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Abstract. Extending previous results by A. Eskin and G. Mar-
gulis, and answering their conjectures, we prove that a random
walk on a finite volume homogeneous space is always recurrent
as soon as the transition probability has finite exponential mo-
ments and its support generates a subgroup whose Zariski closure
is semisimple.

1. Introduction

In this introduction G is a real Lie group. Later on, in section 7, we
will consider more generally products of real and p-adic Lie groups. We
denote by g the Lie algebra of G, r its maximal amenable ideal, s := g/r
and by Ads : G → Aut(s) the adjoint action on s. The Lie algebra s
is the largest semisimple quotient of g with no compact factor.

Let Λ be a lattice in G, X := G/Λ and x0 := Λ be the base point
of X. Let µ ∈ P(G) be a Borel probability measure on G and Γ = Γµ
be the closed sub-semigroup of G generated by the support of µ. We
denote by Hµ ⊂ Aut(s) the Zariski closure of Ads(Γµ) and by Hnc

µ

the non compact part of Hµ, i.e. the smallest normal Zariski closed
subgroup of Hµ such that Hµ/H

nc
µ is compact. We assume that

Hnc
µ is semisimple and

µ has finite exponential moments in s,
(1.1)

i.e.

∫
G

‖Ads(g)‖δ dµ(g) <∞ for some δ > 0.

In this paper, we study the random walk associated to µ on X that
is the Markov chain with state space X and transition probabilities
µ ∗ δx, x ∈ X. In other terms, given x ∈ X, we focus on the sequence
of probability measures µ∗n ∗ δx, n ∈ N. We address the recurrence
properties of this random walk.

This topic has been studied in depth by Eskin and Margulis in [6]
where they prove different kind of recurrence and uniform recurrence
properties for this random walk. In [6, §2.5], Eskin and Margulis state
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two conjectures called (R1) and (S) on the recurrence behavior of this
random walk.

Our first theorem answers positively conjecture (R1) of [6].

Theorem 1.1. Let G be a real Lie group, Λ be a lattice in G, X :=
G/Λ, and µ be a probability measure on G with finite exponential mo-
ments in s and such that Hnc

µ is semisimple.
For any ε > 0, any x in X, there exists a compact set M = Mε,x ⊂ X

such that for any n ≥ 0, one has µ∗n ∗ δx(M) ≥ 1− ε.

Moreover, the compact set M = Mε,x is uniform for x in a compact
subset of X.

Remark For a linear group G i.e. a subgroup of SL(d,R), assumptions
(1.1) are satisfied as soon as

Γµ has a semisimple Zariski closure and
µ has finite exponential moments in Rd.(1.2)

Here is a reformulation of Theorem 1.1.

Corollary 1.2. Under the same assumptions, for any x in X, any
weak limit ν∞ of the sequence νn := µ∗n ∗ δx in the space of finite
measures on X is a probability measure, i.e. ν∞(X) = 1.

Conjecture (R1) in [6] was stated in a slightly too optimistic way un-
der the weaker hypothesis that the group Hnc

µ is generated by unipo-
tent elements. However E. Breuillard constructed in [5, Prop. 10.4]
a counter-example with G = SL(2,R), Λ = SL(2,Z) and µ a non-
centered probability measure with compact support on some one-parameter
unipotent subgroup of G.

In case µ has compact support, the recurrence properties proven in
[6] have been used in [1] as the starting point for the classification
of µ-stationary probability measures on X and of Γµ-invariant closed
subsets on X when G is a simple group and Γµ is Zariski dense in G.
Theorem 1.1 is now used in [3] to extend this classification to the case
where Adg(Γµ) is Zariski dense in a semisimple subgroup of Aut(g)
with no compact factor.

As in [6], one deduces from Theorem 1.1 the following

Corollary 1.3. Let G be a real Lie group, Λ be a lattice in G, X :=
G/Λ, and Γ be a discrete subgroup of G such that the Zariski closure
of Ads(Γ) is semisimple. Then any discrete Γ-orbit in G/Λ is finite.



RANDOM WALKS ON HOMOGENEOUS SPACES 3

Note that the group ΛS := Ads(Λ) is always a lattice in Aut(s)
(see Lemma 6.1). A parabolic subgroup P ⊂ Aut(s) is said to be
ΛS-rational if the group ΛS intersects the unipotent radical of P in a
lattice.

Theorem 1.1 was proved in [6] under the additional assumption that
no conjugate of Hnc

µ is contained in some proper ΛS-rational parabolic
subgroup of Aut(s). The simplest case of Theorem 1.1 which is not
covered by [6] is when G = SL(3,R), Λ = SL(3,Z) and Γµ is Zariski
dense in the SL(2,R) sitting in the top left corner.

We will now describe an explicit subset of points x ∈ X starting
from which the random walk is recurrent inside a uniform compact set.

Our second theorem answers positively conjecture (S) of [6].

Theorem 1.4. Let G be a real Lie group, Λ be a lattice in G, X :=
G/Λ, and µ be a probability measure on G with finite exponential mo-
ments in s and such that the group Hnc

µ is semisimple.
For any ε > 0, there exists a compact set M ⊂ X such that, for

any g in G, either g−1Hnc
µ g is contained in some proper ΛS-rational

parabolic subgroup of Aut(s), or there exists ng ≥ 0 such that, for any
n ≥ ng, one has µ∗n ∗ δgx0(M) ≥ 1− ε.

Note that one can not replace Hnc
µ by Hµ in Theorem 1.4 : there

exists a counterexample with G = SL(6,R), Λ = SL(6,Z) and Γµ
Zariski dense in SO(3,R) × SL(2,R) ↪→ SL(R3 ⊗ R2) ' G. In this
example, the action of Γµ on R6 is irreducible, hence the group Hµ is
not included in any parabolic subgroup, while its non compact part
Hnc
µ is included in a ΛS-rational parabolic subgroup.

Let us sketch our strategy in a few words. As in [6] we prove the
existence of proper functions f on X satisfying the so-called “Foster
exponential recurrence criterion” (see [7], [12, Chapter 15] and [14]).
The main new idea is to construct these functions f by using the rep-
resentation theory of the semisimple group Hnc

µ . Since it avoids the
use of Reduction Theory, this idea gives also a simpler proof of the
main results of [6], even when G is simple and Γµ is Zariski dense in
G. However in the case where X = SL(d,R)/SL(d,Z), our proof is the
same as in [6].

Here is the structure of this paper.
In section 2, we explain how the recurrence of the random walk on X

follows from the existence of proper functions f which are contracted
by the random walk.
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In section 3, we prove an inequality in the exterior algebra of a finite
dimensional vector space, that we call the Mother Inequality, which is
the main new technical tool of this paper.

In section 4, we show how the Mother Inequality allows us to con-
struct functions ϕ on the exterior algebra which simultaneously satisfy
a convexity property with respect to the exterior product and are con-
tracted by the random walk.

In section 5, we use these functions ϕ to construct proper functions
f on X which are contracted by the random walk when X is the space
of covolume 1 lattices in Rd.

In section 6, we reduce the general case to the previous one.
In section 7, we extend these results to lattices in products of real and

p-adic Lie groups and show that the functions f grow exponentially.

We thank Yves Guivarc’h for interesting discussions on this topic.

2. The contraction hypothesis

We present in this section a very general criterion imply-
ing the recurrence of a given random walk.

Let G be a second countable locally compact group, X be a second
countable locally compact space and (g, x) 7→ gx be a continuous action
of G on X.

Let µ be a Borel probability measure on G. Let us denote by
f 7→ Aµf the averaging operator which, to a given nonnegative Borel
function f on X, associates the function defined by, for any x in X,

Aµf(x) =

∫
G

f(gx)dµ(g).

A Borel function f : X → [0,∞] is said to be proper if for any
R < ∞, f−1([0, R]) is relatively compact in X. We denote by Df :=
{x ∈ X | f(x) <∞} the domain of f .

We will say that the action of (G, µ) on X satisfies the contraction
hypothesis for a Borel proper function f if

CH(f) there exist constants a < 1, b > 0 such that Aµf ≤ af + b.

This condition is a very strong µ-subharmonicity property for f : it
says roughly that the averaging operator strictly contracts f as soon
as f(x) is large enough.
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For a subset X ′ ⊂ X, we will say that the action of (G, µ) on X
satisfies the uniform recurrence property on X ′ if

S(X ′)
For any ε > 0, there exists a compact set M = Mε ⊂ X
such that, for any x in X ′, there exists nx ≥ 0 such that,
for n ≥ nx, one has µ∗n ∗ δx(M) ≥ 1− ε.

The following is a reformulation of [6, Lemma 3.1].

Lemma 2.1. Assume that the action of (G, µ) on X satisfies the con-
traction hypothesis CH(f) for a proper Borel function f : X → [0,∞],
then it satisfies the uniform recurrence property S(Df ).

Proof. Set B = b
1−a . Since f is proper, the closure M of the set

{y ∈ X | f(y) ≤ 2B
ε
}

is compact. The characteristic function of M c satisfies 1Mc ≤ ε
2B
f .

According to the hypothesis CH(f), one has, for every n ≥ 1

Anµf ≤ anf + b(1 + · · ·+ an−1) ≤ anf +B

Hence, for any x in Df , one has the following inequalities

µ∗n ∗ δx(M c) = Anµ(1Mc)(x) ≤ ε

2B
Anµ(f)(x) ≤ εan

2B
f(x) +

ε

2
≤ ε

as soon as n is large enough to have f(x) ≤ B
an

.

We will say that the action of (G, µ) on X satisfies the contraction
hypothesis if

CH

for every compact subset L of X, there exists a proper
Borel function f = fL : X → [0,∞] which is uniformly
bounded on L, and such that the action of (G, µ) on X
satisfies the contraction hypothesis CH(f).

Hypothesis CH above is a variation of the contraction hypothesis of
[12, Chap. 15] and [6]. This condition is shown in [12, Chap. 15] to
be related to the existence of a finite exponential moment for the first
return time in some bounded sets of X. We will not use this fact.

We will say that the action of (G, µ) on X satisfies the recurrence
property if

R
for any ε > 0, and any compact set L ⊂ X, there exists a
compact set M = Mε ⊂ X, such that for any x in L and
n ≥ 0, one has µ∗n ∗ δx(M) ≥ 1− ε.

Corollary 2.2. Assume that the (G, µ)-space X satisfies the contrac-
tion hypothesis CH, then it satisfies the recurrence property R.
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Proof. Let L be a compact subset of X and f = fL be the proper
Borel function given by the hypothesis CH. Choose as a first trial the
compact M given by Lemma 2.1 so that for n large enough, for any
x in L, one has µ∗n ∗ δx(M c) ≤ ε. Then, choose a compact set K of
G such that, for the finitely many remaining values of n, µ∗n(Kc) ≤ ε
and replace M by M ∪KL.

3. The Mother Inequality

In order to construct the function f of section 2 for the
space X = SL(d,R)/SL(d,Z), we will need the following
Mother Inequality.

Let E = Rd be the euclidean space with canonical basis e1, . . . , ed.
We denote by ‖.‖ the euclidean norm on E and on its exterior algebra
Λ∗E for which the family ei1 ∧ . . . ∧ eir for 1 ≤ i1 < · · · < ir ≤ d form
an orthonormal basis. An element u of Λ∗E is said to be monomial if
it can be written as u = u1 ∧ · · · ∧ ur for some u1, . . . , ur in E.

Let H ⊂ GL(E) be a reductive algebraic subgroup, A ⊂ H be a
maximal split subtorus of H, Σ = Σ(A,H) be the set of (restricted)
roots, i.e. Σ is the set of non-zero weights of A in the Lie algebra h of
H. We choose a system Σ+ ⊂ Σ of positive roots. Let P be the set of
algebraic characters of A. We endow P with the partial order given,
for λ, µ in P , by

λ ≤ µ⇐⇒ µ− λ is a sum of positive roots.

For any real algebraic irreducible representation of H, the set of weights
of A in this representation has a unique maximal element λ called the
(restricted) highest weight of the representation. Let P+ be the set of
all these highest weights. For any algebraic representation of H in a
real finite dimensional vector space V , for λ in P+ we denote by V λ

the sum of all the irreducible subrepresentations of V whose highest
weight is equal to λ and qλ : V → V the H-equivariant projection on
V λ. For instance, q0 is the H-equivariant projection onto the subspace
V Hnc

of fixed points of Hnc in V .

Proposition 3.1. Let H ⊂ GL(E) be a reductive algebraic subgroup.
Then there exists C1 ≥ 1 such that, for any monomials u, v, w in Λ∗E,
one has the inequality MI:

‖qλ(u)‖ ‖qµ(u ∧ v ∧ w)‖ ≤ C1 max
ν,ρ∈P+

ν+ρ≥λ+µ

‖qν(u ∧ v)‖ ‖qρ(u ∧ w)‖.(3.1)

Remark 3.2. Inequality MI will be a substitute for the following sim-
pler inequality used in [6]: for any monomials u, v, w in Λ∗E, one
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has

‖u‖ ‖u ∧ v ∧ w‖ ≤ ‖u ∧ v‖ ‖u ∧ w‖.(3.2)

To prove Proposition 3.1, we will need the following lemma.

Lemma 3.3. Let H be a real algebraic reductive group, V be a real
algebraic representation of H. For λ, µ in P+, the kernel of the map
qλ+µ : V λ ⊗ V µ → V λ ⊗ V µ does not contain non-zero pure tensors.

Proof of Lemma 3.3. Let x ∈ V λ and y ∈ V µ be two non-zero vectors
such that qλ+µ(x⊗ y) = 0. We decompose x as a sum x =

∑
α∈P xα of

weight vectors xα of weight α. Similarly, we write y =
∑

β∈P yβ. Since

any irreducible subrepresentation of V λ, resp. V µ, contains non-zero
weight vectors of weight λ, resp. µ, and since we can replace both x
and y by their images h(x) and h(y) by an element h of H, we may
assume that both xλ and yµ are non-zero.

The latter vectors belong to the highest weight spaces (V λ)λ and
(V µ)µ of the representations V λ and V µ. Since the component of weight
λ+ µ of qλ+µ(x⊗ y) is equal to xλ ⊗ yµ, one has xλ ⊗ yµ = 0, hence a
contradiction.

Corollary 3.4. Let H be a real algebraic reductive group, V be a real
algebraic representation of H. Choose a euclidean norm on V . Then
there exists D1 ≥ 1 such that, for λ, µ in P+, for any x, y in V , one
has

‖qλ(x)‖ ‖qµ(y)‖ ≤ D1 ‖qλ+µ(x⊗ y)‖ .

Proof of Corollary 3.4. We may assume that the euclidean norm on
V ⊗ V is chosen in a compatible way so that ‖x ⊗ y‖ = ‖x‖ ‖y‖ for
any x, y in V and that the projectors qλ, λ ∈ P+, are orthogonal. We
first note that the projector qλ+µ preserves the decomposition V ⊗V =
⊕ν,ρ∈P+V ν ⊗ V ρ. Hence there exists D′1 ≥ 1 such that, for every x and
y in V ,

‖qλ+µ(qλ(x)⊗ qµ(y))‖ ≤ D′1 ‖qλ+µ(x⊗ y)‖.(3.3)

Let Cλ,µ := {x ⊗ y | x ∈ V λ, y ∈ V µ} be the cone of pure tensors in
V λ ⊗ V µ. According to Lemma 3.3, the intersection Cλ,µ ∩ Ker(qλ+µ)
is zero. Hence there exists D′′1 ≥ 1 such that, for every x′ in V λ and y′

in V µ, one has

‖x′‖ ‖y′‖ = ‖x′ ⊗ y′‖ ≤ D′′1 ‖qλ+µ(x′ ⊗ y′)‖.(3.4)

Our claim follows from inequalities (3.3) and (3.4).
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Proof of Proposition 3.1. Let r, s, t be non negative integers. Accord-
ing to Corollary 3.4, there exists D1 ≥ 1, such that, for any u ∈ ΛrE,
v ∈ ΛsE and w ∈ ΛtE, one has

‖qλ(u)‖ ‖qµ(u ∧ v ∧ w)‖ ≤ D1 ‖qλ+µ(u⊗ (u ∧ v ∧ w))‖.(3.5)

We now introduce the linear map

Ψr : Λr+sE ⊗ Λr+tE → ΛrE ⊗ Λr+s+tE,

such that, for any monomial x = x1 ∧ · · · ∧ xr+s in Λr+sE and any y in
Λr+tE,

Ψr(x⊗ y) =
∑
|I|=r

εI xI ⊗ (xIc ∧ y),

where the sum is taken over all the subsets I ⊂ {1, . . . , r + s} of size
r. Let us explain each term of this sum:
– the element xI is the exterior product xI = xi1 ∧ · · · ∧ xir , when one
writes I = {i1, . . . , ir} with i1 < · · · < ir.
– the element xIc is the exterior product xIc = xir+1 ∧ · · · ∧ xir+s , when
one writes Ic = {ir+1, . . . , ir+s} with ir+1 < · · · < ir+s.
– the sign εI is the signature of the permutation of {1, . . . , r+s} sending
k to ik, 1 ≤ k ≤ r + s.

The map Ψr is GL(E)-equivariant. For any monomials u, v, w of
degrees, respectively r, s and t, one has

Ψr((u ∧ v)⊗ (u ∧ w)) = u⊗ (v ∧ u ∧ w).(3.6)

Since the linear map qλ+µ ◦ Ψr is H-equivariant, and since all the
weights of the tensor product (Λ∗E)ν ⊗ (Λ∗E)ρ are smaller than ν + ρ,
the map qλ+µ ◦Ψr is zero on (Λ∗E)ν ⊗ (Λ∗E)ρ except if ν + ρ ≥ λ+ µ.
Hence one has, with D′′′1 := ‖qλ+µ ◦Ψr‖,

‖qλ+µ(u⊗ (u ∧ v ∧ w))‖ ≤ D′′′1 max
ν,ρ∈P+

ν+ρ≥λ+µ

‖qν(u ∧ v)‖ ‖qρ(u ∧ w)‖.(3.7)

Our claim follows from inequalities (3.5) and (3.7).

To end this section, we state two elegant corollaries of Proposition
3.1 for which we have no simpler proof. We will not use them in this
paper, but we think they might help the reader to understand the
meaning of the Mother Inequality.

Let (Λ∗E)H be the set of fixed points of H in Λ∗E and q : Λ∗E →
Λ∗E be the unique H-equivariant projector whose kernel is (Λ∗E)H .



RANDOM WALKS ON HOMOGENEOUS SPACES 9

Corollary 3.5. Assume H ⊂ GL(E) is a connected semisimple sub-
group with no compact factor. Then there exists C ′1 ≥ 1 such that, for
any monomials u, v, w in Λ∗E, one has the inequality :

‖q(u)‖ ‖q(u ∧ v ∧ w)‖ ≤ C ′1(‖q(u ∧ v)‖ ‖u ∧ w‖+ ‖u ∧ v‖ ‖q(u ∧ w)‖).

This corollary can not be extended to reductive groups. Indeed, if,
for instance H = {diag(t, t−1, t−1) | t ∈ R×}, for u = e1, v = e2 and
w = e3, the monomials u ∧ v and u ∧ w are H-invariant but neither u
nor u ∧ v ∧ w is H-invariant.

Proof of Corollary 3.5. This inequality follows from Proposition 3.1
and the following two facts:
– since H has no compact factor, the projector q is the sum of all the
projectors qλ with λ 6= 0.
– since H is semisimple the sum λ+ µ of two non-zero elements of P+

is a non-zero element of P+.

Let us now state a second corollary to Proposition 3.1. Let E :=
E1 ⊕ · · · ⊕ Ea be an orthogonal decomposition. For any multiindex
i = (i1, . . . , ia) ∈ Na, we denote by qi : Λ∗E → Λ∗E the projector on
the component Λi1E1 ⊗ · · · ⊗ ΛiaEa. We endow Na with the partial
order given by i ≤ j ⇐⇒ j − i ∈ Na.

Corollary 3.6. There exists C ′′1 ≥ 1 such that, for any monomials u,
v, w in Λ∗E, one has the inequality:

‖qi(u)‖ ‖qj(u ∧ v ∧ w)‖ ≤ C ′′1 max
k,`∈Na
k+`= i+j

min(i,j)≤ k≤max(i,j)

‖qk(u ∧ v)‖ ‖q`(u ∧ w)‖.

In this formula the element m = min(i, j) ∈ Na is the minimum
for the partial order on Na, i.e. for b = 1, . . . , a, its bth-component is
mb = min(ib, jb). And similarly for the maximum.

Proof of Corollary 3.6. This inequality follows from Proposition 3.1
applied to the reductive group H = GL(E1) × · · · × GL(Ea). In-
deed, let us assume to simplify a = 2. We set d1 = dimE1. Let
e1 = E1,1, . . . , ed := Ed,d be the standard basis of the Lie algebra a of
diagonal matrices and let e∗1, . . . , e

∗
d be the dual basis.

We choose the positive roots of H to be the elements e∗p − e∗q with
either 1 ≤ p < q ≤ d1 or d1 < p < q ≤ d. The representation of H in
Λi1E1 ⊗ Λi2E2 is irreducible with highest weight

λi = e∗1 + · · ·+ e∗i1 + e∗d1+1 + · · ·+ e∗d1+i2
.
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One has the equivalence, for non-zero projectors qi, qj, qk, q`,

λk + λ` ≥ λi + λj ⇐⇒ ( k + ` = i+ j and min(i, j) ≤ k ≤ max(i, j) ).

4. The contraction hypothesis in vector spaces

We construct in this section functions on Λ∗Rd satisfy-
ing both a strong convexity property with respect to the
exterior product and a strong contraction property with
respect to averaging operators of probability measures
on SL(d,R).

Let E = Rd and H ⊂ GL(E) be an algebraic subgroup with Hnc

semisimple. We keep the notations A, P+, qλ,. . . from section 3. We
choose a norm on E which is invariant by some maximal compact
subgroup Hc of H. In order to construct the function ϕε0 , we need to
introduce two “exponents”.

The first one i 7→ δi is defined for any integer i with 0 ≤ i ≤ d. It
satisfies δ0 = δd = 0 and has the following concavity property : for
every integers r, s, t with s > 0 and t > 0,

δr+s + δr+t ≥ δr + δr+s+t + 1.(4.1)

For instance, one can choose to set δi := (d− i)i.
The second one λ 7→ δλ is defined for any highest weight λ ∈ P+. It

satisfies δλ = 0⇐⇒ λ = 0 and, for any λ, µ in P+,

λ ≤ µ =⇒ δλ ≤ δµ(4.2)

and it is invariant under the natural action of H/Hnc on P+. For
instance, one can choose to set δλ = λ(H0) where H0 is an element in
the positive Weyl chamber of the Lie algebra of A whose image in all the
non-zero simple ideals of h is non-zero and which is H/Hnc-invariant.

Let ε0 > 0. For v in ΛiE, with 0 < i < d, we define ϕε0(v) to be the
supremum of the set of real numbers R ≥ 0 such that, for any λ ∈ P+,
one has

‖qλ(v)‖ < εδi0 R
−δλ .

More precisely

ϕε0 (v) = min
λ∈P+r0

ε
δi
δλ
0 ‖qλ(v)‖

−1
δλ if ‖q0(v)‖ < εδi0(4.3)

= 0 otherwise.

For v in ΛiE, with i = 0 or i = d, we do not define ϕε0(v).
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Remark 4.1. For v in ΛiE, with 0 < i < d, one has the equivalence :

ϕε0 (v) =∞ ⇐⇒ v is Hnc-invariant and ‖v‖ < εδi0 .

We will use the Mother Inequality through the following technical
lemma 4.2 which states a convexity property for ϕε0 .

We will need a few constants: the constant C1 from Proposition 3.1,
the constant κ1 = (maxλ δλ)

−1, where the max is taken over all the
highest weight λ of the irreducible subrepresentations of Λ∗E, and the
constant b1 := sup‖v‖≥1 ϕε0(v) <∞.

Lemma 4.2. For any 0 < ε0 < C−1
1 , for any monomials u, v, w in

Λ∗E with respective degrees r, s, t with r ≥ 0, s > 0 and t > 0 and
such that ϕε0(u ∧ v) ≥ 1 and ϕε0(u ∧ w) ≥ 1, one has :
i) If r > 0 and r + s+ t < d, then

(4.4) min(ϕε0(u∧v), ϕε0(u∧w)) ≤ (C1ε0)
κ1
2 max(ϕε0(u), ϕε0(u∧v∧w)).

ii) If r = 0 and r + s+ t < d, then

(4.5) min(ϕε0(v), ϕε0(w)) ≤ (C1ε0)
κ1
2 ϕε0(v ∧ w).

iii) If r > 0, r + s+ t = d, and ‖u ∧ v ∧ w‖ ≥ 1, then

(4.6) min(ϕε0(u ∧ v), ϕε0(u ∧ w)) ≤ (C1ε0)
κ1
2 ϕε0(u).

iv) If r = 0, r + s+ t = d, and ‖v ∧ w‖ ≥ 1, then

(4.7) min(ϕε0(v), ϕε0(w)) ≤ b1.

Proof of Lemma 4.2. The left-hand side of these inequalities is the
supremum of the set of real numbers R ≥ 1 such that for any ν, ρ in
P+, one has

(4.8) ‖qν(u ∧ v)‖ < ε
δr+s
0 R−δν and ‖qρ(u ∧ w)‖ < ε

δr+t
0 R−δρ .

We fix such a R, we set S := (C1ε0)−
κ1
2 R and we distinguish the four

cases :

i) If r > 0 and r + s+ t < d.
We want to check that

(4.9) either ‖qλ(u)‖ < εδr0 S
−δλ for any λ in P+

(4.10) or ‖qµ(u ∧ v ∧ w)‖ < ε
δr+s+t
0 S−δµ for any µ in P+.
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To this aim we compute, for every λ, µ in P+,

‖qλ(u)‖ ‖qµ(u ∧ v ∧ w)‖ ≤ C1 max
ν,ρ∈P+

ν+ρ≥λ+µ

‖qν(u ∧ v)‖ ‖qρ(u ∧ w)‖ by (3.1)

< C1 max
ν,ρ∈P+

ν+ρ≥λ+µ

ε
δr+s
0 ε

δr+t
0 R−δνR−δρ by (4.8)

≤ C1 ε0 ε
δr
0 ε

δr+s+t
0 R−δλR−δµ by (4.1) and (4.2)

≤ εδr0 S
−δλ ε

δr+s+t
0 S−δµ .

This proves that either (4.9) or (4.10) is true and ends the proof of
(4.4).

ii) If r = 0 and r + s+ t < d.
By the same computation with u = 1 one gets, for any µ in P+,

‖qµ(v ∧ w)‖ < ε
δr+s+t
0 S−δµ .

This proves that (4.10) is true and ends the proof of (4.5).

iii) If r > 0, r + s+ t = d and ‖u ∧ v ∧ w‖ ≥ 1.
The same computation proves that, for any λ in P+, one has

‖qλ(u)‖ < εδr0 S
−δλ .

This proves that (4.9) is true and ends the proof of (4.6).

iv) If r = 0, r + s+ t = d and ‖v ∧ w‖ ≥ 1.
One has either ‖v‖ ≥ 1 or ‖w‖ ≥ 1, hence either ϕε0(v) ≤ b1 or
ϕε0(w) ≤ b1.

Let µ be a Borel probability measure on H with finite exponential
moments and whose support spans a Zariski dense subgroup of H.
Here are the functions which are contracted by averaging operators
associated to random walks.

Lemma 4.3. There exists δ0 > 0 such that, for every δ with 0 < δ < δ0,
for every a0 > 0, there exists n ≥ 1 such that, on every space ΛiE with
0 < i < d, one has

(4.11) Anµϕ
δ
ε0
≤ a0ϕ

δ
ε0

for any ε0 > 0.

Proof of Lemma 4.3. Since the norm is Hc-invariant, for any h in H
and v in ΛiE, one has ‖q0(hv)‖ = ‖q0(v)‖.

When ‖q0(v)‖ ≥ εδi0 , one has (Anµϕ
δ
ε0

)(v) = ϕδε0 (v) = 0.
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When ‖q0(v)‖ < εδi0 , one has ϕε0 (v) = min
λ∈P+r0

ε
δi
δλ
0 ‖qλ(v)‖

−1
δλ . Hence,

since the mean of the minimum of a finite family of functions is bounded
by the minimum of the family of means, our claim follows from the
following lemma.

Lemma 4.4. ([6, Lemma 4.2]) Let V be a real algebraic representation
of H such that V Hnc

= {0}. Let ϕ be the function ϕ : V r0→ R∗; v 7→
‖v‖−1. Then there exists δ0 > 0 such that, for every δ with 0 < δ < δ0,
for every a0 > 0, there exists n0 ≥ 1 such that, for n ≥ n0,

(4.12) Anµ(ϕδ) ≤ a0ϕ
δ

Proof of Lemma 4.4. This is a variation of [6, Lemma 4.2]. One uses
an asymptotic expansion of order 2 of e−δ log(‖hv‖/‖v‖) and Furstenberg
and Kesten’s theorem on the positivity of the first Lyapunov exponent
of the image of µ in GL(V ) (see [4] for a proof at this level of generality)
to find a0 < 1 and n ≥ 1 and get, uniformly for any non-zero v in V ,
(Anµϕ

δ)(v) ≤ a0ϕ
δ(v).

5. The contraction hypothesis in the space of lattices

In this section, we assume G = SL(d,R), Λ = SL(d,Z)
so that X = G/Λ is the space of covolume 1 lattices in
Rd, and we construct proper Borel functions on X which
are contracted by the random walk.

Given a Borel probability measure µ on G, we let H denote the
Zariski closure of the group generated by the support of µ, and by Hnc

the non compact part of H.

Proposition 5.1. Let X = SL(d,R)/SL(d,Z). If the group Hnc is
semisimple, the (G, µ)-space X satisfies the contraction hypothesis CH.

For x in X, a non-zero monomial v of ΛiE is said to be x-integral, if
either i > 0 and one can write v as v1 ∧ · · · ∧ vi where all the v1, . . . , vi
belong to the lattice x, or if i = 0 and v belongs to Z. It is then said
to be primitive if it is not an integer multiple of any other x-integral
monomial. For ε0 > 0, we define fε0 : X → [0,∞] to be the function
given by, for any x in X

fε0 (x) = maxϕε0 (v)(5.1)

where the max is taken over all the non-zero x-integral monomials
v ∈ ΛiE for some i with 0 < i < d, and where the functions ϕε0 :

ΛiE → [0,∞] are defined by (4.3). From Remark 4.1 and from Mahler’s
compactness criterion we get :
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Remark 5.2. The functions fε0 are lower semi-continuous, proper,
Hc-invariant and, for x in X, one has the equivalence :

fε0 (x) =∞⇐⇒
there exists a non-zero Hnc-invariant
and x-integral monomial v ∈ ΛiE with
0 < i < d and ‖v‖ < εδi0 .

Proposition 5.3. Let H ⊂ SL(d,R) be an algebraic subgroup with
Hnc semisimple and µ be Borel probability measure on H whose support
spans a Zariski dense subgroup of H and which admits finite exponential
moments. For δ > 0 and ε0 > 0 small enough, there exist n ≥ 1, a < 1
and b > 0 such that,

Anµf
δ
ε0
≤ af δε0 + b.(5.2)

Proof. For x in X, we want an upper bound of the integral (Anµf
δ
ε0

)(x).

We may assume f δε0 (x) <∞.

According to Lemma 4.3, for δ small enough, there exists a0 <
1
d

and
n ≥ 1, such that,

Anµϕ
δ
ε0
≤ a0ϕ

δ
ε0

Let κ1 be as in Lemma 4.2. Since µ∗n also has finite exponential
moments, one can assume δ small enough to have∫

H

‖h−1‖κ1δd dµ∗n(h) <∞.

and one can decompose µ∗n as the sum of two positive measures µ∗n =
µ1 + µ2 with µ1 compactly supported and with∫

H

‖h−1‖κ1δd dµ2(h) ≤ 1
2
(1− a0d).(5.3)

Since fε0 (hx) ≤ ‖h−1‖κ1dfε0 (x), for any h in H and x in X, one has

Aµ2f
δ
ε0
≤ 1−a0d

2
f δε0 .(5.4)

We set E = Rd and c0 = sup{max(‖h‖, ‖h−1‖)d | h ∈ supp(µ1)}.
Thus, for any x in X and for any non-zero x-integral monomial v ∈
Λ∗E, one has, for µ1-almost every h,

c
−κ1
0 ϕε0 (v) ≤ ϕε0 (hv) ≤ c

κ1
0 ϕε0 (v).(5.5)

We introduce the finite set Ψ of primitive x-integral and monomial
elements v of Λ∗E with degree in (0, d) such that

(5.6) ϕε0(v) ≥ c
−2κ1
0 fε0(x).

We assume ε0 is small enough to have

c4
0C1ε0 < 1.(5.7)



RANDOM WALKS ON HOMOGENEOUS SPACES 15

The proof then splits in two cases.

1st case: fε0 (x) ≤ max(b1, c
2κ1
0 ).

Then, by (5.5), for µ1-almost every h, one has fε0 (hx) ≤ cκ1
0 fε0 (x) and

(Aµ1f
δ
ε0

)(x) ≤ b.(5.8)

with b = (cκ1
0 max(b1, c

2κ1
0 ))δ.

2nd case: fε0 (x) > max(b1, c
2κ1
0 ).

We claim that in this case

Ψ contains at most one element up to sign change in each degree i.
(5.9)

If not, assume for a while that, for some 0 < i < d, the intersection
Ψ ∩ ΛiE contains two non-colinear elements v0 and w0. By (5.6), one
has ϕε0(v0) ≥ 1 and ϕε0(w0) ≥ 1. Besides, since v0 and w0 are x-
integral, one can write v0 as u ∧ v and w0 as u ∧ w where u, v, w are
x-integral monomials, v and w have degree j > 0 and u ∧ v ∧ w 6= 0.
The element u∧ v ∧w is then a x-integral monomial with degree i+ j.
We distinguish four cases.

i) If j < i and j < d− i. One has

fε0 (x) ≤ c
2κ1
0 min(ϕε0 (u ∧ v), ϕε0 (u ∧ w)) by (5.6)

≤ (c4
0C1ε0)

κ1
2 max(ϕε0(u), ϕε0(u ∧ v ∧ w)) by (4.4),

hence

fε0 (x) ≤ (c4
0C1ε0)

κ1
2 fε0 (x)(5.10)

which contradicts inequality (5.7).
ii) If j = i < d− i. In this case u = 1. The same computation, using

Lemma 4.2.ii), also gives (5.10) which still contradicts (5.7).
iii) If j = d − i < i. In this case ‖u ∧ v ∧ w‖ is an integer. The

same computation, using Lemma 4.2.iii), also gives (5.10) which still
contradicts (5.7).

iv) If j = i = d − i. The same computation, using Lemma 4.2.iv),
gives

fε0 (x) ≤ b1(5.11)

which contradicts our assumption.
This ends the proof of claim (5.9)
Now, by (5.5), for every non-zero x-integral monomial v in Λ∗E with

degree in (0, d), and µ1-almost every h, one has

ϕε0 (hv) ≤ max
w∈Ψ

ϕε0 (hw)
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and thus

(Aµ1f
δ
ε0

)(x) ≤
∑
w∈Ψ

∫
G

ϕδε0 (hw) dµ1(h) ≤ a0

∑
w∈Ψ

ϕδε0 (w),

the second inequality following from Lemma 4.3. Hence, using (5.9),
one has

(Aµ1f
δ
ε0

)(x) ≤ a0d f
δ
ε0

(x).(5.12)

Finally, one gets (5.2) with a := 1+a0d
2

by combining inequalities (5.8)
and (5.12) with (5.4).

Proof of Proposition 5.1. Let L be a compact subset of X. By Remark
5.2 and Mahler’s compactness criterion, there exists ε0 > 0 such that
the function fε0 is bounded on L. As µ has finite exponential moments,

so is the function Akµf
δ
ε0

for any nonnegative integer k, provided δ > 0
is small enough. Now, by Proposition 5.3, one can suppose there exists
n ≥ 1, 0 < a < 1 and b > 0 with Anµf

δ
ε0
≤ af δε0 + b. By setting

f =
∑n−1

k=0 a
1− k+1

n Akµf
δ
ε0

we get Aµf ≤ a
1
nf + b, whence the result.

Proof of Theorem 1.1 for G = SL(d,R) and Λ = SL(d,Z). This
follows from Corollary 2.2 and Proposition 5.1.

Proof of Theorem 1.4 for G = SL(d,R) and Λ = SL(d,Z). According
to Lemma 2.1 and Proposition 5.3, is suffices to check that, if fε0 (gx0) =

∞, then g−1Hnc
µ g is contained in some Λ-rational parabolic subgroup

of G. Here, the Λ-rational parabolic subgroups of G are the stabilizers
of the vector subspaces of Rd which are defined over Q. Hence this
statement follows from Remark 5.2.

6. Reduction steps

We explain now how to reduce Theorems 1.1 and 1.4 to
the case we dealt with in the previous section.

Let G be a real Lie group, r the largest amenable ideal of g, s := g/r,
S := Aut(s) and R := Ker(Ads) be the Kernel in G of the adjoint
action in s. Let Λ ⊂ G be a lattice and X = G/Λ. According to
Auslander projection theorem and Borel density theorem, one has the
following lemma (see [15] or [2] for a detailed proof) :

Lemma 6.1. (i) The intersection Λ ∩ R is a cocompact lattice in R.
(ii) The image group ΛS := Ads(Λ) is a lattice in S.

Let µ ∈ P(G) be a Borel probability measure on G with finite expo-
nential moments in s, Hµ ⊂ S be the Zariski closure of the subgroup
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spanned by the support of µ in G, and

X ′ :=

{
x = gx0 ∈ X | g−1Hnc

µ g is not contained in any
proper ΛS-rational parabolic subgroup of S

}
(6.1)

(recall that a parabolic subgroup of S is said to be ΛS-rational if its
unipotent radical intersects ΛS in a lattice).

The following theorem is a restatement of Theorems 1.1 and 1.4.

Theorem 6.2. Let G be a real Lie group, Λ be a lattice in G, X :=
G/Λ, and µ be a probability measure on G with finite exponential mo-
ments in s and such that the group Hnc

µ is semisimple. Then,
a) The action of (G, µ) on X satisfies the recurrence property R.
b) This action also satisfies the uniform recurrence property S(X ′).

Proof of Theorem 6.2.
1st case: G is semisimple and Λ = GZ.

More precisely, we assume here that G is a semisimple algebraic sub-
group of SL(d,R) defined over Q and that Λ is the group G∩SL(d,Z).
In this case, according to [15, Chap. 1], the space X = G/Λ is a
closed subset of X0 := SL(d,R)/SL(d,Z). The recurrence property R
of (G, µ) on X then follows from the recurrence property R on X0.

By Lemma 2.1 and Proposition 5.3, to check the uniform recurrence
property S(X ′), it suffices to check that for ε0 small enough, one has
the inclusion

X ′ ⊂ Dfε0
.(6.2)

To this aim, we first recall a few facts from Geometric Invariant Theory.
Let V = CD and G ⊂ GL(V) be a reductive subgroup. A vector in

V is said to be stable if its G-orbit is closed. It is said to be unstable if
0 belongs to the Zariski closure of its G-orbit. According to Geometric
Invariant Theory in [13], a vector v is unstable if and only if for every
G-invariant polynomial F on V, one has F (v) = F (0).

Assume G is semisimple. According to Kempf in [10, Corol. 3.5], the
stabilizer of an unstable vector v ∈ V is contained in a proper parabolic
subgroup P  G. Moreover, when G is defined over a subfield k of
C and v belongs to kD, one can choose the parabolic subgroup P to
be defined over k ([10, Theorem 4.2], see also [16] when k is a number
field).

Lemma 6.3. Let V = RD and G ⊂ SL(V ) be a semisimple subgroup
defined over Q. Then there exists ε0 such that every vector v = gv0

with norm ‖v‖ ≤ ε0 which belongs to the G-orbit of some integral vector
v0 ∈ ZD is unstable.
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Proof of Lemma 6.3. Let S be the set of G-invariant polynomials
F ∈ Z[V ] such that F (0) = 0. The set Z of unstable vectors in V
is the set of zeroes of these polynomials. As the ring of G-invariant
polynomials in Z[V ] is finitely generated, it is Noetherian and Z is the
set of zeroes of some finite subset S0 ⊂ S. Choose ε0 small enough
to have, for any v ∈ V and any F ∈ S0, ‖v‖ ≤ ε0 =⇒ |F (v)| < 1. If
moreover v belongs to the G-orbit of some point v0 ∈ Zd, F (v) = F (v0)
is an integer. Hence F (v) = 0 and v is an unstable vector.

We now can check inclusion (6.2). Indeed, let x = gx0 be a point
in X such that fε0 (gx0) = ∞. According to Remark 5.2 there exists

0 < i < d and a Hnc-invariant x-integral monomial v ∈ ΛiE such that
‖v‖ < εδi0 . Since v is x-integral, the vector v0 := g−1v ∈ ΛiE is integral.
According to Lemma 6.3, if ε0 is small enough, this vector is unstable.
By Kempf’s theorem quoted above, the stabilizer of v0 is contained in
some proper parabolic subgroup of G defined over Q, hence the group
g−1Hnc

µ g is contained in some proper Λ-rational parabolic subgroup of
G. This ends the proof of Theorem 6.2 in the first case.

2nd case: G = Aut(g) with g simple of real rank 1.
If the group Hnc

µ is non trivial, it is not contained in any proper para-
bolic subgroup of G. Hence our statements follow from Eskin, Margulis
theorem in [6]. For the sake of completeness, we sketch a proof.

Let us construct a continuous finite and proper function f on X for
which (G, µ) has the contraction property CH(f). As Λ is a lattice
in G, by [9], there exists finitely many Λ-conjugacy classes of maximal
unipotent subgroups which intersect Λ in a lattice. Pick representatives
U1, . . . , Ur of these Λ-conjugacy classes. Again by [9], if a sequence
xn = gnx0 goes to ∞ in X, after eventually extracting a subsequence,
there exists 1 ≤ i ≤ r and a sequence (λn) in Λ such that, for any
u in Ui, gnλnuλ

−1
n g−1

n goes to e in Ui. Moreover, when n is large,
λnUiλ

−1
n is uniquely defined by gn. Now, let V be a faithful irreducible

representation of G. If U is some maximal unipotent subgroup of G and
v is some non-zero U -invariant vector in V , by Iwasawa decomposition,
for any sequence (gn) in G, gnv goes to 0 in V if and only if gnug

−1
n

goes to e in G for any u in U . Thus, if, for any 1 ≤ i ≤ r, vi is some
non-zero Ui-invariant vector in V , the set Λv1 ∪ . . .∪Λvr is discrete in
V and the function f defined by, for any x = gx0 in X,

f(gx0) := max
1≤i≤r

max
λ∈Λ
‖gλvi‖−1(6.3)
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is continuous and proper. We claim that, for δ > 0 small enough, f δ

satisfies the contraction property CH(f δ) with respect to some con-
volution power of µ. Indeed, this follows from Lemma 4.4, since the
image in P(V ) of the G-orbit Gvi is compact and does not contain any
Hnc
µ -invariant element.

3rd case: G = Aut(g) where g is semisimple without compact ideal.
Replacing Λ by a finite index subgroup, we may write G as a finite
product of groups Gi so that X is a finite product of spaces Xi = Gi/Λi

where Λi is an irreducible lattice in Gi. It is enough to prove Theorem
6.2 for each factor Xi.

Hence we may assume that Λ is an irreducible lattice of G. Thanks
to the second case, we may assume that G has real rank at least two.
According to Margulis’ arithmeticity theorem in [11], there exist d ≥ 2,
a semisimple subgroup G′ ⊂ SL(d,R) defined over Q and a Lie group
morphism ϕ : G′ → G with compact kernel, finite index image and
such that ϕ(Λ′) and Λ are commensurable where Λ′ := G′ ∩ SL(d,Z).
We can choose ϕ to be surjective so that we can write µ = ϕ∗µ

′ for
some Ker(ϕ)-invariant probability measure µ′ on G′.

According to the first case, Theorem 6.2 is true for X ′ := G′/Λ′.
Since Ker(ϕ) is a compact normal subgroup of the Zariski closure of
Γµ′ , the functions fε0 constructed on X ′ are Ker(ϕ)-invariant, hence
can be seen as functions on G/ϕ(Λ′). This proves that Theorem 6.2 is
also true for G/ϕ(Λ′).

The validity of the recurrence properties R and S(X ′) on X = G/Λ
only depends on the commensurability class of Λ. Hence Theorem 6.2
is also true for G/Λ.

4th case: General case.
Let R := Ker(Ads) be the Kernel in G of the adjoint action in s. Since
s is semisimple, the group G/R is a finite index subgroup of the group
Aut(s). According to Lemma 6.1, the intersection Λ∩R is a cocompact
lattice in R and the image ΛS of Λ in Aut(s) is a lattice. According
to the third case, Theorem 6.2 is true for S/ΛS. Since the projection
G/Λ→ S/ΛS is a proper map, Theorem 6.2 is also true for G/Λ.

7. Products of real and p-adic Lie groups

In this section we extend our results to finite products of
real and p-adic Lie groups and more generally to S-adic
Lie groups.
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We also check that the functions constructed above
which are contracted by the random walk can be chosen
to grow exponentially.

Let S be a finite subset of the set of prime numbers including ∞.
We denote by Qp the field of p-adic numbers and by Q∞ = R the field
of real numbers or ∞-adic numbers.

Let G be an S-adic Lie group i.e. G is a locally compact group which
contains an open subgroup U isomorphic to a group (

∏
p∈S Gp)/N

where, for each p ∈ S, Gp is a p-adic Lie group and N is a discrete
normal subgroup of this product (see [2]). We denote by g the Lie
algebra of G i.e. the Q-vector space g := ⊕gp which is the direct sum
of the Lie algebras gp of Gp.

Let Λ be a lattice of G. For such a group G, we have to replace
Lemma 6.1 by the following Lemma 7.1 which is the main Theorem of
[2].

Lemma 7.1. There exists a G-invariant ideal r of g with the following
three properties. We let s := g/r and R be the kernel of the adjoint
action Ads : G→ Aut(s) in s.

(i) The Lie algebra s := g/r is semisimple.
(ii) The intersection Λ ∩R is a cocompact lattice in R.
(iii) The image ΛS := Ads(Λ) ' Λ/(Λ ∩R) is a lattice in Aut(s).

We endow each of the Lie algebras sp with a norm ‖.‖p, and, for g
in G, we let ‖Ads(g)‖ =

∏
p∈S ‖Adsp(g)‖p be the height of ‖Ads(g)‖.

Let µ ∈ P(G) be a Borel probability measure on G. Let Γ = Γµ be
the closed sub-semigroup generated by the support of µ. Let Hp be the
Zariski closure of Adsp(Γ) in Aut(sp) and Hµ :=

∏
p∈S Hp ⊂ Aut(s).

Let Hnc
p be the smallest normal algebraic subgroup of Hp such that the

image of Γ in Hp/H
nc
p is relatively compact, and Hnc

µ :=
∏

p∈S H
nc
p .

We assume that
Hnc
µ is semisimple and

µ has finite exponential moments in s,
(7.1)

i.e. the p-adic Lie groups Hnc
p , p ∈ S, are semisimple and∫

G

‖Ads(g)‖δ dµ(g) <∞ for some δ > 0.

Since each factor ‖Adsp(g)‖p is larger than 1, the latter assumption
is equivalent to∫

G

N(Ads(g))δ
′
dµ(g) <∞ for some δ′ > 0,
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where N(Ads(g)) := max
p∈S
‖Adsp(g)‖p.

As in the introduction, we note that, when G is a linear group i.e.
a subgroup of

∏
p∈S SL(d,Qp) for some d > 1, assumptions (7.1) are

satisfied as soon as, for every p in S, µ has finite exponential moments in
Qd
p and the Zariski closure of the image of Γµ in SL(d,Qp) is semisimple.
A subgroup P of Aut(s) is called a parabolic subgroup if it is the

product of parabolic subgroups Pp of Aut(sp). The product U of the
unipotent radicals Up of Pp is called the unipotent radical of P . A
parabolic subgroup P ⊂ Aut(s) is said to be ΛS-rational if the lattice
ΛS intersects the unipotent radical of P in a lattice. We can then again
define the subset X ′ ⊂ X by (6.1).

The following theorem is the extension of Theorem 6.2 to S-adic Lie
groups. We keep the notations of Lemma 7.1.

Theorem 7.2. Let G be an S-adic Lie group, Λ be a lattice in G,
X := G/Λ and µ be a probability measure on G with finite exponential
moments in s and such that the group Hnc

µ is semisimple. Then,
a) The action of (G, µ) on X satisfies the recurrence property R.
b) This action also satisfies the uniform recurrence property S(X ′).

As in the real case we will deduce this theorem from the existence
of functions f satisfying contraction properties. For further use in [3],
we will need to control the growth of these functions f .

Let x0 be the base point of X. For x in X, we set

‖x‖ := min{‖Ads(g)‖ | g ∈ G , x = gx0}.(7.2)

Definition 7.3. A function f : X → [0,∞] is said to grow exponen-
tially, if there exists c > 0, κ > 0 such that, for any x ∈ X,

f(x) ≥ ‖x‖κ − c.(7.3)

As above, it is equivalent to the existence of c′ > 0, κ′ > 0 such that,
for any x ∈ X,

f(x) ≥ N(x)κ
′ − c′

where N(x) := min{N(Ads(g)) | g ∈ G , x = gx0}.

Proof of Theorem 7.2. It is a consequence of Lemma 2.1, Corollary
2.2 and of the following Proposition 7.4.

Proposition 7.4. Let G be a S-adic Lie groups, Λ be a lattice in G,
X := G/Λ, and µ be a probability measure on G with finite exponential
moments in s and such that the group Hnc

µ is semisimple.
a) For every compact set L ⊂ X, there exists a proper Borel function
f : X → [0,∞] which is uniformly bounded on L, and such that the
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action of (G, µ) on X satisfies the contraction hypothesis CH(f).
b) Such a function f can be chosen in such a way that Df contains X ′.
c) Such a function f can also be chosen to grow exponentially.

Proof of Proposition 7.4. The proof is the same as for real groups. One
just has to change a few definitions. Here are the main modifications.

In section 3, we first note that what we have done there goes
through if one replaces the field R by a p-adic field Qp. The exten-
sion of the inequalities (3.1) we will need are nothing but product of
inequalities (3.1) for various real and p-adic fields.

In a more precise way, we introduce, the locally compact algebra
QS :=

∏
s∈S Qp. We endow this algebra with the height function given

for t = (tp)p∈S by |t| :=
∏

p∈S |tp|p where, for p finite, the absolute

value |.|p on Qp is normalized by |p|p = 1
p
. We set Ep := Qd

p and

E =
∏

p∈S Ep, and we endow E with the height function given by

‖v‖ :=
∏

p∈S ‖vp‖p and with the norm function N(v) := max
p∈S
‖vp‖p, for

v = (vp)p∈S ∈ E where ‖.‖p is a norm on Qd
p. The group H becomes

H =
∏

p∈S Hp where Hp ⊂ SL(d,Qp) is a reductive subgroup, and

A =
∏

p∈S Ap where Ap ⊂ Hp is a maximal Qp-split subtorus. The
group of characters of A is nothing but the product of the groups of
characters of each Ap

One sets ΛiE =
∏

p∈S ΛiEp. An element u = (up)p∈S ∈ ΛiE is said

to be monomial if, for all p ∈ S, up is monomial in ΛiQd
p.

With these notations, Proposition 3.1 is still true since (3.1) is the
product of the analoguous inequalities in each of the factors.

In section 4, we keep the same formula (4.3) for ϕε0 . We choose
the norms ‖.‖p to be Hc-invariant where Hc is a compact subgroup of
H such that ΓµH

nc ⊂ HcHnc.
With these notations, Lemmas 4.2 and 4.3 are still true. Note that

the validity of Lemma 4.4 relies on the positivity of the Lyapunov
exponent and hence on the fact that, by construction, the image of Γ
in each simple factor of Hnc

p is not relatively compact (see [4]).
In section 5, the space X becomes G/Λ with G = SL(d,QS) and

Λ = SL(d,ZS), where ZS := Z[1
p
, p ∈ S] is embedded diagonally in QS

so that X can be identified with the set of discrete ZS-submodules of
covolume 1 in Qd

S. We keep the same formula (5.1) for fε0 .
With these notations, Propositions 5.1 and 5.3 are still true. Indeed,

in this context, Mahler compactness theorem is still valid: a subset
Y ⊂ X is relatively compact if and only if one has inf

x∈Y
min
v∈x
‖v‖ > 0 or

equivalently if inf
x∈Y

min
v∈x

N(v) > 0.
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In section 6, there are still four cases:
1st case: In Lemma 6.3, V becomesQD

S , v0 is a vector in ZDS and G ⊂
SLQS(V ) is the set of QS-points of a Q-group G defined by polynomial
equations over Q.

2nd case: In this case G is either a real or a p-adic semisimple Lie
group of split rank one, with p <∞. If G is a real Lie group, the proof
goes the same; if not, by [17, Prop. 2], Λ is cocompact and there is
nothing to prove.

3rd case: Margulis’ Arithmeticity theorem still holds for irreducible
lattices in product of real and p-adic semisimple groups as soon as the
sum of the Qp-ranks of Gp is at least 2 (see [11]).

4th case: Same proof, replacing Lemma 6.1 by Lemma 7.1.
c) The bound (7.3) follows from the explicit formula for f .
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