I:Ip) = S_1 (l:[q) = $m(q). It remains to handle
the case where m = 0. Suppose thus 6, (p) is not a vertex of 7, and let us
prove that so(p) = so(q). Note that, by the first part of the proof, one has
01(p) = 01(q). After an eventual action of &, suppose 0;(p) = a;. Then,
let 7 be the n-triangle of I' containing p and p’ be the neighbor of p that
does not belong to the 1-triangle containing p. As p is not a vertex of 7, p/
belongs to 7 and, by lemma 8.3, sq(p) is either By or riBy, following 6;(p’)
is by or ¢;. Now, as 6, induces an isomorphism from 7 onto 7, 6,,(p’) only
depends on 6,,(p) and hence, still by the first part of the lemma, the value of
0 at p’ is completely determined by the value of 6,, at p. Therefore, the value
of s¢ at p is determined by the value of 6, at p, what should be proved. [

For any integer n > 1, by proposition 8.5, one has 0, (po) = a, = 0,(ripo),
so that the coding of I" by the maps 6,,, n > 1 is ambiguous. This ambiguities
are described by the following

Corollary 9.2. Let p and q be in T such that, for any integer n, one has
0.(p) = 0,(q). Then, if p # q, there exists s in & such that p belongs to the
infinite triangle with vertex spg in sI' and q belongs to the infinite triangle
with vertex sripy in sril’.

Proof. Suppose one has p # ¢. Then, by proposition 8.9, there exists some
natural integer m such that s,,(p) # Sm(q). By lemma 9.1, for any integer
n > m, the point 6, (p) = 0, (q) belongs to the m-triangle which admits one
of the vertices of 7,, as a vertex. Set p’ = II"p and ¢’ = [I"™q. By lemma
9.1, for any integer n, one has 6, (p’) = ™" (p) = ™" (q) = 6,(¢")
and this point is one of the vertices of 7,,. As, for any integer n > 1, one has
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On(ani1) = an, 0,(bpi1) = b, and 0,(c,11) = ¢, one can suppose, after an
eventual action of &, one has, for any integer n > 1, 6,,(p) = 0,(¢') = a,. As
01(p") = ay, the keel of p’ is By or riBy. After another action of &, suppose
this keel is By. Then, by lemma 8.8, the keel of IIp/ is By, iBy or r~'By.
As 0,(ITp') = 16, (p) = ay, the keel of IIp' is By and, by induction, for any
integer n, one has s,(p’) = e, so that, by proposition 8.9, p’ = py and p
belongs to the infinite triangle 7. (py) with vertex py in I'. In the same way,
one has ¢’ = pg or ¢’ = ripy and ¢ belongs to the infinite triangle with vertex
po in I" or to the infinite triangle with vertex ripy in riI". For any integer n,
the map #,, induces a bijection from the n-triangle with vertex py in I' onto
7,.. Therefore, if p” is some point in 7, (py) such that, for any integer n, one
has 0,(p") = 6,,(p), one has p” = p. As we supposed p # ¢, ¢ belongs to the
infinite triangle with vertex ripg in riI', what should be proved. O

Let n be an integer. We shall say that a function ¢ : I' — C is n-triangular
if it may be written ¢ = 1 06, for some function ¢) on 7,,. When there is no
ambiguity, to simplify notations, we shall identify ¢ and . By lemma 9.1, a
n-triangular function is (n+ 1)-triangular. In particular, triangular functions
constitute a subalgebra of the algebra of locally constant functions on I'. As,
for any triangular function ¢, one has ¢(pg) = @(ripg), this subalgebra is not
dense in C° (f) for the topology of uniform convergence.

From now on, we let 4 denote the Borel probability measure on I whose
image under the coding map of proposition 8.9 is the maximal entropy mea-
sure for o on X. In other terms, p is the unique measure such that, for any
sequence tg,...,t, of elements of G, if, for any 0 < m < n — 1, one has
tm € {tms1s tmarl, b7}, then g (toBo NI Bo N ... NI, By) = 5ix-
By definition, the measure p is II-invariant and G-invariant.

For any Borel function ¢ on T, one sets I[I*p = @olIl. For any 1 < p < oo,
the operator IT* preserves the norm of L? (f, ,u). One let II denote its adjoint,
that _is, for any Borel function ¢ on I'; one has Hgo(p_) = % Zl:[(q):p ©(q). One
has II1 = 1 and, for any 1 < p < oo, the operator II is bounded with norm
1in L7 (f, u). Finally, one has ITIT* = 1.

The integral of triangular functions with respect to the measure p may
be computed in a natural way:

Lemma 9.3. Letn be a nonnegative integer and ¢ be a n-triangular function.

One has [rodp = 325" 7 ¢(p).
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In other terms, the image measure of y by 6, is the normalized counting
measure on 7,,.

Proof. Let us prove the result by induction on n. If n = 0, ¢ is constant
and the lemma is evident. If n > 1, as, by lemma 9.1, one has 116, =
0,111, the function Ily is (n — 1)-triangular and one has, by induction,

Jepdu = JeTpdu = 5 37, 3 2 onig)=p (@) = 35 Xper, #(p), whence
the result. O

From now on, for any integer n, one shall identify 6, and the associate
partition of the measure space (T, z). By lemma 9.1, this sequence of par-
titions is increasing. As p is atom free, one has pu (USEG SF) = 0 and, by
corollary 9.2, for any p and ¢ in the total measure set I' — (J, g sI', if, for
any integer n, one has 6,(p) = 0,(q), one has p = ¢q. For any ¢ in L (f, ,u),
for any integer n, one let E(p|6,) denote the conditional expectation of ¢
knowing 6,,, that is, for any p in 7,,, one has E(¢|6,,)(p) = 1 fe 1y PR

Lemma 9.4. For any 1 < p < oo, for any ¢ inL? (T, ), one has E(p|6,) ——

w i LP (1:‘,,u). In particular, the space of triangular functions is dense in
Lr (1:‘,,u). In the same way the space of triangular functions that take the
value zero at the vertices of their definition triangle is dense in LP (f ,u).
Finally, for any integer n, for any ¢ in L (f, u) one has E ( g0|t9n+1) =
I*E(p|6,), E (Iel6,) = $1TE(p|0,41) and, for any p in T,,

E(el)p) =5 D Elplbu)(a)

q€Trn41
On(q)=p

Démonstration. The convergence in L7 (f‘,,u) follows from the discussion
above and general properties of probability spaces. The density of triangular
functions that are zero at the vertices of their definition triangles follows,
since, by lemma 9.4, for any n > 1, the measure of the set of elements of T
that are the vertex of some n-triangle is 3"~!. Finally, the formulae linking
conditional expectations knowing 6,,,1 and 6,, follow from lemma 9.1 and the
fact that, by lemma 9.3, the image measure of u by 6, is the normalized
counting measure on 7,,. [

Let us finally describe a homeomorphism I' — T' that will be useful in
the sequel. For any p in I', let a(p) denote the unique neighbor of p that
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does not belong to the triangle containing p. The map « is a fixed point free
involution. By corollary 2.5, for any n > 1, « stabilizes the set of points in T’
that are vertex of some n-triangle. For p in 7,, — 07, let still a,,(p) denote
the unique neighbor of p in 7,, that does not belong to the triangle containing

p.

Lemma 9.5. For any integer n, for any p in L, if p is not a vertex of some
n-triangle of I', one has 0,(a(p)) = an(0n(p)). The map a preserves the
measure p and, for any n > 1, ¢ in L (F,u) and p in 71, — 07, one has
E (¢ o albh) (p) = E(p|0n)(on(p))-

As triangular functions are not dense in C° (f), to check that o preserves
the measure p, we shall use the following

Lemma 9.6. Let X be a compact metric space and let A be a complex uni-
formly closed and conjugation stable subalgebra of C°(X). Let Y be the set
of elements x in X for which there exists y # x in X such that, for any @ in
A, p(y) = p(x). The setY is Borel and, if \ is a Borel complex measure on
X such that Ny = 0 and that, for any ¢ in A, fX wdA =0, one has A = 0.

Proof. Let S be the spectrum of the commutative C*-algebra A and 7 : X —
S the surjective continuous map which is dual to the natural injection from
A into C°(X). By the hypothesis, the complex measure 7, is zero on S.
Let p denote the projection onto the first component X x X — X and set
D={(z,2)lre X} CX xXand E ={(z,y) € X x X|n(x) =7(y)}. One
has Y = p(E—D). As E and D are closed subsets of the compact metrizable
space X, the space £ — D is a countable union of compact sets, hence so are
Y and 7(Y). In particular, these subsets are Borel and 7 induces a Borel
isomorphism from X — Y onto S — 7(Y'). Therefore, the restriction of A to
X —Y is zero. As its restriction to Y is zero, one has A = 0. O

Proof of lemma 9.5. The first part of the lemma follows from the definition
of a and the fact that 6, induces a graph isomorphism from the n-triangle
containing p onto 7,.

Let n > 1. As o exchanges the points of I' that are vertex of some n-
triangle, if ¢ is a n-triangular function which is zero at the vertices of 7,,,
one has, by lemma 9.3, [ ¢ o ady = [redu. As, again by lemma 9.3, for
any integer n > 1, the measure of the set points of I' that are vertex of some
n-triangle is 3”71, one deduces that, for any triangular function ¢, one has

Jrpoadu= [;edpu.
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Let A CC° (f) be the uniform closure of the algebra of triangular func-
tions. By corollary 9.2, the set of elements p in I' for which there exists ¢ # p
such that, for any ¢ in A, one has ¢(p) = ¢(q) is J,cgsl. As p is atom
free, this set has zero measure for p and for a,pu. For any ¢ in A, one has
Jepoadu = [redu. By lemma 9.6, one hence has o, = pu. O

Finally, let © denote the quotient of I' by the map «, endowed with the
measure \, which is the image of i by the natural projection. The space ©
may be seen in a natural way as the set of edges of I' and may be equipped
with a 4-regular graph structure. The image of I' in © then identifies in a
natural way with the Sierpinski graph © and is a dense subset of ©. We call
triangular functions on © the functions coming from triangular functions on
" that are zero on the vertices of their definition triangle and a-invariant.

Then, the results of this section transfer into analogous results on ©.

10 The operator A and its harmonic mea-
sures

We shall now study an operator A on I' which is an analogue of the operator
AonT.

Let ¢ be a Borel function on I'. For any p in I, one sets Ap(p) =
> a~p ©(q). To study the properties of this operator on triangular functions,
set moreover, for any nonnegative integer n, for any function ¢ on 7,, for
any p in 7, — 07,, Ap(p) = ., ¢(q) and, for any p in 07,, Ap(p) =
P(p) + 224y (a)-

Lemma 10.1. For any integer n > 1, the operator A is self-adjoint in EQQ’];L).
If © is a n-triangular function that is constant on 07,, one has Ap = Agp.

Proof. One checks easily that A is self-adjoint. Besides, as 6,, induces graph
isomorphisms from n-triangles of I onto 7,,, for any p in 7, — 07,,, one has

Algorgy =) loigy = Algrg,.
qr~p

In the same way, as any point p of I' that is a vertex of some n-triangle, the
unique neighbor of p that does not belong to this n-triangle is itself a vertex
of some n-triangle, one has A7 - 1,-1 w = A ZpeaTrLle;l (» and hence,
for any n-triangular function ¢ that is constant on 07,,, Ap = Ap. O
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We can now set the principal properties of A in the following

Proposition 10.2. The operator A commutes with the action of &. It is
continuous with norm 3 in the space of continuous functions on I' and one
has A*j = 3p. For any 1 < p < oo, the operator A is continuous with norm
3 LP (f,u) and, for % + % =1, for any ¢ in L? (f‘,,u) and v in L9 (f,p),
one has (Ap, V) = (@, A).

Proof. The first assumption is evident. As A is positive and Al = 3, A is
continuous with norm 3 in the space of continuous functions.

Recall one let a denote the map I' — T’ that sends some point p to its
unique neighbor that does not belong to the 1-triangle containing p. For ¢
in C° (T'), one has Ay = 3II*Ilp + ¢ o a — . As the operators II and II*
preserve p and, by lemma 9.5, the homeomorphism « preserves p, one has
A*p = 3.

For any 1 < p < oo, the positive operator A thus acts on LP (f‘,,u)
and it is bounded with norm 3 in this space. Let 1 < p,q < oo be such that
%Jr% = 1. By lemma 9.4, triangular functions that are zero on the vertices of

their definition triangles are dense in L” (f’, ,u) and L1 (f’, ,zf). By lemma 9.4,
one hence has, for any ¢ in L7 (T, ) and ¢ in L7 (T, i), (A, ¢) = (¢, A).

As the operators appearing in this identity are continuous in Lt (F, u) and
L (F, u), it is still true for p =1 and ¢ = oc. U

We shall now prove that the measure p is, up to scalar multiplication,
the unique Borel complex measure A on I' such that A*\ = 3\. Let us begin
by handling the case where A is G-invariant.

Lemma 10.3. Let A be a S-invariant Borel complex measure on T with
A*X =3\, One has A = X (F) [

Proof. Let ¢ : p — A(p),I’ — C. Then, ¢ belongs to ¢(I') and one has
Ap = 3p. By the maximum principle, one hence has ¢ = 0. There-
fore, the restriction of ¢ to |J,.gsI" is zero. By corollary 9.2 and lemma
9.6, it thus suffices to check that A\ is proportional to pu on the space of
triangular functions. Let n > 1 be an integer and, for any p in 7,, let
en(p) = A0, () = Jplp1pyd). By lemma 10.1, if p is not a vertex of
7,,, one has Alegl(p) = Aly-1(,) and hence, as A*X = 3\, Ap,(p) = 30.(p).
Moreover, as A is G-invariant, ¢, is constant on 07,. By the maximum
principle, ¢,, is constant. As ZpETn on(p) = A (1:‘), one has, for any p in 7,,,
on(p) = 3%)\ (f’), whence the result, by lemma 9.3. O
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Let us now study the eigenspace associate to the eigenvalue 1 in L* (f, ,u).
We will need the following

Lemma 10.4. Let n > 1 be an integer, ¢ be in Lt (f, ,u) and p be in 7T,—07,.
One has AE(p6,)(p) = E (Apl6n) ().

Proof. Let still & and a, be as in lemma 9.5. One has Ay = 3IT*IIp+poa—¢
and hence, by lemmas 9.4 and 9.5,

E (A¢l0,) (p) = I'TIE (910,) (p) + E (910n) (0 (p) — E (210n) ()
= AE (¢|6h) (p),

what should be proved. O

For any n > 1, let H,, denote the space of functions ¢ on 7, such that,
for any p in 7,, that is not a vertex, one has Ap(p) = 3¢(p). By lemma 10.4,
for any ¢ in L' (T, u), if Ap = 3¢, one has E(p|0,) € H,. One identifies
C? and the space of complex valued function on 77 by considering (1,0, 0)
(resp. (0,1,0), resp. (0,0,1)) as the characteristic function of the singleton
{a1} (resp. {b1}, resp. {c1}) and one let 7, denote the G-equivariant linear
map H, — C* ¢ — (p(a,), p(b,), ¢(c,)). Besides, one let (s,),>1 denote

the real sequence such that s; = 1 and, for any n > 1, 5,41 = 35515. One
easily shows that one has s, —— 0. Let CJ be the set of elements in C?
n—oo

the sum of whose coordinates is zero. We have the following

Lemma 10.5. Let n > 1. For any ¢ in H, and p in T,, one has |o(p)| <
max{|p(a,)|, |¢(b.)],|¢(cn)|}. In particular, the map n, is an isomorphism.
Suppose n > 2. Let ¢ be in H, such that n,(p) belongs to C3 and ¢ =

E(¢|0,-1). Then 1 belongs to H, 1 and one has n,_1(v) = ﬁi%nn(go).

Proof. The bound follows from the maximum principle, applied to the oper-
ator %A. It implies that, for any n > 1, the operator 7, is injective. Let ¢
be a function on 7, and, for any p in 7, set §,0(p) = Ap(p) — 3p(p). If p
is not a vertex and d,¢(p) = ¢(p) if p is a vertex. As 7, is injective, so is
0n, and hence it is an isomorphism; in particular, 7, is onto, hence it is an
isomorphism.

For any n > 2, set t, = Toro 145 and u, = 3Sn}1+5. Recall that, as in
corollary 2.6, if S is a n-triangle and if p and ¢ are two vertices of S, one let
pq denote the unique point of S belonging to a (n — 1)-triangle containing p
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and admitting a neighbor belonging to the (n — 1)-triangle containing ¢. Let
d, and e, be the two neighbors of a, in 7,. Let us prove by induction on
n > 2 that, for any ¢ in H,, one has ¢(d,,) + ¢(e,) = s,(@(bn) + p(cn)) +
2(1 = sp)p(a,) and @(ayb,) = thp(ay) + u,(2¢0(b,) + ¢(c,)). For n = 2, this
is an immediate computation. If n > 3 and the formula is true for n — 1,
pick some function ¢ in H,,. Then, as Ap(a,b,) = 3p(a,b,), by applying the
induction to the restriction of ¢ to the (n — 1)-triangle containing a,, one
has

sn—-1(p(an) + p(ancn)) +2(1 — sn-1)@(anby) + (bpan) = 3p(anby).
As 1, is an isomorphism, there exists a unique (z,y, z) in C? such that, for
any ¢ in H,, one has ¢(a,b,) = zp(a,) + yp(by) + ze(c,). As n, is &-
equivariant, one has, for any ¢ in H,, ¢(b,a,) = xo(b,) + yp(a,) + zo(c,)
and @(ancn) = xp(an) + yo(cn) + 2o(by). Thus
Sp—1(l4+2) +2(1 —sp_1)z+y =3z
Sp1z2+2(1 = s, 1)y + =3y
Sp—1Y +2(1 — sp—1)z + 2 = 3z.
By solving this system, one gets * = t,,, y = 2u,, and z = u,. Finally, by
induction, one has
Sp(dn) + gp(en) = Sn—l(gp(anbn) + ‘P(ancn)) + 2(1 - Sn—l)sp(an)
= 35n—1un(90(bn) + gp(cn)) + 2(1 — Sp—1+ Sn—ltn)gp(an)a
whence the result, since 3s,_1u, = s, = s,_1(1 — t,,).
Then, if 1p = E(¢|0,_1), one has, by lemma 9.4, for any p in 7,1, ¥(p) =
D (9)=p P(@)- As 0,1 induces a graph isomorphism from each of the

(n — 1)-triangles of 7,, onto 7,,_1, one deduces that ¢ belongs to H,,_; and
that, in particular, by lemma 9.1, if n,,(¢) is in C}, one has

(m) = 2 (9(an) + (Btn) + P(catn))

3
_ ; (1 + dun)p(an) + (n + ) (9(ba) + p(cn))
_ 1+ 4u,, ; tn — unw(an) _ ﬁw(an)’

where, for the penultimate equality, one has used the relation p(a, )+ ¢(b,)+
v(c,) = 0. By G-equivariance, one has the analogous formula at the two
other vertices of 7,, and hence n,_1(¢) = ﬁi%nn(w). O
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Corollary 10.6. Let ¢ be in L™ (f, ,u) such that Ay = 3¢ and that Y oscs PO
s =0. One has ¢ = 0.

Démonstration. For any integer n > 1, set ¢, = E(|6,,). By lemma 10.4, one

has ¢, € H,. As >, s¢os =0, one has 1,(p,) € Cj. Therefore, if n > 2,

by lemma 10.5, as ¢,—1 = E(p,|0,—1), one has 1,_1(p,—1) = ﬁi%nn(gpn).
2

Now, for any n > 1, one has ||30n||oo < ||s0||C>O and, as s, m 0, anl TogE =

0. Therefore, one necessarily has, for any n > 1, n,,(,) = 0, hence, by lemma
10.5, ¢, = 0, and, by lemma 9.4, ¢ = 0. IJ

We can now describe the eigenvectors with eigenvalue 3 in L* (f, ,u):

Lemma 10.7. Let ¢ be in L (f, u) such that Ap = 3¢. The function ¢ is
constant pi-almost everywhere.

Proof. One can suppose that ¢ takes only real values. Let us prove that it
suffices to handle the case where ¢ is nonnegative. Indeed, as A is positive,
one has Alp| > |Ap| = 3|¢| and hence, as A has norm 3, A |p| = 3¢].
By studying the functions |¢| — ¢ and |p| + ¢, one can suppose one has
@ >0. Set ¥ =) _gpos. The measure A = ¢p is G-invariant and one
has A*\ = 3\. By lemma 10.3, X is proportional to pu, that is 1 is constant
p-almost everywhere. In particular, v is in L™ (f, ,u). Asone has 0 < p <,
1

¢ is in L> (T, ). Then, by corollary 10.6, on a ¢ — £ = 0. O

In order to extend this result to all complex measures on I', we shall use
a general, surely classical lemma. Let X be a compact metric space. Equip
the space C°(X) with the uniform convergence topology. If ) is a complex
Borel measure on X, recall the total variation |A| of A is the finite positive
Borel measure on X such that, for any continuous nonnegative function g on

X, one has
/ gd|A| = sup / ghd)\‘
X heCo(X) |/ X

[[hlloo <1
(one may refer to [15, Chapter 6]). In particular, || is the smallest positive
Radon measure such that, for any continuous nonnegative function g on X,
one has | [ gdA| < [ gd |-

Lemma 10.8. Let X be a compact metric space and P a positive operator
with norm 1 on the space of continuous functions on X. For any Borel
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complex measure A on X, one has |P*A| < P*|\|. In particular, if P*\ = X,
one has P* |\ = |A|.

Proof. For any nonnegative continuous function g on X, one has Pg > 0,
hence | [, PgdA| < [, Pgd|A|. As the measure P* || is positive, one thus
has |[P*A| < P*|A|. If P*A = A, one has |A\| < P*|A|, whence the equality,
since P has norm 1. O

We finally deduce the following

Proposition 10.9. Let v be complex Borel measure on [ such that A*\ =
3X. One has A = \ (F) Lb.

Proof. One can suppose A takes real values. By applying lemma 10.8 to the
operator A, one has A* |A] = 3|\, so that, by studying the measures [A|—\
and |A|+ A, one can suppose A is positive. Then, by lemma 10.3, the measure
Y s S« is proportional to p. Asonehas 0 < A < )7 o s.A, Ais absolutely
continuous with respect to p. By lemma 10.7, A is thus proportional to . [

11 Spectrum and spectral measures of [’

We shall now come to the spectral study of the operator A. Let us begin by
noting that, as in lemma 3.1, one has the following

Lemma 11.1. One has (A? — A — 3)[1* = [I*A and [I(A? — A — 3) = AL

Recall we let @ denote the map that sends a point p of ' to the neighbor
of p that does not belong to the 1-triangle containing p. As in section 3, from
lemma 11.1, one deduces the following

Corollary 11.2. The spectrum of A is the union of A and of the set Unen f77(0).
The eigenspace associate to the eigenvalue —2 is the space of functions ¢ in
L2 (f, u) such that Tl = 0 and p o = —p. The eigenspace associate to the
eigenvalue 0 is the space of functions ¢ in L2 (I_“,/,L) such that Tl = 0 and

poo=p.
Proof. Let, as in corollary 3.6, K = L2 (f, u) and H be the closed subspace
of L2 (T, u) spanned by K and by AK. By lemma 11.1, one has f (A) KCcK

and, as IT* is an isometry from L? (T, ) onto K, the spectrum of f (A) in K
equals the spectrum of A in L2 (F, u). We will seek to apply lemma 3.3 to the
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operator A in H. On this purpose, let us prove that A" K' N K only contains
constant functions. Let ¢ and ¢ be in L* (I, y1) such that All*¢ = I1*¢. For
any integer n > 1, set ¢, = E(p|6,) and ¢, = E(¢|6,). By lemmas 9.4
and 10.4, for any p in 7,,1 — 07,41, one has All*p,(p) = [I*Y,(p). By
proceeding as in the proof of corollary 3.6, one deduces that, for any ¢ in
1., v, is constant on the neighbors of q. As any point of 7, is contained in
a triangle and 7, is connected, ¢, is constant. As, by lemma 9.4, one has
Pn —— ¢ in L2 (f, u), ¢ is constant. Thus, the space A“' K N K equals the

line of constant functions. By lemmas 3.3 and 11.1, the spectrum of A in H
thus equals the union of {3} and of the inverse image by f of the spectrum
of A in the space of functions with zero integral in L2 (f, u).

Besides, proceeding as in lemma 3.7, one sees that the orthogonal com-
plement L of H in L2 (f, u) is the direct sum of the space L_5 of the elements
¢ in L2 (f, u) such that [Ty = 0 and ¢ o a« = —¢ and of the space Lg of the
elements ¢ in L? (T, 1) such that IIy = 0 and ¢ o v = ¢. One has A = —2
on L_5 and A = 0 on Ly. Proceeding as in lemma 3.8 and using lemma
10.1, one sees that these subspaces are not reduced to {0}, since they con-
tain triangular functions. As in the proof of corollary 3.9, one deduces that
the spectrum of A in L? (T, 1) equals the union of A and (J,, .y f7"(0).

Finally, as in the proof of lemma 3.7, it remains to prove that L_ and Lg
are exactly the eigenspaces of A associate to the eigenvalues —2 and 0, that
is A does not admit the eigenvalue —2 or 0 in H. Let ¢ be in H such that
Ay = —2¢. By lemma 11.1, one has Allp = 3I1¢ and hence by lemma 10.7,
Il is constant. As ¢ is orthogonal to constant functions, one has Ilp = 0
and [TAp = —2[1p = 0. As @ is in H, one thus has ¢ = 0. In the same way,
if ¢ is in H and if Ap = 0, one has Allp = —3IIp. Now, by an immediate
computation, —3 does not belong to the spectrum of A. Thus IIy = 0 and
hence ¢ = 0, what should be proved. O

We also have an analogue of lemma 4.1:

Lemma 11.3. One has IIAII* = 2 + 3 A and hence, for any ¢ and ¢ in
L2 (T, p).

(B, T9) = 2(p,0) + 5 (Bg0)

= (T, ) + 5 (A%~ A~ 3) T, II'0).
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As in section 4, one deduces the following

Corollary 11.4. Let ¢ be in L2 (f,,u), w be the spectral measure of p for A

in L2 (f,,u) and v be the spectral measure of II*¢ for A in L2 (f, u). Then,
ome has v(5) = O and, &, for any o # 1, one sets 7(z) = 2D

v=1L}_p.

, one has

12 Eigenfunctions in L? (T, u)

In this section, we shall f(_)llow the plan of section 5, in order to describe the
eigenspaces of A in L2 (F,u). As in section 5, by using lemmas 11.1 and
11.3, one proves the following analogue of lemma 5.1:

Lemma 12.1. Let H be the closed subspace of L2 (f,u) spanned by the
image of 11" and by the one of AIl*. Then, for any x in R — {0, -2}, =
is an eigenvalue of A in H if and only if y = f(x) is an eigenvalue of
A in L2 (f,,u). In this case, the map R, which sends an eigenfunction ¢
with eigenvalue y in L2 (f,u) to (x — 1)II*p + All*¢ induces an isomor-
phism between the eigenspace associate to the eigenvalue y in L2 (f,u) and
the eigenspace associate to the eigenvalue x in H and, for any p, one has

|Rop|ls = La(z +2) (20 — 1) [|e]l3-

To describe the eigenfunctions with eigenvalue in J,, oy f7™(0), we shall
proceed as in section 5. On this purpose, note again that, for any integer
n > 1, the space of edges that are exterior to n-triangles of I may be identified
in a natural way with ©. If ¢ is a function on I' which is constant on edges
which are exterior to n-triangles, we shall let P, denote the function on ©
whose value at one point of © is the value of ¢ on the associate edge which
is exterior to n-triangles of I'. Besides, one still let A denote the operator
that sends a function 1) on © to the function whose value at some point p of
Ois > o~p ¥(q). This operator satisfies A*\ = 4\ and it is self-adjoint with
norm 4 in L2 (@, )\), where ) is the measure on © that has been introduced
at the end of section 9.

Lemma 12.2. The map P, induces a Banach spaces isomorphism from the
eigenspace of L2 (F,u) associate to the eigenvalue 0 onto L2 (@,)\). Let

Qo denote its inverse. For any v in L2 (@,)\), one has HQowHiQ@ W) =
2
% ||¢||L2(é7>\) - %<A¢>w>L2(é,)\)'
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Proof. One proceeds as in lemma 5.2 by using the characterization of eigen-
functions with eigenvalue 0 given in corollary 11.2. The formula may be
easily checked on triangular functions that are zero at the vertices of their
definition triangle and the general case follow by density. O

Recall that, for = in | J,cy f7"(0), one let n(x) denote the integer n such
that f"(z) =0 and

n(z)—1
B fH@)(2f (@) = 1)
wle) = /Ho @) +2

From lemmas 12.1 and 12.2, one deduces the following analogue of proposi-
tion 5.3:

Proposition 12.3. Let z be in | J, oy f7"(0). The eigenfunctions with eigen-
value x in L* (T, ji) are constant on edges which are exterior to (n(x) + 1)-
triangles in I'. The map P, ()42 nduces a Banach spaces isomorphism from
the eigenspace of L2 (f, u) associate to the eigenvalue v onto L2 ((:), )\). Let

Q. denote its inverse. Then, for any v in L? (0, ), one has Hsz/JHig(
w(2) (319120 2) — (A0, Bhia(on) )

Corollary 12.4. For any x in |J, oy f7"(0), the eigenspace associate to x in
L2 (T, u) has infinite dimension and is spanned by triangular functions that
are zero at the vertices of their definition triangle.

o) -

As in section 5, the description of the eigenvalues associate to the elements
of U,,en f7"(—2) is less precise.

Let us begin by the case of the eigenvalue —2. We shall need supplemen-
tary informations on triangular functions that are eigenvectors with eigen-
value —2. On this purpose, pick some integer n > 1 and some n-triangle &
and let Fs denote the space of functions ¢ on & such that Il = 0 and, for
any point p of S that is not a vertex of S, if ¢ is the neighbor of p that does
not belong to the triangle containing p, one has p(q) = —¢(p). If S is 7Z,,
one let F, stand for E7,. By lemmas 9.4 and 9.5 and corollary 11.2; if ¢ is
an element of L2 (f, u) such that Ay = —2¢p, for any integer n > 1, one has
E(¢l0,) € E,. Proceeding as in lemma 5.5, one proves the following

Lemma 12.5. Let n > 1, § be a n-triangle with vertices p, ¢ and r and ¢
be in Es. One has ¢(p) + ¢(q) + ¢(r) = 0.
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The space C3 = {(s,t,u) € R*s + ¢+ u = 0} is stable under the action
of & on C?®. We endow it with the G-invariant hermitian norm |||, such
that, for any (s,t,u) in C3, one has ||(s,t,u)||s = 3 (|s|2 + |t + |u|2) For
any n > 1, one let p, denote the G-equivariant linear map FE, — C3, ¢ —
(p(an), p(bn), ¢(cn)), F, the kernel of p, and G,, the orthogonal complement
of F, in E,, for the norm of L (f, u). By lemma 10.1, the elements of F}, are

eigenvectors with eigenvalue —2 of A.

Lemma 12.6. Let n > 1. One has dim F,, = %(3"’1 —1). The map p, is
onto and, for any ¢ in G, one has ||<p||ig(f,ﬂ) = (g)w1 ||,0n(cp)||3 Finally,

ifn>2 and if v = E(p|0,-1), ¥ belongs to Gy—y and pp—1(¥) = 2pa(p).

Proof. Let n >, S be a n-triangle and p and ¢ be distinct vertices of S. Define

a function ¢%? on S in the following way. If n = 1, one sets p%%(p) = 1,
¢%9(q) = —1 and one says that ¢%? is zero at the third point of S. If

n > 2, let still pg and ¢p denote the points defined in corollary 2.6: the
point pg belongs to the (n — 1)-triangle P containing p in S, the point ¢p
belongs to the (n — 1)-triangle Q containing ¢ in S and the points pg and

qp are neighbors. One defines ¢%? as the function whose restriction to P

is @™, whose restriction to Q is ¢ and whose restriction to the third
(n — 1)-triangle of S is zero. One easily checks that ¢ belongs to Es. If
S = T,, one let @74 stand for ¢%?. As one has p,(¢%") = (1,—-1,0) and
Pn (@) = (1,0, —1), the map p, is onto.

For n > 2, let 1, denote the function on 7, whose restriction to the
(n — 1)-triangle A,, (resp. B,, resp. C,) containing a, (resp. b, resp. ¢,)

equals % (resp. @bmen resp. ). Then, one easily checks that 1),

belongs to F,.

These functions are pictured in figure 13.

Let us now establish by induction on n > 1 the formulae of the lemma
on the dimension of F,, and the norm of the elements of G,,. For n = 1,
one has Iy = {0} and the map p; is an isomorphism, so that the formula
on norms follows from lemma 9.3. Let thus suppose n > 2 and the formulae
have been proved for n — 1. We will explicitely construct the inverse map of
pn, depending on the one of p, ;. For any triangle S, let Fs be the set of
elements of Es that are zero at the vertices of & and G g be the orthogonal
complement of Fs with respect to the natural scalar product on ¢*(S). For
any (s,t,u) in C3, let 7(s,t,u) be the unique function on 7, that takes the

t—s u—s s—t u—t

value s at a,, t at by, u at ¢,, 5* at a,b,, “52 at ayc,, 5 at bua,, “5- at
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Figure 13: The functions g0'212’b2 and 1)y

bnCn, 3 a, and % at ¢,b, and whose restriction to A, (resp. B, resp.
Cn) belongs to G4, (resp. Gp,, resp. Gg,). Then 7(s,t,u) clearly belongs
to E, and p,(7(s,t,u)) = (s,t,u). Besides, one has, by lemma 9.3 and by
induction,

anbn,ancn
(T(s,t,u), @/}n)Lg (fu) = (<7‘ (s,t,u), 0% >€2(An)

S ((t=s) (=) + (@=1) = (s = 1)
Hs—u) = (t—u)) = 0

Conversely, one easily checks, by an analogous scalar product computation,
that, if ¢ is an element of E,, that is orthogonal to v,, and whose restriction
to A, (resp. By, resp. C,) is in G4, (resp. Gg,, resp. G, ), then ¢ belongs
to the image of 7. As both these spaces have dimension 2, they coincide
and 7 is the inverse map of p,. In particular, F,, is spanned by ,, and the
elements that are zero at the vertices of (n — 1)-triangles, so that dim F}, =
3dim F,_1 + 1, whence the dimension computation, by induction. Besides,
again by lemma 9.3 and by induction, for any ¢ in G,, if p,(¢) = (s,t,u),
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one has, by the definition of 7,

2 52 2 2 2 s—t|? t—ul? s —ul?
HSOHLQ(iM) ~gn-1 |s|” + [t]" + |ul” + 2 |——| +2 3 2 2
15 2 2
~ 3gn-1 (|S| + [¢° + [ul )

(taking in account, for the last equality, that s+ ¢+ u = 0). The formula on
norms follows, by induction.

Finally, for n > 2, pick ¢ in G, and set ¢ = E(p|6,_1). As in the
proof of lemma 10.5, one deduces from lemma 9.4 and the fact that 6,
induces graph isomorphisms between the (n — 1)-triangles of 7, and 7,
that, as ¢ belongs to F,, 1 belongs to E,,_;. As the elements of F,,_; are
zero at the vertices of the (n — 1)-triangles, they belong to F), too, hence
they are orthogonal to ¢, so that ¥ belongs to GG,,_1. By lemmas 9.1 and 9.4,
one has ¥(a,) = 1(p(an) + ¢(bpan) + ¢(cna,)) and hence, by the formulae

3

above, if p,(¢) = (s,t,u), one has ¥(a,) = (s + 55t 4+ 55%) = 25 and

pr1(¥) = Spu(e). m

We can now describe the eigenspace of A associate to the eigenvalue —2:

Lemma 12.7. The eigenspace associale to the eigenvalue —2 of A has in-
finite dimension and is spanned by triangular functions that are zero at the
vertices of their definition triangle.

Proof. As, by lemma 12.6, for any n > 1, the space F,, has dimension %(3"*1—
1) and, by lemma 10.1, its elements are eigenfunctions with eigenvalue —2,
the eigenspace associate to the eigenvalue —2 has infinite dimension.

Let ¢ be an eigenfunction with eigenvalue —2 in L2 (f, ,u) that is orthog-
onal to the eigenfunctions that are triangular and zero at the vertices of their
definition triangle. Let us prove that ¢ is zero. For any integer n > 1, let
©n = E(]6,). By corollary 11.2, one has ITp = 0 and poa = —¢ and hence,
by lemmas 9.4 and 9.5, for any n > 1, ¢, belongs to F,. As ¢ is orthogonal
to the elements of F),, ¢, belongs to G,,. If n > 2, as ¢,_1 = E(p,|0,-1), by
lemma 12.7, one has p,_1(¢n_1) = %pn(gon). Hence, there exists v in C3 such

that, for any n > 1, one has p,(¢,) = (§)n_1v, so that, again by lemma

2
12.7,
5 n—1 5 n—1
ooy = () toatewl=(3) ol
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S t S t 2s+u 2t+u

U 2s +1t

Figure 14: Values of ¢ and of Ay

As, by lemma 9.4, one has ¢, —— ¢ in L2 (f, ,u), one thus has necessarily

n—0o0

v = 0, hence, for any n > 1, ¢, = 0 and ¢ = 0, what should be proved. [
From lemmas 12.1 and 12.7, one deduces by induction the following

Corollary 12.8. For any x in\J, oy [~"(—2), the eigenspace associate to the
eigenvalue x has infinite dimension and is spanned by triangular functions
that are zero at the vertices of their definition triangle.

13 Spectral decomposition of L* (T, z1)

In this section, we shall prove that L2 (1:‘, ,u) is the orthogonal direct sum of
the space of constant functions, the eigenspaces associate to the elements of
the set (J,cn f7"(—2) U U,en J7"(0) and the cyclic subspaces spanned by
I-triangular functions ¢ such that Il = 0. Let us begin by describing these
cyclic subspaces.

Lemma 13.1. Let ¢ be in E;. One has (A+2) Y = (A — 1) II*¢ and
Ay = (1 + %A) ®.

Proof. Let (s,t,u) = (p(a1),o(b1), p(c1)). One has, by definition, s+t +u =
0. Let p be in I'. After an eventual action of the group &, one can suppose
that IIp belongs to the keel By from section 8. Then, the values of ¢ and of
Ay on the 1-triangle containing p and on its neighbors are those described
by figure 14. In the same way, the values of II*¢ and of AIl*¢ on the 1-
triangle containing p and on its neighbors are those described by figure 15. If
01(p) = ay or 61(p) = by, one hence has (A +2) p(p) =2s+2+u=s+1t =

(A — 1) II*¢(p); if 61(p) = c1, one has (A+2) p(p) =25+t +2u=s+u=

(A —1)I*¢(p). Thus, we do have (A +2)p = (A — 1) II*p.
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t t 2s+t 2s+t

2s +u

Figure 15: Values of IT*¢ and of All*¢

By definition, one has l_zlcp_: 0, so that, by applying II to the preceding
identity, one gets [T1Ap = I1 (A + 2) e =1AII*e — ¢ = (1 + %A) v, where,
for the last equality, we made use of lemma 11.3. O

Thanks to lemma 13.1, we shall proceed as in section 6 to determine the
spectral measures of the elements of F;. Let us begin by proving that these
measures do not give mass to the points —2 and 0.

Lemma 13.2. Let ¢ be in Ey and 1 be an eigenfunction with eigenvalue —2
or 0 in L? (T, ). One has (¢, ) = 0.

Proof. Suppose 1 is an eigenvector with eigenvalue 0. By corollary 11.2, one
has ITy) = 0 and ¥ o = 1 and, by corollary 12.4, one can suppose that, for a
certain integer n > 2, v is n-triangular, with value 0 at the vertices of 7,,. Let
p, q and r be the vertices of a 2-triangle S of 7,, and let pq, qp, pr, rp, gr and
rq be the other points of S, with the convention from corollary 2.6. Then,
one has ¢(gp) = ¢(pq) and ¥ (rp) = (pr), hence 1 (p) + ¥ (gp) + ¢ (rp) =0
and, by using the analogous identities on the other 1-triangles of S, by lemma
9.1, as ¢ is 1-triangular, one has

D (s)i(s) = @(p) (V(p) + ¥(ap) + 1 (rp))

sES

+¢(q) (V(q) + ¥ (pq) + ¥ (rq)) + (r) (Y(r) +¥(pr) +¢(qr)) =0

and hence, by lemma 9.3, (¢, 1) = 0.
Let us now handle the case of the eigenvalue —2. For any n > 1, let FE,
and F,, be as in section 12. Let (s,t,u) = (v(a1), p(b1),¢(c1)). Let us prove
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by induction on n that, if ¢ belongs to F,, one has

Y wp)(p) =27 (st(an) + tih(ba) + uth(cn)).

pETn

For n = 1, the result is trivial. Suppose n > 2 and the result has been
established for n. Then, by applying the induction to the restriction of ¢ to
(n — 1)-triangles of 7,,, one gets, as ¢ is 1-triangular, by lemma 9.1,

Z e(p)Y(p) = 2"_2(¢(an)8 + Y(anbn )t + U(ancy)u

pETn

+ Y(by)t + Y (bnan)s + Y (bpcy)u + Y(cy)u + Y (cnan)s + Y (c,by,)t).
Now, one has ¢ (a,b,) + ¥ (bya,) = 0 and, by lemma 12.5, ¥ (a,,) + ¢ (a,b,) +

Y(ayc,) =0, so that ¥ (b,a,) + 1 (cha,) = ¥(ay,). By using this identity and
the analogous formulae at the other vertices of 7,,, we get

Z e(p)Y(p) = 2"_1(8¢(an) + th(bn) + urh(cn)),

pETn

what should be proved. In particular, for v in F),, one has, by lemma 9.3,
(p,1) = 0 and hence, by lemma 12.7, this is still true for any eigenvector 1
with eigenvalue —2. O

Corollary 13.3. Let ¢ be in Fy and ¢ be an eigenfunction with eigenvalue
in Upen 7 (=2) U U, ey J77(0). One has (p,v) = 0.

Proof. By corollary 11.2 and lemmas 12.1 and 13.2, it suffices to prove that,
for x in R, if ¢ is an eigenvector with eigenvalue x and if <g0 ) = 0, one
has <¢,H*w> = <<p, AH*¢> = 0. Now, by definition, one has Iy = 0, hence
<<p, H*@/}> = (. Besides, by lemma 13.1, one has

(. 8110) = (136.0) = (2. (14 38) ) = (142) (0 =0
what should be proved. O

Set, for any = # —3, j(z) = %3T and, for  # 1, ((x) = %(96-1-233:)(7961—1)' As

for corollary 6.3, we deduce from lemma 13.1 and corollary 11.4 the following

Corollary 13.4. Let v, the unique Borel probability on A such that one has
Live = v¢. For any ¢ in Ey, the spectral measure of ¢ is Hg0H2ju<
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Proof. As the proof of this result is analogous to the one of corollary 6.3,
we just give its big steps. Let A be the spectral measure of ¢. By lemma
13.2, one has A\(—2) = 0. Set, for v ¢ {-2,1}, 0(z) = #_(22271) One
has 6 = ﬁg‘ and, by corollary 11.4 and lemma 13.1, A = L;\. By lemma
9.3, ¢ is orthogonal to constant functions. Therefore, by lemma 10.7, one
has A(3) = 0. Moreover, by corollaries 11.2 and 13.3, the measure A is
concentrated on A.

The function ( is positive on A and L¢(1) = 1. By lemma 6.2, there
exists a unique Borel probability v, on A such that Lfr; = v;. Proceeding
as in the proof of corollary 6.3, one proves that the measures A and jv, are
proportional. As one has L:j = 1, one gets A = ||(p||2j1/< O

Let [ denote the function z — x on A and set, for z # 1, m(z) = 22

and, for x # £, {(z) = 3 m(x 1) . Let @ denote the closed subspace of L* (T, 1)

spanned by the elements of F: and their images by the powers of A and,
as in section 12, let p; design the G-equivariant isomorphism from FE; onto
C3. Still endow C} with the hermitian norm that equals one third of the
canonical norm and denote by (.,.)o the associate scalar product. By lemma
9.3, the map p; is an isometry. Identify the Hilbert spaces L? (juv¢, C}) and
L? (ju¢) ® C3 and, for any polynomial p in C[X] and for any v in C3, set
PRU=p (A) py H(v). We have an analogue of proposition 6.4:

Proposition 13.5. The map g — ¢ induces a G-equivariant isometry from
L? (jve, C3) onto ®. The subspace ® is stable by the operators A, I1 and I1*.
For any g in L? (jve, C3), one has
Ag=1g
1§ = Leg

g =mlgo /)
Proof. Let p be in C[X]. The map

C3 X C?’ —C
= (p (&) pr ' (v) o1 w)>L2(f’,u)

is a G-invariant sesquilinear form. As the representation of & on C} is
irreducible, this sesquilinear form is proportional to the scalar product (., .)o.
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By lemma 9.3 and corollary 13.4, for v in C3, one has

(0 () 5@ 0D, = Il | i,

therefore, for any p and ¢ in C[X], for any v and w in CJ, one has

<p Rv,q® w>L2(w) = (v, w)o(D; ) r2(jwe)

and hence the map g — ¢ induces an isometry from L? (jv,, C3) onto a closed
subspace of L (f u) As this subspace is spanned by the elements of F; and
their images by the powers of A, by definition, it equals .

The rest of the proof is analogous to the one of proposition 6.4.

The stability of ® by A and the formula for A result from the very
definition of the objects in question.

A direct computation shows that L¢(1) = 0 and that L¢(l) = 1+ &,
so that, for any nonnegative integer n, one has L¢(f") = 0 and Lg(f"l)
r (1 + 1l) Now, by lemmas 11.1 and 13.1, for any ¢ in E, one has I1 (f (A)ngo) =
0 and II (f (A) Acp) A" (1 + IA) ¢. The space ® is thus stable by II

and, for any p in C[X] and v in C3, one has Ip@v = Lg( )®@uv. As (
is positive on A, there exists a real number ¢ > 0 such that, for any = in
A, one has [£(z)| < ¢((x), so that, for any Borel function g on A, one has
|Le(g)] < cL¢ (|g|). Proceeding as in the proof of proposition 6.4, one proves
that L¢ is bounded in L*(jr¢). One deduces that L¢ is bounded and the
identity concerning II follows, by density.

Finally, by lemmas 11.1 and 13.1, for any p in C[X] and ¢ in Ej, one has
(A — 1) IT* (p (A) cp) =p (f (A)) (A + 2) . By corollary 11.2, 1 does not
belong to the spectrum of A, so that, by density, for any rational function
p whose poles do not belong to the spectrum of A, one has IT* (p (A) gp) =
(m(po f)) (A) ¢ and hence the space ® is stable by II*. Moreover, as, for

any z in A, one has m(x)Qj(ijéz)) = (mf(lm)zrﬁ:s)’ one gets, by an elementary
computation, L (mQﬁ) =1 and, for any ¢ in L*(jv),
[imtgentian = [ (w22 Y igo s Gonan = [ 1o o
A A
The formula for II* follows, by density. O
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Let us now deal with the other G-isotypic components of the space
L?(D,p). Lete: 6 — {—1,1} denote the signature morphism. We shall
say that a function ¢ on I' is (&, £)-semi-invariant if, for any s in &, one has

pos=c(s)p.

Proposition 13.6. For any integer n > 1, the space of S-invariant n-
triangular functions on ' is stable by A and the characteristic polynomial of
A in this space is

(=) [T () + )
p=0

For any integer n > 2, the space of (6, e)-semi-invariant n-triangular func-
tions on I is stable by A and the characteristic polynomial of A in this space
18

n—2 —2-P_2n42p43 3N =2-Pyon_2p_1
[To /X)) 3 (ko prix))™ 27

p=0

Proof. These spaces are stable by lemma 10.1. The computation of the char-
acteristic polynomials is obtained proceeding as in the proof of proposition
7.5. O

From this proposition, we deduce, using lemma 9.4, the following:

Corollary 13.7. The spectrum of A in the space of G-invariant elements of
L2 (f, u) is discrete. The eigenvalues of A in this space are 3, which is simple,
and the elements of |, e [ (=2) UU,en J7™(0). The spectrum of A in the
space of (&, €)-semi-invariant elements of 1> (f,u) 1s discrete. The eigen-
values of A in this space are the elements of |, cn [ (=2) U U en J77(0).

The proof of theorem 1.3 ends with the following

Proposition 13.8. Letﬁ)L be the orthogonal complement of ® in L2 (f,,u).
The spectrum of A in ®* is discrete. Its eigenvalues in this space are 3,
which is simple, and the elements of |, en [7"(=2) U U, en J77(0).

The proof of this proposition is analogous to the one of proposition 6.9. It
needs us to introduce objects that will play the role of the spaces L,, n € N,
of this proof.
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Let us use the notations from section 8 and recall that, by construction,
if p is a point of I' such that 6, (p) = a,, the keel of p is By or 7iBy. For any
integer n > 1, let B,, be the set which is the union of 7, — 07, and of the
set of the six pairs of the form (d, B) where d belongs to 07, and B is one
of the two keels for which there exists points p of B with 6,,(p) = d. Denote
by 7, the locally constant map I' — B, such that, for any p in T, if p is not
a vertex of some n-triangle, one has 7,,(p) = 6,,(p) and, if p is a vertex of
some n-triangle, 7,,(p) is the pair (0,,(p), B) where B is the keel containing p.
Finally, let say that a function ¢ on I is 7,,-measurable if one has ¢ = 1 o7,,
where v is some function defined on B,,. The interest of this definition comes
from the following

Lemma 13.9. Let n > 1 be an integer and ¢ be a T,11-mesurable function
on I'. Then, the functions Il and I1A¢ are 1,-mesurable.

Proof. Let p be a point of I'. If p is not a vertex of some n-triangle, the
triangle II~'p does not contain a vertex of some (n + 1)-triangle. In the same
way, none of the neighbors of II"!p is a vertex of some (n+ 1)-triangle. Thus,
for any of the points ¢ appearing in the computation of Ilp(p) and TTAp(p),
one has 7,(q) = 0,(q). Therefore, by the definition of 6,, and by lemma 9.1,
Ip(p) and ITAp(p) only depend on 6,(p).

If p is now a vertex of some n-triangle, the neighbor ¢ of p that does
not belong to this n-triangle is itself a vertex of some n-triangle and, by
lemma 8.3, the keel of ¢ is determined by the one of p. In particular, 7,(q) is
determined by 7,,(p). Only one of the antecedents of the point p by the map
IT is a vertex of some (n + 1)-triangle. By lemma 8.8, it is the one whose
keel equals the one of p. In particular, the image by 7, of this point r
is determined by 7,(p). In the same way, the image by 7,,1 of the unique
antecedent s of ¢ that is a vertex of some (n + 1)-triangle only depends on
To(q), and so on 7,(p). The point s is the neighbor of r that does not belong
to II"'p. Finally, the two other points of II 'p and their neighbors that do
not belong to II7'p are not vertices of some (n + 1)-triangle and hence their
image by 7,.1 is their image by 6,1 that only depend on 6,(p). Again,
[y (p) and TA@(p) only depend on 6,,(p). O

Proof of proposition 13.8. By lemma 10.7, the eigenvalue 3 of A is simple.
By corollaries 12.4 and 12.8, the eigenspaces associate to the elements of
Unen /7" (=2) U U, en /7™(0) are non zero. Let P denote the orthogonal
projector from L? (', 1) onto ®* and, for any ¢ and ¢ in L* (I, 1), denote by
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Ay the unique complex Borel measure on R such that, for any polynomial p
in C[X], one has fR pdAg .y = <p (A) ©, 1/1>. By proposition 13.5, the operator
P commutes with A, IT and IT*. By lemma 9.4, to prove the proposition, it
suffices to establish that, for any integer n > 1, for any 7,,-mesurable function
@, for any 1 in L? (f, u), the measure Ap,, ,, is atomic and concentrated on
the set (J,,cn f7"(3) UU,.en f77(0). Let us prove this result by induction on
n.

For n = 1, the m-mesurables functions are those functions that only
depend on the keel. One easily checks that this space is spanned by the
constant functions, a line of (&, ¢)-semi-invariant functions, the elements of
E, and their images by A. In this case, the description of spectral measures
immediately follows from corollaries 13.4 and 13.7.

If the result is true for an integer n > 1, let us pick some 7,,,1-measurable
function ¢. Then, by lemma 13.9, the functions IIy and IIAy are 7,-
measurable and, by induction, for any 1 in L2 (f, u), the measures A\jp,, , =
Apiigy aNd Afapyy = ApfiAgy are atomic and concentrated on the set
Unen f7"(3) UU,en f7(0). Proceeding as in lemma 6.10, one deduces that
the measures Ap,, i+, and Az p, iy = Apy Afivy are atomic and concentrated
on the set U,y f7"(3) UU,», £77(0). Now, by corollary 11.2, the spectrum
of A in the orthogonal complement of the subspace of L2 (f, ,u) spanned
by the image of IT* and by the one of AIT* equals {—2,0}. Therefore, for
any ¢ in L2 (f, u), the measure Ap,, ,, is atomic and concentrated on the set

Unen f ") UU,en f7(0). The result follows. O

14 The Sierpinski graph

In this section, we will quickly explain how the results that have been ob-
tained in this article for the Pascal graph [' may be transfered to the Sierpinski
graph © pictured in figure 2. As explained in section 2, the graph © identifies
with the edges graph of I'. If ¢ is some function on I'; one let =*¢ denote
the function on © such that, for any neighbor points p and ¢ in I'; the value
of Z*¢ on the edge associate to p and ¢ is ¢(p) + ¢(q). One let = denote the
adjoint of =" and one immediately verifies the following

Lemma 14.1. One has (A —1)=* = Z*A and Z=* = 3+ A. The restriction
of A to the orthogonal complement of the image of =* in (*(©) is the operator
of multiplication by —2.
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Through this lemma, all the results of this article transfer from the Pascal
graph to the Sierpinski graph. They could also be obtained directly in the
Sierpiriski graph, by considering the suitable operators in ¢?(0). We will
only describe the continuous spectrum of © and translate theorem 1.1: this
answers the question asked by Teplyaev in [18, § 6.6].

For z in R, set k(x) = x4+ 2 and ¢(z) = v + 1. From lemma 14.1, one
deduces the following

Lemma 14.2. Let ¢ be in (*(T'), u be the spectral measure of ¢ for A in
*(T) and X\ the spectral measure of Z*¢ for A in (*(©). Then, one has
A= Fk(tip).

For any z in R, set g(z) = 2> —3z = f(z—1)+1. One let 3 = ¢(A) denote
the Julia set of g. For any z in R, let ¢(x) = (z + 2)(4 — z) = k(x)h(x — 1)
and, for z # 2, y(z) = £% = p(z —1). One let v, = t,, denote the unique
L, ,-invariant probability measure on X.

Let still g denote the function on I' that appears in section 6 and set
0o = Z*pg (this is the function which is denoted by 1ssy in [18, § 6]). From
theorem 1.1 and lemmas 14.1 and 14.2, one deduces the following theorem,
that completes the description of the spectrum of © by Teplyaev in [18]:

Theorem 14.3. The spectrum of A in (?(©) is the union of ¥ and the
set U,en 97" (—2). The spectral measure of 0y for A in (*(©) is the mea-
sure cv,, the eigenvalues of A in (*(©) are the elements of U, oy [~ (—2) U
U,en f7"(—=1) and the associate eigenspaces are spanned by finitely supported
functions. Finally, the orthogonal complement of the sum of the eigenspaces
of A in (2(0) is the cyclic subspace spanned by 6.
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