LATTICES IN S-ADIC LIE GROUPS
YVES BENOIST AND JEAN-FRANCOIS QUINT

ABSTRACT. We show that any finite volume quotient of an S-adic
Lie group admits a fibration with compact fibers over some finite
volume quotient of a product of algebraic semisimple p-adic Lie
groups.

We also prove a similar decomposition for lattices in a solvable
locally compact group.

1. INTRODUCTION

This text can be seen as a short survey of elementary results about
lattices A in a real Lie group G. However, its main purpose is the
extension of some of these results to the context of lattices A in more
general locally compact groups G. In particular, when G is an S-adic
Lie group i.e. a group which is locally the product of real and p-adic Lie
groups (see Definition 4.1), we prove in Theorem 6.6 a decomposition
theorem of A with respect to the adjoint action of G on a suitable
semisimple quotient s of its Lie algebra g.

With the same methods we prove also in Proposition 3.4 a similar
decomposition for lattices in a solvable locally compact group. The
proof relies on a property of certain minimal actions of R? that we call
strong minimality.

Our motivation to prove the decomposition theorem 6.6 comes from
our paper [4] : In this paper we prove, when G is a real Lie group, some
recurrence properties of random walks on GG/A which were conjectured
in [9]. Our decomposition theorem 6.6 is then the key ingredient which
allows us, in the last section of [4], to extend these recurrence properties
from the framework of real Lie groups to the one of S-adic Lie groups.
These recurrence properties will be used in [5] to extend the results of

3]

Here is the structure of the paper :
— Section 2 : General facts about minimal actions of abelian groups.
— Section 3 : General facts about lattices in locally compact groups
and decomposition of lattices in solvable locally compact groups.

— Section 4 : General facts about S-adic Lie groups and Borel density
1
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theorem.

— Section 5 : A cocompactness criterion for lattices in S-adic Lie groups.
— Section 6 : The decomposition theorem for lattices in S-adic Lie
groups.

We thank U. Bader, P.E. Caprace, T. Gelander and S. Mozes for
showing us their unpublished example 3.5 related to [1].

2. MINIMAL ACTIONS OF R?

In this section we give a criterion for a locally compact
space X, equipped with a continuous minimal action of
R?, to be compact.

Let A = R? and X be a locally compact A-space, i.e. a space
endowed with a continuous action of A. We denote this action by
(a,z) — ax.

An orbit Az is said to be strongly dense if, for every non-empty open
convex cone C' C A, the set C'x is dense.

We recall that the A-space X is minimal if all its A-orbits are dense.
The A-space X is said to be strongly minimal if all its A-orbits are
strongly dense.

Proposition 2.1. Let X be a minimal locally compact R%-space.

a) If the action preserves a Borel probability measure p on X, then
there exists at least one strongly dense orbit in X.

b) If the space X is compact, the action is strongly minimal.

c) Conversely, if the action is strongly minimal, X is compact.

By reading the proof, it is worth keeping in mind the following two
examples.

Example 2.2. There exists a minimal action of R% which does not
contain any strongly dense orbit.

Proof. The action by translations of R on itself, or the product action
of R? on R x X’ where X’ is a minimal R-space. O

Example 2.3. There exists a continuous action of R on a non-com-
pact locally compact space X which is minimal and preserves a Borel
probability measure  on X.

Proof. Our example is a suspension over an irrational rotation of the
circle. Let T := R/Z be the circle, @ € T an irrational element, df the
Lebesgue probability on T and f : T — (0, 00| a continuous function
such that [ f(#)df = 5 and f~'(c0) = {0}. We set

Vi={0,t) eTxR[-f(0) <t < f(0+a)}
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and X =Y/, the quotient space for the identifications
(6,—(6)) ~ (6—a, f(6)) , for all 6£0 .

The space X is locally compact but not compact. There exists a con-
tinuous flow s — @, on X such that p4(6,t) = (0,t + s) as soon as
both (0,t) and (0,t + s) are in Y. This flow is minimal and it pre-
serves the probability measure ;= df ® dt. This flow is not strongly
minimal since the only limit point of the half orbit R,z of the point
xo = (—a,0) is the point z = (—a, 00). O

Proof of Proposition 2.1. We endow R with the usual euclidean norm
|.Il. Let C be the set of open convex cones C' C R
For C' € C and x € X, we define the we-limit set of = to be

we(z) = ﬂ (a+ C)x.

acA

By definition this set is closed and A-invariant. Since the action is
minimal, this set is either empty or equal to X.

a) We will check that
(2.1) p{ze X |VC el , we(x)=X}) =1

For e > 0, choose a compact set K C X with u(K) > 1—e. By Poincaré
recurrence theorem, for u-almost every x in K, for every rational vector
a in R?, infinitely many translates (na)z, n € N, belong to K. We note
that the interior of any C' € C contains a rational vector a. Hence for
such a point z, for every C' € C, one has we(x) N K # () and thus, since
the action is minimal, one has we(z) = X. Since € is arbitrarily small,
this proves (2.1). In particular, the set given in (2.1) is non empty. We
conclude since every point in this set has a strongly dense orbit.

b) Since X is compact, all the sets we(x) are non empty. Since the
action is minimal, they are equal to X. Hence the action is strongly
minimal.

¢) We can choose a constant g > 0 and d+1 open convex cones
Cy, ..., Cy4 of R? such that, for every family of d+1 vectors v, ..., vq
with |lv;|| = 1 and v; € C;,

(2.2) the ball B(0,&0) is contained in the convex hull of vy, ..., vq.

Let U be a non-empty open subet of X with compact closure K.
For 0 <i < d, let T; : X — [0,00] be the “hitting time of U in the
direction C;” :

(2.3) Ti(z) =inf{||c]| >1|ce C;, cx € U}.
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Since the action is strongly minimal, the function 7; is finite every-
where. Since U is open, the function 7; is upper semi-continuous.
Hence, since K is compact, the constant

My :=sup{T;(z) |0<i<d, z € K}
is finite. For every x € X, we introduce the set of “hitting times”
A, ={a €R | ax € K}.

Since the action is minimal the closed set A, is non-empty. Let a be
an element of A, with minimal norm. We claim that

(2.4) lal] < 5

Indeed, for every 0 < i < d, one can find ¢; € C; with 1 < ||¢;|| < M,y
and a+c¢; € A,. Since the element a has minimal norm in A,, one has,
for all i,

la + ¢l = [lall.

_ 1
llesll

Thus, for all 7, if we set v; : ci, we get

2<a,v;> > — M.
Therefore, using (2.2), for any v in B(0, &), one has also

2 <a,v> > —M,.

€0

Choosing v := — Ty @ e get the expected bound (2.4).

This bound (2.4) proves that, for all z in X, there exists a in B(0, éw?g)
and y in K such that z = a'y. In particular, it proves that the space

X is compact. 0

We conclude this section by noting that these results can easily be
adapted to actions of the group A = Z<.

3. LATTICES IN LOCALLY COMPACT GROUPS

We give elementary properties of lattices and we prove
a decomposition result for lattices in a locally compact
solvable group.

Let G be a locally compact group and H be a closed subgroup of
G. We shall say that H has finite covolume in G if the quotient G/H
admits a finite G-invariant Borel measure. For instance, a lattice is by
definition a discrete finite covolume subgroup.

Let us state some elementary properties of finite covolume subgroups.
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Lemma 3.1. Let G be a locally compact group and H,, Hy be two
closed subgroups such that Hy C Hy. Then Hy has finite covolume in
G if and only if simultaneously Hy has finite covolume in Hy and Ho
has finite covolume in G.

Proof. This is classical (see [13, Lemma 1.6]). Recall (see [16]) that a
quotient G/H admits a G-invariant Radon measure if and only if the
modular function of H is the restriction to H of the modular function
of G.

If H; has finite covolume in Hs and H, has finite covolume in G, the
transitivity formula for integration on homogeneous spaces (see [16])
proves that G/H; supports a G-invariant measure with total mass 1.

Conversely, if H; has finite covolume in G, then the image in G/Ho
of the G-invariant probability measure on G/H; is also G-invariant
with total mass 1. The same transitivity formula proves that H;/Ho
supports also a Hi-invariant measure with total mass 1. 0

Lemma 3.2. Let G be a locally compact group, H be a finite covolume
closed subgroup of G, G' be an open subgroup of G and H := HNG'.
a) The group H' has finite covolume in G'.

b) If H is cocompact in G then H' is cocompact in G'.

c) Conversely, if H' is cocompact in G' and G’ is normal in G then H
1s cocompact in G.

Proof. a) The restriction of the G-invariant probability on G/H to the
G'-orbit G'/H' is a non-zero finite G’-invariant measure.

b) The G’-orbits in the compact space G/H are open hence closed.
In particular G'/H’ is compact.

¢) Since the group G'H is open, the space G/G'H is discrete. This
space admits a finite measure which is invariant under the transitive
action of the group G/G’. Hence, this space is finite, that is G/H is
a finite union of G’-orbits. As each of these orbits is compact, G/H is
compact. O

From these results, we at once get the following

Lemma 3.3. Let N be a nilpotent locally compact group. Then any
finite covolume closed subgroup H C N is cocompact.

Proof. Let Z be the center of N and N’ := HZ. By lemma 3.1, N’ has
finite covolume in N and H has finite covolume in N’.

Now, by an induction argument on the length of the central series
of N, the finite covolume subgroup N’/Z of N/Z is cocompact. Hence
N’ is cocompact in N.
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Besides, one has

[IN',N'| c[HZ,HZ] c [H,H] C H.

Hence H is normal in N’ and the quotient N'/H is a group. As its
Haar measure is finite, it is compact and H is cocompact in N. U

The proof of the following proposition will be much more delicate.

Proposition 3.4. Let G be a solvable locally compact group, G its
connected component, and H a finite covolume closed subgroup of G.
Then H is cocompact in the group HG..

In particular, as was proven by Mostow, when G is solvable and
connected, any lattice H in G is cocompact in G.

If we set Gy for the totally discontinuous quotient G4 = G/G. and
H, for the finite covolume closed subgroup Hy := HG,, Proposition
3.4 tells us that the finite volume quotient G/H fibers over the totally
discontinuous finite volume homogeneous space Gq/Hy with compact

fibers.

Example 3.5. (Bader, Caprace, Gelander, Mozes) There exist
metabelian locally compact groups containing non-cocompact lattices.

Proof of Example 3.5. The group G is a semidirect product G = Ax K
of a commutative discrete group A by a commutative compact group
K, where A is the direct sum of finite fields [, for an infinite set .S of
primes p such that Zpe s p~! < 0o, and where K is the corresponding
product of multiplicative groups F;.

Let H be the subgroup of GG generated by the following elements h,
for p € S. The only non-trivial component of h,, is the p'* coordinate
which is (1-k, , k,) € F, x F; where k, is a generator of ;. The orbits
of Hin A~ G/K are thesets A :={a € A|pel < a,=1} for ]
finite subset of S. The cardinality N of the stabilizer of a point a € Aj
is Nt =[],c;(p—1). Since }; N;' < o0, H is a lattice in G. O

Proof of Proposition 3.4. We may assume that G = HG,.. We argue by
induction on the length of the derived series of G. Let A be the closure
of the last non-trivial term of the derived series of G, and H' := HA.
According to Lemma 3.1, the group H’/A has finite covolume in G/A
and the group H has finite covolume in H’.

By the induction hypothesis, the group H'/A is cocompact in G/A
hence H' is cocompact in G. By Lemma 3.6 below, H is cocompact in
H'. Hence H is cocompact in G. U
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Lemma 3.6. Let G be a locally compact group, H C G a finite co-
volume closed subgroup and A C G a normal closed connected abelian
subgroup. If G = HA, then H is cocompact in G.

Proof. According to [12, §2.21], as A is a connected locally compact
abelian group, it contains a largest compact subgroup K, and the
quotient group A/K 4 is isomorphic to R, for some d > 0. By unique-
ness, K4 is normal in G. Thus, after replacing G by G/K4 and H by
HK /K, we may assume A = R4

We will apply Proposition 2.1 to the action of A on the locally com-
pact space X := G/H. Since H has finite covolume, this action pre-
serves a Borel probability measure. Since G = HA, this action is
minimal. Hence, by Proposition 2.1.a, there exists at least one orbit
Az in X which is strongly dense. Since GG acts transitively on X and
normalizes A, all the orbits Az in X are strongly dense. Hence, by
Proposition 2.1.c, the space X is compact. O

More generally, the same argument proves the following

Proposition 3.7. Let G be a locally compact group, R a closed normal
connected amenable subgroup of G, and H a finite covolume closed
subgroup of G. Then H is cocompact in the group HR.

Proof. We use the following two facts: every connected locally compact
group is a compact extension of a connected Lie group (see [12]); every
amenable connected Lie group is a compact extension of its solvable
radical (see [17]). Hence the group R is a compact extension of a
connected solvable Lie group Ry which is normal in G. We follow then
the same proof as for Proposition 3.4 by induction on the length of the
derived series of R;. ]

4. S-ADIC LIE GROUPS

This section contains elementary definitions and facts
about S-adic Lie groups. It also contains a version of
the Borel density theorem for S-adic Lie groups.

We recall that Q, is the field of p-adic numbers and Q. = R is the
field of real numbers or co-adic numbers. Let S be a finite subset of
the set of prime numbers including co.

Definition 4.1. An S-adic Lie group G is a locally compact group
which contains an open subgroup U isomorphic to a group of the form
(I,es Gp) /N where, for each p € S, G, is a p-adic Lie group and N
15 a discrete normal subgroup of this product.
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Let G be an S-adic Lie group. The Q-vector space g := @pes9,
which is the direct sum of the Lie algebras g, of G, does not depend
on the choices and is called the Lie algebra of G. This Lie algebra is an
S-adic Lie algebra i.e. a direct sum of p-adic Lie algebras with p in S.
The real Lie subalgebra g is called the real factor of g. We say that
g is non-archimedean it g, = 0. The Lie subalgebra g, := ®,+.9,
is called the non-archimedean factor of g. We will denote by Adgp,
Adyg, ... the adjoint action of G in g,, g, ...

Here are the first properties of S-adic Lie groups:

— Real Lie groups and p-adic Lie groups are S-adic Lie groups.

— A product of two S-adic Lie groups is an S-adic Lie group.

— A closed subgroup of an S-adic Lie group is an S-adic Lie group (see
(14, Prop. 1.5]).

— The quotient of an S-adic Lie group by a closed normal subgroup is
an S-adic Lie group.

An S-adic Lie group can be connected, even if its Lie algebra ad-
mits a nontrivial non-archimedean factor, as, for example, the solenoid
(R x Q,)/Z[3], where Z[] is embedded diagonally in R x @,, or the

group (SL(2,R) x Z,)/Z, where Z is embedded diagonally as a central

subgroup in SL(2,R) x Z,.

The following proposition is a version of the classical Borel density
theorem in the framework of S-adic Lie groups (see [13, Chap. 5], [17,
Chap. 3] or [11, §2.4]).

Proposition 4.2. Let G be an S-adic Lie group, p € S, H C G a finite
covolume closed subgroup, ™ : G — GL(d,Q,) a continuous morphism.
a) For any H-invariant line xo € ]P’(Qg), the G-orbit Gxg is compact.

b) If G has no proper cocompact normal subgroups, then any H-inva-
riant line xy € P(QY) is G-invariant.

c) If G has no proper cocompact normal subgroups, then the Zariski
closures of m(H) and w(G) are equal.

Example 4.3. In point a), there does not always exist a cocompact
normal subgroup of G stabilizing xg.

Proof of 4.3. We give an example with p = oo and G real connected.
We denote by 79 € SO(2,R) C SO(3,R) the rotation of angle 6 and we
fix € R~ Q. We choose

G :=SO(3,R) x R,
H :={(ry,0) | 0 € 2anZ},
K :=S0(3,R) x SO(2,R) x SO(2,R), and
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m:G = K;(k,0) = (k,79,70/0)

and we set M = w(H) = {(rg,79,1) | 6 € R}. The subgroup H is a
cocompact lattice in G but, for no g € R, does the cocompact normal
subgroup G’ = {(1,0) | 0 € SZ} fix the base point z¢ € K/M. O

Proof of Proposition 4.2. a) After replacing G by a finite index sub-
group, we may assume that 7(G) is Zariski connected. We may also
assume that the orbit Gzy spans Qg.

We claim that

(4.1) the closure K = 7(G) is a compact subgroup of PGL(d, Q).
Since xy is H-invariant, one has a G-equivariant map
i: G/H — P(Q}) given by i(gH) = gxo.

The probability measure i,(u) on P(Qf), which is the image of the G-
invariant probability measure p on G/H, is K-invariant. Lemma 4.4
below shows that the group K is compact, as claimed in (4.1).

Since we have not assumed G and 7 to be algebraic, the group 7(G)
might not be closed as in Example 4.3. This will make the proof a little
bit longer. Let C' C G be an open relatively compact subset so that
one has

i (1) (Cwo) > 0.

We can assume 7 to be injective. The group G is then a p-adic Lie
group. Since the continuous morphism 7 is Q,-analytic, the set C'zg
is a Q,-submanifold of K. Since i,(u) is the K-invariant probability
measure on K xg, one has then

dim@p CZL’Q = dime Kxo

and the orbit Gz is open in Kxy. Since 7(G) is dense in K, every
G-orbit in Kz is dense hence meets the open set Gxy. This proves the
equality Gxg = Kz and this ends the proof of a).

b) We assume now that G does not admit any proper cocompact
normal subgroup. In particular, the group 7(G) is Zariski connected.
We may again assume that the orbit Gxg spans QZ. We want to prove
that this orbit is a singleton or, equivalently, that

(4.2) the group K = 7(G) is trivial.

We may again assume that 7 is injective. We note first that the group

K is connected : indeed for any open normal subgroup K’ in K, the

group G’ := 7~ !(K’) is a finite index normal subgroup of G.
Therefore, we may assume p = oo and G is a real Lie group. Now,

the connected component G, of GG is an open subgroup of G. Thus,
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G.H being an open finite index subgroup of G, it contains an open
normal finite index subgroup and we get

G=G.H.

Let S := [K, K] and let T be the connected component of the center
of K, so that K = ST and SNT is finite. We let ¢, s and t denote the
Lie algebras of the real compact Lie groups K, S and T

Let L be the immersed subgroup 7(G.) in K and [ be its Lie algebra.
As G, is normal in G and 7(G) is dense in K, [ is an ideal in €, and
one has

[=(Ns) @ (IN¢).

Set I' = [Ns and let L’ be the closed normal connected subgroup of
K with Lie algebra . This group L’ is included in L and the group
G = 7 YL') is included in G.. As G. is a connected Lie group,
7 induces a homeomorphism from compact subsets of G, onto their
images and G’ is a compact connected normal subgroup of G. Now, we
have Ady(K) = Ady(L'), hence

G = Ze(G)G,

where Z5(G') denotes the centralizer of G’ in G. In particular, Zg(G')
is a normal cocompact subgroup of G. Therefore, Zo(G') = G and L'
is a central subgroup of K, that is

LcT
Let M be the closure of m(H). As G = G.H, we have
K =TM.

As Gx( spans Qg, the group K acts faithfully on the orbit Kzy = Gz
and we have

(4.3) Nier KME! = {e}

Thus we have M = {e}, that is H = {e}. Now, the group G has finite
Haar measure, hence is compact. Since G does not admit any proper
cocompact normal subgroup, G is trivial and K is trivial too, what we
claimed in (4.2).

c¢) Now, let G be the Zariski closure of 7(G) in GL(d, Q,) and H be
the Zariski closure of m(H). According to Chevalley Theorem (see |2,
5.1]) there exists an algebraic representation p : G — PGL(m,Q,) and
a line zop € P(Q}') whose stabilizer is H. By point b) applied to this
representation p, we get 7(G) C H hence G = H. O
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Lemma 4.4. Let v be a probability measure on P(@Z). Suppose that,
for any two proper subspaces Ey, Fy & Qg with dim Fy + dim Fy < d,
the support of v is not contained in the union P(E,) UP(Ey). Then the
stabilizer S := {g € PGL(QY) | g.v = v} of v is compact.

Proof. This lemma due to Furstenberg is proven in [17, §3.2]. O

Corollary 4.5. Let G be an S-adic Lie group and H be a finite covol-
ume closed subgroup of G, with Lie algebra b.

a) Then the normalizer Ng(h) is cocompact in G.

b) If G has no proper cocompact normal subgroup, G normalizes by.

Example 4.6. In point a), there does not always exist a cocompact
normal subgroup of G normalizing .

Proof of 4.6. We give an example with p < oo and G nilpotent with an
exact sequence 1 — Gy — G — Z — 1 where G is an open compact
subgroup. Let K be the group of upper triangular unipotent 4 x 4-
matrices u with coefficients u; ; in Z,, for 1 <i < j < 4. The group G
is immersed in K as

G:={ueK|uyeZ}
The group H is the closed subgroup of G isomorphic to Z x Z,,
H:={ueG|us=1uy3=1u4=uss =0}
One computes the normalizer Ng(h) = {u € G | uy3 = ugy = 0}

and the group NyeggNa(h)g™ == {u € G | u12 = w13 = us3 = 0} is
not cocompact in G. U

Proof of Corollary 4.5. a) Applying, for any p in S, Proposition 4.2 to
the adjoint representation of G in A%g,, where d,, := dimg, (h,), we get
that the G-orbit of the line x, := A% b, is compact. But the G-orbits in
the product Hpe ¢ G, are open and hence closed. Thus the stabilizer
Ne(h) of the point  := (xp)pes is cocompact in G.

b) Since H normalizes b, by Proposition 4.2, G’ normalizes b too. O

Corollary 4.7. For any p in S, let G, be the group of Q,-points of a
Q,-algebraic semisimple group with no anisotropic factor and set G =
HpES Gp. If H is a finite covolume closed subgroup of G, for any p in
S, the image of H in G, has finite index Zariski closure.

Proof. For any p in S, let G} be the subgroup of G, which is spanned
by unipotent one-parameter subgroups in G,. As G, does not have
anisotropic factors, G is open with finite index in G}, and every co-
compact normal subgroup of G, contains G. The result now follows
from Proposition 4.2 applied to the group G = [[ .5 G- O
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Corollary 4.8. Let G be as above and A be a lattice in G, then A has
finite index in its normalizer Ng(A).

Proof. Let N := Ng(A) be the normalizer of A and n its Lie algebra.
By noetherianity there exists a finitely generated subgroup Ay C A
whose centralizer in g is the same as the one of A. Since A is discrete,
the elements of N which are small enough commute with Ay. Hence
the group A centralizes n. By corollary 4.7, the centralizer of n in GG
has finite index. Hence n is a central ideal of g. Such an ideal is trivial,
hence the group N is discrete. Since A C N and A is a lattice in G,
this group A has finite index in N. O

5. COCOMPACTNESS OF LATTICES

We give a sufficient criterion for an S-adic Lie group G
to admit only cocompact lattices.

We say that an S-adic Lie algebra g is amenable if it is the Lie
algebra of some amenable S-adic Lie group, that is if g., does not admit
any noncompact semisimple Lie algebra or, equivalently, if g does not
contain a copy of s5[(2,R). In particular, every non-archimedean S-adic
Lie algebra is amenable.

Proposition 5.1. Let G be an S-adic Lie group whose Lie algebra
g s amenable. Then any finite covolume closed subgroup H C G is
cocompact.

We begin the proof of Proposition 5.1 by a special case :

Lemma 5.2. Let G be a non-archimedean S-adic Lie group. Then any
finite covolume closed subgroup H C G 1is cocompact.

We note that Lemma 5.2 can not be extended to any locally compact
totally discontinuous group G. Indeed, for example, if k£ is the non-
archimedean local field with positive characteristic F,((7")), the group
SL(2,F,[T~1]) is a non-cocompact lattice in SL(2, k).

When H is a lattice in G, Lemma 5.2 is [14, Prop. 2|. In this case the
proof is very short: Just choose a torsion free compact open subgroup
Q2 of G, and note successively that the action of 2 on G/H is free, that
all the Q-orbits have same volume, that there are only finitely many €2
orbits and that G/H is compact.

In order to adapt this proof to non discrete groups H, we recall a
few facts on standard groups and on invariant measures.

A p-adic Lie group G, with Lie algebra g, is said to be standard if
there exists a compact open subgroup O, of g, which is invariant by
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the Lie bracket and such that the exponential map O, — G, is well-
defined and is a bijection onto G, (see [7]). A non-archimedean S-adic
Lie group is said to be standard if it is a product of standard p-adic Lie
groups. By [15, Prop. 1.1], if G is standard, every closed subgroup H
of G with Lie algebra b is contained in exp(h). Every non-archimedean
S-adic Lie group contains a standard open subgroup.

Let G be an S-adic Lie group. Then the tangent bundle of G iden-
tifies G-equivariantly on the right with G x g and, through this iden-
tification, the left action of G reads as the map

G x (G xg) = G xg;(g,hv) = (gh, Adg(g)v).

Besides, if X is a right Haar measure on G, there exists a Haar measure
w on g such that X is the measure associated to the constant field g — w
on (. In particular, the modular function of G is the function g —
| det(Adg(g))| := 1 es | det(Adg (9))| and, if H is a closed subgroup
of G, the space GG/H admits a G-invariant measure if and only if, for
any h in H, \det(Adg/h(h))\ =1

Proof of Lemma 5.2. According to Lemma 3.1, the group H has also
finite covolume in the normalizer Ng(h) of h in G. According to Corol-
lary 4.5, Ng(h) is cocompact in G. Hence, it is enough to show that H
is cocompact in Ng(h). Thus, replacing G by Ng(h), we may assume
that the Lie algebra b is Adg(G)-invariant. In this case, the tangent
bundle of X := G/H identifies with X X g/h and the action of G on
this bundle can be read as the map

G x (X xg/b) = G x g/b;(g,2,v) = (g2, Adg 5 (9)v).

In the same way, if x( is the base point of X and Ax is the G-invariant
probability measure, then Ax comes from the field

T = gro > |det(Adg/h(g))|w

where w is some fixed Haar measure on g/h (note that, by the remark
above, for any h in H, \det(Adg/h(h)ﬂ =1). Now, we claim that

(5.1) |det(Adg/h(g))| =1 for all g in G.

Indeed the character x : G — R’ ;g ]det(Adg/h(g))] is trivial on

*

H and the probability measure x.Ax on R¥ is x(G)-invariant, hence
X(G) = 1. Thus, Ax comes from the constant field z — w on X.
We will then prove that, for any compact open subgroup, €2 one has

(5.2) ;él)f( Ax (Qz) > 0.
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To do this, we may assume that ) = Hpe 5§, is a standard open com-
pact subgroup of G. We write = exp(O) where O = [[,.¢ O, and
exp is the componentwise exponential map. Now, since € is standard,
the set Hy := exp(h N O) is the largest subgroup of Q with Lie algebra
h. For every x := gxp in X, the Q-orbit map at x gives rise to an
embedding Qz ~ Q/(QN H,) — X, where H, := gHg™! is the stabi-
lizer of x in G, and Ax restricts on (2x as the measure coming from the
constant field y — w. Since G normalizes b, the Lie algebra of H, is
equal to h and H, N} is contained in Hy as a subgroup of finite index
d,. Thus, we get
Ax(QiL’) = ;Ti))\x(Qmo)

and this quantity is bounded below by %@, whence Equation (5.2).
Since X has finite volume, this implies that €2 has only finitely many
orbits in X and X is compact. O

Proof of Proposition 5.1. We proceed by induction on the dimension of
the largest solvable ideal v, of g_..

15 case : ty, = 0.

In this case, the connected immersed subgroup G, of G with Lie al-
gebra g, is compact. According to Lemma 3.1, the group HGy /Goo
has finite covolume in the non-archimedean S-adic Lie group G/G.
Hence according to Lemma 5.2, the group H is cocompact in G.

214 case : t,, # 0.

We argue here exactly as in the proof of Proposition 3.4. Let R, be
the connected immersed real Lie group with Lie algebra t,,. Let A
be the closure of the last non trivial term of the derived series of R,
and H' := HA. According to Lemma 3.1, the group H’/A has finite
covolume in G /A and the group H has finite covolume in H'. By the
induction hypothesis, the group H'/A is cocompact in G/A hence H'
is cocompact in G. By Lemma 3.6, the group H is cocompact in H'.
Hence the group H is cocompact in G. 0

6. PROJECTIONS OF LATTICES

The aim of this section is to prove, for any lattice A in any
S-adic Lie group G, a decomposition theorem of A with
respect to the adjoint action on a suitable semisimple
quotient s of the Lie algebra of G (Theorem 6.6).

Proposition 6.1. Let G be an S-adic Lie group. Let to be the smallest
ideal of g such that the Lie algebra s¢ := g/to is semisimple and such
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that, for any non zero G-invariant ideal 51 of sq, the group Adg, (G) is
an unbounded subgroup of Aut(s;). Let Ry := Ker(Ads,) be the kernel
of the adjoint map in sq.

Then, for any lattice A in G, the Lie algebra | of the group L := AR,
15 amenable.

We postpone the proof of Proposition 6.1 to the end of this section.

If S = {oo}, the group ARy is closed (see lemma 6.4 below). In the
general setting, our statement is optimal, as shown by the following
two examples.

Example 6.2. The S-adic Lie group L may contain Lie subgroups
isomorphic to PSL(2,Q,) with p finite.

Proof. Let Gy be a non compact simple p-adic Lie group, for instance
Go = PSL(2,Q,). We will prove, more generally, that L may contain
Lie subgroups isomorphic to Gy. Let Y := Go/ Ky where Kj is a com-
pact open subgroup of Gy and Ry be the free group on Y, i.e. the
discrete free non-abelian group with infinitely many generators e, with
y in Y. We define G to be the semidirect product G := Go X Ry where
the action by conjugation of Gy on Ry is given by goe gy = €goy fOr
all go in Gg and all y in Y. Every element g of G can be written in a
unique way as g = rys, with r, in Ry and s, in G.

Let us now construct a lattice A in G. We first construct a discrete
subgroup F' of G. For y in Y, one chooses an element a, in Gy which
fixes y. We assume that a, has infinite order. Let F' be the group
generated by the elements

fy = eyay = ayey.
We claim that

(6.1) the group F'is a free discrete subgroup of G
’ and the map F' — Ry; f — 7 is a bijection.

Indeed, the Ry component r,, of a word

w=fr... ;ZévvithinYandniGZ

is equal to

ni ..
21

Tw =€

This proves (6.1).
Let Ag be a torsion free cocompact lattice in Gy. Since Aj acts freely

on Y, we can choose the a,, ¥y € Y, in such a way that, for every

Ao in Ag and y in Y, one has ay,, = )\an/\al. This ensures that Ag

o™ wi g™ Y (s
et with z; 1= aj a;’ 3" (y5)-
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normalizes the group F. We choose A to be the group A := AgF. This
group is discrete and cocompact in G but its projection on G/Ry is
dense. Hence, in this case, the group L is equal to G = Gy x Ry. [

Example 6.3. When A is a discrete subgroup of G which is not as-
sumed to be a lattice, the Lie algebra | may contain Lie subalgebras
isomorphic to sl(2,R).

Proof. Let Gy be a simple real Lie group, for instance Gy = PSL(2, R),
and I' be a dense subgroup of Gy. Let G be the cartesian product
G := Gy x Ry where Ry is a copy of I' endowed with the discrete
topology. The discrete subgroup A := {(v,7) | v € T'} is a discrete
subgroup of G whose projection in GG is dense. Proposition 6.1 tells
us that this can not happen if A is a lattice in G. U

For real Lie groups G, Proposition 6.1 is a consequence of the fol-
lowing

Lemma 6.4. Let G be a real Lie group and A be a lattice in G. Let t
be the largest amenable ideal of g, s := g/t and R be the kernel of the
adjoint action Adg : G — Aut(s) in s. Then, the intersection AN R is
a cocompact lattice in R and the image Adg(A) is a lattice in Aut(s).

Proof. 1%* case : G is a connected real Lie group.
Let R, be the connected component of R. The group R, is the largest
closed connected normal amenable subgroup of GG. Since R, is a com-
pact extension of a solvable group, according to Auslander projection
theorem in [13, Chap. 8], the group L := AR, has an amenable Lie
algebra [. Since [ is normalized by A and s has no compact factors, by
Borel density theorem ([13, Chap. 5] or Corollary 4.7), [ is an ideal of
g. Hence [ = ¢, and the group AR, is closed. By Lemma 3.1, A N R,
is a lattice in R,.. Since R, is amenable, this lattice is cocompact ([13,
Chap. 4] or Proposition 5.1). Replacing G by G/R., we can assume
that G is semisimple connected with no compact factor.

The group R is then discrete and is the center of G. Since the group
L := AR has a discrete derived subgroup, its Lie algebra [ is abelian.
Again by Borel density theorem, one gets [ = 0. Hence L is discrete
and, by Lemma 3.1, the group L/A ~ R/(A N R) is finite. Thus the
image As = Ads(A) ~ A/(AN R) is a lattice in the adjoint group
Adgs(G). Since this adjoint group has finite index in Aut(s), Ag is also
a lattice in Aut(s).

2" case : (G is any real Lie group.
Since the connected component G, of GG is an open subgroup of G, by
Lemma 3.2, the intersection Ay := AN G, is a lattice in GG.. According
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to the first case, the group Aggs := Adg(Ap) is a lattice in the group
Aut(s). Since the group Ag := Adg(A) normalizes Ag g, it is discrete by
Corollary 4.8. Hence Ag is a lattice. As a consequence, the intersection
Agr := AN R is a lattice in R by Lemma 3.1. According also to the first
case, the group Ay N R is cocompact in G, N R, hence, by Lemma 3.2,
the lattice Ay is also cocompact in R. U

Lemma 6.5. Let G be a non-archimedean S-adic Lie group, v be the
largest solvable ideal of g and s := g/v. Assume that the image Adg(G)
of G in Aut(s) is a compact group. Then there exists an increasing
sequence

Gc---cG;c---C@G

of open subgroups whose union G' := U;G; is a normal open subgroup of
G and such that, for all integers i > 1, the group Adg(G;) is compact.

In order to help the reader to understand the following technical
proof, we suggest him to keep in mind the example where G := (I" x
Q;) x Q2 where T' is the group SL(2, Z[%]) with the discrete topology
and where Q) acts diagonally on QZ.

Proof of Lemma 6.5. We first note that it is enough to prove this lemma
for a finite index subgroup of G.

We will need some notations. Let g = @©g, be the Lie algebra of G
and 52 be a maximal semisimple Lie subalgebra of g,,. Let
- Aut(g,) be the group of automorphisms of the Lie algebra g,,,

- A, the Zariski connected component of Aut(g,),

- S, a maximal semisimple Zariski connected subgroup of A,

- R, the maximal solvable Zariski connected normal subgroup of A,
- U, the maximal unipotent normal subgroup of A,,

and a,, s, t, and u, their Lie algebras. We may assume that s, contains
the Lie algebra s := ad(s)). Since the image ad(g,) is an ideal of a,,
5; is an ideal of 5,. We denote by 5]29 the complementary ideal of 511) in
s,. We have the decomposition

5, DS DT, =a,
We set S}? and Sg for the Zariski closed and Zariski connected semisim-
ple subgroups of A, with Lie algebras respectively 5;, and 5:(2). The
group
1Q2
S,S,R, C A,
is a finite index subgroup.

Let €, be an open compact subgroup of S},Rp. By the compactness
assumption in Lemma 6.5, and since we are allowed to replace G' by a
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finite index subgroup, we may assume that
Adg (9) € Q,S;R, for all g € G and for all p.
On the one hand, since ad(g,) C 5110 @ t,, the group
G'i={g€G|Adg (9) € QU, foralp}.

is an open subgroup of G.

On the other hand, since [A,,R,] C U, the group ,U, is normal
in QpSf)Rp and the group G’ is normal in G.

To conclude we just apply the following fact with H := Adgp(G’ ).

Let H = QU be a non-archimedean linear p-adic Lie group which is
generated by a compact subgroup 2 and a normal unipotent subgroup
U, then there ezists an increasing sequence (H;);>1 of compact open
subgroups of H whose union is equal to H.

We now check this fact. We first notice that this fact is true for
the groups U, of p-adic upper triangular unipotent d x d matrices.
Since any unipotent group U is isomorphic to a closed subgroup of
Uy, for some d > 1, this fact is also true for the group U. Hence,
any subgroup of U generated by two compact open subgroups is still
an open compact subgroup. Therefore any compact subgroup of U is
included in a compact subgroup invariant by conjugation by . Our
claim follows. U

Proof of Proposition 6.1. Let g = g; @ g, and $9 = 5o,y @ 50,00 be the
decompositions of g and sy as a sum of a non-archimedean ideal and
a real one and let G, be the connected immersed subgroup of G with
Lie algebra g.,. We first begin by a special case.

1% case : The group Adg (G) is compact.

Let D := Ker(Adg) be the Kernel of the adjoint action. Since the
Lie algebras g; and g., commute, there exists a compact subgroup G/
of G with Lie algebra g, which commutes with G. Since Adgf(G)
is compact, the group GGyD is a finite index open subgroup of G.
Hence we may assume that

G = GoGyD.

For any compactly generated subgroup D; of D, the centralizer of D,
in Gy has finite index in G¢. In particular, D is the union of its G-
invariant compactly generated subgroups D;.

We want to prove that the group L := ARy has an amenable Lie
algebra.
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We proceed by contradiction. Assume this is not the case. Since
every dense subgroup of a real connected Lie group contains a finitely
generated dense subgroup, there would exist a finitely generated sub-
group Ag of A such that the group AgR, has a non-amenable Lie alge-
bra. Let D; be an open compactly generated G y-invariant subgroup of
D such that the group G := GG ¢D; contains Ay. By Lemma 3.2,
the intersection A; := AN G is a lattice in G.

It is enough to prove our claim for (G1,A;). Hence we can assume
D to be compactly generated. But then, after replacing G by an open
finite index subgroup, we can assume that Gy and D commute. The
quotient group G’ := G /Gy is then a real Lie group and the image A’
of A'in G’ is a lattice. Since one has Gy Ry = Ker(Adsg, ), according to
Lemma 6.4 applied to (G’,A’), the group AG Ry is closed. Hence the
group L := AR, has an amenable Lie algebra, whence a contradiction.

2" case : General case.
Let K be a compact open subgroup of Aut(so ). Since the group

(6.2) Gk :={g9€G|Ads,,(g9) € K}

is an open subgroup of G, AN Gk is a lattice in G by Lemma 3.2.
Since Gk contains Ry, the groups ARy and (A N Gk )Ry both have Lie
algebra [. Hence we may assume that G = Gg.

According to equality (6.2) and the definition of sy, the adjoint group
Ads, (G) is compact. Hence we can apply Lemma 6.5 to the group

G /G : there exists an increasing sequence
Gic---CcG;C---CG

of open subgroups of G containing G, whose union G’ := U;G; is
normal in G and such that, for ¢ > 1, the group Adgf(Gi) is compact.
Again by Lemma 3.2, for all ¢ > 1, the group A; := ANG; is a lattice
in GG;. We denote by
A507l‘ = Adﬁo,oo (Az)

its image in the group Aut(sg ) and we set
Ry = Ker(Ads, . ).

According to the first case applied to (G, A;), the group A; Ro o/ Ro 0o
has an amenable Lie algebra. Since the group Aut(sg ) is semisimple
with no compact factor, by the Borel density theorem (Corollary 4.7),
this Lie algebra is an ideal of s¢ »,, hence it is trivial. Therefore, A; Ry o
is closed and, by Lemma 3.1, the group Ag,; is a lattice in Aut (o).
Since any increasing sequence of lattices in a semisimple real Lie group
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is stationary (see [10]), there exists ig > 1 such that Ag,; = Ag, 4, for

We set Ag, and Ag for the images of A and A" := ANG" in Aut(sg,00)-
We have just proven that Ag = As, , is a lattice in Aut(sg). Since
As, normalizes A§ , we obtain, by Corollary 4.8, that Ag, is also a
lattice in Aut(sp..). Hence the group ARy« is closed in G. This
proves that the Lie algebra [ is amenable. 0

Let us now state the main result of this paper.

Theorem 6.6. Let G be an S-adic Lie group and A be a lattice in
G. Then, there exists a G-invariant ideal v of g with the following
properties. Let s := g/t and R be the kernel of the adjoint map Adg :
G — Aut(s).

(1) Aut(s) is a semisimple S-adic Lie group with no compact factor.
(17) The group Adg(G) is a finite index subgroup in Aut(s).

(1ii) The group Ag := Adg(A) is a lattice in Aut(s).
(

iv) The intersection AN R is a cocompact lattice in R.

See [8, Thm 9.5] where a related projection theorem is proven for a
general locally compact group GG and a normal amenable subgroup R.
We note that in our Theorem 6.6, the group R may not be amenable
(see Example 6.2).

Proof. Let L = AR, be as in Proposition 6.1 and let t = [ be the Lie
algebra of L. Note that, by [6, 6.14 and 9.10], for any simple real or p-
adic Lie algebra b, any non-compact open subgroup of Aut(h) has finite
index. Hence, G/Ry is a finite index subgroup of Aut(sg). Besides, by
Lemma 3.1, L is a finite covolume closed subgroup of G. Therefore,
by Corollary 4.7, the Lie algebra t is an ideal of g. In particular, the
quotient Lie algebra s = g/t is semisimple. We thus get (i) and (i7).

Let R be the kernel of the map Adg in G and let us prove that LN R
has finite index in R. As R and L N R have Lie algebra t, through the
map Ade/r, (G), R/Ry and L N R/ Ry identify with open subgroups of
Aut(t/tg) which are normalized by Adyr,(L). Now, by assumption,
the group Adgr,(G) is a finite index open subgroup of Aut(t/ty) and,
since L is a finite covolume subgroup of GG and since the Lie algebra of L
is v, the group Ady/¢,(L) is a finite index open subgroup of Adg/x,(G).
Thus, Adyr, (R) and Ady e, (LN R) are also finite index open subgroup
of Aut(tr/tp) and L N R has finite index in R.

In particular, the group LR is closed and has Lie algebra t. Now, as
R Cc AR C LR, AR also has Lie algebra R, that is AR is closed. By
Lemma 3.1, AR has finite covolume in G/R and AN R has finite covol-
ume in R. By Proposition 6.1, the Lie algebra of R being amenable,
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ANR is cocompact in R. Thus, G/ R being a finite index open subgroup

of Aut(s), we get (i7i) and (iv). O
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