RANDOM WALKS ON FINITE VOLUME HOMOGENEOUS SPACES

YVES BENOIST AND JEAN-FRANCOIS QUINT

Abstract

Extending previous results by A. Eskin and G. Margulis, and answering their conjectures, we prove that a random walk on a finite volume homogeneous space is always recurrent as soon as the transition probability has finite exponential moments and its support generates a subgroup whose Zariski closure is semisimple.

1. Introduction

In this introduction G is a real Lie group. Later on, in section 7, we will consider more generally products of real and p-adic Lie groups. We denote by \mathfrak{g} the Lie algebra of G, \mathfrak{r} its maximal amenable ideal, $\mathfrak{s}:=\mathfrak{g} / \mathfrak{r}$ and by $\operatorname{Ad}_{\mathfrak{s}}: G \rightarrow \operatorname{Aut}(\mathfrak{s})$ the adjoint action on \mathfrak{s}. The Lie algebra \mathfrak{s} is the largest semisimple quotient of \mathfrak{g} with no compact factor.

Let Λ be a lattice in $G, X:=G / \Lambda$ and $x_{0}:=\Lambda$ be the base point of X. Let $\mu \in \mathcal{P}(G)$ be a Borel probability measure on G and $\Gamma=\Gamma_{\mu}$ be the closed sub-semigroup of G generated by the support of μ. We denote by $H_{\mu} \subset \operatorname{Aut}(\mathfrak{s})$ the Zariski closure of $\operatorname{Ad}_{\mathfrak{s}}\left(\Gamma_{\mu}\right)$ and by $H_{\mu}^{n c}$ the non compact part of H_{μ}, i.e. the smallest normal Zariski closed subgroup of H_{μ} such that $H_{\mu} / H_{\mu}^{n c}$ is compact. We assume that
$H_{\mu}^{n c}$ is semisimple and
μ has finite exponential moments in \mathfrak{s},

$$
\text { i.e. } \int_{G}\left\|\operatorname{Ad}_{\mathfrak{s}}(g)\right\|^{\delta} \mathrm{d} \mu(g)<\infty \text { for some } \delta>0 \text {. }
$$

In this paper, we study the random walk associated to μ on X that is the Markov chain with state space X and transition probabilities $\mu * \delta_{x}, x \in X$. In other terms, given $x \in X$, we focus on the sequence of probability measures $\mu^{* n} * \delta_{x}, n \in \mathbb{N}$. We address the recurrence properties of this random walk.

This topic has been studied in depth by Eskin and Margulis in [6] where they prove different kind of recurrence and uniform recurrence properties for this random walk. In [6, §2.5], Eskin and Margulis state
two conjectures called ($R 1$) and (S) on the recurrence behavior of this random walk.

Our first theorem answers positively conjecture ($R 1$) of [6].
Theorem 1.1. Let G be a real Lie group, Λ be a lattice in $G, X:=$ G / Λ, and μ be a probability measure on G with finite exponential moments in \mathfrak{s} and such that $H_{\mu}^{n c}$ is semisimple.

For any $\varepsilon>0$, any x in X, there exists a compact set $M=M_{\varepsilon, x} \subset X$ such that for any $n \geq 0$, one has $\mu^{* n} * \delta_{x}(M) \geq 1-\varepsilon$.

Moreover, the compact set $M=M_{\varepsilon, x}$ is uniform for x in a compact subset of X.

Remark For a linear group G i.e. a subgroup of $\operatorname{SL}(d, \mathbb{R})$, assumptions (1.1) are satisfied as soon as
Γ_{μ} has a semisimple Zariski closure and
μ has finite exponential moments in \mathbb{R}^{d}.

Here is a reformulation of Theorem 1.1.
Corollary 1.2. Under the same assumptions, for any x in X, any weak limit ν_{∞} of the sequence $\nu_{n}:=\mu^{* n} * \delta_{x}$ in the space of finite measures on X is a probability measure, i.e. $\nu_{\infty}(X)=1$.

Conjecture ($R 1$) in [6] was stated in a slightly too optimistic way under the weaker hypothesis that the group $H_{\mu}^{n c}$ is generated by unipotent elements. However E. Breuillard constructed in [5, Prop. 10.4] a counter-example with $G=\operatorname{SL}(2, \mathbb{R}), \Lambda=\operatorname{SL}(2, \mathbb{Z})$ and μ a noncentered probability measure with compact support on some one-parameter unipotent subgroup of G.

In case μ has compact support, the recurrence properties proven in [6] have been used in [1] as the starting point for the classification of μ-stationary probability measures on X and of Γ_{μ}-invariant closed subsets on X when G is a simple group and Γ_{μ} is Zariski dense in G. Theorem 1.1 is now used in [3] to extend this classification to the case where $\operatorname{Ad}_{\mathfrak{g}}\left(\Gamma_{\mu}\right)$ is Zariski dense in a semisimple subgroup of $\operatorname{Aut}(\mathfrak{g})$ with no compact factor.

As in [6], one deduces from Theorem 1.1 the following
Corollary 1.3. Let G be a real Lie group, Λ be a lattice in $G, X:=$ G / Λ, and Γ be a discrete subgroup of G such that the Zariski closure of $\operatorname{Ad}_{\mathfrak{s}}(\Gamma)$ is semisimple. Then any discrete Γ-orbit in G / Λ is finite.

Note that the group $\Lambda_{S}:=\operatorname{Ad}_{\mathfrak{s}}(\Lambda)$ is always a lattice in Aut(s) (see Lemma 6.1). A parabolic subgroup $P \subset \operatorname{Aut}(\mathfrak{s})$ is said to be Λ_{S}-rational if the group Λ_{S} intersects the unipotent radical of P in a lattice.

Theorem 1.1 was proved in [6] under the additional assumption that no conjugate of $H_{\mu}^{n c}$ is contained in some proper Λ_{S}-rational parabolic subgroup of $\operatorname{Aut}(\mathfrak{s})$. The simplest case of Theorem 1.1 which is not covered by [6] is when $G=\operatorname{SL}(3, \mathbb{R}), \Lambda=\operatorname{SL}(3, \mathbb{Z})$ and Γ_{μ} is Zariski dense in the $\operatorname{SL}(2, \mathbb{R})$ sitting in the top left corner.

We will now describe an explicit subset of points $x \in X$ starting from which the random walk is recurrent inside a uniform compact set.

Our second theorem answers positively conjecture (S) of [6].
Theorem 1.4. Let G be a real Lie group, Λ be a lattice in $G, X:=$ G / Λ, and μ be a probability measure on G with finite exponential moments in \mathfrak{s} and such that the group $H_{\mu}^{n c}$ is semisimple.

For any $\varepsilon>0$, there exists a compact set $M \subset X$ such that, for any g in G, either $g^{-1} H_{\mu}^{n c} g$ is contained in some proper Λ_{S}-rational parabolic subgroup of $\operatorname{Aut}(\mathfrak{s})$, or there exists $n_{g} \geq 0$ such that, for any $n \geq n_{g}$, one has $\mu^{* n} * \delta_{g x_{0}}(M) \geq 1-\varepsilon$.

Note that one can not replace $H_{\mu}^{n c}$ by H_{μ} in Theorem 1.4 : there exists a counterexample with $G=\operatorname{SL}(6, \mathbb{R}), \Lambda=\operatorname{SL}(6, \mathbb{Z})$ and Γ_{μ} Zariski dense in $\mathrm{SO}(3, \mathbb{R}) \times \mathrm{SL}(2, \mathbb{R}) \hookrightarrow \operatorname{SL}\left(\mathbb{R}^{3} \otimes \mathbb{R}^{2}\right) \simeq G$. In this example, the action of Γ_{μ} on \mathbb{R}^{6} is irreducible, hence the group H_{μ} is not included in any parabolic subgroup, while its non compact part $H_{\mu}^{n c}$ is included in a Λ_{S}-rational parabolic subgroup.

Let us sketch our strategy in a few words. As in [6] we prove the existence of proper functions f on X satisfying the so-called "Foster exponential recurrence criterion" (see [7], [12, Chapter 15] and [14]). The main new idea is to construct these functions f by using the representation theory of the semisimple group $H_{\mu}^{n c}$. Since it avoids the use of Reduction Theory, this idea gives also a simpler proof of the main results of [6], even when G is simple and Γ_{μ} is Zariski dense in G. However in the case where $X=\operatorname{SL}(d, \mathbb{R}) / \mathrm{SL}(d, \mathbb{Z})$, our proof is the same as in [6].

Here is the structure of this paper.
In section 2, we explain how the recurrence of the random walk on X follows from the existence of proper functions f which are contracted by the random walk.

In section 3, we prove an inequality in the exterior algebra of a finite dimensional vector space, that we call the Mother Inequality, which is the main new technical tool of this paper.

In section 4, we show how the Mother Inequality allows us to construct functions φ on the exterior algebra which simultaneously satisfy a convexity property with respect to the exterior product and are contracted by the random walk.

In section 5, we use these functions φ to construct proper functions f on X which are contracted by the random walk when X is the space of covolume 1 lattices in \mathbb{R}^{d}.

In section 6, we reduce the general case to the previous one.
In section 7, we extend these results to lattices in products of real and p-adic Lie groups and show that the functions f grow exponentially.

We thank Yves Guivarc'h for interesting discussions on this topic.

2. The contraction hypothesis

We present in this section a very general criterion implying the recurrence of a given random walk.

Let G be a second countable locally compact group, X be a second countable locally compact space and $(g, x) \mapsto g x$ be a continuous action of G on X.

Let μ be a Borel probability measure on G. Let us denote by $f \mapsto A_{\mu} f$ the averaging operator which, to a given nonnegative Borel function f on X, associates the function defined by, for any x in X,

$$
A_{\mu} f(x)=\int_{G} f(g x) d \mu(g) .
$$

A Borel function $f: X \rightarrow[0, \infty]$ is said to be proper if for any $R<\infty, f^{-1}([0, R])$ is relatively compact in X. We denote by $D_{f}:=$ $\{x \in X \mid f(x)<\infty\}$ the domain of f.

We will say that the action of (G, μ) on X satisfies the contraction hypothesis for a Borel proper function f if
$\mathbf{C H}(f)$ there exist constants $a<1, b>0$ such that $A_{\mu} f \leq a f+b$.
This condition is a very strong μ-subharmonicity property for f : it says roughly that the averaging operator strictly contracts f as soon as $f(x)$ is large enough.

For a subset $X^{\prime} \subset X$, we will say that the action of (G, μ) on X satisfies the uniform recurrence property on X^{\prime} if

For any $\varepsilon>0$, there exists a compact set $M=M_{\varepsilon} \subset X$
$\mathbf{S}\left(X^{\prime}\right)$ such that, for any x in X^{\prime}, there exists $n_{x} \geq 0$ such that, for $n \geq n_{x}$, one has $\mu^{* n} * \delta_{x}(M) \geq 1-\varepsilon$.
The following is a reformulation of [6, Lemma 3.1].
Lemma 2.1. Assume that the action of (G, μ) on X satisfies the contraction hypothesis $\mathbf{C H}(f)$ for a proper Borel function $f: X \rightarrow[0, \infty]$, then it satisfies the uniform recurrence property $\mathbf{S}\left(D_{f}\right)$.

Proof. Set $B=\frac{b}{1-a}$. Since f is proper, the closure M of the set

$$
\left\{y \in X \left\lvert\, f(y) \leq \frac{2 B}{\varepsilon}\right.\right\}
$$

is compact. The characteristic function of M^{c} satisfies $\mathbf{1}_{M^{c}} \leq \frac{\varepsilon}{2 B} f$.
According to the hypothesis $\mathbf{C H}(f)$, one has, for every $n \geq 1$

$$
A_{\mu}^{n} f \leq a^{n} f+b\left(1+\cdots+a^{n-1}\right) \leq a^{n} f+B
$$

Hence, for any x in D_{f}, one has the following inequalities

$$
\mu^{* n} * \delta_{x}\left(M^{c}\right)=A_{\mu}^{n}\left(\mathbf{1}_{M^{c}}\right)(x) \leq \frac{\varepsilon}{2 B} A_{\mu}^{n}(f)(x) \leq \frac{\varepsilon a^{n}}{2 B} f(x)+\frac{\varepsilon}{2} \leq \varepsilon
$$

as soon as n is large enough to have $f(x) \leq \frac{B}{a^{n}}$.
We will say that the action of (G, μ) on X satisfies the contraction hypothesis if
for every compact subset L of X, there exists a proper
CH Borel function $f=f_{L}: X \rightarrow[0, \infty]$ which is uniformly bounded on L, and such that the action of (G, μ) on X satisfies the contraction hypothesis $\mathbf{C H}(f)$.
Hypothesis $\mathbf{C H}$ above is a variation of the contraction hypothesis of [12, Chap. 15] and [6]. This condition is shown in [12, Chap. 15] to be related to the existence of a finite exponential moment for the first return time in some bounded sets of X. We will not use this fact.

We will say that the action of (G, μ) on X satisfies the recurrence property if
for any $\varepsilon>0$, and any compact set $L \subset X$, there exists a
\mathbf{R} compact set $M=M_{\varepsilon} \subset X$, such that for any x in L and $n \geq 0$, one has $\mu^{* n} * \delta_{x}(M) \geq 1-\varepsilon$.

Corollary 2.2. Assume that the (G, μ)-space X satisfies the contraction hypothesis $\mathbf{C H}$, then it satisfies the recurrence property \mathbf{R}.

Proof. Let L be a compact subset of X and $f=f_{L}$ be the proper Borel function given by the hypothesis CH. Choose as a first trial the compact M given by Lemma 2.1 so that for n large enough, for any x in L, one has $\mu^{* n} * \delta_{x}\left(M^{c}\right) \leq \varepsilon$. Then, choose a compact set K of G such that, for the finitely many remaining values of $n, \mu^{* n}\left(K^{c}\right) \leq \varepsilon$ and replace M by $M \cup K L$.

3. The Mother Inequality

In order to construct the function f of section 2 for the space $X=\operatorname{SL}(d, \mathbb{R}) / \mathrm{SL}(d, \mathbb{Z})$, we will need the following Mother Inequality.
Let $E=\mathbb{R}^{d}$ be the euclidean space with canonical basis e_{1}, \ldots, e_{d}. We denote by $\|$.$\| the euclidean norm on E$ and on its exterior algebra $\Lambda^{*} E$ for which the family $e_{i_{1}} \wedge \ldots \wedge e_{i_{r}}$ for $1 \leq i_{1}<\cdots<i_{r} \leq d$ form an orthonormal basis. An element u of $\Lambda^{*} E$ is said to be monomial if it can be written as $u=u_{1} \wedge \cdots \wedge u_{r}$ for some u_{1}, \ldots, u_{r} in E.

Let $H \subset \mathrm{GL}(E)$ be a reductive algebraic subgroup, $A \subset H$ be a maximal split subtorus of $H, \Sigma=\Sigma(A, H)$ be the set of (restricted) roots, i.e. Σ is the set of non-zero weights of A in the Lie algebra \mathfrak{h} of H. We choose a system $\Sigma^{+} \subset \Sigma$ of positive roots. Let P be the set of algebraic characters of A. We endow P with the partial order given, for λ, μ in P, by

$$
\lambda \leq \mu \Longleftrightarrow \mu-\lambda \text { is a sum of positive roots. }
$$

For any real algebraic irreducible representation of H, the set of weights of A in this representation has a unique maximal element λ called the (restricted) highest weight of the representation. Let P^{+}be the set of all these highest weights. For any algebraic representation of H in a real finite dimensional vector space V, for λ in P^{+}we denote by V^{λ} the sum of all the irreducible subrepresentations of V whose highest weight is equal to λ and $q_{\lambda}: V \rightarrow V$ the H-equivariant projection on V^{λ}. For instance, q_{0} is the H-equivariant projection onto the subspace $V^{H^{n c}}$ of fixed points of $H^{n c}$ in V.

Proposition 3.1. Let $H \subset G L(E)$ be a reductive algebraic subgroup. Then there exists $C_{1} \geq 1$ such that, for any monomials u, v, w in $\Lambda^{*} E$, one has the inequality MI:

$$
\begin{equation*}
\left\|q_{\lambda}(u)\right\|\left\|q_{\mu}(u \wedge v \wedge w)\right\| \leq C_{1} \max _{\substack{\nu, \rho \in P^{+} \\ \nu+\rho \geq \lambda+\mu}}\left\|q_{\nu}(u \wedge v)\right\|\left\|q_{\rho}(u \wedge w)\right\| . \tag{3.1}
\end{equation*}
$$

Remark 3.2. Inequality MI will be a substitute for the following simpler inequality used in [6]: for any monomials u, v, w in $\Lambda^{*} E$, one
has

$$
\begin{equation*}
\|u\|\|u \wedge v \wedge w\| \leq\|u \wedge v\|\|u \wedge w\| \tag{3.2}
\end{equation*}
$$

To prove Proposition 3.1, we will need the following lemma.
Lemma 3.3. Let H be a real algebraic reductive group, V be a real algebraic representation of H. For λ, μ in P^{+}, the kernel of the map $q_{\lambda+\mu}: V^{\lambda} \otimes V^{\mu} \rightarrow V^{\lambda} \otimes V^{\mu}$ does not contain non-zero pure tensors.

Proof of Lemma 3.3. Let $x \in V^{\lambda}$ and $y \in V^{\mu}$ be two non-zero vectors such that $q_{\lambda+\mu}(x \otimes y)=0$. We decompose x as a sum $x=\sum_{\alpha \in P} x_{\alpha}$ of weight vectors x_{α} of weight α. Similarly, we write $y=\sum_{\beta \in P} y_{\beta}$. Since any irreducible subrepresentation of V^{λ}, resp. V^{μ}, contains non-zero weight vectors of weight λ, resp. μ, and since we can replace both x and y by their images $h(x)$ and $h(y)$ by an element h of H, we may assume that both x_{λ} and y_{μ} are non-zero.

The latter vectors belong to the highest weight spaces $\left(V^{\lambda}\right)_{\lambda}$ and $\left(V^{\mu}\right)_{\mu}$ of the representations V^{λ} and V^{μ}. Since the component of weight $\lambda+\mu$ of $q_{\lambda+\mu}(x \otimes y)$ is equal to $x_{\lambda} \otimes y_{\mu}$, one has $x_{\lambda} \otimes y_{\mu}=0$, hence a contradiction.

Corollary 3.4. Let H be a real algebraic reductive group, V be a real algebraic representation of H. Choose a euclidean norm on V. Then there exists $D_{1} \geq 1$ such that, for λ, μ in P^{+}, for any x, y in V, one has

$$
\left\|q_{\lambda}(x)\right\|\left\|q_{\mu}(y)\right\| \leq D_{1}\left\|q_{\lambda+\mu}(x \otimes y)\right\|
$$

Proof of Corollary 3.4. We may assume that the euclidean norm on $V \otimes V$ is chosen in a compatible way so that $\|x \otimes y\|=\|x\|\|y\|$ for any x, y in V and that the projectors $q_{\lambda}, \lambda \in P^{+}$, are orthogonal. We first note that the projector $q_{\lambda+\mu}$ preserves the decomposition $V \otimes V=$ $\oplus_{\nu, \rho \in P^{+}} V^{\nu} \otimes V^{\rho}$. Hence there exists $D_{1}^{\prime} \geq 1$ such that, for every x and y in V,

$$
\begin{equation*}
\left\|q_{\lambda+\mu}\left(q_{\lambda}(x) \otimes q_{\mu}(y)\right)\right\| \leq D_{1}^{\prime}\left\|q_{\lambda+\mu}(x \otimes y)\right\| \tag{3.3}
\end{equation*}
$$

Let $C_{\lambda, \mu}:=\left\{x \otimes y \mid x \in V^{\lambda}, y \in V^{\mu}\right\}$ be the cone of pure tensors in $V^{\lambda} \otimes V^{\mu}$. According to Lemma 3.3, the intersection $C_{\lambda, \mu} \cap \operatorname{Ker}\left(q_{\lambda+\mu}\right)$ is zero. Hence there exists $D_{1}^{\prime \prime} \geq 1$ such that, for every x^{\prime} in V^{λ} and y^{\prime} in V^{μ}, one has

$$
\begin{equation*}
\left\|x^{\prime}\right\|\left\|y^{\prime}\right\|=\left\|x^{\prime} \otimes y^{\prime}\right\| \leq D_{1}^{\prime \prime}\left\|q_{\lambda+\mu}\left(x^{\prime} \otimes y^{\prime}\right)\right\| \tag{3.4}
\end{equation*}
$$

Our claim follows from inequalities (3.3) and (3.4).

Proof of Proposition 3.1. Let r, s, t be non negative integers. According to Corollary 3.4 , there exists $D_{1} \geq 1$, such that, for any $u \in \Lambda^{r} E$, $v \in \Lambda^{s} E$ and $w \in \Lambda^{t} E$, one has

$$
\begin{equation*}
\left\|q_{\lambda}(u)\right\|\left\|q_{\mu}(u \wedge v \wedge w)\right\| \leq D_{1}\left\|q_{\lambda+\mu}(u \otimes(u \wedge v \wedge w))\right\| \tag{3.5}
\end{equation*}
$$

We now introduce the linear map

$$
\Psi_{r}: \Lambda^{r+s} E \otimes \Lambda^{r+t} E \rightarrow \Lambda^{r} E \otimes \Lambda^{r+s+t} E
$$

such that, for any monomial $x=x_{1} \wedge \cdots \wedge x_{r+s}$ in $\Lambda^{r+s} E$ and any y in $\Lambda^{r+t} E$,

$$
\Psi_{r}(x \otimes y)=\sum_{|I|=r} \varepsilon_{I} x_{I} \otimes\left(x_{I^{c}} \wedge y\right)
$$

where the sum is taken over all the subsets $I \subset\{1, \ldots, r+s\}$ of size r. Let us explain each term of this sum:

- the element x_{I} is the exterior product $x_{I}=x_{i_{1}} \wedge \cdots \wedge x_{i_{r}}$, when one writes $I=\left\{i_{1}, \ldots, i_{r}\right\}$ with $i_{1}<\cdots<i_{r}$.
- the element $x_{I^{c}}$ is the exterior product $x_{I^{c}}=x_{i_{r+1}} \wedge \cdots \wedge x_{i_{r+s}}$, when one writes $I^{c}=\left\{i_{r+1}, \ldots, i_{r+s}\right\}$ with $i_{r+1}<\cdots<i_{r+s}$.
- the sign ε_{I} is the signature of the permutation of $\{1, \ldots, r+s\}$ sending k to $i_{k}, 1 \leq k \leq r+s$.

The map Ψ_{r} is GL (E)-equivariant. For any monomials u, v, w of degrees, respectively r, s and t, one has

$$
\begin{equation*}
\Psi_{r}((u \wedge v) \otimes(u \wedge w))=u \otimes(v \wedge u \wedge w) \tag{3.6}
\end{equation*}
$$

Since the linear map $q_{\lambda+\mu} \circ \Psi_{r}$ is H-equivariant, and since all the weights of the tensor product $\left(\Lambda^{*} E\right)^{\nu} \otimes\left(\Lambda^{*} E\right)^{\rho}$ are smaller than $\nu+\rho$, the map $q_{\lambda+\mu} \circ \Psi_{r}$ is zero on $\left(\Lambda^{*} E\right)^{\nu} \otimes\left(\Lambda^{*} E\right)^{\rho}$ except if $\nu+\rho \geq \lambda+\mu$. Hence one has, with $D_{1}^{\prime \prime \prime}:=\left\|q_{\lambda+\mu} \circ \Psi_{r}\right\|$,

$$
\begin{equation*}
\left\|q_{\lambda+\mu}(u \otimes(u \wedge v \wedge w))\right\| \leq D_{1}^{\prime \prime \prime} \max _{\substack{\nu, \rho \in P^{+} \\ \nu+\rho \geq \lambda+\mu}}\left\|q_{\nu}(u \wedge v)\right\|\left\|q_{\rho}(u \wedge w)\right\| \tag{3.7}
\end{equation*}
$$

Our claim follows from inequalities (3.5) and (3.7).
To end this section, we state two elegant corollaries of Proposition 3.1 for which we have no simpler proof. We will not use them in this paper, but we think they might help the reader to understand the meaning of the Mother Inequality.

Let $\left(\Lambda^{*} E\right)^{H}$ be the set of fixed points of H in $\Lambda^{*} E$ and $q: \Lambda^{*} E \rightarrow$ $\Lambda^{*} E$ be the unique H-equivariant projector whose kernel is $\left(\Lambda^{*} E\right)^{H}$.

Corollary 3.5. Assume $H \subset \mathrm{GL}(E)$ is a connected semisimple subgroup with no compact factor. Then there exists $C_{1}^{\prime} \geq 1$ such that, for any monomials u, v, w in $\Lambda^{*} E$, one has the inequality :
$\|q(u)\|\|q(u \wedge v \wedge w)\| \leq C_{1}^{\prime}(\|q(u \wedge v)\|\|u \wedge w\|+\|u \wedge v\|\|q(u \wedge w)\|)$.
This corollary can not be extended to reductive groups. Indeed, if, for instance $H=\left\{\operatorname{diag}\left(t, t^{-1}, t^{-1}\right) \mid t \in \mathbb{R}^{\times}\right\}$, for $u=e_{1}, v=e_{2}$ and $w=e_{3}$, the monomials $u \wedge v$ and $u \wedge w$ are H-invariant but neither u nor $u \wedge v \wedge w$ is H-invariant.

Proof of Corollary 3.5. This inequality follows from Proposition 3.1 and the following two facts:

- since H has no compact factor, the projector q is the sum of all the projectors q_{λ} with $\lambda \neq 0$.
- since H is semisimple the sum $\lambda+\mu$ of two non-zero elements of P^{+} is a non-zero element of P^{+}.

Let us now state a second corollary to Proposition 3.1. Let $E:=$ $E_{1} \oplus \cdots \oplus E_{a}$ be an orthogonal decomposition. For any multiindex $i=\left(i_{1}, \ldots, i_{a}\right) \in \mathbb{N}^{a}$, we denote by $q_{i}: \Lambda^{*} E \rightarrow \Lambda^{*} E$ the projector on the component $\Lambda^{i_{1}} E_{1} \otimes \cdots \otimes \Lambda^{i_{a}} E_{a}$. We endow \mathbb{N}^{a} with the partial order given by $i \leq j \Longleftrightarrow j-i \in \mathbb{N}^{a}$.

Corollary 3.6. There exists $C_{1}^{\prime \prime} \geq 1$ such that, for any monomials u, v, w in $\Lambda^{*} E$, one has the inequality:

$$
\left\|q_{i}(u)\right\|\left\|q_{j}(u \wedge v \wedge w)\right\| \leq C_{1}^{\prime \prime} \max _{\substack{k, \ell \in \mathbb{N}^{a} \\ k+i+j \\ \min (i, j) \leq k \leq \max (i, j)}}\left\|q_{k}(u \wedge v)\right\|\left\|q_{\ell}(u \wedge w)\right\|
$$

In this formula the element $m=\min (i, j) \in \mathbb{N}^{a}$ is the minimum for the partial order on \mathbb{N}^{a}, i.e. for $b=1, \ldots, a$, its $b^{\text {th }}$-component is $m_{b}=\min \left(i_{b}, j_{b}\right)$. And similarly for the maximum.

Proof of Corollary 3.6. This inequality follows from Proposition 3.1 applied to the reductive group $H=\operatorname{GL}\left(E_{1}\right) \times \cdots \times \operatorname{GL}\left(E_{a}\right)$. Indeed, let us assume to simplify $a=2$. We set $d_{1}=\operatorname{dim} E_{1}$. Let $e_{1}=E_{1,1}, \ldots, e_{d}:=E_{d, d}$ be the standard basis of the Lie algebra \mathfrak{a} of diagonal matrices and let $e_{1}^{*}, \ldots, e_{d}^{*}$ be the dual basis.

We choose the positive roots of H to be the elements $e_{p}^{*}-e_{q}^{*}$ with either $1 \leq p<q \leq d_{1}$ or $d_{1}<p<q \leq d$. The representation of H in $\Lambda^{i_{1}} E_{1} \otimes \Lambda^{i_{2}} E_{2}$ is irreducible with highest weight

$$
\lambda_{i}=e_{1}^{*}+\cdots+e_{i_{1}}^{*}+e_{d_{1}+1}^{*}+\cdots+e_{d_{1}+i_{2}}^{*}
$$

One has the equivalence, for non-zero projectors $q_{i}, q_{j}, q_{k}, q_{\ell}$,

$$
\lambda_{k}+\lambda_{\ell} \geq \lambda_{i}+\lambda_{j} \Longleftrightarrow(k+\ell=i+j \text { and } \min (i, j) \leq k \leq \max (i, j)) .
$$

4. The contraction hypothesis in vector spaces

We construct in this section functions on $\Lambda^{*} \mathbb{R}^{d}$ satisfying both a strong convexity property with respect to the exterior product and a strong contraction property with respect to averaging operators of probability measures on $\operatorname{SL}(d, \mathbb{R})$.
Let $E=\mathbb{R}^{d}$ and $H \subset \mathrm{GL}(E)$ be an algebraic subgroup with $H^{n c}$ semisimple. We keep the notations $A, P^{+}, q_{\lambda}, \ldots$ from section 3 . We choose a norm on E which is invariant by some maximal compact subgroup H^{c} of H. In order to construct the function $\varphi_{\varepsilon_{0}}$, we need to introduce two "exponents".

The first one $i \mapsto \delta_{i}$ is defined for any integer i with $0 \leq i \leq d$. It satisfies $\delta_{0}=\delta_{d}=0$ and has the following concavity property : for every integers r, s, t with $s>0$ and $t>0$,

$$
\begin{equation*}
\delta_{r+s}+\delta_{r+t} \geq \delta_{r}+\delta_{r+s+t}+1 \tag{4.1}
\end{equation*}
$$

For instance, one can choose to set $\delta_{i}:=(d-i) i$.
The second one $\lambda \mapsto \delta_{\lambda}$ is defined for any highest weight $\lambda \in P^{+}$. It satisfies $\delta_{\lambda}=0 \Longleftrightarrow \lambda=0$ and, for any λ, μ in P^{+},

$$
\begin{equation*}
\lambda \leq \mu \Longrightarrow \delta_{\lambda} \leq \delta_{\mu} \tag{4.2}
\end{equation*}
$$

and it is invariant under the natural action of $H / H^{n c}$ on P^{+}. For instance, one can choose to set $\delta_{\lambda}=\lambda\left(H_{0}\right)$ where H_{0} is an element in the positive Weyl chamber of the Lie algebra of A whose image in all the non-zero simple ideals of \mathfrak{h} is non-zero and which is $H / H^{n c}$-invariant.

Let $\varepsilon_{0}>0$. For v in $\Lambda^{i} E$, with $0<i<d$, we define $\varphi_{\varepsilon_{0}}(v)$ to be the supremum of the set of real numbers $R \geq 0$ such that, for any $\lambda \in P^{+}$, one has

$$
\left\|q_{\lambda}(v)\right\|<\varepsilon_{0}^{\delta_{i}} R^{-\delta_{\lambda}}
$$

More precisely

$$
\begin{align*}
\varphi_{\varepsilon_{0}}(v) & =\min _{\lambda \in P^{+} \backslash 0} \varepsilon_{0}^{\frac{\delta_{i}}{\delta_{\lambda}}}\left\|q_{\lambda}(v)\right\|^{\frac{-1}{\delta_{\lambda}}} & & \text { if }\left\|q_{0}(v)\right\|<\varepsilon_{0}^{\delta_{i}} \tag{4.3}\\
& =0 & & \text { otherwise. }
\end{align*}
$$

For v in $\Lambda^{i} E$, with $i=0$ or $i=d$, we do not define $\varphi_{\varepsilon_{0}}(v)$.

Remark 4.1. For v in $\Lambda^{i} E$, with $0<i<d$, one has the equivalence :

$$
\varphi_{\varepsilon_{0}}(v)=\infty \Longleftrightarrow v \text { is } H^{n c} \text {-invariant and }\|v\|<\varepsilon_{0}^{\delta_{i}} .
$$

We will use the Mother Inequality through the following technical lemma 4.2 which states a convexity property for $\varphi_{\varepsilon_{0}}$.

We will need a few constants: the constant C_{1} from Proposition 3.1, the constant $\kappa_{1}=\left(\max _{\lambda} \delta_{\lambda}\right)^{-1}$, where the max is taken over all the highest weight λ of the irreducible subrepresentations of $\Lambda^{*} E$, and the constant $b_{1}:=\sup _{\|v\| \geq 1} \varphi_{\varepsilon_{0}}(v)<\infty$.

Lemma 4.2. For any $0<\varepsilon_{0}<C_{1}^{-1}$, for any monomials u, v, w in $\Lambda^{*} E$ with respective degrees r, s, t with $r \geq 0, s>0$ and $t>0$ and such that $\varphi_{\varepsilon_{0}}(u \wedge v) \geq 1$ and $\varphi_{\varepsilon_{0}}(u \wedge w) \geq 1$, one has:
i) If $r>0$ and $r+s+t<d$, then
(4.4) $\min \left(\varphi_{\varepsilon_{0}}(u \wedge v), \varphi_{\varepsilon_{0}}(u \wedge w)\right) \leq\left(C_{1} \varepsilon_{0}\right)^{\frac{\kappa_{1}}{2}} \max \left(\varphi_{\varepsilon_{0}}(u), \varphi_{\varepsilon_{0}}(u \wedge v \wedge w)\right)$.
ii) If $r=0$ and $r+s+t<d$, then

$$
\begin{equation*}
\min \left(\varphi_{\varepsilon_{0}}(v), \varphi_{\varepsilon_{0}}(w)\right) \leq\left(C_{1} \varepsilon_{0}\right)^{\frac{\kappa_{1}}{2}} \varphi_{\varepsilon_{0}}(v \wedge w) \tag{4.5}
\end{equation*}
$$

iii) If $r>0, r+s+t=d$, and $\|u \wedge v \wedge w\| \geq 1$, then

$$
\begin{equation*}
\min \left(\varphi_{\varepsilon_{0}}(u \wedge v), \varphi_{\varepsilon_{0}}(u \wedge w)\right) \leq\left(C_{1} \varepsilon_{0}\right)^{\frac{\kappa_{1}}{2}} \varphi_{\varepsilon_{0}}(u) . \tag{4.6}
\end{equation*}
$$

iv) If $r=0, r+s+t=d$, and $\|v \wedge w\| \geq 1$, then

$$
\begin{equation*}
\min \left(\varphi_{\varepsilon_{0}}(v), \varphi_{\varepsilon_{0}}(w)\right) \leq b_{1} . \tag{4.7}
\end{equation*}
$$

Proof of Lemma 4.2. The left-hand side of these inequalities is the supremum of the set of real numbers $R \geq 1$ such that for any ν, ρ in P^{+}, one has

$$
\begin{equation*}
\left\|q_{\nu}(u \wedge v)\right\|<\varepsilon_{0}^{\delta_{r+s}} R^{-\delta_{\nu}} \text { and }\left\|q_{\rho}(u \wedge w)\right\|<\varepsilon_{0}^{\delta_{r+t}} R^{-\delta_{\rho}} \tag{4.8}
\end{equation*}
$$

We fix such a R, we set $S:=\left(C_{1} \varepsilon_{0}\right)^{-\frac{\kappa_{1}}{2}} R$ and we distinguish the four cases :
i) If $r>0$ and $r+s+t<d$.

We want to check that

$$
\begin{equation*}
\text { either }\left\|q_{\lambda}(u)\right\|<\varepsilon_{0}^{\delta_{r}} S^{-\delta_{\lambda}} \text { for any } \lambda \text { in } P^{+} \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
\text { or }\left\|q_{\mu}(u \wedge v \wedge w)\right\|<\varepsilon_{0}^{\delta_{r+s+t}} S^{-\delta_{\mu}} \text { for any } \mu \text { in } P^{+} . \tag{4.10}
\end{equation*}
$$

To this aim we compute, for every λ, μ in P^{+},

$$
\begin{aligned}
\left\|q_{\lambda}(u)\right\|\left\|q_{\mu}(u \wedge v \wedge w)\right\| & \leq C_{1} \max _{\substack{\nu, \rho \in P^{+} \\
\nu+\rho \geq \lambda+\mu}}\left\|q_{\nu}(u \wedge v)\right\|\left\|q_{\rho}(u \wedge w)\right\| \text { by (3.1) } \\
& <C_{1} \max _{\substack{\nu, \rho \in P^{+} \\
\nu+\rho \geq \lambda+\mu}} \varepsilon_{0}^{\delta_{r+s}} \varepsilon_{0}^{\delta_{r+t}} R^{-\delta_{\nu}} R^{-\delta_{\rho}} \quad \text { by (4.8) } \\
& \leq C_{1} \varepsilon_{0} \varepsilon_{0}^{\delta_{r}} \varepsilon_{0}^{\delta_{r+s+t}} R^{-\delta_{\lambda}} R^{-\delta_{\mu}} \quad \text { by (4.1) and (4.2) } \\
& \leq \varepsilon_{0}^{\delta_{r}} S^{-\delta_{\lambda}} \varepsilon_{0}^{\delta_{r+s+t}} S^{-\delta_{\mu}} .
\end{aligned}
$$

This proves that either (4.9) or (4.10) is true and ends the proof of (4.4).
ii) If $r=0$ and $r+s+t<d$.

By the same computation with $u=1$ one gets, for any μ in P^{+},

$$
\left\|q_{\mu}(v \wedge w)\right\|<\varepsilon_{0}^{\delta_{r+s+t}} S^{-\delta_{\mu}} .
$$

This proves that (4.10) is true and ends the proof of (4.5).
iii) If $r>0, r+s+t=d$ and $\|u \wedge v \wedge w\| \geq 1$.

The same computation proves that, for any λ in P^{+}, one has

$$
\left\|q_{\lambda}(u)\right\|<\varepsilon_{0}^{\delta_{r}} S^{-\delta_{\lambda}} .
$$

This proves that (4.9) is true and ends the proof of (4.6).
iv) If $r=0, r+s+t=d$ and $\|v \wedge w\| \geq 1$.

One has either $\|v\| \geq 1$ or $\|w\| \geq 1$, hence either $\varphi_{\varepsilon_{0}}(v) \leq b_{1}$ or $\varphi_{\varepsilon_{0}}(w) \leq b_{1}$.

Let μ be a Borel probability measure on H with finite exponential moments and whose support spans a Zariski dense subgroup of H. Here are the functions which are contracted by averaging operators associated to random walks.

Lemma 4.3. There exists $\delta_{0}>0$ such that, for every δ with $0<\delta<\delta_{0}$, for every $a_{0}>0$, there exists $n \geq 1$ such that, on every space $\Lambda^{i} E$ with $0<i<d$, one has

$$
\begin{equation*}
A_{\mu}^{n} \varphi_{\varepsilon_{0}}^{\delta} \leq a_{0} \varphi_{\varepsilon_{0}}^{\delta} \quad \text { for any } \varepsilon_{0}>0 \tag{4.11}
\end{equation*}
$$

Proof of Lemma 4.3. Since the norm is H^{c}-invariant, for any h in H and v in $\Lambda^{i} E$, one has $\left\|q_{0}(h v)\right\|=\left\|q_{0}(v)\right\|$.

When $\left\|q_{0}(v)\right\| \geq \varepsilon_{0}^{\delta_{i}}$, one has $\left(A_{\mu}^{n} \varphi_{\varepsilon_{0}}^{\delta}\right)(v)=\varphi_{\varepsilon_{0}}^{\delta}(v)=0$.

When $\left\|q_{0}(v)\right\|<\varepsilon_{0}^{\delta_{i}}$, one has $\varphi_{\varepsilon_{0}}(v)=\min _{\lambda \in P^{+} \backslash 0} \varepsilon_{0}^{\frac{\delta_{i}}{\delta_{\lambda}}}\left\|q_{\lambda}(v)\right\|^{\frac{-1}{\delta_{\lambda}}}$. Hence, since the mean of the minimum of a finite family of functions is bounded by the minimum of the family of means, our claim follows from the following lemma.

Lemma 4.4. ([6, Lemma 4.2]) Let V be a real algebraic representation of H such that $V^{H^{n c}}=\{0\}$. Let φ be the function $\varphi: V \backslash 0 \rightarrow \mathbb{R}^{*} ; v \mapsto$ $\|v\|^{-1}$. Then there exists $\delta_{0}>0$ such that, for every δ with $0<\delta<\delta_{0}$, for every $a_{0}>0$, there exists $n_{0} \geq 1$ such that, for $n \geq n_{0}$,

$$
\begin{equation*}
A_{\mu}^{n}\left(\varphi^{\delta}\right) \leq a_{0} \varphi^{\delta} \tag{4.12}
\end{equation*}
$$

Proof of Lemma 4.4. This is a variation of [6, Lemma 4.2]. One uses an asymptotic expansion of order 2 of $e^{-\delta \log (\|h v\| /\|v\|)}$ and Furstenberg and Kesten's theorem on the positivity of the first Lyapunov exponent of the image of μ in GL (V) (see [4] for a proof at this level of generality) to find $a_{0}<1$ and $n \geq 1$ and get, uniformly for any non-zero v in V, $\left(A_{\mu}^{n} \varphi^{\delta}\right)(v) \leq a_{0} \varphi^{\delta}(v)$.

5. The contraction hypothesis in the space of lattices

In this section, we assume $G=\operatorname{SL}(d, \mathbb{R}), \Lambda=\operatorname{SL}(d, \mathbb{Z})$ so that $X=G / \Lambda$ is the space of covolume 1 lattices in \mathbb{R}^{d}, and we construct proper Borel functions on X which are contracted by the random walk.
Given a Borel probability measure μ on G, we let H denote the Zariski closure of the group generated by the support of μ, and by $H^{n c}$ the non compact part of H.
Proposition 5.1. Let $X=\operatorname{SL}(d, \mathbb{R}) / \mathrm{SL}(d, \mathbb{Z})$. If the group $H^{n c}$ is semisimple, the (G, μ)-space X satisfies the contraction hypothesis $\mathbf{C H}$.

For x in X, a non-zero monomial v of $\Lambda^{i} E$ is said to be x-integral, if either $i>0$ and one can write v as $v_{1} \wedge \cdots \wedge v_{i}$ where all the v_{1}, \ldots, v_{i} belong to the lattice x, or if $i=0$ and v belongs to \mathbb{Z}. It is then said to be primitive if it is not an integer multiple of any other x-integral monomial. For $\varepsilon_{0}>0$, we define $f_{\varepsilon_{0}}: X \rightarrow[0, \infty]$ to be the function given by, for any x in X

$$
\begin{equation*}
f_{\varepsilon_{0}}(x)=\max \varphi_{\varepsilon_{0}}(v) \tag{5.1}
\end{equation*}
$$

where the max is taken over all the non-zero x-integral monomials $v \in \Lambda^{i} E$ for some i with $0<i<d$, and where the functions $\varphi_{\varepsilon_{0}}$: $\Lambda^{i} E \rightarrow[0, \infty]$ are defined by (4.3). From Remark 4.1 and from Mahler's compactness criterion we get :

Remark 5.2. The functions $f_{\varepsilon_{0}}$ are lower semi-continuous, proper, H^{c}-invariant and, for x in X, one has the equivalence :
there exists a non-zero $H^{n c}$-invariant

$$
\begin{aligned}
& f_{\varepsilon_{0}}(x)=\infty \Longleftrightarrow \quad \text { and } x \text {-integral monomial } v \in \Lambda^{i} E \text { with } \\
& 0<i<d \text { and }\|v\|<\varepsilon_{0}^{\delta_{i}} .
\end{aligned}
$$

Proposition 5.3. Let $H \subset \mathrm{SL}(d, \mathbb{R})$ be an algebraic subgroup with $H^{n c}$ semisimple and μ be Borel probability measure on H whose support spans a Zariski dense subgroup of H and which admits finite exponential moments. For $\delta>0$ and $\varepsilon_{0}>0$ small enough, there exist $n \geq 1, a<1$ and $b>0$ such that,

$$
\begin{equation*}
A_{\mu}^{n} f_{\varepsilon_{0}}^{\delta} \leq a f_{\varepsilon_{0}}^{\delta}+b \tag{5.2}
\end{equation*}
$$

Proof. For x in X, we want an upper bound of the integral $\left(A_{\mu}^{n} f_{\varepsilon_{0}}^{\delta}\right)(x)$. We may assume $f_{\varepsilon_{0}}^{\delta}(x)<\infty$.

According to Lemma 4.3, for δ small enough, there exists $a_{0}<\frac{1}{d}$ and $n \geq 1$, such that,

$$
A_{\mu}^{n} \varphi_{\varepsilon_{0}}^{\delta} \leq a_{0} \varphi_{\varepsilon_{0}}^{\delta}
$$

Let κ_{1} be as in Lemma 4.2. Since $\mu^{* n}$ also has finite exponential moments, one can assume δ small enough to have

$$
\int_{H}\left\|h^{-1}\right\|^{\kappa_{1} \delta d} \mathrm{~d} \mu^{* n}(h)<\infty .
$$

and one can decompose $\mu^{* n}$ as the sum of two positive measures $\mu^{* n}=$ $\mu_{1}+\mu_{2}$ with μ_{1} compactly supported and with

$$
\begin{equation*}
\int_{H}\left\|h^{-1}\right\|^{\kappa_{1} \delta d} \mathrm{~d} \mu_{2}(h) \leq \frac{1}{2}\left(1-a_{0} d\right) \tag{5.3}
\end{equation*}
$$

Since $f_{\varepsilon_{0}}(h x) \leq\left\|h^{-1}\right\|^{\kappa_{1} d} f_{\varepsilon_{0}}(x)$, for any h in H and x in X, one has

$$
\begin{equation*}
A_{\mu_{2}} f_{\varepsilon_{0}}^{\delta} \leq \frac{1-a_{0} d}{2} f_{\varepsilon_{0}}^{\delta} \tag{5.4}
\end{equation*}
$$

We set $E=\mathbb{R}^{d}$ and $c_{0}=\sup \left\{\max \left(\|h\|,\left\|h^{-1}\right\|\right)^{d} \mid h \in \operatorname{supp}\left(\mu_{1}\right)\right\}$. Thus, for any x in X and for any non-zero x-integral monomial $v \in$ $\Lambda^{*} E$, one has, for μ_{1}-almost every h,

$$
\begin{equation*}
c_{0}^{-\kappa_{1}} \varphi_{\varepsilon_{0}}(v) \leq \varphi_{\varepsilon_{0}}(h v) \leq c_{0}^{\kappa_{1}} \varphi_{\varepsilon_{0}}(v) . \tag{5.5}
\end{equation*}
$$

We introduce the finite set Ψ of primitive x-integral and monomial elements v of $\Lambda^{*} E$ with degree in $(0, d)$ such that

$$
\begin{equation*}
\varphi_{\varepsilon_{0}}(v) \geq c_{0}^{-2 \kappa_{1}} f_{\varepsilon_{0}}(x) \tag{5.6}
\end{equation*}
$$

We assume ε_{0} is small enough to have

$$
\begin{equation*}
c_{0}^{4} C_{1} \varepsilon_{0}<1 \tag{5.7}
\end{equation*}
$$

The proof then splits in two cases.
$1^{\text {st }}$ case: $\quad f_{\varepsilon_{0}}(x) \leq \max \left(b_{1}, c_{0}^{2 \kappa_{1}}\right)$.
Then, by (5.5), for μ_{1}-almost every h, one has $f_{\varepsilon_{0}}(h x) \leq c_{0}^{k_{1}} f_{\varepsilon_{0}}(x)$ and

$$
\begin{equation*}
\left(A_{\mu_{1}} f_{\varepsilon_{0}}^{\delta}\right)(x) \leq b \tag{5.8}
\end{equation*}
$$

with $b=\left(c_{0}^{\kappa_{1}} \max \left(b_{1}, c_{0}^{2 \kappa_{1}}\right)\right)^{\delta}$.
$2^{\text {nd }}$ case: $\quad f_{\varepsilon_{0}}(x)>\max \left(b_{1}, c_{0}^{2 \kappa_{1}}\right)$.
We claim that in this case
Ψ contains at most one element up to sign change in each degree i.
If not, assume for a while that, for some $0<i<d$, the intersection $\Psi \cap \Lambda^{i} E$ contains two non-colinear elements v_{0} and w_{0}. By (5.6), one has $\varphi_{\varepsilon_{0}}\left(v_{0}\right) \geq 1$ and $\varphi_{\varepsilon_{0}}\left(w_{0}\right) \geq 1$. Besides, since v_{0} and w_{0} are x integral, one can write v_{0} as $u \wedge v$ and w_{0} as $u \wedge w$ where u, v, w are x-integral monomials, v and w have degree $j>0$ and $u \wedge v \wedge w \neq 0$. The element $u \wedge v \wedge w$ is then a x-integral monomial with degree $i+j$. We distinguish four cases.
i) If $j<i$ and $j<d-i$. One has

$$
\begin{aligned}
f_{\varepsilon_{0}}(x) & \leq c_{0}^{2 \kappa_{1}} \min \left(\varphi_{\varepsilon_{0}}(u \wedge v), \varphi_{\varepsilon_{0}}(u \wedge w)\right) & \text { by }(5.6) \\
& \leq\left(c_{0}^{4} C_{1} \varepsilon_{0}\right)^{\frac{\kappa_{1}}{2}} \max \left(\varphi_{\varepsilon_{0}}(u), \varphi_{\varepsilon_{0}}(u \wedge v \wedge w)\right) & \text { by }(4.4)
\end{aligned}
$$

hence

$$
\begin{equation*}
f_{\varepsilon_{0}}(x) \leq\left(c_{0}^{4} C_{1} \varepsilon_{0}\right)^{\frac{\kappa_{1}}{2}} f_{\varepsilon_{0}}(x) \tag{5.10}
\end{equation*}
$$

which contradicts inequality (5.7).
ii) If $j=i<d-i$. In this case $u=1$. The same computation, using Lemma 4.2.ii), also gives (5.10) which still contradicts (5.7).
iii) If $j=d-i<i$. In this case $\|u \wedge v \wedge w\|$ is an integer. The same computation, using Lemma 4.2.iii), also gives (5.10) which still contradicts (5.7).
iv) If $j=i=d-i$. The same computation, using Lemma 4.2.iv), gives

$$
\begin{equation*}
f_{\varepsilon_{0}}(x) \leq b_{1} \tag{5.11}
\end{equation*}
$$

which contradicts our assumption.
This ends the proof of claim (5.9)
Now, by (5.5), for every non-zero x-integral monomial v in $\Lambda^{*} E$ with degree in $(0, d)$, and μ_{1}-almost every h, one has

$$
\varphi_{\varepsilon_{0}}(h v) \leq \max _{w \in \Psi} \varphi_{\varepsilon_{0}}(h w)
$$

and thus

$$
\left(A_{\mu_{1}} f_{\varepsilon_{0}}^{\delta}\right)(x) \leq \sum_{w \in \Psi} \int_{G} \varphi_{\varepsilon_{0}}^{\delta}(h w) \mathrm{d} \mu_{1}(h) \leq a_{0} \sum_{w \in \Psi} \varphi_{\varepsilon_{0}}^{\delta}(w),
$$

the second inequality following from Lemma 4.3. Hence, using (5.9), one has

$$
\begin{equation*}
\left(A_{\mu_{1}} f_{\varepsilon_{0}}^{\delta}\right)(x) \leq a_{0} d f_{\varepsilon_{0}}^{\delta}(x) . \tag{5.12}
\end{equation*}
$$

Finally, one gets (5.2) with $a:=\frac{1+a_{0} d}{2}$ by combining inequalities (5.8) and (5.12) with (5.4).

Proof of Proposition 5.1. Let L be a compact subset of X. By Remark 5.2 and Mahler's compactness criterion, there exists $\varepsilon_{0}>0$ such that the function $f_{\varepsilon_{0}}$ is bounded on L. As μ has finite exponential moments, so is the function $A_{\mu}^{k} f_{\varepsilon_{0}}^{\delta}$ for any nonnegative integer k, provided $\delta>0$ is small enough. Now, by Proposition 5.3, one can suppose there exists $n \geq 1,0<a<1$ and $b>0$ with $A_{\mu}^{n} f_{\varepsilon_{0}}^{\delta} \leq a f_{\varepsilon_{0}}^{\delta}+b$. By setting $f=\sum_{k=0}^{n-1} a^{1-\frac{k+1}{n}} A_{\mu}^{k} f_{\varepsilon_{0}}^{\delta}$ we get $A_{\mu} f \leq a^{\frac{1}{n}} f+b$, whence the result.

Proof of Theorem 1.1 for $G=\operatorname{SL}(d, \mathbb{R})$ and $\Lambda=\operatorname{SL}(d, \mathbb{Z})$. This follows from Corollary 2.2 and Proposition 5.1.

Proof of Theorem 1.4 for $G=\operatorname{SL}(d, \mathbb{R})$ and $\Lambda=\operatorname{SL}(d, \mathbb{Z})$. According to Lemma 2.1 and Proposition 5.3, is suffices to check that, if $f_{\varepsilon_{0}}\left(g x_{0}\right)=$ ∞, then $g^{-1} H_{\mu}^{n c} g$ is contained in some Λ-rational parabolic subgroup of G. Here, the Λ-rational parabolic subgroups of G are the stabilizers of the vector subspaces of \mathbb{R}^{d} which are defined over \mathbb{Q}. Hence this statement follows from Remark 5.2.

6. Reduction steps

We explain now how to reduce Theorems 1.1 and 1.4 to the case we dealt with in the previous section.
Let G be a real Lie group, \mathfrak{r} the largest amenable ideal of $\mathfrak{g}, \mathfrak{s}:=\mathfrak{g} / \mathfrak{r}$, $S:=\operatorname{Aut}(\mathfrak{s})$ and $R:=\operatorname{Ker}\left(\operatorname{Ad}_{\mathfrak{s}}\right)$ be the Kernel in G of the adjoint action in \mathfrak{s}. Let $\Lambda \subset G$ be a lattice and $X=G / \Lambda$. According to Auslander projection theorem and Borel density theorem, one has the following lemma (see [15] or [2] for a detailed proof) :
Lemma 6.1. (i) The intersection $\Lambda \cap R$ is a cocompact lattice in R. (ii) The image group $\Lambda_{S}:=\operatorname{Ad}_{\mathfrak{s}}(\Lambda)$ is a lattice in S.

Let $\mu \in \mathcal{P}(G)$ be a Borel probability measure on G with finite exponential moments in $\mathfrak{s}, H_{\mu} \subset S$ be the Zariski closure of the subgroup
spanned by the support of μ in G, and

$$
X^{\prime}:=\left\{\begin{array}{l}
x=g x_{0} \in X \mid g^{-1} H_{\mu}^{n c} g \text { is not contained in any } \tag{6.1}\\
\text { proper } \Lambda_{S^{-}} \text {-rational parabolic subgroup of } S
\end{array}\right\}
$$

(recall that a parabolic subgroup of S is said to be Λ_{S}-rational if its unipotent radical intersects Λ_{S} in a lattice).

The following theorem is a restatement of Theorems 1.1 and 1.4.
Theorem 6.2. Let G be a real Lie group, Λ be a lattice in $G, X:=$ G / Λ, and μ be a probability measure on G with finite exponential moments in \mathfrak{s} and such that the group $H_{\mu}^{n c}$ is semisimple. Then,
a) The action of (G, μ) on X satisfies the recurrence property \mathbf{R}.
b) This action also satisfies the uniform recurrence property $\mathbf{S}\left(X^{\prime}\right)$.

Proof of Theorem 6.2.
$1^{\text {st }}$ case: G is semisimple and $\Lambda=G_{\mathbb{Z}}$.
More precisely, we assume here that G is a semisimple algebraic subgroup of $\operatorname{SL}(d, \mathbb{R})$ defined over \mathbb{Q} and that Λ is the group $G \cap \operatorname{SL}(d, \mathbb{Z})$. In this case, according to [15, Chap. 1], the space $X=G / \Lambda$ is a closed subset of $X_{0}:=\mathrm{SL}(d, \mathbb{R}) / \mathrm{SL}(d, \mathbb{Z})$. The recurrence property \mathbf{R} of (G, μ) on X then follows from the recurrence property \mathbf{R} on X_{0}.

By Lemma 2.1 and Proposition 5.3, to check the uniform recurrence property $\mathbf{S}\left(X^{\prime}\right)$, it suffices to check that for ε_{0} small enough, one has the inclusion

$$
\begin{equation*}
X^{\prime} \subset D_{f_{\varepsilon_{0}}} \tag{6.2}
\end{equation*}
$$

To this aim, we first recall a few facts from Geometric Invariant Theory.
Let $\mathbf{V}=\mathbb{C}^{D}$ and $\mathbf{G} \subset G L(\mathbf{V})$ be a reductive subgroup. A vector in \mathbf{V} is said to be stable if its \mathbf{G}-orbit is closed. It is said to be unstable if 0 belongs to the Zariski closure of its G-orbit. According to Geometric Invariant Theory in [13], a vector v is unstable if and only if for every G-invariant polynomial F on \mathbf{V}, one has $F(v)=F(0)$.

Assume \mathbf{G} is semisimple. According to Kempf in [10, Corol. 3.5], the stabilizer of an unstable vector $v \in \mathbf{V}$ is contained in a proper parabolic subgroup $\mathbf{P} \nsubseteq \mathbf{G}$. Moreover, when \mathbf{G} is defined over a subfield k of \mathbb{C} and v belongs to k^{D}, one can choose the parabolic subgroup \mathbf{P} to be defined over k ([10, Theorem 4.2], see also [16] when k is a number field).

Lemma 6.3. Let $V=\mathbb{R}^{D}$ and $G \subset \mathrm{SL}(V)$ be a semisimple subgroup defined over \mathbb{Q}. Then there exists ε_{0} such that every vector $v=g v_{0}$ with norm $\|v\| \leq \varepsilon_{0}$ which belongs to the G-orbit of some integral vector $v_{0} \in \mathbb{Z}^{D}$ is unstable.

Proof of Lemma 6.3. Let S be the set of G-invariant polynomials $F \in \mathbb{Z}[V]$ such that $F(0)=0$. The set Z of unstable vectors in V is the set of zeroes of these polynomials. As the ring of G-invariant polynomials in $\mathbb{Z}[V]$ is finitely generated, it is Noetherian and Z is the set of zeroes of some finite subset $S_{0} \subset S$. Choose ε_{0} small enough to have, for any $v \in V$ and any $F \in S_{0},\|v\| \leq \varepsilon_{0} \Longrightarrow|F(v)|<1$. If moreover v belongs to the G-orbit of some point $v_{0} \in \mathbb{Z}^{d}, F(v)=F\left(v_{0}\right)$ is an integer. Hence $F(v)=0$ and v is an unstable vector.

We now can check inclusion (6.2). Indeed, let $x=g x_{0}$ be a point in X such that $f_{\varepsilon_{0}}\left(g x_{0}\right)=\infty$. According to Remark 5.2 there exists $0<i<d$ and a $H^{n c}$-invariant x-integral monomial $v \in \Lambda^{i} E$ such that $\|v\|<\varepsilon_{0}^{\delta_{i}}$. Since v is x-integral, the vector $v_{0}:=g^{-1} v \in \Lambda^{i} E$ is integral. According to Lemma 6.3, if ε_{0} is small enough, this vector is unstable. By Kempf's theorem quoted above, the stabilizer of v_{0} is contained in some proper parabolic subgroup of G defined over \mathbb{Q}, hence the group $g^{-1} H_{\mu}^{n c} g$ is contained in some proper Λ-rational parabolic subgroup of G. This ends the proof of Theorem 6.2 in the first case.
$2^{\text {nd }}$ case: $\quad G=\operatorname{Aut}(\mathfrak{g})$ with \mathfrak{g} simple of real rank 1 .
If the group $H_{\mu}^{n c}$ is non trivial, it is not contained in any proper parabolic subgroup of G. Hence our statements follow from Eskin, Margulis theorem in [6]. For the sake of completeness, we sketch a proof.

Let us construct a continuous finite and proper function f on X for which (G, μ) has the contraction property $\mathbf{C H}(f)$. As Λ is a lattice in G, by [9], there exists finitely many Λ-conjugacy classes of maximal unipotent subgroups which intersect Λ in a lattice. Pick representatives U_{1}, \ldots, U_{r} of these Λ-conjugacy classes. Again by [9], if a sequence $x_{n}=g_{n} x_{0}$ goes to ∞ in X, after eventually extracting a subsequence, there exists $1 \leq i \leq r$ and a sequence $\left(\lambda_{n}\right)$ in Λ such that, for any u in $U_{i}, g_{n} \lambda_{n} u \lambda_{n}^{-1} g_{n}^{-1}$ goes to e in U_{i}. Moreover, when n is large, $\lambda_{n} U_{i} \lambda_{n}^{-1}$ is uniquely defined by g_{n}. Now, let V be a faithful irreducible representation of G. If U is some maximal unipotent subgroup of G and v is some non-zero U-invariant vector in V, by Iwasawa decomposition, for any sequence $\left(g_{n}\right)$ in $G, g_{n} v$ goes to 0 in V if and only if $g_{n} u g_{n}^{-1}$ goes to e in G for any u in U. Thus, if, for any $1 \leq i \leq r, v_{i}$ is some non-zero U_{i}-invariant vector in V, the set $\Lambda v_{1} \cup \ldots \cup \Lambda v_{r}$ is discrete in V and the function f defined by, for any $x=g x_{0}$ in X,

$$
\begin{equation*}
f\left(g x_{0}\right):=\max _{1 \leq i \leq r} \max _{\lambda \in \Lambda}\left\|g \lambda v_{i}\right\|^{-1} \tag{6.3}
\end{equation*}
$$

is continuous and proper. We claim that, for $\delta>0$ small enough, f^{δ} satisfies the contraction property $\mathbf{C H}\left(f^{\delta}\right)$ with respect to some convolution power of μ. Indeed, this follows from Lemma 4.4, since the image in $\mathbb{P}(V)$ of the G-orbit $G v_{i}$ is compact and does not contain any $H_{\mu}^{n c}$-invariant element.
$3^{\text {rd }}$ case: $G=\operatorname{Aut}(\mathfrak{g})$ where \mathfrak{g} is semisimple without compact ideal. Replacing Λ by a finite index subgroup, we may write G as a finite product of groups G_{i} so that X is a finite product of spaces $X_{i}=G_{i} / \Lambda_{i}$ where Λ_{i} is an irreducible lattice in G_{i}. It is enough to prove Theorem 6.2 for each factor X_{i}.

Hence we may assume that Λ is an irreducible lattice of G. Thanks to the second case, we may assume that G has real rank at least two. According to Margulis' arithmeticity theorem in [11], there exist $d \geq 2$, a semisimple subgroup $G^{\prime} \subset \mathrm{SL}(d, \mathbb{R})$ defined over \mathbb{Q} and a Lie group morphism $\varphi: G^{\prime} \rightarrow G$ with compact kernel, finite index image and such that $\varphi\left(\Lambda^{\prime}\right)$ and Λ are commensurable where $\Lambda^{\prime}:=G^{\prime} \cap \operatorname{SL}(d, \mathbb{Z})$. We can choose φ to be surjective so that we can write $\mu=\varphi_{*} \mu^{\prime}$ for some $\operatorname{Ker}(\varphi)$-invariant probability measure μ^{\prime} on G^{\prime}.

According to the first case, Theorem 6.2 is true for $X^{\prime}:=G^{\prime} / \Lambda^{\prime}$. Since $\operatorname{Ker}(\varphi)$ is a compact normal subgroup of the Zariski closure of $\Gamma_{\mu^{\prime}}$, the functions $f_{\varepsilon_{0}}$ constructed on X^{\prime} are $\operatorname{Ker}(\varphi)$-invariant, hence can be seen as functions on $G / \varphi\left(\Lambda^{\prime}\right)$. This proves that Theorem 6.2 is also true for $G / \varphi\left(\Lambda^{\prime}\right)$.

The validity of the recurrence properties \mathbf{R} and $\mathbf{S}\left(X^{\prime}\right)$ on $X=G / \Lambda$ only depends on the commensurability class of Λ. Hence Theorem 6.2 is also true for G / Λ.
$4^{\text {th }}$ case: General case.
Let $R:=\operatorname{Ker}\left(\operatorname{Ad}_{\mathfrak{s}}\right)$ be the Kernel in G of the adjoint action in \mathfrak{s}. Since \mathfrak{s} is semisimple, the group G / R is a finite index subgroup of the group Aut(\mathfrak{s}). According to Lemma 6.1, the intersection $\Lambda \cap R$ is a cocompact lattice in R and the image Λ_{S} of Λ in $\operatorname{Aut}(\mathfrak{s})$ is a lattice. According to the third case, Theorem 6.2 is true for S / Λ_{S}. Since the projection $G / \Lambda \rightarrow S / \Lambda_{S}$ is a proper map, Theorem 6.2 is also true for G / Λ.

7. Products of real and p-Adic Lie groups

In this section we extend our results to finite products of real and p-adic Lie groups and more generally to S-adic Lie groups.

We also check that the functions constructed above which are contracted by the random walk can be chosen to grow exponentially.
Let S be a finite subset of the set of prime numbers including ∞. We denote by \mathbb{Q}_{p} the field of p-adic numbers and by $\mathbb{Q}_{\infty}=\mathbb{R}$ the field of real numbers or ∞-adic numbers.

Let G be an S-adic Lie group i.e. G is a locally compact group which contains an open subgroup U isomorphic to a group $\left(\prod_{p \in S} G_{p}\right) / N$ where, for each $p \in S, G_{p}$ is a p-adic Lie group and N is a discrete normal subgroup of this product (see [2]). We denote by \mathfrak{g} the Lie algebra of G i.e. the \mathbb{Q}-vector space $\mathfrak{g}:=\oplus \mathfrak{g}_{p}$ which is the direct sum of the Lie algebras \mathfrak{g}_{p} of G_{p}.

Let Λ be a lattice of G. For such a group G, we have to replace Lemma 6.1 by the following Lemma 7.1 which is the main Theorem of [2].

Lemma 7.1. There exists a G-invariant ideal \mathfrak{r} of \mathfrak{g} with the following three properties. We let $\mathfrak{s}:=\mathfrak{g} / \mathfrak{r}$ and R be the kernel of the adjoint action $\operatorname{Ad}_{\mathfrak{s}}: G \rightarrow \operatorname{Aut}(\mathfrak{s})$ in \mathfrak{s}.
(i) The Lie algebra $\mathfrak{s}:=\mathfrak{g} / \mathfrak{r}$ is semisimple.
(ii) The intersection $\Lambda \cap R$ is a cocompact lattice in R.
(iii) The image $\Lambda_{S}:=\operatorname{Ad}_{\mathfrak{s}}(\Lambda) \simeq \Lambda /(\Lambda \cap R)$ is a lattice in Aut($\left.\mathfrak{s}\right)$.

We endow each of the Lie algebras \mathfrak{s}_{p} with a norm $\|\cdot\|_{p}$, and, for g in G, we let $\left\|\operatorname{Ad}_{\mathfrak{s}}(g)\right\|=\prod_{p \in S}\left\|\operatorname{Ad}_{\mathfrak{S}_{p}}(g)\right\|_{p}$ be the height of $\left\|\operatorname{Ad}_{\mathfrak{s}}(g)\right\|$.

Let $\mu \in \mathcal{P}(G)$ be a Borel probability measure on G. Let $\Gamma=\Gamma_{\mu}$ be the closed sub-semigroup generated by the support of μ. Let H_{p} be the Zariski closure of $\operatorname{Ad}_{\mathfrak{s}_{p}}(\Gamma)$ in $\operatorname{Aut}\left(\mathfrak{s}_{p}\right)$ and $H_{\mu}:=\prod_{p \in S} H_{p} \subset \operatorname{Aut}(\mathfrak{s})$. Let $H_{p}^{n c}$ be the smallest normal algebraic subgroup of H_{p} such that the image of Γ in $H_{p} / H_{p}^{n c}$ is relatively compact, and $H_{\mu}^{n c}:=\prod_{p \in S} H_{p}^{n c}$.

We assume that

$$
\begin{align*}
& H_{\mu}^{n c} \text { is semisimple and } \tag{7.1}\\
& \mu \text { has finite exponential moments in } \mathfrak{s},
\end{align*}
$$

i.e. the p-adic Lie groups $H_{p}^{n c}, p \in S$, are semisimple and

$$
\int_{G}\left\|\operatorname{Ad}_{\mathfrak{s}}(g)\right\|^{\delta} \mathrm{d} \mu(g)<\infty \text { for some } \delta>0
$$

Since each factor $\left\|\operatorname{Ad}_{\mathfrak{S}_{p}}(g)\right\|_{p}$ is larger than 1 , the latter assumption is equivalent to

$$
\int_{G} N\left(\operatorname{Ad}_{\mathfrak{s}}(g)\right)^{\delta^{\prime}} \mathrm{d} \mu(g)<\infty \text { for some } \delta^{\prime}>0
$$

where $N\left(\operatorname{Ad}_{\mathfrak{s}}(g)\right):=\max _{p \in S}\left\|\operatorname{Ad}_{\mathfrak{S}_{p}}(g)\right\|_{p}$.
As in the introduction, we note that, when G is a linear group i.e. a subgroup of $\prod_{p \in S} \operatorname{SL}\left(d, \mathbb{Q}_{p}\right)$ for some $d>1$, assumptions (7.1) are satisfied as soon as, for every p in S, μ has finite exponential moments in \mathbb{Q}_{p}^{d} and the Zariski closure of the image of Γ_{μ} in $\operatorname{SL}\left(d, \mathbb{Q}_{p}\right)$ is semisimple.

A subgroup P of $\operatorname{Aut}(\mathfrak{s})$ is called a parabolic subgroup if it is the product of parabolic subgroups P_{p} of $\operatorname{Aut}\left(\mathfrak{s}_{p}\right)$. The product U of the unipotent radicals U_{p} of P_{p} is called the unipotent radical of P. A parabolic subgroup $P \subset \operatorname{Aut}(\mathfrak{s})$ is said to be Λ_{S}-rational if the lattice Λ_{S} intersects the unipotent radical of P in a lattice. We can then again define the subset $X^{\prime} \subset X$ by (6.1).

The following theorem is the extension of Theorem 6.2 to S-adic Lie groups. We keep the notations of Lemma 7.1.

Theorem 7.2. Let G be an S-adic Lie group, Λ be a lattice in G, $X:=G / \Lambda$ and μ be a probability measure on G with finite exponential moments in \mathfrak{s} and such that the group $H_{\mu}^{n c}$ is semisimple. Then,
a) The action of (G, μ) on X satisfies the recurrence property \mathbf{R}.
b) This action also satisfies the uniform recurrence property $\mathbf{S}\left(X^{\prime}\right)$.

As in the real case we will deduce this theorem from the existence of functions f satisfying contraction properties. For further use in [3], we will need to control the growth of these functions f.

Let x_{0} be the base point of X. For x in X, we set

$$
\begin{equation*}
\|x\|:=\min \left\{\left\|\operatorname{Ad}_{\mathfrak{s}}(g)\right\| \mid g \in G, x=g x_{0}\right\} . \tag{7.2}
\end{equation*}
$$

Definition 7.3. A function $f: X \rightarrow[0, \infty]$ is said to grow exponentially, if there exists $c>0, \kappa>0$ such that, for any $x \in X$,

$$
\begin{equation*}
f(x) \geq\|x\|^{\kappa}-c . \tag{7.3}
\end{equation*}
$$

As above, it is equivalent to the existence of $c^{\prime}>0, \kappa^{\prime}>0$ such that, for any $x \in X$,

$$
f(x) \geq N(x)^{\kappa^{\prime}}-c^{\prime}
$$

where $N(x):=\min \left\{N\left(\operatorname{Ad}_{\mathfrak{s}}(g)\right) \mid g \in G, x=g x_{0}\right\}$.
Proof of Theorem 7.2. It is a consequence of Lemma 2.1, Corollary 2.2 and of the following Proposition 7.4.

Proposition 7.4. Let G be a S-adic Lie groups, Λ be a lattice in G, $X:=G / \Lambda$, and μ be a probability measure on G with finite exponential moments in \mathfrak{s} and such that the group $H_{\mu}^{n c}$ is semisimple.
a) For every compact set $L \subset X$, there exists a proper Borel function $f: X \rightarrow[0, \infty]$ which is uniformly bounded on L, and such that the
action of (G, μ) on X satisfies the contraction hypothesis $\mathbf{C H}(f)$.
b) Such a function f can be chosen in such a way that D_{f} contains X^{\prime}.
c) Such a function f can also be chosen to grow exponentially.

Proof of Proposition 7.4. The proof is the same as for real groups. One just has to change a few definitions. Here are the main modifications.

In section 3, we first note that what we have done there goes through if one replaces the field \mathbb{R} by a p-adic field \mathbb{Q}_{p}. The extension of the inequalities (3.1) we will need are nothing but product of inequalities (3.1) for various real and p-adic fields.

In a more precise way, we introduce, the locally compact algebra $\mathbb{Q}_{S}:=\prod_{s \in S} \mathbb{Q}_{p}$. We endow this algebra with the height function given for $t=\left(t_{p}\right)_{p \in S}$ by $|t|:=\prod_{p \in S}\left|t_{p}\right|_{p}$ where, for p finite, the absolute value $|\cdot|_{p}$ on \mathbb{Q}_{p} is normalized by $|p|_{p}=\frac{1}{p}$. We set $E_{p}:=\mathbb{Q}_{p}^{d}$ and $E=\prod_{p \in S} E_{p}$, and we endow E with the height function given by $\|v\|:=\prod_{p \in S}\left\|v_{p}\right\|_{p}$ and with the norm function $N(v):=\max _{p \in S}\left\|v_{p}\right\|_{p}$, for $v=\left(v_{p}\right)_{p \in S} \in E$ where $\|\cdot\|_{p}$ is a norm on \mathbb{Q}_{p}^{d}. The group H becomes $H=\prod_{p \in S} H_{p}$ where $H_{p} \subset \operatorname{SL}\left(d, \mathbb{Q}_{p}\right)$ is a reductive subgroup, and $A=\prod_{p \in S} A_{p}$ where $A_{p} \subset H_{p}$ is a maximal \mathbb{Q}_{p}-split subtorus. The group of characters of A is nothing but the product of the groups of characters of each A_{p}

One sets $\Lambda^{i} E=\prod_{p \in S} \Lambda^{i} E_{p}$. An element $u=\left(u_{p}\right)_{p \in S} \in \Lambda^{i} E$ is said to be monomial if, for all $p \in S, u_{p}$ is monomial in $\Lambda^{i} \mathbb{Q}_{p}^{d}$.

With these notations, Proposition 3.1 is still true since (3.1) is the product of the analoguous inequalities in each of the factors.

In section 4, we keep the same formula (4.3) for $\varphi_{\varepsilon_{0}}$. We choose the norms $\|.\|_{p}$ to be H^{c}-invariant where H^{c} is a compact subgroup of H such that $\Gamma_{\mu} H^{n c} \subset H^{c} H^{n c}$.

With these notations, Lemmas 4.2 and 4.3 are still true. Note that the validity of Lemma 4.4 relies on the positivity of the Lyapunov exponent and hence on the fact that, by construction, the image of Γ in each simple factor of $H_{p}^{n c}$ is not relatively compact (see [4]).

In section 5 , the space X becomes G / Λ with $G=\operatorname{SL}\left(d, \mathbb{Q}_{S}\right)$ and $\Lambda=\operatorname{SL}\left(d, \mathbb{Z}_{S}\right)$, where $\mathbb{Z}_{S}:=\mathbb{Z}\left[\frac{1}{p}, p \in S\right]$ is embedded diagonally in \mathbb{Q}_{S} so that X can be identified with the set of discrete \mathbb{Z}_{S}-submodules of covolume 1 in \mathbb{Q}_{S}^{d}. We keep the same formula (5.1) for $f_{\varepsilon_{0}}$.

With these notations, Propositions 5.1 and 5.3 are still true. Indeed, in this context, Mahler compactness theorem is still valid: a subset $Y \subset X$ is relatively compact if and only if one has $\inf _{x \in Y} \min _{v \in x}\|v\|>0$ or equivalently if $\inf _{x \in Y} \min _{v \in x} N(v)>0$.

In section 6, there are still four cases:
$1^{\text {st }}$ case: In Lemma 6.3, V becomes $\mathbb{Q}_{S}^{D}, v_{0}$ is a vector in \mathbb{Z}_{S}^{D} and $G \subset$ $\mathrm{SL}_{\mathbb{Q}_{S}}(V)$ is the set of \mathbb{Q}_{S}-points of a \mathbb{Q}-group \mathbf{G} defined by polynomial equations over \mathbb{Q}.
$2^{\text {nd }}$ case: In this case G is either a real or a p-adic semisimple Lie group of split rank one, with $p<\infty$. If G is a real Lie group, the proof goes the same; if not, by [17, Prop. 2], Λ is cocompact and there is nothing to prove.
$3^{\text {rd }}$ case: Margulis' Arithmeticity theorem still holds for irreducible lattices in product of real and p-adic semisimple groups as soon as the sum of the \mathbb{Q}_{p}-ranks of G_{p} is at least 2 (see [11]).
$4^{\text {th }}$ case: Same proof, replacing Lemma 6.1 by Lemma 7.1.
c) The bound (7.3) follows from the explicit formula for f.

References

[1] Y. Benoist, J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogènes, CRAS 347 (2009), 9-13 and preprint (2009).
[2] Y. Benoist, J.-F. Quint, Lattices in S-adic Lie groups, preprint (2010).
[3] Y. Benoist, J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces, in preparation.
[4] Y. Benoist, J.-F. Quint, Random walks on semisimple groups, in preparation.
[5] E. Breuillard, Local limit theorems and equidistribution of random walks on the Heisenberg group, Geom. Funct. Anal 15 (2005) 35-82.
[6] A. Eskin, G. Margulis, Recurrence properties of random walks on finite volume homogeneous manifolds, in Random walks and geometry W. de Gruiter (2004), 431-444.
[7] F. Foster, On the stochastic matrices associated with certain queuing processes, Ann. Math. Stat. 24 (1953), 355-360.
[8] H. Furstenberg, H. Kesten, Products of random matrices, Ann. Math. Statist. 31 (1960), 457-469.
[9] H. Garland, M. S. Raghunathan, Fundamental domains for lattices in \mathbb{R}-rank 1 semisimple Lie groups, Ann. of Math. 92 (1970), 279-326.
[10] G. Kempf, Instability in invariant theory, Ann. of Math. 108 (1978) 299-316.
[11] G. Margulis, Discrete subgroups of semisimple Lie groups, Springer (1991).
[12] S. Meyn, R. Tweedie, Markov chain and stochastic stability, Springer (1993).
[13] D. Mumford, Geometric Invariant Theory, Springer (1965).
[14] E. Nummelin, General irreducible Markov chains and non-negative operators, Camb. Univ. Press (1984).
[15] M. Raghunathan, Discrete subgroups of Lie groups, Springer(1972).
[16] M. Raghunathan, A note on orbits of reductive groups, J. Indian Math. Soc. 38 (1974), 65-70.
[17] M. Ratner, Raghunathan's conjectures for p-adic Lie groups, Internat. Math. Res. Notices (1993), 141-146.
[18] N. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, Tata Inst. Fund. Res. Stud. Math. 14 (1998), 229-271.

CNRS-Université Paris-Sud Orsay
E-mail address: benoist@math.u-psud.fr
CNRS-Université Paris-Nord Villetaneuse
E-mail address: quint@math.univ-paris13.fr

