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Abstract

Let X ⊂ (Z/2Z)Z2

be the three dot system. Given a Z
2-invariant

ergodic probability measure on X, we study percolation properties on
the set of 1’s in a typical orbit. This gives us a strong dichotomy for
such measures.

1 Introduction

The three dot system, which has been introduced by Ledrappier in [5], is the
set X of all (xk,l)(k,l)∈Z2 in (Z/2Z)Z

2

such that, for any (k, l) in Z
2, one has

xk,l+xk+1,l+xk,l+1 = 0 (in Z/2Z), equipped with the natural action of Z
2 by

coordinate translations. This action is spanned by the two commuting maps
T : (xk,l) → (xk+1,l) and S : (xk,l) → (xk,l+1). We equip X with its natural
compact topology: the group Z

2 acts on X by homeomorphisms.
We can then seek for a classification of the Borel probability measures on

X which are invariant under the action of Z
2. This question is an analogue

of the one, asked by Fürstenberg in [3], of the classification of the Borel
probability measures on the circle which are simultaneously invariant by angle
doubling and tripling. This problem has been studied by many authors who
have adapted to the space X - and to other systems - the partial solutions
to Fürstenberg’s question: let us cite, for example, [2], [4], [6] and [7].

In this article, we are proposing a new approach to this problem, based
on percolation properties we shall now describe.

Let us denote by Y the closed subset of X of all (xk,l) in X with x0,0 = 1.
If x = (xk,l) belongs to Y , one has x1,0 + x0,1 = 1 and hence one and only
one of the two elements Tx and Sx belongs to Y . This defines a continuous
map σ : Y → Y . Let µ be a Borel probability on X which is invariant by the
Z

2-action (that is one has T∗µ = S∗µ = µ). One then has µ(Y ) = 0 if and
only if µ is the Dirac mass at the zero family. If µ(Y ) > 0, the restriction of
µ to the set Y is quasi-invariant by σ (that is, for any Borel subset B of Y
with µ(B) = 0, one has µ(σ−1(B)) = 0). If x is a point of Y , we define the
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σ-component of x as the set of points y in the Z
2-orbit of x that belong to Y

and for which there exists nonnegative integers p and q with σp(x) = σq(y).
In other terms, the σ-component of x is the set of points y of the Z

2-orbit of
x for which the paths drawn on the Z

2-orbit of x (σp(x))p≥0 and (σq(y))q≥0

join each other. The σ-component of x possesses a natural tree structure:
the neighbors of x are σ(x) and the eventual elements of σ−1(x). We call the
elements of

⋃

n∈N∗ σ−n(x) the σ-antecedents of x.
Let Z be the set of elements of Y which admit an infinite number of

σ-antecedents. The principal result of this article is the

Theorem. Let µ be an atom free Borel probability on X which is invariant
and ergodic under the action of Z

2. Then one and only one of the following
is true.

(i) One has µ(Z) = 0 and there exists a Z
2-invariant Borel set B with

µ(B) = 1 such that, for any x in Y ∩B, the σ-component of x contains
all the points of the Z

2-orbit of x that belong to Y .

(ii) One has µ(Z) > 0 and there exists a Z
2-invariant Borel set B with

µ(B) = 1 having the following properties:

(a) for any x in Y ∩ B, the σ-component of x contains points of
Z.

(b) for any x in Z ∩B, the set σ−1(x) contains one and only one
point of Z.

(c) for any x in Y ∩ B, the Z
2-orbit of x contains an infinite

number of σ-components. More precisely, for any σ-component C
of the Z

2-orbit of x, there exists an integer k such that T kS−kx
belongs to Z ∩C and the set {k ∈ Z|T kS−kx ∈ Z} is not bounded,
neither from above nor from below.

We shall say that an atom free Z
2-invariant and ergodic measure on X is

of the tree type if it satisfies the first property of the theorem and that it is
of the ribbon type if it satisfies the second property. Both these situations
are pictured in figure 1. In this figure, on the left, we see, from a large
distance, a generic orbit of the tree type: points have only a finite number of
σ-antecedents and their trajectories under σ join each other. On the right,
we see a generic orbit of the ribbon type: the points that have an infinite
number of σ-antecedents form curves which are transverse to the lines of the
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Figure 1: Orbits of the tree type and of the ribbon type

form {T kS−kx|k ∈ Z} and the trajectories under σ of points having only a
finite number of σ-antecedents join these curves.

In figure 2, we give an example of a configuration, viewed from a small
distance: 0’s are pictured by a white dot and 1’s are pictured by a black one.
The values on the right and top axis have been chosen independantly under
a Bernoulli law with parameter 1

2
.

In section 5, we will show that the Haar measure of X, viewed as a closed
subgroup of the compact group (Z/2Z)Z

2

, is of the tree type. In section 6,
we will give an example of a ribbon type measure.

Before, in sections 2 and 3, we will establish a certain number of prelim-
inary results on the topology of σ-components in Z

2-orbits. We will finish
the proof of the theorem in section 4. The results in section 2 rely on an
argument which is analogous to the one employed by Burton and Keane
in [1] to establish the uniqueness of the infinite component for independent
percolation in Z

d, with d ≥ 2.

2 The σ-antecedents

Recall that Z denotes the set of elements in Y that admit an infinite number
of σ-antecedents. Let Z2 be the set of elements x in Z for which the set
σ−1(x) contains two elements that both belong to Z. In this section we will
prove the following
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Figure 2: A typical configuration
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Proposition 2.1. Let µ be an atom free Borel probability on X which is
invariant and ergodic under the action of Z

2. One has µ(Z2) = 0.

Let us introduce a few notations. Let x be a point of X and n a nonneg-
ative integer. We set

∆n(x) = {T kSlx|k ≥ 0, l ≥ 0, k + l ≤ n}

∆◦
n(x) = {T kSlx|k > 0, l > 0, k + l ≤ n}

∂∆n(x) = {T kx|0 ≤ k ≤ n} ∪ {Slx|0 ≤ l ≤ n} ∪ {T kSn−kx|0 ≤ k ≤ n}.

That is, the set ∆n(x) is a triangle with side length n and vertex x and
∂∆n(x) is its boundary.

If y is a point in Y ∩ ∆n(x), we define its (σ, x, n)-component as the set
of elements z in Y ∩∆n(x) such that there exists nonnegative integers q and
r with σq(y) = σr(z) ∈ ∆n(x). By construction, each (σ, x, n)-component
contains a unique point of {T kSn−kx|0 ≤ k ≤ n}. The relevancy of these
definitions comes from the following lemma, which is an analogue of Burton
and Keane lemma in [1]:

Lemma 2.2. Let x be a point in X and n be a nonnegative integer. If
C ⊂ ∆n(x) is a (σ, x, n)-component that contains points in Z ∩ ∆◦

n(x), one
has

♯(Z2 ∩ C ∩ ∆◦
n(x)) ≤ ♯(∂∆n(x) ∩ C) − 2.

The idea of the proof of this lemma is that C admits a natural tree
structure for which points have two or three neighbours. A point z in Z2 ∩
∆◦
n(x) has three neighbours and the connected components of C − {z} all

intersect ∂∆n(x).

Proof. As C contains points in ∆◦
n(x), C contains a unique point of the set

{T kSn−kx|1 ≤ k ≤ n− 1}. Also, if y is a point in C ∩ Z, at least one of the
σ-antecedents of y belongs to ∂∆n(x). As this σ-antecedent does not belong
to {T kSn−kx|1 ≤ k ≤ n − 1}, C ∩ ∂∆n(x) contains at least two points and
the result is established if Z2 ∩ C ∩ ∆◦

n(x) = ∅.
Else, if y is a point of Z2 ∩ C ∩ ∆◦

n(x), at least two of the σ-antecedents
of y belong to ∂∆n(x) and, hence, C ∩∂∆n(x) contains at least three points.
The set C admits a natural tree structure for which the neighbours of some
element z in C are σ(z), if it belongs to ∆n(x), and the eventual elements
of σ−1(z) that belong to ∆n(x). If z is a point in Z2 ∩ C ∩ ∆◦

n(x), C − {z}
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then contains three connected components for the tree structure and these
three connected component define a partition Pz of ∂∆n(x) ∩ C into three
non empty subsets. The map z 7→ Pz is one-to-one and the set P = {Pz|z ∈
Z2 ∩ C ∩ ∆◦

n(x)} is a compatible set of partitions, in the sense of Burton
and Keane, that is if P = {P1, P2, P3} and Q = {Q1, Q2, Q3} belong to P,
after an eventual permutation of the indices, one has Q2 ∪ Q3 ⊂ P1. By
Burton and Keane lemma in [1], one has ♯P ≤ ♯(∂∆n(x)∩C)− 2 and we are
done.

From this lemma, we immediately deduce the

Corollary 2.3. For any x in X and for any nonnegative integer n, one has
card(Z2 ∩ ∆n(x)) ≤ 5n+ 1.

We now use this corollary for the

Proof of proposition 2.1. By Birkhoff theorem, there exists a point x in X
such that one has

♯(Z2 ∩ ∆n(x))

♯(∆n(x))
−−−→
n→∞

µ(Z2).

Now, by corollary 2.3, this goes to 0.

Finally, we shall use the results of this section in the form of the
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Corollary 2.4. Let µ be an atom free Borel probability which is invariant
and ergodic under the action of Z

2 on X. Then, for µ-almost every x in
X, for any σ-component C of the Z

2-orbit of x, C ∩Z contains at most one
point of the form T kS−kx for some k in Z.

Proof. Let U be the set of elements of X that do not satisfy the conclusion
of the corollary and let x be in U . Then, there exists distincts integers k
and l such that the points y = T kS−kx and z = T lS−lx are in Z and belong
to the same σ-component. Let q be the smallest nonnegative integer such
that σq(y) = σq(z). Then, one has σq(y) ∈ Z2. In other terms, we have just
shown that one has U ⊂

⋃

i,j∈Z
T iSjZ2. Therefore, by proposition 2.1, we

have µ(U) = 0.

3 The σ-components

In this section, we establish a certain number of topological properties of
σ-components.

Let x be a point of Y and C be its σ-component. We shall say that x is
an extremal point of C if the other points of C are of the form T kSlx with
k + l > 0 or k + l = 0 and l ≥ 0. A σ-component contains at most one
extremal point. We let E denote the set of elements of Y which are extremal
points of their σ-component. We have the following

Proposition 3.1. Let µ be an atom free Borel probability which is invariant
and ergodic under the action of Z

2 on X. One has µ(E) = 0.

We keep the notations from section 2. The proof of proposition 3.1 now
relies on the following

Lemma 3.2. For any x in X and for any nonnegative integer n, one has
♯(E ∩ ∆n(x)) ≤ (n+ 1).

Proof. Let y be a point of E ∩ ∆n(x). Then, the (σ, x, n)-component of y
contains a unique point of the set {T kSn−kx|0 ≤ k ≤ n}. This defines a
one-to-one map from E ∩ ∆n(x) into a set of cardinal n + 1, whence the
result.
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Let x be in Y and C be its σ-component. Set

K(x) = {k ∈ Z|T kS−kx ∈ C}

L(x) = {k ∈ Z|T kS−kx ∈ Y, T kS−kx /∈ C}

Then, if h ≤ k ≤ l are integers such that h and l belong to K(x) and T kS−kx
belongs to Y , one has k ∈ K(x).

Let F denote the set of points x of X whose Z
2-orbit only contains one

σ-component and G denote the set of x in Y such that K(x) is finite. We
have the following

Proposition 3.3. Let µ be an atom free Borel probability which is invariant
and ergodic under the action of Z

2 on X. Suppose one has µ(F ) = 0. Then,
one has µ(Y −G) = 0. In particular, for µ-almost every x in X, the Z

2-orbit
of x contains an infinite number of components.

Proof. Thanks to the remark above, to prove the proposition, it suffices to
prove that, for µ-almost any x in Y , L(x) contains both positive and negative
elements.

Let us begin by showing that L(x) is not empty. Indeed, as µ(F ) = 0,
for µ-almost any x, there exists integers k and l such that the σ-component
of y = T kSlx does not contain x. If k+ l ≤ 0, the element σ−k−l(y) is of the
form T hS−hx for some integer h and we are done. If k + l > 0, the element
z = σk+l(x) is of the form T iSjx with i+ j = k+ l. Suppose for example one
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has i > k. The situation in the Z
2-orbit of x of the different points involved

there is then pictured in figure 5.
For any integer h, if T hS−hy = T k+hSl−hx belongs to the σ-component

of x, one has h > 0. Now, by Poincaré recurrence theorem, there exists an
infinite number of positive integers m such that T−mSmx belongs to Y . For
sufficiently large m, the σ-component of T−mSmx is therefore different from
the one of x: hence, the set L(x) is not empty.

Let us now consider, for example, the set H of x in Y such that L(x) only
contains nonnegative integers. Then, by the argument above, if H ′ denotes
the set of x in H such that, for any k > 0, if T kS−kx belongs to Y , T kS−kx
does not belong to the σ-component of x, one has µ

(

H −
⋃

k≥0 T
−kSkH ′

)

=

0. Now, for any x in H ′, for any k > 0, one has T kS−kx /∈ H ′ and hence by
Poincaré recurrence theorem, µ(H ′) = 0. Therefore, we have µ(H) = 0: in
other terms, for µ-almost any x in Y , L(x) contains negative elements.

From propositions 3.2 and 3.3, we deduce the following

Corollary 3.4. Let µ be an atom free Borel probability which is invariant
and ergodic under the action of Z

2 on X. Suppose one has µ(F ) = 0. Then,
for µ-almost any x in X, the σ-component of x contains a point of Z.

Proof. Consider the set V of x in Y which σ-component does not contain
points of Z. By proposition 3.3, for µ-almost any x in V , the σ-component C
of x contains only a finite number of points of the form T kS−kx for some k in
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Z. But, as each of these point only possesses a finite number of antecedents,
C contains only a finite number of points of the form T kSlx with k + l ≤
0. In particular, C contains an extremal point. In other terms, one has

µ
(

V −
⋃

k,l∈Z
T kSlE

)

= 0. Hence, by proposition 3.2, one has µ(V ) = 0.

4 Proof of the theorem

Let us separate the two cases appearing in the theorem.

Proof of the theorem in case µ(Z) = 0. We have to prove that, with nota-
tions from section 3, one has µ(F ) = 1. If this is not true, by ergodicity, one

has µ(F ) = 0 and hence, by corollary 3.4, µ
(

⋃

k,l∈Z
T kSlZ

)

= 1. Therefore,

we do have µ(F ) = 1.

Proof of the theorem in case µ(Z) > 0. Let us begin by showing that one has
µ(F ) = 0. Suppose the contrary, that is µ(F ) = 1. Then, by Poincaré
recurrence theorem, for µ-almost any x in Z ∩ F , there exists some integer
k 6= 0 such that y = T kS−kx belongs to Z. But x and y then belong to the
same σ-component. Hence, by corollary 2.4, we have µ(Z ∩F ) = 0, which is
a contradiction.

By proposition 3.3 and corollary 3.4, for µ-almost any x inX, the Z
2-orbit

of x contains an infinite number of σ-components and each of them contains
a point of Z. In particular, each of them contains a point of Z which is of
the form T kS−kx, for some k in Z. By corollary 2.4, for µ-almost any x,
for every σ-component of the Z

2-orbit of x, this point is unique. Finally, by
proposition 2.1, for µ-almost any x in Z, σ−1(x) contains a unique point of
Z.

5 A tree type measure

We now consider (Z/2Z)Z2

as a compact group for the product law and X as
a closed subgroup of (Z/2Z)Z

2

. Then, Z
2 acts onX by group automorphisms.

In particular, this actions preserves the Haar measure µ0 of X. This measure
may be described more precisely. Let us denote by P ⊂ Z

2 the union of the
sets P− = {(k,−k)|k ∈ Z} and P+ = {(l, 0)|l ∈ N

∗}. We immediately get
the following
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Lemma 5.1. The map X → (Z/2Z)P , x 7→ (xk,l)(k,l)∈P is an isomorphism
of compact groups.

Thus, in probabilistic terms, to chose randomly an element x of X un-
der the law µ0, one choses randomly and independently the coordinates
(xk,l)(k,l)∈P of x under a Bernoulli law with parameter 1

2
and one completes

step by step using the equation xk,l + xk+1,l + xk,l+1 = 0.
An elementary Fourier transform argument in the compact abelian group

X allows to prove the following

Lemma 5.2. The measure µ0 is globally mixing for the action of Z
2. More

precisely, for any Borel subsets A and B in X, one has

µ0(A ∩ T kSlB) −−−−−→
(k,l)→∞

µ0(A)µ0(B).

In particular, the measure µ0 is ergodic. We shall prove the following

Proposition 5.3. The measure µ0 is of the tree type.

The proof relies on the following extension argument:

Lemma 5.4. Let y = (yk,l)k+l≤0 be a family of elements of Z/2Z such that,
for any integers k and l with k + l+ 1 ≤ 0, one has yk,l + yk+1,l + yk,l+1 = 0.
Suppose one has y0,0 = 1 and, for some h ≥ 0, yh,−h = 1. Then, there exists
x in X such that, for any k, l with k + l ≤ 0, xk,l = yk,l and that x and
T hS−hx are in the same σ-component.

Proof. The proof is established by induction on h ≥ 0. If h = 0, the result
is evident.

Suppose now h ≥ 1 and the result has been proved for h−1. And suppose,
to the contrary, that y does not admit any legal extension. Consider a family
z = (zk,l)k+l≤1 that extends y and such that, for any k and l with k + l ≤ 0,
one has zk,l + zk+1,l + zk,l+1 = 0. Then, z is completely determined by the
data of z1,0; the unique other extension of y to the set {k+ l ≤ 1} satisfying
the same condition having the value zk,1−k + 1 at (k, 1 − k) for any k in Z.
There are two cases: either the extension of y with value 1 at (1, 0) has the
value 1 at (h, 1 − h) and, by induction, we then could extend this family in
a legal way, what we have supposed to be impossible; or the extension of y
with value 1 at (1, 0) has the value 0 at (h, 1−h). By iterating this argument,

one can build, for any 1 ≤ i ≤ h, a family z(i) =
(

z
(i)
k+l

)

k+l≤i
of successive
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extensions of y such that, for any i and for any k, l with k+ l ≤ i−1, one has
z

(i)
k,l + z

(i)
k+1,l + z

(i)
k,l+1 = 0 and z

(i)
0,i = z

(i)
h,i−h = 1. But, for i = h, one then has

z
(h)
h,0 = 1 whereas, for any 0 ≤ k ≤ h, z

(h)
0,k = 1, hence, for any 0 ≤ k ≤ h− 1,

z
(h)
1,k = z

(h)
0,k + z

(h)
0,k+1 = 0 which, by an easy induction, implies z

(h)
h,0 = 0. We

reach a contradiction, whence the result.

Proof of proposition 5.3. Suppose to the contrary the measure µ0 is of the
ribbon type and let us chose some set B as in the theorem. For x in X and
y in (Z/2Z)P+ , let us denote by [x, y] the unique element z in X such that
zk,l = xk,l for k + l ≤ 0 and zk,0 = yk,0 for k > 0. As, by lemma 5.1, µ0

may be seen as the product of the Haar measures µ− of (Z/2Z)P− and µ+

of (Z/2Z)P+ , there exists some element x of B ∩ Z such that, for µ+-almost
every y in (Z/2Z)P+ , the element [x, y] belongs to B. In particular, as x
belongs to B, there exists some h > 0 such that T hS−hx belongs to Z. By
lemma 5.4, there exists an integer l > 0 and elements t1, . . . , tl in Z/2Z such
that, for any y in (Z/2Z)P+, if y1,0 = t1, . . . , yl,0 = tl, the points [x, y] and
T hS−h[x, y] belong to the same σ-component. But, if [x, y] belongs to B,
this then contradicts the fact that the σ-component of [x, y] only contains
one point of Z ∩ {T kS−k[x, y]|k ∈ Z}.

6 A ribbon type measure

In this section, we shall construct a ribbon type measure.
Let us begin by considering the set X1 = {x ∈ X|∀k, l ∈ Z x2k,2l = 0}:

this is a closed subgroup of X which is stable under the action of (2Z)2. For
x in X, and for k and l in Z, set θ2k,2l(x) = 0 and θ2k+1,2l(x) = θ2k,2l+1(x) =
θ2k+1,2l+1(x) = xk,l. One easily checks that the map θ : x 7→ (θk,l(x))(k,l)∈Z2

defines a group isomorphism from X onto X1 and that, for any integers k
and l, one has θT 2kS2l = T kSlθ. In particular, by lemma 5.2, the measure
θ∗µ0 is invariant and ergodic under the action of (2Z)2 on X1. We set µ1 =
1
4
(θ∗µ0+T∗θ∗µ0+S∗θ∗µ0+(TS)∗θ∗µ0): the measure µ1 is invariant and ergodic

under the action of Z
2 onX and its support is the set X1∪TX1∪SX1∪TSX1.

Finally, as X1 ∩ TX1 = X1 ∩SX1 = X1 ∩ TSX1 = {0}, there exists a map π
from the support of µ1 deprived from 0 into (Z/2Z)2 such that π(X1) = (0, 0),
π(TX1) = (1, 0), π(SX1) = (0, 1) and π(TSX1) = (1, 1). In particular, the
map π intertwines the action of Z

2 on the support of µ1 and the natural
action of Z

2 by translations on (Z/2Z)2.
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Now, for k and l in Z, set uk,l = 0 if k − l belongs to 3Z and uk,l = 1
otherwise. The family u = (uk,l) then belongs to X and u is a periodic point
for the action of Z

2 on X: its stabilizer is precisely the set of (k, l) in Z
2 such

that k− l belongs to 3Z. For v in {u, Tu, Su}, set κ(v) = 0 if v = u, κ(v) = 1
if v = Tu and κ(v) = 2 if v = Su. The map κ : {u, Tu, Su} → Z/3Z then
intertwines the action of Z

2 on the Z
2-orbit of u and the action of Z

2 on Z/3Z

for which, for any (k, l) in Z
2, (k, l) acts on Z/3Z by translation by k − l.

We denote by ν the invariant probability measure carried by the Z
2-orbit of

u, that is the measure 1
3
(δu + δTu + δSu), where δ stands for Dirac mass.

Finally, we set µ = µ1 ∗ ν, the convolution product of the two probability
measures µ1 and ν on the compact group X, that is the image by the sum
map of the measure µ1 ⊗ ν on the cartesian product X ×X. As Z

2 acts on
X by group automorphisms, the measure µ is still invariant by this action.

Lemma 6.1. The product map (X × X,µ1 ⊗ ν) → (X,µ) is a measurable
isomorphism. The measure µ is ergodic under the action of Z

2.

Proof. Let us begin by proving the first statement. The dihedral group of
order 6 acts in a natural way on our situation. One checks that, by symmetry,
it suffices to prove that one has µ((u + X1) ∩ (u + TX1)) = µ((u + X1) ∩
(Tu+X1)) = µ((u+X1) ∩ (Tu+ TX1)) = 0. As X1 ∩ TX1 = {0}, one has
µ((u+X1)∩(u+TX1)) = 0. As (Tu−u)0,0 = 1, one has (u+X1)∩(Tu+X1) =
∅. Finally, let x be in (u +X1) ∩ (Tu+ TX1). As x belongs to u+X1, one
checks that one has, for any l, for any k equalling 2 or 4 modulo 6, xk,2l = 1.
In the same way, as x belongs to Tu + TX1, one checks that one has, for
any l, for any k equalling 1 or 3 modulo 6, xk,2l = 1. In particular, one then
has x1,0 = x2,0 = x3,0 = 1, hence x1,1 = x2,1 = 0 and x1,2 = 0, which is a
contradiction. Thus (u+X1) ∩ (Tu+ TX1) = ∅.

The system (X,Z2, µ) is therefore isomorphic to the product system
(X,Z2, µ1) × (X,Z2, ν). By lemma 5.2, the discrete spectrum of (X,Z2, µ1)
equals (1

2
Z/Z)2 ⊂ T

2. Now, by a direct computation, the discrete spectrum
of (X,Z2, ν) equals {(1, 1), (1

3
, 2

3
), (2

3
, 1

3
)} ⊂ T

2. As these subgroups only in-
tersect at 1, by a classical ergodic theoretical argument, the product system
is ergodic.

We have the following

Proposition 6.2. The measure µ is of the ribbon type.
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Figure 6: Contsraints on the successive values of ̟ ◦ σn, n ∈ N

Proof. By lemma 6.1, there exists a unique map x 7→ (y(x), v(x)), X → X ×
{u, Tu, Su} which is defined µ-almost everywhere and such that y∗µ = µ1,
v∗µ = ν and, for µ-almost every x in X, one has x = y(x) + v(x). We then
set, for µ-almost any x in X, ̟(x) = (π(y(x)), κ(v(x))) ∈ (Z/2Z)2 × Z/3Z.
We let 00, 10, 01 and 11 denote the four elements of (Z/2Z)2.

For µ-almost any x in Y , if ̟(x) = (a, b), one has̟(σ(x)) = (a+10, b+1)
or ̟(σ(x)) = (a + 01, b + 2), depending whether σ(x) = Tx or σ(x) = Sx.
There exists some (a, b) in (Z/2Z)2×Z/3Z such that, for µ-almost any x in Y ,
if ̟(x) = (a, b), one necessarily has σ(x) = Tx or σ(x) = Sx. For example,
if ̟(x) = (01, 0), by the definition of µ1 and ν, one has y1,0(x) = y0,0(x) = 1
and y0,1(x) = 0, whereas v1,0(x) = u1,0 = 1 = u0,1 = v0,1(x), thus x1,0 = 0
and x0,1 = 1 and therefore σ(x) = Sx. In the same way, if ̟(x) = (10, 0),
one has σ(x) = Tx. All these constraints have been pictured in figure 6:
for any (a, b) in (Z/2Z)2 × Z/3Z, the values that ̟(σ(x)) may take given
̟(x) are shown by one or two arrows. At the starting point of each arrow
the letter T or S indicates whether the value is obtained when σ(x) = Tx or
σ(x) = Sx.

Let ϕ : (Z/2Z)2 × Z/3Z → Z be the map defined by

ϕ(a, b) = −2 for (a, b) ∈ {(10, 1), (01, 1)}

ϕ(a, b) = −1 for (a, b) ∈ {(00, 2), (11, 2)}

ϕ(a, b) = 0 for (a, b) ∈ {(10, 0), (01, 0)}

ϕ(a, b) = 1 for (a, b) ∈ {(00, 1), (11, 1)}

ϕ(a, b) = 2 for (a, b) ∈ {(10, 2), (01, 2)}

and let ψ = ϕ◦̟. One checks that, by figure 6, for µ-almost every x in Y , one
has σ(x) = Tx if ψ(σ(x))−ψ(x) = 1 and σ(x) = Sx if ψ(σ(x))−ψ(x) = −1.
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In other terms, for µ-almost any x in Y , one has

σ(x) = T
1

2
(1+ψ(σ(x))−ψ(x))S

1

2
(1−ψ(σ(x))+ψ(x))x.

By induction, one has, for any n in N,

σn(x) = T
1

2
(n+ψ(σn(x))−ψ(x))S

1

2
(n−ψ(σn(x))+ψ(x))x

and hence, as ψ takes all it values in [−2, 2], σn(x) is of the form T kSlx with
k+ l = n and |k − l| ≤ 4. Therefore, for µ-almost any x in Y , for any h in Z

with |h| > 8, if T hS−hx belongs to Y , the σ-components of x and of T hS−hx
do not intersect. The measure µ is thus of the ribbon type.
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