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Abstract. We show that any finite volume quotient of an S-adic
Lie group admits a fibration with compact fibers over some finite
volume quotient of a product of algebraic semisimple p-adic Lie
groups.

We also prove a similar decomposition for lattices in a solvable
locally compact group.

1. Introduction

This text can be seen as a short survey of elementary results about
lattices Λ in a real Lie group G. However, its main purpose is the
extension of some of these results to the context of lattices Λ in more
general locally compact groups G. In particular, when G is an S-adic
Lie group i.e. a group which is locally the product of real and p-adic Lie
groups (see Definition 4.1), we prove in Theorem 6.6 a decomposition
theorem of Λ with respect to the adjoint action of G on a suitable
semisimple quotient s of its Lie algebra g.

With the same methods we prove also in Proposition 3.4 a similar
decomposition for lattices in a solvable locally compact group. The
proof relies on a property of certain minimal actions of Rd that we call
strong minimality.

Our motivation to prove the decomposition theorem 6.6 comes from
our paper [4] : In this paper we prove, when G is a real Lie group, some
recurrence properties of random walks on G/Λ which were conjectured
in [9]. Our decomposition theorem 6.6 is then the key ingredient which
allows us, in the last section of [4], to extend these recurrence properties
from the framework of real Lie groups to the one of S-adic Lie groups.
These recurrence properties will be used in [5] to extend the results of
[3].

Here is the structure of the paper :
– Section 2 : General facts about minimal actions of abelian groups.
– Section 3 : General facts about lattices in locally compact groups
and decomposition of lattices in solvable locally compact groups.
– Section 4 : General facts about S-adic Lie groups and Borel density
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theorem.
– Section 5 : A cocompactness criterion for lattices in S-adic Lie groups.
– Section 6 : The decomposition theorem for lattices in S-adic Lie
groups.

We thank U. Bader, P.E. Caprace, T. Gelander and S. Mozes for
showing us their unpublished example 3.5 related to [1].

2. Minimal actions of Rd

In this section we give a criterion for a locally compact
space X, equipped with a continuous minimal action of
Rd, to be compact.

Let A = Rd and X be a locally compact A-space, i.e. a space
endowed with a continuous action of A. We denote this action by
(a, x) 7→ a x.

An orbit Ax is said to be strongly dense if, for every non-empty open
convex cone C ⊂ A, the set Cx is dense.

We recall that the A-space X is minimal if all its A-orbits are dense.
The A-space X is said to be strongly minimal if all its A-orbits are
strongly dense.

Proposition 2.1. Let X be a minimal locally compact Rd-space.
a) If the action preserves a Borel probability measure µ on X, then
there exists at least one strongly dense orbit in X.
b) If the space X is compact, the action is strongly minimal.
c) Conversely, if the action is strongly minimal, X is compact.

By reading the proof, it is worth keeping in mind the following two
examples.

Example 2.2. There exists a minimal action of Rd which does not
contain any strongly dense orbit.

Proof. The action by translations of R on itself, or the product action
of R2 on R×X ′ where X ′ is a minimal R-space. �

Example 2.3. There exists a continuous action of R on a non-com-
pact locally compact space X which is minimal and preserves a Borel
probability measure µ on X.

Proof. Our example is a suspension over an irrational rotation of the
circle. Let T := R/Z be the circle, α ∈ T an irrational element, dθ the
Lebesgue probability on T and f : T → (0,∞] a continuous function
such that

∫
T f(θ) dθ = 1

2
and f−1(∞) = {0}. We set

Y := {(θ, t) ∈ T× R | −f(θ) ≤ t ≤ f(θ + α)}
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and X = Y/∼ the quotient space for the identifications

(θ,−f(θ)) ∼ (θ−α, f(θ)) , for all θ 6= 0 .

The space X is locally compact but not compact. There exists a con-
tinuous flow s 7→ ϕs on X such that ϕs(θ, t) = (θ, t + s) as soon as
both (θ, t) and (θ, t + s) are in Y . This flow is minimal and it pre-
serves the probability measure µ = dθ ⊗ dt. This flow is not strongly
minimal since the only limit point of the half orbit R+x0 of the point
x0 := (−α, 0) is the point x∞ := (−α,∞). �

Proof of Proposition 2.1. We endow Rd with the usual euclidean norm
‖.‖. Let C be the set of open convex cones C ⊂ Rd.

For C ∈ C and x ∈ X, we define the ωC-limit set of x to be

ωC(x) :=
⋂
a∈A

(a+ C)x.

By definition this set is closed and A-invariant. Since the action is
minimal, this set is either empty or equal to X.

a) We will check that

µ({x ∈ X | ∀C ∈ C , ωC(x) = X}) = 1.(2.1)

For ε > 0, choose a compact setK ⊂ X with µ(K) > 1−ε. By Poincaré
recurrence theorem, for µ-almost every x in K, for every rational vector
a in Rd, infinitely many translates (na)x, n ∈ N, belong to K. We note
that the interior of any C ∈ C contains a rational vector a. Hence for
such a point x, for every C ∈ C, one has ωC(x)∩K 6= ∅ and thus, since
the action is minimal, one has ωC(x) = X. Since ε is arbitrarily small,
this proves (2.1). In particular, the set given in (2.1) is non empty. We
conclude since every point in this set has a strongly dense orbit.

b) Since X is compact, all the sets ωC(x) are non empty. Since the
action is minimal, they are equal to X. Hence the action is strongly
minimal.

c) We can choose a constant ε0 > 0 and d+1 open convex cones
C0, . . . , Cd of Rd such that, for every family of d+1 vectors v0, . . . , vd
with ‖vi‖ = 1 and vi ∈ Ci,

the ball B(0, ε0) is contained in the convex hull of v0, . . . , vd.(2.2)

Let U be a non-empty open subet of X with compact closure K.
For 0 ≤ i ≤ d, let Ti : X → [0,∞] be the “hitting time of U in the
direction Ci” :

Ti(x) = inf{‖c‖ ≥ 1 | c ∈ Ci , cx ∈ U}.(2.3)
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Since the action is strongly minimal, the function Ti is finite every-
where. Since U is open, the function Ti is upper semi-continuous.
Hence, since K is compact, the constant

M0 := sup{Ti(x) | 0 ≤ i ≤ d , x ∈ K}

is finite. For every x ∈ X, we introduce the set of “hitting times”

Ax := {a ∈ Rd | ax ∈ K}.

Since the action is minimal the closed set Ax is non-empty. Let a be
an element of Ax with minimal norm. We claim that

‖a‖ ≤ M0

2ε0

.(2.4)

Indeed, for every 0 ≤ i ≤ d, one can find ci ∈ Ci with 1 ≤ ‖ci‖ ≤ M0

and a+ ci ∈ Ax. Since the element a has minimal norm in Ax, one has,
for all i,

‖a+ ci‖ ≥ ‖a‖.
Thus, for all i, if we set vi := 1

‖ci‖ci, we get

2 <a, vi> ≥ −M0.

Therefore, using (2.2), for any v in B(0, ε0), one has also

2 <a, v> ≥ −M0.

Choosing v := − ε0
‖a‖ a, we get the expected bound (2.4).

This bound (2.4) proves that, for all x in X, there exists a in B(0, M0

2ε0
)

and y in K such that x = a−1y. In particular, it proves that the space
X is compact. �

We conclude this section by noting that these results can easily be
adapted to actions of the group A = Zd.

3. Lattices in locally compact groups

We give elementary properties of lattices and we prove
a decomposition result for lattices in a locally compact
solvable group.

Let G be a locally compact group and H be a closed subgroup of
G. We shall say that H has finite covolume in G if the quotient G/H
admits a finite G-invariant Borel measure. For instance, a lattice is by
definition a discrete finite covolume subgroup.

Let us state some elementary properties of finite covolume subgroups.



LATTICES 5

Lemma 3.1. Let G be a locally compact group and H1, H2 be two
closed subgroups such that H1 ⊂ H2. Then H1 has finite covolume in
G if and only if simultaneously H1 has finite covolume in H2 and H2

has finite covolume in G.

Proof. This is classical (see [13, Lemma 1.6]). Recall (see [16]) that a
quotient G/H admits a G-invariant Radon measure if and only if the
modular function of H is the restriction to H of the modular function
of G.

If H1 has finite covolume in H2 and H2 has finite covolume in G, the
transitivity formula for integration on homogeneous spaces (see [16])
proves that G/H1 supports a G-invariant measure with total mass 1.

Conversely, if H1 has finite covolume in G, then the image in G/H2

of the G-invariant probability measure on G/H1 is also G-invariant
with total mass 1. The same transitivity formula proves that H1/H2

supports also a H1-invariant measure with total mass 1. �

Lemma 3.2. Let G be a locally compact group, H be a finite covolume
closed subgroup of G, G′ be an open subgroup of G and H ′ := H ∩G′.
a) The group H ′ has finite covolume in G′.
b) If H is cocompact in G then H ′ is cocompact in G′.
c) Conversely, if H ′ is cocompact in G′ and G′ is normal in G then H
is cocompact in G.

Proof. a) The restriction of the G-invariant probability on G/H to the
G′-orbit G′/H ′ is a non-zero finite G′-invariant measure.

b) The G′-orbits in the compact space G/H are open hence closed.
In particular G′/H ′ is compact.

c) Since the group G′H is open, the space G/G′H is discrete. This
space admits a finite measure which is invariant under the transitive
action of the group G/G′. Hence, this space is finite, that is G/H is
a finite union of G′-orbits. As each of these orbits is compact, G/H is
compact. �

From these results, we at once get the following

Lemma 3.3. Let N be a nilpotent locally compact group. Then any
finite covolume closed subgroup H ⊂ N is cocompact.

Proof. Let Z be the center of N and N ′ := HZ. By lemma 3.1, N ′ has
finite covolume in N and H has finite covolume in N ′.

Now, by an induction argument on the length of the central series
of N , the finite covolume subgroup N ′/Z of N/Z is cocompact. Hence
N ′ is cocompact in N .
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Besides, one has

[N ′, N ′] ⊂ [HZ,HZ] ⊂ [H,H] ⊂ H.

Hence H is normal in N ′ and the quotient N ′/H is a group. As its
Haar measure is finite, it is compact and H is cocompact in N . �

The proof of the following proposition will be much more delicate.

Proposition 3.4. Let G be a solvable locally compact group, Ge its
connected component, and H a finite covolume closed subgroup of G.
Then H is cocompact in the group HGe.

In particular, as was proven by Mostow, when G is solvable and
connected, any lattice H in G is cocompact in G.

If we set Gd for the totally discontinuous quotient Gd = G/Ge and
Hd for the finite covolume closed subgroup Hd := HGe, Proposition
3.4 tells us that the finite volume quotient G/H fibers over the totally
discontinuous finite volume homogeneous space Gd/Hd with compact
fibers.

Example 3.5. (Bader, Caprace, Gelander, Mozes) There exist
metabelian locally compact groups containing non-cocompact lattices.

Proof of Example 3.5. The group G is a semidirect product G = AoK
of a commutative discrete group A by a commutative compact group
K, where A is the direct sum of finite fields Fp for an infinite set S of
primes p such that

∑
p∈S p

−1 < ∞, and where K is the corresponding
product of multiplicative groups F∗p.

Let H be the subgroup of G generated by the following elements hp
for p ∈ S. The only non-trivial component of hp is the pth coordinate
which is (1−kp , kp) ∈ FpoF∗p where kp is a generator of F∗p. The orbits
of H in A ' G/K are the sets AI := {a ∈ A | p ∈ I ⇔ ap = 1}, for I
finite subset of S. The cardinality NI of the stabilizer of a point a ∈ AI
is NI =

∏
p∈I(p− 1). Since

∑
I N

−1
I <∞, H is a lattice in G. �

Proof of Proposition 3.4. We may assume that G = HGe. We argue by
induction on the length of the derived series of Ge. Let A be the closure
of the last non-trivial term of the derived series of Ge and H ′ := HA.
According to Lemma 3.1, the group H ′/A has finite covolume in G/A
and the group H has finite covolume in H ′.

By the induction hypothesis, the group H ′/A is cocompact in G/A
hence H ′ is cocompact in G. By Lemma 3.6 below, H is cocompact in
H ′. Hence H is cocompact in G. �
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Lemma 3.6. Let G be a locally compact group, H ⊂ G a finite co-
volume closed subgroup and A ⊂ G a normal closed connected abelian
subgroup. If G = HA, then H is cocompact in G.

Proof. According to [12, §2.21], as A is a connected locally compact
abelian group, it contains a largest compact subgroup KA and the
quotient group A/KA is isomorphic to Rd, for some d ≥ 0. By unique-
ness, KA is normal in G. Thus, after replacing G by G/KA and H by
HKA/KA, we may assume A = Rd.

We will apply Proposition 2.1 to the action of A on the locally com-
pact space X := G/H. Since H has finite covolume, this action pre-
serves a Borel probability measure. Since G = HA, this action is
minimal. Hence, by Proposition 2.1.a, there exists at least one orbit
Ax0 in X which is strongly dense. Since G acts transitively on X and
normalizes A, all the orbits Ax in X are strongly dense. Hence, by
Proposition 2.1.c, the space X is compact. �

More generally, the same argument proves the following

Proposition 3.7. Let G be a locally compact group, R a closed normal
connected amenable subgroup of G, and H a finite covolume closed
subgroup of G. Then H is cocompact in the group HR.

Proof. We use the following two facts: every connected locally compact
group is a compact extension of a connected Lie group (see [12]); every
amenable connected Lie group is a compact extension of its solvable
radical (see [17]). Hence the group R is a compact extension of a
connected solvable Lie group R1 which is normal in G. We follow then
the same proof as for Proposition 3.4 by induction on the length of the
derived series of R1. �

4. S-adic Lie groups

This section contains elementary definitions and facts
about S-adic Lie groups. It also contains a version of
the Borel density theorem for S-adic Lie groups.

We recall that Qp is the field of p-adic numbers and Q∞ = R is the
field of real numbers or ∞-adic numbers. Let S be a finite subset of
the set of prime numbers including ∞.

Definition 4.1. An S-adic Lie group G is a locally compact group
which contains an open subgroup U isomorphic to a group of the form
(
∏

p∈S Gp)/N where, for each p ∈ S, Gp is a p-adic Lie group and N
is a discrete normal subgroup of this product.
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Let G be an S-adic Lie group. The Q-vector space g := ⊕p∈Sgp
which is the direct sum of the Lie algebras gp of Gp does not depend
on the choices and is called the Lie algebra of G. This Lie algebra is an
S-adic Lie algebra i.e. a direct sum of p-adic Lie algebras with p in S.
The real Lie subalgebra g∞ is called the real factor of g. We say that
g is non-archimedean if g∞ = 0. The Lie subalgebra gf := ⊕p 6=∞gp
is called the non-archimedean factor of g. We will denote by Adgp

,

Adg, . . . the adjoint action of G in gp, g, . . .
Here are the first properties of S-adic Lie groups:

– Real Lie groups and p-adic Lie groups are S-adic Lie groups.
– A product of two S-adic Lie groups is an S-adic Lie group.
– A closed subgroup of an S-adic Lie group is an S-adic Lie group (see
[14, Prop. 1.5]).
– The quotient of an S-adic Lie group by a closed normal subgroup is
an S-adic Lie group.

An S-adic Lie group can be connected, even if its Lie algebra ad-
mits a nontrivial non-archimedean factor, as, for example, the solenoid
(R × Qp)/Z[1

p
], where Z[1

p
] is embedded diagonally in R × Qp, or the

group ( ˜SL(2,R)×Zp)/Z, where Z is embedded diagonally as a central

subgroup in ˜SL(2,R)× Zp.
The following proposition is a version of the classical Borel density

theorem in the framework of S-adic Lie groups (see [13, Chap. 5], [17,
Chap. 3] or [11, §2.4]).

Proposition 4.2. Let G be an S-adic Lie group, p ∈ S, H ⊂ G a finite
covolume closed subgroup, π : G→ GL(d,Qp) a continuous morphism.
a) For any H-invariant line x0 ∈ P(Qd

p), the G-orbit Gx0 is compact.
b) If G has no proper cocompact normal subgroups, then any H-inva-
riant line x0 ∈ P(Qd

p) is G-invariant.
c) If G has no proper cocompact normal subgroups, then the Zariski
closures of π(H) and π(G) are equal.

Example 4.3. In point a), there does not always exist a cocompact
normal subgroup of G stabilizing x0.

Proof of 4.3. We give an example with p = ∞ and G real connected.
We denote by rθ ∈ SO(2,R) ⊂ SO(3,R) the rotation of angle θ and we
fix α ∈ RrQ. We choose

G := SO(3,R)× R,
H := {(rθ, θ) | θ ∈ 2απZ},

K := SO(3,R)× SO(2,R)× SO(2,R), and
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π : G→ K; (k, θ) 7→ (k, rθ, rθ/α),

and we set M := π(H) = {(rθ, rθ, 1) | θ ∈ R}. The subgroup H is a
cocompact lattice in G but, for no β ∈ R, does the cocompact normal
subgroup G′ = {(1, θ) | θ ∈ βZ} fix the base point x0 ∈ K/M . �

Proof of Proposition 4.2. a) After replacing G by a finite index sub-
group, we may assume that π(G) is Zariski connected. We may also
assume that the orbit Gx0 spans Qd

p.
We claim that

the closure K := π(G) is a compact subgroup of PGL(d,Qp).(4.1)

Since x0 is H-invariant, one has a G-equivariant map

i : G/H → P(Qd
p) given by i(gH) = gx0.

The probability measure i∗(µ) on P(Qd
p), which is the image of the G-

invariant probability measure µ on G/H, is K-invariant. Lemma 4.4
below shows that the group K is compact, as claimed in (4.1).

Since we have not assumed G and π to be algebraic, the group π(G)
might not be closed as in Example 4.3. This will make the proof a little
bit longer. Let C ⊂ G be an open relatively compact subset so that
one has

i∗(µ)(Cx0) > 0.

We can assume π to be injective. The group G is then a p-adic Lie
group. Since the continuous morphism π is Qp-analytic, the set Cx0

is a Qp-submanifold of Kx0. Since i∗(µ) is the K-invariant probability
measure on Kx0, one has then

dimQp Cx0 = dimQp Kx0

and the orbit Gx0 is open in Kx0. Since π(G) is dense in K, every
G-orbit in Kx0 is dense hence meets the open set Gx0. This proves the
equality Gx0 = Kx0 and this ends the proof of a).
b) We assume now that G does not admit any proper cocompact

normal subgroup. In particular, the group π(G) is Zariski connected.
We may again assume that the orbit Gx0 spans Qd

p. We want to prove
that this orbit is a singleton or, equivalently, that

the group K := π(G) is trivial.(4.2)

We may again assume that π is injective. We note first that the group
K is connected : indeed for any open normal subgroup K ′ in K, the
group G′ := π−1(K ′) is a finite index normal subgroup of G.

Therefore, we may assume p = ∞ and G is a real Lie group. Now,
the connected component Ge of G is an open subgroup of G. Thus,
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GeH being an open finite index subgroup of G, it contains an open
normal finite index subgroup and we get

G = GeH.

Let S := [K,K] and let T be the connected component of the center
of K, so that K = ST and S ∩ T is finite. We let k, s and t denote the
Lie algebras of the real compact Lie groups K, S and T .

Let L be the immersed subgroup π(Ge) in K and l be its Lie algebra.
As Ge is normal in G and π(G) is dense in K, l is an ideal in k, and
one has

l = (l ∩ s)⊕ (l ∩ t).

Set l′ = l ∩ s and let L′ be the closed normal connected subgroup of
K with Lie algebra l′. This group L′ is included in L and the group
G′ = π−1(L′) is included in Ge. As Ge is a connected Lie group,
π induces a homeomorphism from compact subsets of Ge onto their
images and G′ is a compact connected normal subgroup of G. Now, we
have Adl′(K) = Adl′(L

′), hence

G = ZG(G′)G′,

where ZG(G′) denotes the centralizer of G′ in G. In particular, ZG(G′)
is a normal cocompact subgroup of G. Therefore, ZG(G′) = G and L′

is a central subgroup of K, that is

L ⊂ T

Let M be the closure of π(H). As G = GeH, we have

K = TM.

As Gx0 spans Qd
p, the group K acts faithfully on the orbit Kx0 = Gx0

and we have ⋂
k∈K kMk−1 = {e}(4.3)

Thus we have M = {e}, that is H = {e}. Now, the group G has finite
Haar measure, hence is compact. Since G does not admit any proper
cocompact normal subgroup, G is trivial and K is trivial too, what we
claimed in (4.2).

c) Now, let G be the Zariski closure of π(G) in GL(d,Qp) and H be
the Zariski closure of π(H). According to Chevalley Theorem (see [2,
5.1]) there exists an algebraic representation ρ : G→ PGL(m,Qp) and
a line x0 ∈ P(Qm

p ) whose stabilizer is H. By point b) applied to this
representation ρ, we get π(G) ⊂ H hence G = H. �
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Lemma 4.4. Let ν be a probability measure on P(Qd
p). Suppose that,

for any two proper subspaces E1, E2  Qd
p with dimE1 + dimE2 ≤ d,

the support of ν is not contained in the union P(E1)∪P(E2). Then the
stabilizer S := {g ∈ PGL(Qd

p) | g∗ν = ν} of ν is compact.

Proof. This lemma due to Furstenberg is proven in [17, §3.2]. �

Corollary 4.5. Let G be an S-adic Lie group and H be a finite covol-
ume closed subgroup of G, with Lie algebra h.
a) Then the normalizer NG(h) is cocompact in G.
b) If G has no proper cocompact normal subgroup, G normalizes h.

Example 4.6. In point a), there does not always exist a cocompact
normal subgroup of G normalizing h.

Proof of 4.6. We give an example with p <∞ and G nilpotent with an
exact sequence 1 → G0 → G → Z → 1 where G0 is an open compact
subgroup. Let K be the group of upper triangular unipotent 4 × 4-
matrices u with coefficients ui,j in Zp, for 1 ≤ i < j ≤ 4. The group G
is immersed in K as

G := {u ∈ K | u1,2 ∈ Z}.
The group H is the closed subgroup of G isomorphic to Z× Zp,

H := {u ∈ G | u1,3 = u2,3 = u1,4 = u2,4 = 0}.
One computes the normalizer NG(h) = {u ∈ G | u1,3 = u2,3 = 0}

and the group ∩g∈GgNG(h)g−1 := {u ∈ G | u1,2 = u1,3 = u2,3 = 0} is
not cocompact in G. �

Proof of Corollary 4.5. a) Applying, for any p in S, Proposition 4.2 to
the adjoint representation of G in Λdpgp, where dp := dimQp(hp), we get

that the G-orbit of the line xp := Λdphp is compact. But the G-orbits in
the product

∏
p∈S Gxp are open and hence closed. Thus the stabilizer

NG(h) of the point x := (xp)p∈S is cocompact in G.
b) Since H normalizes h, by Proposition 4.2, G normalizes h too. �

Corollary 4.7. For any p in S, let Gp be the group of Qp-points of a
Qp-algebraic semisimple group with no anisotropic factor and set G =∏

p∈S Gp. If H is a finite covolume closed subgroup of G, for any p in
S, the image of H in Gp has finite index Zariski closure.

Proof. For any p in S, let G+
p be the subgroup of Gp which is spanned

by unipotent one-parameter subgroups in Gp. As Gp does not have
anisotropic factors, G+

p is open with finite index in Gp and every co-
compact normal subgroup of Gp contains G+

p . The result now follows
from Proposition 4.2 applied to the group G =

∏
p∈S G

+
p . �
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Corollary 4.8. Let G be as above and Λ be a lattice in G, then Λ has
finite index in its normalizer NG(Λ).

Proof. Let N := NG(Λ) be the normalizer of Λ and n its Lie algebra.
By noetherianity there exists a finitely generated subgroup Λ0 ⊂ Λ
whose centralizer in g is the same as the one of Λ. Since Λ is discrete,
the elements of N which are small enough commute with Λ0. Hence
the group Λ centralizes n. By corollary 4.7, the centralizer of n in G
has finite index. Hence n is a central ideal of g. Such an ideal is trivial,
hence the group N is discrete. Since Λ ⊂ N and Λ is a lattice in G,
this group Λ has finite index in N . �

5. Cocompactness of lattices

We give a sufficient criterion for an S-adic Lie group G
to admit only cocompact lattices.

We say that an S-adic Lie algebra g is amenable if it is the Lie
algebra of some amenable S-adic Lie group, that is if g∞ does not admit
any noncompact semisimple Lie algebra or, equivalently, if g does not
contain a copy of sl(2,R). In particular, every non-archimedean S-adic
Lie algebra is amenable.

Proposition 5.1. Let G be an S-adic Lie group whose Lie algebra
g is amenable. Then any finite covolume closed subgroup H ⊂ G is
cocompact.

We begin the proof of Proposition 5.1 by a special case :

Lemma 5.2. Let G be a non-archimedean S-adic Lie group. Then any
finite covolume closed subgroup H ⊂ G is cocompact.

We note that Lemma 5.2 can not be extended to any locally compact
totally discontinuous group G. Indeed, for example, if k is the non-
archimedean local field with positive characteristic Fq((T )), the group
SL(2,Fq[T−1]) is a non-cocompact lattice in SL(2, k).

When H is a lattice in G, Lemma 5.2 is [14, Prop. 2]. In this case the
proof is very short: Just choose a torsion free compact open subgroup
Ω of G, and note successively that the action of Ω on G/H is free, that
all the Ω-orbits have same volume, that there are only finitely many Ω
orbits and that G/H is compact.

In order to adapt this proof to non discrete groups H, we recall a
few facts on standard groups and on invariant measures.

A p-adic Lie group Gp with Lie algebra gp is said to be standard if
there exists a compact open subgroup Op of gp which is invariant by
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the Lie bracket and such that the exponential map Op → Gp is well-
defined and is a bijection onto Gp (see [7]). A non-archimedean S-adic
Lie group is said to be standard if it is a product of standard p-adic Lie
groups. By [15, Prop. 1.1], if G is standard, every closed subgroup H
of G with Lie algebra h is contained in exp(h). Every non-archimedean
S-adic Lie group contains a standard open subgroup.

Let G be an S-adic Lie group. Then the tangent bundle of G iden-
tifies G-equivariantly on the right with G × g and, through this iden-
tification, the left action of G reads as the map

G× (G× g)→ G× g; (g, h, v) 7→ (gh,Adg(g)v).

Besides, if λ is a right Haar measure on G, there exists a Haar measure
ω on g such that λ is the measure associated to the constant field g 7→ ω
on G. In particular, the modular function of G is the function g 7→
| det(Adg(g))| :=

∏
p∈S | det(Adgp

(g))| and, if H is a closed subgroup

of G, the space G/H admits a G-invariant measure if and only if, for
any h in H, | det(Adg/h(h))| = 1.

Proof of Lemma 5.2. According to Lemma 3.1, the group H has also
finite covolume in the normalizer NG(h) of h in G. According to Corol-
lary 4.5, NG(h) is cocompact in G. Hence, it is enough to show that H
is cocompact in NG(h). Thus, replacing G by NG(h), we may assume
that the Lie algebra h is Adg(G)-invariant. In this case, the tangent
bundle of X := G/H identifies with X × g/h and the action of G on
this bundle can be read as the map

G× (X × g/h)→ G× g/h; (g, x, v) 7→ (gx,Adg/h(g)v).

In the same way, if x0 is the base point of X and λX is the G-invariant
probability measure, then λX comes from the field

x = gx0 7→ | det(Adg/h(g))|ω

where ω is some fixed Haar measure on g/h (note that, by the remark
above, for any h in H, | det(Adg/h(h))| = 1). Now, we claim that

|det(Adg/h(g))| = 1 for all g in G.(5.1)

Indeed the character χ : G → R∗+; g 7→ |det(Adg/h(g))| is trivial on

H and the probability measure χ∗λX on R∗+ is χ(G)-invariant, hence
χ(G) = 1. Thus, λX comes from the constant field x 7→ ω on X.

We will then prove that, for any compact open subgroup, Ω one has

inf
x∈X

λX(Ωx) > 0.(5.2)
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To do this, we may assume that Ω =
∏

p∈S Ωp is a standard open com-

pact subgroup of G. We write Ω = exp(O) where O =
∏

p∈S Op and
exp is the componentwise exponential map. Now, since Ω is standard,
the set H0 := exp(h∩O) is the largest subgroup of Ω with Lie algebra
h. For every x := gx0 in X, the Ω-orbit map at x gives rise to an
embedding Ωx ' Ω/(Ω ∩Hx) ↪→ X, where Hx := gHg−1 is the stabi-
lizer of x in G, and λX restricts on Ωx as the measure coming from the
constant field y 7→ ω. Since G normalizes h, the Lie algebra of Hx is
equal to h and Hx ∩Ω is contained in H0 as a subgroup of finite index
dx. Thus, we get

λX(Ωx) = dx
dx0
λX(Ωx0)

and this quantity is bounded below by λX(Ωx0)
dx0

, whence Equation (5.2).

Since X has finite volume, this implies that Ω has only finitely many
orbits in X and X is compact. �

Proof of Proposition 5.1. We proceed by induction on the dimension of
the largest solvable ideal r∞ of g∞.

1st case : r∞ = 0.
In this case, the connected immersed subgroup G∞ of G with Lie al-
gebra g∞ is compact. According to Lemma 3.1, the group HG∞/G∞
has finite covolume in the non-archimedean S-adic Lie group G/G∞.
Hence according to Lemma 5.2, the group H is cocompact in G.

2nd case : r∞ 6= 0.
We argue here exactly as in the proof of Proposition 3.4. Let R∞ be
the connected immersed real Lie group with Lie algebra r∞. Let A
be the closure of the last non trivial term of the derived series of R∞
and H ′ := HA. According to Lemma 3.1, the group H ′/A has finite
covolume in G/A and the group H has finite covolume in H ′. By the
induction hypothesis, the group H ′/A is cocompact in G/A hence H ′

is cocompact in G. By Lemma 3.6, the group H is cocompact in H ′.
Hence the group H is cocompact in G. �

6. Projections of lattices

The aim of this section is to prove, for any lattice Λ in any
S-adic Lie group G, a decomposition theorem of Λ with
respect to the adjoint action on a suitable semisimple
quotient s of the Lie algebra of G (Theorem 6.6).

Proposition 6.1. Let G be an S-adic Lie group. Let r0 be the smallest
ideal of g such that the Lie algebra s0 := g/r0 is semisimple and such
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that, for any non zero G-invariant ideal s1 of s0, the group Ads1(G) is
an unbounded subgroup of Aut(s1). Let R0 := Ker(Ads0) be the kernel
of the adjoint map in s0.

Then, for any lattice Λ in G, the Lie algebra l of the group L := ΛR0

is amenable.

We postpone the proof of Proposition 6.1 to the end of this section.

If S = {∞}, the group ΛR0 is closed (see lemma 6.4 below). In the
general setting, our statement is optimal, as shown by the following
two examples.

Example 6.2. The S-adic Lie group L may contain Lie subgroups
isomorphic to PSL(2,Qp) with p finite.

Proof. Let G0 be a non compact simple p-adic Lie group, for instance
G0 = PSL(2,Qp). We will prove, more generally, that L may contain
Lie subgroups isomorphic to G0. Let Y := G0/K0 where K0 is a com-
pact open subgroup of G0 and R0 be the free group on Y , i.e. the
discrete free non-abelian group with infinitely many generators ey with
y in Y . We define G to be the semidirect product G := G0nR0 where
the action by conjugation of G0 on R0 is given by g0eyg

−1
0 = eg0y for

all g0 in G0 and all y in Y . Every element g of G can be written in a
unique way as g = rgsg with rg in R0 and sg in G0.

Let us now construct a lattice Λ in G. We first construct a discrete
subgroup F of G. For y in Y , one chooses an element ay in G0 which
fixes y. We assume that ay has infinite order. Let F be the group
generated by the elements

fy := eyay = ayey.

We claim that
the group F is a free discrete subgroup of G
and the map F → R0; f 7→ rf is a bijection.

(6.1)

Indeed, the R0 component rw of a word

w = fn1
y1
· · · fn`

y`
with yi ∈ Y and ni ∈ Z

is equal to

rw = en1
z1
· · · en`

z`
with zj := an1

1 · · · a
nj−1

j−1 (yj).

This proves (6.1).
Let Λ0 be a torsion free cocompact lattice in G0. Since Λ0 acts freely

on Y , we can choose the ay, y ∈ Y , in such a way that, for every
λ0 in Λ0 and y in Y , one has aλ0y = λ0ayλ

−1
0 . This ensures that Λ0
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normalizes the group F . We choose Λ to be the group Λ := Λ0F . This
group is discrete and cocompact in G but its projection on G/R0 is
dense. Hence, in this case, the group L is equal to G = G0 nR0. �

Example 6.3. When Λ is a discrete subgroup of G which is not as-
sumed to be a lattice, the Lie algebra l may contain Lie subalgebras
isomorphic to sl(2,R).

Proof. Let G0 be a simple real Lie group, for instance G0 = PSL(2,R),
and Γ be a dense subgroup of G0. Let G be the cartesian product
G := G0 × R0 where R0 is a copy of Γ endowed with the discrete
topology. The discrete subgroup Λ := {(γ, γ) | γ ∈ Γ} is a discrete
subgroup of G whose projection in G0 is dense. Proposition 6.1 tells
us that this can not happen if Λ is a lattice in G. �

For real Lie groups G, Proposition 6.1 is a consequence of the fol-
lowing

Lemma 6.4. Let G be a real Lie group and Λ be a lattice in G. Let r
be the largest amenable ideal of g, s := g/r and R be the kernel of the
adjoint action Ads : G→ Aut(s) in s. Then, the intersection Λ∩R is
a cocompact lattice in R and the image Ads(Λ) is a lattice in Aut(s).

Proof. 1st case : G is a connected real Lie group.
Let Re be the connected component of R. The group Re is the largest
closed connected normal amenable subgroup of G. Since Re is a com-
pact extension of a solvable group, according to Auslander projection
theorem in [13, Chap. 8], the group L := ΛRe has an amenable Lie
algebra l. Since l is normalized by Λ and s has no compact factors, by
Borel density theorem ([13, Chap. 5] or Corollary 4.7), l is an ideal of
g. Hence l = r, and the group ΛRe is closed. By Lemma 3.1, Λ ∩ Re

is a lattice in Re. Since Re is amenable, this lattice is cocompact ([13,
Chap. 4] or Proposition 5.1). Replacing G by G/Re, we can assume
that G is semisimple connected with no compact factor.

The group R is then discrete and is the center of G. Since the group
L := ΛR has a discrete derived subgroup, its Lie algebra l is abelian.
Again by Borel density theorem, one gets l = 0. Hence L is discrete
and, by Lemma 3.1, the group L/Λ ' R/(Λ ∩ R) is finite. Thus the
image Λs = Ads(Λ) ' Λ/(Λ ∩ R) is a lattice in the adjoint group
Ads(G). Since this adjoint group has finite index in Aut(s), Λs is also
a lattice in Aut(s).

2nd case : G is any real Lie group.
Since the connected component Ge of G is an open subgroup of G, by
Lemma 3.2, the intersection Λ0 := Λ∩Ge is a lattice in Ge. According
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to the first case, the group Λ0,S := Ads(Λ0) is a lattice in the group
Aut(s). Since the group Λs := Ads(Λ) normalizes Λ0,S, it is discrete by
Corollary 4.8. Hence Λs is a lattice. As a consequence, the intersection
ΛR := Λ∩R is a lattice in R by Lemma 3.1. According also to the first
case, the group Λ0 ∩R is cocompact in Ge ∩R, hence, by Lemma 3.2,
the lattice ΛR is also cocompact in R. �

Lemma 6.5. Let G be a non-archimedean S-adic Lie group, r be the
largest solvable ideal of g and s := g/r. Assume that the image Ads(G)
of G in Aut(s) is a compact group. Then there exists an increasing
sequence

G1 ⊂ · · · ⊂ Gi ⊂ · · · ⊂ G

of open subgroups whose union G′ := ∪iGi is a normal open subgroup of
G and such that, for all integers i ≥ 1, the group Adg(Gi) is compact.

In order to help the reader to understand the following technical
proof, we suggest him to keep in mind the example where G := (Γ ×
Q∗p)nQ2

p where Γ is the group SL(2,Z[1
p
]) with the discrete topology

and where Q∗p acts diagonally on Q2
p.

Proof of Lemma 6.5. We first note that it is enough to prove this lemma
for a finite index subgroup of G.

We will need some notations. Let g = ⊕gp be the Lie algebra of G
and s0

p be a maximal semisimple Lie subalgebra of gp. Let
- Aut(gp) be the group of automorphisms of the Lie algebra gp,
- Ap the Zariski connected component of Aut(gp),
- Sp a maximal semisimple Zariski connected subgroup of Ap,
- Rp the maximal solvable Zariski connected normal subgroup of Ap,
- Up the maximal unipotent normal subgroup of Ap,
and ap, sp, rp and up their Lie algebras. We may assume that sp contains
the Lie algebra s1

p := ad(s0
p). Since the image ad(gp) is an ideal of ap,

s1
p is an ideal of sp. We denote by s2

p the complementary ideal of s1
p in

sp. We have the decomposition

s1
p ⊕ s2

p ⊕ rp = ap

We set S1
p and S2

p for the Zariski closed and Zariski connected semisim-

ple subgroups of Ap with Lie algebras respectively s1
p and s2

p. The
group

S1
pS

2
pRp ⊂ Ap

is a finite index subgroup.
Let Ωp be an open compact subgroup of S1

pRp. By the compactness
assumption in Lemma 6.5, and since we are allowed to replace G by a
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finite index subgroup, we may assume that

Adgp
(g) ∈ ΩpS

2
pRp for all g ∈ G and for all p.

On the one hand, since ad(gp) ⊂ s1
p ⊕ rp, the group

G′ := {g ∈ G | Adgp
(g) ∈ ΩpUp for all p } .

is an open subgroup of G.
On the other hand, since [Ap,Rp] ⊂ Up, the group ΩpUp is normal

in ΩpS
2
pRp and the group G′ is normal in G.

To conclude we just apply the following fact with H := Adgp
(G′).

Let H = ΩU be a non-archimedean linear p-adic Lie group which is
generated by a compact subgroup Ω and a normal unipotent subgroup
U , then there exists an increasing sequence (Hi)i≥1 of compact open
subgroups of H whose union is equal to H.

We now check this fact. We first notice that this fact is true for
the groups Ud of p-adic upper triangular unipotent d × d matrices.
Since any unipotent group U is isomorphic to a closed subgroup of
Ud, for some d ≥ 1, this fact is also true for the group U . Hence,
any subgroup of U generated by two compact open subgroups is still
an open compact subgroup. Therefore any compact subgroup of U is
included in a compact subgroup invariant by conjugation by Ω. Our
claim follows. �

Proof of Proposition 6.1. Let g = gf ⊕ g∞ and s0 = s0,f ⊕ s0,∞ be the
decompositions of g and s0 as a sum of a non-archimedean ideal and
a real one and let G∞ be the connected immersed subgroup of G with
Lie algebra g∞. We first begin by a special case.

1st case : The group Adgf
(G) is compact.

Let D := Ker(Adg) be the Kernel of the adjoint action. Since the
Lie algebras gf and g∞ commute, there exists a compact subgroup Gf

of G with Lie algebra gf which commutes with G∞. Since Adgf
(G)

is compact, the group G∞GfD is a finite index open subgroup of G.
Hence we may assume that

G = G∞GfD.

For any compactly generated subgroup D1 of D, the centralizer of D1

in Gf has finite index in Gf . In particular, D is the union of its Gf -
invariant compactly generated subgroups D1.

We want to prove that the group L := ΛR0 has an amenable Lie
algebra.
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We proceed by contradiction. Assume this is not the case. Since
every dense subgroup of a real connected Lie group contains a finitely
generated dense subgroup, there would exist a finitely generated sub-
group Λ0 of Λ such that the group Λ0R0 has a non-amenable Lie alge-
bra. Let D1 be an open compactly generated Gf -invariant subgroup of
D such that the group G1 := G∞GfD1 contains Λ0. By Lemma 3.2,
the intersection Λ1 := Λ ∩G1 is a lattice in G1.

It is enough to prove our claim for (G1,Λ1). Hence we can assume
D to be compactly generated. But then, after replacing G by an open
finite index subgroup, we can assume that Gf and D commute. The
quotient group G′ := G/Gf is then a real Lie group and the image Λ′

of Λ in G′ is a lattice. Since one has GfR0 = Ker(Ads0,∞), according to
Lemma 6.4 applied to (G′,Λ′), the group ΛGfR0 is closed. Hence the
group L := ΛR0 has an amenable Lie algebra, whence a contradiction.

2nd case : General case.
Let K be a compact open subgroup of Aut(s0,f ). Since the group

GK := {g ∈ G | Ads0,f
(g) ∈ K}(6.2)

is an open subgroup of G, Λ ∩ GK is a lattice in GK by Lemma 3.2.
Since GK contains R0, the groups ΛR0 and (Λ ∩GK)R0 both have Lie
algebra l. Hence we may assume that G = GK .

According to equality (6.2) and the definition of s0, the adjoint group
Adsf

(G) is compact. Hence we can apply Lemma 6.5 to the group

G/G∞ : there exists an increasing sequence

G1 ⊂ · · · ⊂ Gi ⊂ · · · ⊂ G

of open subgroups of G containing G∞ whose union G′ := ∪iGi is
normal in G and such that, for i ≥ 1, the group Adgf

(Gi) is compact.

Again by Lemma 3.2, for all i ≥ 1, the group Λi := Λ∩Gi is a lattice
in Gi. We denote by

Λs0, i := Ads0,∞(Λi)

its image in the group Aut(s0,∞) and we set

R0,∞ := Ker(Ads0,∞).

According to the first case applied to (Gi,Λi), the group ΛiR0,∞/R0,∞
has an amenable Lie algebra. Since the group Aut(s0,∞) is semisimple
with no compact factor, by the Borel density theorem (Corollary 4.7),
this Lie algebra is an ideal of s0,∞, hence it is trivial. Therefore, ΛiR0,∞
is closed and, by Lemma 3.1, the group Λs0,i is a lattice in Aut(s0,∞).
Since any increasing sequence of lattices in a semisimple real Lie group
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is stationary (see [10]), there exists i0 ≥ 1 such that Λs0,i = Λs0,i0 for
all i ≥ i0.

We set Λs0 and Λ′s0
for the images of Λ and Λ′ := Λ∩G′ in Aut(s0,∞).

We have just proven that Λ′s0
= Λs0, i0 is a lattice in Aut(s0,∞). Since

Λs0 normalizes Λ′s0
, we obtain, by Corollary 4.8, that Λs0 is also a

lattice in Aut(s0,∞). Hence the group ΛR0,∞ is closed in G. This
proves that the Lie algebra l is amenable. �

Let us now state the main result of this paper.

Theorem 6.6. Let G be an S-adic Lie group and Λ be a lattice in
G. Then, there exists a G-invariant ideal r of g with the following
properties. Let s := g/r and R be the kernel of the adjoint map Ads :
G→ Aut(s).
(i) Aut(s) is a semisimple S-adic Lie group with no compact factor.
(ii) The group Ads(G) is a finite index subgroup in Aut(s).
(iii) The group Λs := Ads(Λ) is a lattice in Aut(s).
(iv) The intersection Λ ∩R is a cocompact lattice in R.

See [8, Thm 9.5] where a related projection theorem is proven for a
general locally compact group G and a normal amenable subgroup R.
We note that in our Theorem 6.6, the group R may not be amenable
(see Example 6.2).

Proof. Let L = ΛR0 be as in Proposition 6.1 and let r = l be the Lie
algebra of L. Note that, by [6, 6.14 and 9.10], for any simple real or p-
adic Lie algebra h, any non-compact open subgroup of Aut(h) has finite
index. Hence, G/R0 is a finite index subgroup of Aut(s0). Besides, by
Lemma 3.1, L is a finite covolume closed subgroup of G. Therefore,
by Corollary 4.7, the Lie algebra r is an ideal of g. In particular, the
quotient Lie algebra s = g/r is semisimple. We thus get (i) and (ii).

Let R be the kernel of the map Ads in G and let us prove that L∩R
has finite index in R. As R and L ∩R have Lie algebra r, through the
map Adr/r0(G), R/R0 and L ∩ R/R0 identify with open subgroups of
Aut(r/r0) which are normalized by Adr/r0(L). Now, by assumption,
the group Adr/r0(G) is a finite index open subgroup of Aut(r/r0) and,
since L is a finite covolume subgroup of G and since the Lie algebra of L
is r, the group Adr/r0(L) is a finite index open subgroup of Adr/r0(G).
Thus, Adr/r0(R) and Adr/r0(L∩R) are also finite index open subgroup
of Aut(r/r0) and L ∩R has finite index in R.

In particular, the group LR is closed and has Lie algebra r. Now, as
R ⊂ ΛR ⊂ LR, ΛR also has Lie algebra R, that is ΛR is closed. By
Lemma 3.1, ΛR has finite covolume in G/R and Λ∩R has finite covol-
ume in R. By Proposition 6.1, the Lie algebra of R being amenable,
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Λ∩R is cocompact in R. Thus, G/R being a finite index open subgroup
of Aut(s), we get (iii) and (iv). �
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