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JEAN-FRANCOIS QUINT

ABSTRACT. Building on [6] and [7], we continue to study unitary
representations of tree lattices. We prove a Plancherel formula for
representations obtained by orthogonal extension from a Euclidean
field. This allows us to compute the spectrum of natural operators
associated to these representations.
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1. INTRODUCTION

1.1. The spectral problem for unitary representaions of tree
lattices. We fix an integer ¢ > 2 and a homogeneous tree X of degree
g+ 1: in other words, every vertex of X has g+ 1 neighbours. We let T’
be a cofinite lattice of X, that is, I' is a discrete group of automorphisms
of X and the quotient '\ X is finite. The purpose of this article is to
develop a spectral theory for certain unitary representations of I'.

Let us precise what kind of spectral theory we have in mind. Given
a vector space V equipped with an action of ', we let F(X, V)" denote
the space of all maps X — V which are I-equivariant. This space
comes with a natural linear operator () associated to the geometry of
X. For fin F(X,V)I' and z in X, we write

1
Qf@) = 521G

Yy~

Assume V' is equipped with a Hilbert space structure and the action
of T' on V is unitary. Then, we can equip F(X, V) with the natural
scalar product defined by, for f,g in F(X, V)T,

(Fo)= 3 (), o)

zel\ X

(where, for x in X, I, is the stabilizer of  in I"). One easily checks that
the operator () has norm < 1 and that it is self-adjoint with respect
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to this scalar product. We are interested in understanding the spectral
invariants of this self-adjoint operator.

Example 1.1. Assume I is the free group generated by a finite set S with
|S| = r > 2 and that X is the natural tree associated with this data (so
that ¢ = 2r — 1). Let x be the vertex of X whose neighbours are the
sz and s~ 'z for s in S. Then, the map f — f(x) is an isometry from
F(X,V)F onto V which conjugates the operator @ and the operator
v cs(su+s7w) on V.

Example 1.2. Let V be (*(T'), equipped with the left regular repre-
sentation. In this case, elements of F(X, V)" can be thought of as
[-invariant functions f on I' x X. The map f +— f(e,x) is an isometry
from F(X,V)I onto £2(X). Then, we can see Q as the natural Markov
operator on X defined by

1
Qg(x) = q+—129(y)’ geLl(X), weX
Yy~
The spectrum of this operator was computed by Kesten [5]: this is the
interval [—z%f, z%‘z]. We give a proof of this fact in Corollary 4.10.

According to our knowledge, very few examples are known, where
the spectral invariants of () can be explicitely computed. The purpose
of this article is to provide a wide family of unitary representations
where such computations can be achieved.

1.2. Euclidean fields. In [6], we have introduced the notion of a k-
quadratic field, where k& > 2 is an integer. The vector space Fj of all
[-invariant k-quadratic fields has finite dimension. It can be thought
of as an analogue of a space of sections of a vector bundle over the
quotient space I'\ X7, where X is the set of oriented edges of X. There
is a natural surjective map

(1.1) Frt1r = Fr,p—=>p-

and the projective limit of the system (Fj)r>2 may be identified with
the space of I'-invariant symmetric bilinear forms on the space D(9X),
where 0X is the boundary of X, D(0.X) is the space of locally constant
functions on X and D(0X) is the quotient of the latter by constant
functions.

In Fi, there is a non empty convex open cone Py whose elements are
called T'-invariant k-Fuclidean fields. This set comes with a natural
non linear map

Pk — Pk-i—lap = p+7
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which is called the orthogonal extension, and which plays the role of a
section of the map in (1.1). In other words, we have (p™)~ = p for p in
Py.

Starting from p in Py, by iterating orthogonal extension, one ends
up with an element of the projective limit of the system (F;);>x, which
turns out to be a I'-invariant scalar product p> on the space D(9X).
The completion of this space with respect to p> is denoted by HP.
Thus, H? is a unitary representations of I'.

It is our hope that a very precise understanding of the spectral ques-
tions of Subsection 1.1 for these particular representations would lead
to a better knowledge of the general case, and in particular of the case
of certain representations appearing in probability theory and dynam-
ical systems.

In this article, we build a complete spectral theory that allows a
detailed description of the spectral invariants of @ in F(X, HP)'. This
is achieved in Theorem 13.1 where we establish a Plancherel formula.
The elements of this formula will be built along the paper. It yields

Corollary 1.3. Let k > 2, p be a I'-invariant k-FEuclidean field and
H? be the associated unitary representation of I'. The spectrum of the
operator Q in F(X, HP)' is 3, U [—2Y4 29 The associated spectral

g+17 g+l
, . 2,4 2
measures are absolutely continuous on the interval [—q%?, ﬁ].

The set ¥, is a finite subset of (—1, —%) U (%, 1) which can be

empty in certain cases. It is defined precisely in (8.1) by means of the
spectral values of the simple transfer operator S,, which is a linear en-
domorphism of a finite-dimensional vector space. The simple transfer
operator is an analogue of the quadratic transfer operator 7}, that ap-
peared in [6]. The quadratic transfer operator T, acted on the space
Ly of I-invariant (k — 1)-pseudokernels, which is a space of func-
tions with two variables. The simple transfer operator will act on the
space Hj_y of [-invariant (k — 1)-pseudofunctions, which is a space of
functions with one variable. This space will play a key role in all our
constructions.

1.3. The Thara trace formula. Part of these constructions rely on
analogies with the case where the representation V' of I' is the trivial
representation. Then, the space F(X,V)! is simply the space H, of
[-invariant functions on X. In that case, the spectrum of the operator
@ is related to the spectrum of an other operator, acting on the space
Hq of I'-invariant functions on X;: in our study the role of the lat-
ter operator will be played by the simple transfer operator mentioned
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above. The relations between those two operators on Hy and H; are
at the core of the Thara trace formula [4]. To motivate the reader, we
will now briefly recall the proof of this formula.

We equip the space H; with the operator T' defined by

Tu(z,y) = Zu(y, 2), u€H, x~yeclX
otz

The original reason for studying this operator was that, for n > 1, the
number + tr(7™) can be interpretated as a number of closed loops of
length n in the quotient graph I"\ X when this makes sense.

To relate the spectrum of (), acting on Hg, to the one of T', acting on
‘H1, we start by equipping these spaces with the natural scalar products
defined by, for a,b in Hy and u,v in Hq,

()= 3 malo)b(a)

el X

and (u,v) = Z mu(x,y)v(x,y).

(z,y)eM\ X1

There are two natural embeddings L : Hy — H; and R : Hy — H;
which may be defined by

La(z,y) = a(x) and Ra(x,y) =a(y), a€Hy, z~yeX.

With respect to the natural Euclidean structures, the adjoint operators
L' and R may be defined by

Liu(z) = Zu(z,y) and R'u(z) = Zu(y,:c), ueH, zelX.

yra Y~

Let £ be the orthogonal complement in H; of the space LHy + RH,.
It will turn out that both £ and £ are T-invariant.
Indeed, the space £ is the space of all functions v on X; wich satisfy,

for any x in X,
> u(z,y) = uly, ) =0.

y~w Y~z

In particular, for such a function, we have Tu(z,y) = —u(y, x) for any
x ~ yin X. Thus, &£ is stable under T" and the spectrum of T in £
is (at most) {—1,1}. The dimensions of the associated eigenspaces are
combinatorial invariants of the action of I' on X which may be related
to the cardinalities of the sets I'\X and I'\ X; when T is torsion free.
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Now, we analyse the action of T on £+ = LHy + RHy. For a,b in

Ho, set B <Z> = La + Rb. A direct computation shows the relation

2 (3)=5 (3 wine) (i)

Note that, for ¢ in R with (¢+ 1)*¢* # 4q, the eigenvalues of the matrix

(2 (q :Lll)t> are the two roots of the equation ¢ + u? = (¢ + 1)tu.

For t = % (resp. t = —Z%?), the matrix is not diagonalizable and

its eigenvalue is \/q (resp. —,/q). Thus, the spectrum of the operator

¢ (¢+1)Q
q +u?® = (q+ 1)tu, where t runs among the eigenvalues of Q, acting on
Ho.

To conclude, we need to analyse the null space of the linear map
B. Say that a function v on X is constant on neighbours if, for every
x,y,z in X with z ~ y and x ~ z, we have u(y) = u(z). If u is such
a function, let Tu be the function on X whose value on x in X is the
value of u on the neighbours of x: again, [u is constant on neighbours.
Write H_; for the space of I'-invariant functions that are constant on
neighbours. Then, the null space of B is the space

189

Let us describe H_; more precisely. There are two cases, depending
on whether the action of I' on X is bipartite or not: we say that the
action of I' on X is bipartite if, for some (equivalently any) z in X,
all the integral numbers d(x,~vx), v € T', are even. If the action of I'
on X is not bipartite, the space H_; is reduced to constant functions.
If the action of I' on X is bipartite, the space H_; has dimension 2.
Depending on the case, the spectrum of @ in H_; is either {1} or
{—1,1}. Besides, an application of the maximum principle shows that
all the eigenvalues of () in H,/H_; are contained in (—1,1).

Summarizing this discussion, we can relate the spectra of () and T’
as follows.

(O -1 ), acting on H2, is the set of all roots of the equation

u € ”H_l} C Hi.

Theorem 1.4 (Thara [4]). The eigenspace of T associated to 1 (resp.
—1) is the space of all skew symmetric (resp. symmetric) functions u
on Xy with 3, ., u(z,y) =0 for any x in X. The operator T admits
q as an eigenvalue with multiplicity 1. The associated eigenline is the
space of constant functions. If the action of I' on X s bipartite, the
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operator T admits —q as an eigenvalue with multiplicity 1. The other
eigenvalues of T are the roots of the equation q + u* = (q + 1)tu where
t runs among the eigenvalues of P in (—1,1). For each such t and
u, the dimension of the eigenspace of T associated to u is equal to the
dimension of the eigenspace of P associated tot. If (q+1)*t? # 4q, then
u is a simple eigenvalue of T. If (q+1)*? = 4q, the characteristic space
associated to u has dimension twice the dimension of the eigenspace.

In a finite-dimensional vector space, an eigenvalue of a linear oper-
ator is said to be simple if the associated eigenspace is equal to the
associated characteristic subspace; in other words, the dimension of
the eigenspace is equal to the multiplicity of the eigenvalue as a root
of the characteristic polynomial.

The spaces H_1, Ho and H; will play a role in this article. More gen-
erally, we will handle a sequence of finite-dimensional spaces (Hy)g>—1-
For k > —1, the elements of H,, will be called I'-invariant k-pseudofunc-
tions. The space H;, will be equipped with an automorphism H — H"
and an embedding H +— H~ into Hy,1. The embeddings L and R will
be respectively written as H — H~ and H — H">V.

The construction of the objects that appear in the Plancherel formula

of Theorem 13.1 will use the action of the matrix <O -1 > on the
q (q+1)t
space H3, for t in [_%7 %ﬁ Ux,.

1.4. Structure of the article. References to [6] and to [7] are indi-
cated with I and II.

In Section 2, we introduce the language of pseudofunctions. The
spectral problem of Subsection 1.1 was set by means of the space
F(X,HP)' of I'equivariant maps X — HP, where, as in Subsection
1.2, H? is the completion of D(0X) with respect to the scalar product
associated to a Euclidean field p. It will actually be more convenient
to use instead the space F (X, HP)!' of I'-equivariant maps X; — HP.
Pseudofunctions are truncated maps X; — D(9X) in the same way as
the pseudokernels of [6] and [7] could be thought of as truncated maps
X, — D(0*X). The space of all I-equivariant maps X; — D(0X)
will be denoted by H.. For any £ > —1, we introduce the notion
of a k-pseudofunction. The boundary cases k € {—1,0,1} are related
to the objects appearing in the proof of Theorem 1.4. The space of
all T-invariant k-pseudofunctions is denoted by Hj: this is a finite-
dimensional vector space with a natural embedding in the space Ho.
We define operations on pseudofunctions in analogy with the operations
on pseudokernels appearing in Section I1.2. We use these operations



ADDITIVE REPRESENTATIONS 9
to define the polyextension map Ej : H,EN) — Hoo, Where H,EN) is the
space of finitely supported sequences of elements of Hy. The range of
the polyextension map is the span in H,, of the image of H; by the
natural operators associated to the geometry of the tree. The polyex-
tension map allows to encode the action of these operators by operators
acting on sequences of real numbers, which we call the model opera-
tors. Model operators appear implicitely in the study of the harmonic
analysis on X and X; in [3]. The polyextension map is not injective
but its null space may be determined in an explicit manner.

In the next three Sections, we study the model operators.

In Section 3, we collect independent facts from algebra and harmonic
analysis that will be used throughout the article in the construction of
spectral transforms and spectral formulas.

In the parallel Sections 4 and 5, we study the model operators. In-
deed, as for pseudokernels in Section 1.8, the definition of a k-pseud-
ofunction depends on the parity of the integer £ > —1. So do the
definitions of the model operators. Section 4 is devoted to the study of
the even model operators whereas Section 5 is devoted to the study of
the odd model operators. In both cases, we define spectral transforms
which are isomorphisms from R™ onto the space R2[t] of polynomial
functions with values in R?. The spectral transforms conjugate the
model operators with actions on R?[t] of 2 by 2 matrices with coef-
ficients in R[t]. By computing the resolvent of certain operators, we
determine their spectral measures in order to state a Plancherel for-
mula for the spectral transforms. These computations will serve as a
model for the statement of the Plancherel formula for Euclidean fields.

In Section 6, we use the study of the model operators on scalar
sequences to define the spectral transform of sequences of pseudo-
functions. For k > 0, the spectral transform is a linear isomorphism
H,(CN) = H2[t], from the set of finitely supported sequences of elements
of Hj, onto the space of polynomial functions with values in HZ. Tts
definition relies on the constructions of the previous sections. We de-
scribe the image under the spectral transform of the null space of the

polyextension map Fj in 'H,(CN) by means of the action of the matrix

(2 (q —_1—11)t> of Subsection 1.3 on the space H:_,[t]. The computa-

tions of this Section rely on the use of the dual space S of the space
‘H;., which is called the space of k-simple pseudofields by analogy with
the space of k-quadratic pseudofields of Section 1.10.

Now that we have built a spectral transform, we aim at proving the
Plancherel formula in Theorem 13.1.
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In Section 7, we introduce the simple transfer operator .S, by analogy
with the quadratic transfer operator of Section 1.10. For k£ > 2, if p is
a [’-invariant k-Euclidean field, the quadratic transfer operator 7, was
an endomorphism of the space £;_; of (k— 1)-pseudokernels. Now, the
simple transfer operator 5, is an endomorphism of the space H;_; of
(k—1)-pseudofunctions. We give informations on the spectral structure
of S.

In Section 8, we give a formula for the resolvent of a certain self-
adjoint operator on F(X;, H?)'. This formula relates the resolvent
with the meromorphic function u +— (u — S,)~* with values in the
space of endomorphisms of the finite-dimensional vector space Hjy_1.

We aim at using this resolvent formula to describe the spectral mea-
sures of this operator. To better understand the formula, we will pro-
ceed to new algebraic constructions.

In Section 9, we study wu-radical simple pseudofields. For u € C*,
the notion of a u-radical simple pseudofields is defined by analogy with
the notion of a radical quadratic pseudofield in Section I1.3 and that of
a ¢-radical quadratic pseudofield in Section II1.6. For k > 0, the space

i c of I-invariant u-radical k-simple pseudofields is a subspace of the
space Si ¢ of complex I'-invariant k-simple pseudofields, which is the
complexification of S;. Given k > 2 and a ['-invariant k-Euclidean field
p, we associate to p a natural complex symmetric bilinear form p; on

k,C

In Section 10, we study t-radical pairs of simple pseudofields. For
t in C, the notion of a t-radical pair of simple pseudofields is de-
fined as above, but the complex number u is replaced by the matrix
(_01 (qfl) t)' For k > 0, the space S,f:fc of I'-invariant ¢-radical
pairs of k-simple pseudofields is a subspace of §; ¢. For (¢4 1)*t* # 4q,
by diagonalizing the matrix, one gets an identification of S,i’(tc with

q
St e ® Siic where  is a root of the equation g 4 u* = (¢ + 1)tu. When
k > 2 and p is a [-invariant k-Euclidean field, we use this structure and
the previous construction of p} to define a complex symmetric bilinear
2va 2v4

form pf " on S,f(tc When ¢ belongs to the critical interval (—m, m),

the bilinear form p;* is real and positive definite on S, The dual

object is a non-negative symmetric bilinear form p? on H; whose null

space is exactly the image of the null space of the polyextension map

E}. of Section 2 by the evaluation at ¢ of the spectral transform of Sec-

tion 6. We call p? the spectral bilinear form associated to t. It will
207 27

allow to write the Plancherel formula on the interval (—2¥3, 2¥7).
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In Section 11, we introduce the objects that will allow to write the
Plancherel formula at the points of the set X, of Subsection 1.2, which
we call the exceptional spectrum. Exceptional spectral values are real
numbers ¢ for which one of the roots of the equation

q+u®=(q+1tu

belongs to (—¢, —/q)U(1/4, ¢) and is an eigenvalue of the simple trans-
fer operator S,. The study of the spectrum of S, in Section 7 and that
of the notion of a t-radical pair of simple pseudofields in Section 10 al-
low to associate to ¢ in X, a non-negative symmetric bilinear form pf o
on Hi. We call pt2 “* the exceptional spectral bilinear form associated
to t.

In Section 12, we handle the remaining two points of the spectrum,
which are —1 and 1. Those two points do not appear in Corollary 1.3
which only deals with harmonic analysis in the space of I'-equivariant
functions X — HP. When studying instead I'-equivariant functions
X1 — HP, these two spectral values appear in the computations. The
same phenomenon happens in the spectral decompositions of the action
of the full group of automorphisms G of X on the spaces ?(X) and
(%(X,) in [3]. Tt is then related to the construction of the special unitary
representations of GG. It also takes place in the Thara trace formula,
Theorem 1.4, through the study of the space that was denote by &
in Subsection 1.3. In our case, in analogy with the notion of a skew
quadratic field in II.6, we define the notions of a skew field and of
a reverse skew field. The space G} of I-invariant k-skew fields is a
subspace of S}; the space Q,(C_l) of I'-invariant reverse k-skew fields is
a subspace of S,gfl). If £ > 2 and p is a I'-invariant k-Euclidean field,
we can associate to p scalar products pi”* and p?‘i”f) on G} and g,ﬁf”.
This construction is a direct translation for k-skew fields and reverse
k-skew fields of the construction of the skew weight metric on k-skew
quadratic fields in Section I1.7. From pi™* and p?ri’f), we build non-
negative symmetric bilinear forms p>* and p?’_sllj) on H2, which we call
the special spectral bilinear forms associated to 1 and —1.

In the final Section 13, we gather the previous constructions and
results to state the Plancherel formula. For £ > 2 and p a I'-invariant
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k-Fuclidean field, we write this formula as

+1 e, o
p>*(ExH, EpJ) = m /_{ Pp2(H (L), J(1)V/4q — (¢ + 1)22dt
+(q—1) Y pr(H(1), (1) + %pf’s"(ﬁ(l), J(1))
+ g H D, T-1),

where H and J are in H,(CN). We prove this formula by comparing the
boundary values of the resolvent function constructed in Section 8 with
the formulas established in Section 10 for the spectral bilinear forms,
in Section 11 for the exceptional spectral bilinear forms and in Section
12 for the special spectral bilinear forms.

1.5. Notation. We use the general notation introduced in Subsection
[.1.8 and Subsection 1.2.1. In particular, we have d(z) = g + 1 for any
rin X.

If E is a set, we let EN be the set of sequences of elements of E.

If V is a vector space, we write V() < VN for the set of finitely
supported sequences, that is, sequences (x;);>o such that z; = 0 for all
large enough 7. For v in V and ¢ > 0, we let v1; be the sequence in
V) all of whose coefficients are 0, except the i-th one which is equal
to v.

We will often write elements u of V2 as column matrices u = (Z;),

where v and w are in V. In this case, we write u* = (v w) for the
associate line matrix.

Let V be a real vector space. We write V¢ for the complexification
of V', that is, Vo = C ® V. One has a natural embedding V' C V¢ and
Ve may be written as Vo = V @ ¢V. We then write v — v for the
natural complex conjugation in V¢, so that, for v in V', one has v = v
and iv = —iv

Any object defined in terms of real linear algebra on real vector
spaces defines an analoguous complexified object on complexified spa-
ces: we usually denote the two objects by the same letters. For exam-
ple, if T : V — V is a real linear map, we still write T": Vo — V¢ for
the complex linear map defined by T'(v+iw) = Tv+iTw for v,w in V.
In particular, we adopt the following convention: if p is a symmetric
bilinear form on V', then p also stands for the complex bilinear form
on V¢ whose restriction to V' is p. Thus, the natural Hermitian form
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on V¢ associated to p is defined as p : (v, w) — p(v,w), Ve x Ve — C.
Then, p is positive definite as a real bilinear form on V' if and only if p
is positive definite as a Hermitian form on V.

The space of polynomial functions R — V' is denoted by V[t].

2. PSEUDOFUNCTIONS

We introduce a family (Hy)g>—1 of vector spaces which will serve to
define the spectral invariants associated to a Euclidean field. In case
k = —1,0,1, these spaces are essentially the same as the ones used in
the proof of the Ihara trace formula, Theorem 1.4.

2.1. Pseudofunctions and the special cases k = —1,0,1. We start
by defining k-pseudofunctions for £ > 1. Recall that, for  in X and
¢ > 0, we write S*(x) for the sphere with radius ¢ and center z and

VZ(:E) for the quotient of the space of real valued functions on S¢(x) by
the constant functions. In the same way, for  ~ y in X, we set

St (xy) = {z € X|min(d(x, 2),d(y, 2)) = (}

and we let Vg(xy) be the quotient of the space of real valued functions
on S(xy) by the constant functions.

Definition 2.1. Let £ > 1. If kis even, k = 2¢, ¢ > 1, a k-
pseudofunction is a family (Hay)(y)ex, Where, for any  ~ y in X,

H,, is an element of Ve(x) If kisodd, k =204+ 1, ¢ > 0, a k-
pseudofunction is a family (Huy)zy)ex, where, for any z ~ y in X,

H,, is an element of Ve(:vy).

The finite dimensional vector space of I'-invariant k-pseudofunctions
is denoted by Hj.

In case k = 1, for x ~ y in X, the space Vo(scy) has dimension 1.
Therefore, if H is a 1-pseudofunction, we can write H,, = u(zy)1,,
x ~ y € X, for some uniquely defined function v on X;. In the
sequel, we shall use this convention to identify 1-pseudofunctions with
functions on X;. In particular, as in Subsection 1.3, the space H; will
also be seen as the space of I'-invariant functions on Xj.

Following this identification, let us define O-pseudofunctions and
(—1)-pseudofunctions.

By convention, we say that a 0-pseudofunction is a pair (0, u), where
u is a function on X and we write Hy for the space of I'-invariant
0-pseudofunctions.

As in Subsection 1.3, we will say that a function v on X is constant
on neighbours if, for any x in X and for any neighbours y, z of X,
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one has u(y) = wu(z). The space of functions that are constant on
neighbours has dimension 2. The space of I'-invariant functions that
are constant on neighbours has dimension 1 or 2. The action of T’
on X (or if this makes sense, the associated quotient graph) is called
bipartite in case this dimension is 2. There is a natural involution on
the space of functions on X that are constant on neighbours: if u is
such a function, we define the opposite of u as the function whose value
on z in X is the value of u on neighbours of x.

Again by convention, a (—1)-pseudofunction is a pair (—1,u), where
u is a function on X that is constant on neighbours and we write H_;
for the space of I'-invariant (—1)-pseudofunctions.

Remark 2.2. We have slightly changed the definitions of Hg and H_,
with respect to the ones used in Subsection 1.3. The reason for these
formal modifications will be clear in the next Subsection.

2.2. Operations on pseudofunctions. We define natural algebraic
operations on pseudofunctions which are analogues of the ones defined
on pseudokernels in Section I11.2.1.

Definition 2.3. Let £ > 1 and H be a k-pseudofunction.
If k is even, for any x ~ y in X, we set H, = Zi;i H,.. We call

HY the reversal of H. The map H — H" is a linear automorphism of
the space of k-pseudofunctions.

If k is odd, for any # ~ y in X, we set H), = H,,. We call H" the
inversion of H. The map H — HY map is an involution of the space
of k-pseudofunctions.

Note that, if £ = 1, and H is the 1-pseudofunction associated to
the function u on X, then HV is the 1-pseudofunction associated to
the function (x,y) — —u(yz) on X;. By convention, if £ = 0 and
H is the 0-pseudofunction associated to the function u on X, we set
HY to be the 0-pseudofunction associated to the function z — —u(x)
on X. If k = —1 and H is the (—1)-pseudofunction associated to the
function u on X that is constant on neighbours, we set H" to be the
(—1)-pseudofunction associated to the function —v on X, where v is
the opposite of u. These choices will be justified by Lemma 2.6 below.

If £ > —1 is odd, the inversion is an involution of H; and we will
use the notation

Hiy = {H € Hp|H = H} and My, = {H € H,|H' = —H}.

In particular, we have Hy = Hp+ & Hi—. If k is even (and > 2),
the reversal is not an involution, but a direct computation gives (see
Lemma I1.6.15):
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Lemma 2.4. Let k > 0 be even and H be a k-pseudofunction. We
have HYY = qH + (¢ — 1)H".

In other words, if £ > 0 is even, the endomorphism H — H"Y of Hy
is diagonalizable, with eigenvalues ¢ and —1. We then set

Hir ={H € Hx|H' = qH} and Hy,_ = {H € Hy|H' = —H}.

We still have Hy, = Hj 4+ © Hy,—.
Let us now define extensions of pseudofunctions. For z ~ y in X,
we use the notation of Subsection 1.4.2 for the natural injections:

¢ ‘—f —(+1
I,V (xy) =V (x), £>0,
ng : Vf(x) — Ve(xy), (>1.

Definition 2.5. Let £ > 1 and H be a k-pseudofunction. We define
the direct extension H~ of H, which is a (k + 1)-pseudofunction, as
follows.
Ifkisodd, k = 20+1,£ > 0, forany z ~ yin X, weset H_, = IﬁyHmy.
If kis even, k =20, £ > 1, for any x ~ y in X, we set H; = Jﬁnyy.
Direct extension is a linear embedding from the space of k-pseudo-
functions into the space of (k + 1)-pseudofunctions.

By convention, if kK = 0 and H is the O-pseudofunction associated to
the function v on X, we set H~ to be the 1-pseudofunction associated
to the function (x,y) — wu(z) on X;. If k = —1 and H is the (—1)-
pseudofunction associated to the function v on X, we set H~ to be the
O-pseudofunction associated to the function v on X.

By analogy with the case of pseudokernels (see Lemma 11.2.3), if H
is a pseudofunction, we will sometimes write H* instead of H>" and
call it the orthogonal extension of H.

As for pseudokernels, we have a commutation property.

Lemma 2.6. Let k > —1 and H be a k-pseudofunction. We have
V> — [>>V

Proof. In case k > 1, this is proved as in Lemma I1.2.4. Let us prove
the cases where k = 0 and &k = —1. This will justify our conventions.
If £ = 0, assume that H is the O-pseudofunction associated with
the function v on X. Then, we need to prove that H>~V = —H>~.
Indeed, for every x ~ y in X, we have H; = u(z)1, (in Vo(a:y)), hence
HZZ = u(2)1, (in V' (z)). We get
H;;V = u(x) Z 1, = —u(x)l, = —H$>y>,

zZ~T

zFy
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which should be proved.

If £ = —1, assume that H is the (—1)-pseudofunction associated
with the function v on X, where u is constant on neighbours. Let v
be the opposite of u. Then, on one hand, H~~ is the 1-pseudofunction
associated with the function (z,y) — wu(z) on Xi, hence H>~V is as-
sociated with the function (z,y) — —u(y). On the other hand, H" is
the (—1)-pseudofunction associated with the function —v on X, hence
HY>> is associated with the function (z,y) — —v(x). The conclusion
follows since by definition, for (z,y) in Xy, one has u(y) =v(z). O

We will later need to know that the eigenspaces of the V operator
are not reduced to {0}.

Corollary 2.7. Fork > —1, one has Hy— # {0}. If k is large enough,
one has Hy+ # {0}.

Proof. Let H_; and Hy = H~, be respectively the (—1)-pseudofunction
and the 0-pseudofunction associated with the constant function with

value 1 on X. By construction, one has HY, = —H_; and Hj = —H,.
For k > 1, define by induction a k-pseudofunction Hj by setting Hy =
H; ;. By Lemma 2.6, we get HY = —Hj for any £k > —1, hence
Hy,— # {0}

Let us now show that we have #H; + # {0} if k is large enough.

Assume that k£ is even, £k = 2¢, £ > 1. Let S C X be a system
of representatives for the action of I': thus, we have I'S = X and
I'enS = {z} for x in S. Then, an element H in H;  may be seen
as a family (H,),es, where, for x in S, H, is a I',-invariant element of

Vé(x). Fix z in S. If 7 is large enough, the finite group I', has more

than one orbit in the sphere S*(z). Therefore, the space Ve(x) contains
a non zero I',-invariant element. We get H;, . # {0}.

Assume that k is odd, £ =20+ 1, £ > 0. Let Y be the set of non
ordered pairs {z,y} with z,y in X and = ~ y. The set Y may be
seen as the quotient of X; by the natural involution (z,vy) — (y,z).
For {z,y} in Y, we let I'(, 3 be the stabilizer of {x,y} in I'. Let now
S C Y be a system of representatives for the action of I'. An element
H in Hy . may be seen as a family (H{; ) (z41es, Where, for {z,y} in

S, Hiyyy is a 'y y-invariant element of Vg(xy). Fix {z,y} in S. As
above, if £ is large enough, the finite group I'y, 3 has more than one
orbit in the sphere S¢(zy). Again, this implies Hy . # {0}. O

Let us now state an analogue of Lemma I1.2.5.

Lemma 2.8. Let k > —1 and G, H be k-pseudofunctions. Assume
that we have G~ = H>V.
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If k > 0, there exists a (k — 1)-pseudofunction F with G = FY> and
H=F".
If k = —1, we have G + H = 0.

Proof. The cases k = 0, —1 directly follow from the definitions.
Assume k = 1. Let u and v be the functions on X; associated with

G and H. For x ~ y in X, we have, in Vl(x),
u(zy)l, = I),Gay = Zfa(c)szz = Zv(xz)lz.

zZ~r z~x

z#Y 2#y
As 1, =— Zi;iﬁ 1., this gives

> (v(zz) + u(zy))L. = 0.

VT
27y

Thus, for any y,z ~ =, y # z, we have v(zz) + u(xy) = 0. As ¢ > 2,
there exists a function w on X such that, for any x ~ y in X, one has
v(zy) = w(x) = —u(zy). The conclusion follows by our conventions on
0-pseudofunctions.

Assume k iseven, k = 2¢, ¢/ > 1. For x ~ yin X, we have, in Vg(xy),

¢ ¢
JoyGay = JyuHya.
In particular, for every z in S*~!(z) with y ¢ [xz], the function G,, €

Vé(x) is constant on the set
{w e S(x)|z € [zw]},

that is, we may write G, = I%, ' F,, where F, is in VZil(ary). In other
words, we have G = FV~. As G~ = H~V, we get, by using Lemma 2.6,
H>Y = FV>> = F>>V hence H = F~.

The proof in the odd case is analogous. 0

2.3. The polyextension map. The spaces Hy, k > —1, are embed-
ded into each other through the direct extension map. We will now
study their direct limit and encode some elements of this direct limit
by sequences of pseudofunctions.

We shall say that a oo-pseudofunction is any map X; — D(9X).
The space of I'-invariant co-pseudofunctions is denoted by H.,. Recall
from Subsections [.4.4 and 1.7.3 that we have defined natural operators

NV (2) — D(0X) zeX,(>1
and ny:vg(xy)%ﬁ(a)() x~y € X, {>0.
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For k > 1, if H is a k-pseudofunction, we set H>" to be the oo-
pseudofunction defined by, for x ~ y in X,

H; = N.H,, k=200>1
H; = N. H,, k=20+1,0>0.
One easily checks that one has
(2.1) (H>)>" =H>",
Thus, one can extend the construction in case k = 0 or k = —1 by

using (2.1) as a definition.

Let 1 > 0, k > —1 and H be a k-pseudofunction. We denote by H>'
and H*' the (k + i)-pseudofunctions obtained from H respectively by
1 sucessive direct extensions and by ¢ successive orthogonal extensions.
Note that, by Lemma 2.6, we have

(2.2) Ht>> = >+t

This formalism allows us to compare the different notions of extension
through the following generalization of Lemma 2.8.

Proposition 2.9. Let k > 0 and (H;);>o be a sequence of k-pseudofunc-
tions with H; = 0 for ¢ large enough. Set

ne e
i>0
Then H = 0 if and only if there exists a sequence (G;)i>o of (k—1)-
pseudofunctions with G; = 0 for i large enough such that
(2.3) Hy=G/"Y + Gy~
H; = GIo = Gy i>1

The proof uses the following consequence of Lemma 2.8.

Lemma 2.10. Leti > 1, k > 0 and H be a k-pseudofunction. Assume
that there exists a (k+1i— 1)-pseudofunction G with H* = G~. Then,
there exists a (k—1)-pseudofunction F with H = F> and G = F¥V+"'>.

Proof. We show the result by induction on ¢ > 1. If ¢ = 1, this is
Lemma 2.8. Assume ¢ > 2 and the result holds for ¢ — 1. By Lemma
2.8, there exists a (k + i — 2)-pseudofunction Gy with H*" = G7
and G = GY~. The induction assumption says that there exists a
(k — 1)-pseudofunction F with H = F> and G; = F¥*" ">, We get
G = FV+'7>v> = PV+'""> and the conclusion follows. O
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Proof of Proposition 2.9. Assume that (2.3) holds. Then, a direct com-
putation gives

H=G\""+G>" +) G =647
i>1
e e
i>0

For i > 0, Lemma 2.6, (2.1) and (2.2) give

V>0 >4t
Gimm -G

— (Gz/+i>>_Gi>+i+1)>°° — (Gi>>v+i_Gi>+i+1)>°°
0.

We get H = 0 as required.

Conversely, we may assume that there exists ¢ with H; # 0. Then, we
set 7 = max{i > 0|H; # 0} and we prove the statement by induction
on j. If j = 0, there is nothing to prove. If j = 1, this is Lemma
2.8. Thus, we assume j > 2 and the statement holds for 7 — 1. By
assumption, we have the following equality of (k + j)-pseudofunctions:

j—1 j—1 =
+_ +ixd—t +ixd—izl
—Hj = E H; = E H; )

=0 i=0

Lemma 2.10 tells us that we can find a (k — 1)-pseudofunction A with
H; = A~ and
j—1

(2.4) STHTHT A g,
=0

We define a new sequence (J;);>o of k-pseudofunctions by setting

Ji = H, 0<i<j—3
Jiy=H; s LAYV
Jj-1=Hj

J; =0 i> .

We want to apply the induction assumption to this new sequence. In-
deed, we compute

j—1

7j—1

isj—1—i isj—1—i i—2
E ‘]z+ > — § H7,+ > + A\/>\/+ > O,
=0 =0
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where the last equality follows from (2.4). Thus, the induction assump-
tion tells us that there exists a sequence (F});>o of (k — 1)-pseudofunc-
tions, with finitely many non zero terms, such that

(2.5) Jo=F>Y + Fy>
and J; = F7Y — F7 4, i>1
We set G; = F; for i # j —1 and G;_; = F;_1 — A. One easily
checks that (2.3) holds. Indeed, for ¢ ¢ {j — 2,5}, it is equivalent to
(2.5) since H; = J;. For i = j — 2, it also follows from (2.5) since
Hj_Q - Jj_g = —AV>V = (Gj—l - F‘j_l)\/>\/. Finally, for 1 = j, (25)
gives F)7Y —F7 | = 0, hence G} —G7 | = A~ = Hj as required. [
This result leads us to define two natural linear maps.
Definition 2.11. Let £ > 0. For (H;);>0 in H,(CN), we set
Ey(H;)i>0 = ZH;’i>m € Hoo.
i>0

We call the linear map E}, : ’H,(CN) — Hs the k-polyextension map.

Definition 2.12. Let £ > 0. For (G;);>¢ in ”H,(ﬁ)l, we set Di(G;)i>0 €
H,(CN) to be the sequence (H;);>o given by (2.3). We call the linear map
Dy HY — 1™ the k-default map.

2.4. Injectivity of the default map. To complete the preceding pic-
ture, we will show that the default map Dy, is injective. More generally,
we have

Proposition 2.13. Let k > —1 and (G;);>0 be a sequence of k-pseud-
ofunctions. Assume that we have

(2.6) GY™V = -Gy~
(2.7) Gl =G, 1> 1.

Then, if k is odd, there exists a (—1)-pseudofunction J such that, for
any 1 > 0, one has

(28) Ggi — GQH_l — (—1)ZJVZ

If k is even, there exists a (—1)-pseudofunction J such that, for any
1> 0, one has

(2.9) Gy = (—1)7;Jvi+1>k+1 and G2i+1 _ (_1)i+1Jvi>k+1'

Conversely, in both cases, if (Gi)i>o is of the form in (2.8) or (2.9),
then (2.6) and (2.7) hold.

>k+1
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Proof. First we check that the condition is sufficient. Let J be a (—1)-
pseudofunction.

Assume k is odd and (2.8) holds. Then, we have Gy = Gy = J>"".
Hence, by Lemma 2.6, GY~ = GY> = J¥>"" and, as the V-operator is
(—1) on 0-pseudofunctions,

VoSV VoS VA VOV s v>k+2 V>
By the same arguments, for ¢ > 1,
V>V > V>V > i Tvisktly>y i—1 pviTlxk+2
Gy =Gy, =Gy — Gy = (1)) —(=1)J
_ (_1)i+1Jvi+1>k+2 _ (_1)i71Jvi‘1>k+2 =0,

which should be proved.
Assume £ is even and (2.9) holds. On one hand, we have

GY>V + Gy = ) e AN AT R C i A7 A A7y )
On the other hand, for i > 1,

GV>Y Gz>z;1 _ (_1)z‘+1Jvi>’“+1v>v . (_1)iJvi—1>’“+2

2i+1
_ (_1)Z+2Jvl+l>k+2 _ (_1)Z'Jvi71>k+2 _ O
and, for ¢ > 0,

G;;vz . G2>¢ _ (_1)z‘+1Jvi+2>k+1v>v . (_1>iJvi+1>k+2
_ (_1)i+2J\/i+3>k“'2 . (_1)iJvi+1>k+2 —0.

Conversely, whether k is odd or even, let (G;);>o be a sequence of
k-pseudofunctions such that (2.6) and (2.7) hold. We will prove by
induction on k > —1 that (G;)i;>o is of the form in (2.8) or (2.9),
depending on the parity of k.

If £ = —1, the equations read as Go = GG and G;_1 + G’ZVJrl = 0 for
1 > 1. The conclusion directly follows by taking J = G,.

Assume k£ > 0 and the result is true for £ — 1. By Lemma 2.8, as
(2.6) holds, there exists a (k — 1)-pseudofunction H, with

(2.10) GY = H; and GY = —H)>.

Still by Lemma 2.8, as (2.7) holds, for ¢ > 1, there exists a (k — 1)-
pseudofunction H; with

(211) G;/-i-l = H7,> and Gi*l = HZ\/>

From (2.10) and (2.11) in case i = 1, we get Gj = —H;” and Go =
H)~, hence

(2.12) HY?Y + HY> =0.
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Besides, by (2.10) and (2.11), we have, for all i« > 1, GY = H7 |,
whereas, by (2.11), G; = H;\;;. Thus, we get
(2.13) HYZY = H” .
By (2.12) and (2.13), we can apply the induction assumption to the
sequence (H;)i>o-

If k is even, this tells us that there exists a (—1)-pseudofunction J
with, for i > 0, Hy; = Hoj11 = (—1)iJVl>k. By applying (2.11), we get,
thanks to Lemma 2.6,

Go; = HQVZ,L — (_1)z‘Jvi>’fv> _ (_1>ijvi+1>k+1
Goiv1 = H2vz‘4>r2 = <—1)i+1Jvi+1>kv> = (—1)i+1JVi>k+l.

If k is odd, there exists a (—1)-pseudofunction J with, for i > 0,
Hy; = (_1)i']vl+l>k and Hyjpq = (—1)”1Jvl>k. We get, as the V
operator is —1 on 0-pseudofunctions,

Goi = HY7 ) = (—1)1gV>"v> = (—yi vt
Gaiy1 = Hg/ﬁﬂ — (_1)i+1J\/i>k\/> _ (_1)iJvi>k+1.
The Proposition follows by induction. 0

From Proposition 2.9 and Proposition 2.13, we get

Corollary 2.14. Let k > 0. Then, the k-default map Dy, is injective
and the null space of the k-polyextension map Ej is the range of Dj.
In other words, we have an exact sequence

0— 7—[,@1 LN H,EN) s U,

Proof. Let (G;)i>0 be a sequence of (k — 1)-pseudofunctions such that
G; = 0 for large enough . Assume that (2.6) and (2.7) hold and let J
be the (—1)-pseudofunction as in Proposition 2.13. As G; = 0 for large
enough 7, we have J = 0, hence G = 0. In particular, this tells us that
the default map Dy is injective.

Besides, let H be in H,(CN) and assume that EyH = 0. The above
tells us that the sequence (G;);>o of (k — 1)-pseudofunctions obtained
by applying Proposition 2.9 to H is uniquely determined by H. In
particular, it is I'-invariant, that is, H belongs to the range of the
default map Dy, as should be proved. O

2.5. Operations on oo-pseudofunctions. We will now define natu-
ral operations on H., and show that they can be transfered to opera-
tions on H,(CN) thanks to the polyextension map.
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Let H be an oo-pseudofunction. By analogy with Definition 2.3, we
define the reversal RH and the inversion SH of H by

RH,, =Y H,.and SHy, = H,,, z~y€X.

zZT

27y

The maps R and S define linear operators of H., and we have S? = 1
and, as in Lemma 2.4, R? = ¢+ (¢ — 1) R. Frome these definitions, we
directly get

Lemma 2.15. Let k > —1 and H be a k-pseudofunction. If k is even,
we have R(H>™) = HV>™. If k is odd, we have S(H>") = HV>".

We will now define analogues of these maps on 'HI(CN).

Definition 2.16. (k even) Let £ > 0 be an even integer, k = 2¢, £ > 0,
and H = (H;);>o be a sequence of k-pseudofunctions.
The reversal RH of H is the sequence of k-pseudofunctions defined

(RH)o = Hy
(RH)Z = Hi—l + (q — 1)Hl 1 even,i Z 2
(RH); = qH; 1 1 odd.

The inversion SH of H is the sequence of k-pseudofunctions defined
by
(SH); = H;14 i even
(SH)z = Hifl 7 odd.
Definition 2.17. (k odd) Let £ > —1 be an odd integer, k = 2¢ + 1,
¢ > —1,and H = (H,;);>0 be a sequence of k-pseudofunctions.
The reversal RH of H is the sequence of k-pseudofunctions defined
by
(RH); = qHis 1 even
(RH);=H; 1+ (¢g— 1)H; i odd.

The inversion SH of H is the sequence of k-pseudofunctions defined

(SH); = H; 4 i even,i > 2
(SH)Z = Hi—l—l 7 odd.
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One directly checks that the relations R* = ¢+ (¢ —1)R and S* =1
still hold. Besides, these maps are compatible with the polyextension
map.

Lemma 2.18. Let k > 0 and H = (H;);>0 be in H,(CN). We have
Ex(RH) = REx(H) and Ex(SH) = SE,(H).

Proof. Assume k is even. By definition, we get

Ey(H) =Y H*>" =H;™+> (H >+ H)>™.

i>0 i>1
Now, Hy belongs to Hy, and, fori > 1, Hy:| >+ H;;" belongs to Hyya:,
so that Lemma 2.15 gives RHy~ = Hy>" and
2i—1 21 [eS] 2i—1 21 [eS)
R(Hyi—y =+ Hy )™ = (Hyy 7+ Hy V)7
Using Lemma 2.4, we get
HE 4 Y
= qHzt-Qi_1> + (Haio1 + (g — 1)H2i)+2i7
which gives RE,(H) = Ek(RH).
In the same way, we have
Ep(H) = (Hy"” + Hyy )7
i>0
As, for i > 0, H;;Qi> + H;;if belongs to Hyi2i41, Lemma 2.15 gives
SE(H) = (Hy,7 +Hi" )",
i>0

which should be proved.
The proof in case k is odd is analogous. U

Finally, to describe the behaviour of these operators R and S in the
null space of the polyextension map, we define a new pair of operators
R’ and S’ as follows.

Definition 2.19. (k even) Let k£ > 0 be an even integer, k > 2¢, £ > 0,
and G = (G;)>o be a sequence of k-pseudofunctions. The antireversal
of GG is the sequence R'G of k-pseudofunctions defined by

(R/G>0 = (q — 1)G0 — GE)/
(R/G)l = Gi—l —+ (q — 1)Gz ) even,@' Z 2
(R'G)i = qGina i odd.
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Definition 2.20. (k odd) Let £ > —1 be an odd integer, k > 2¢ + 1,
¢ > —1, and G = (G;)>0 be a sequence of k-pseudofunctions. The
antiinversion of G is the sequence S'G of k-pseudofunctions defined by

(S'G)o = -Gy
(S'G)i = Gy i even,i > 2
(S/G)Z = Gi—i—l 1 odd.

Note that, in the even case, the maps R and R’ only differ by their
action on the first component. So do the maps S and S’ in the odd
case.

These maps allow to describe the action of the reversal and the in-
version on the range of the default map.

Lemma 2.21. Let k > 0 and G = (G;)i>o0 be in H,(CN_)l. If k is even,
we have
Di(RG) = RD(G) and D(S'G) = SDy(G).
If k is odd, we have
Proof. These are straightforward computations. For example, we deal
with the reversion action in case k is even. We set H = D;G. For
i =0, we have Hy = GY”Y + G, hence
(RH)o = G{™" + Gy~ = (Go+ (¢ — 1)G1)"”Y +¢G}~
= (RG){™" + (RG)y~
as required. For ¢ > 1, we have H; = G)7}Y — G; 4, hence, if 7 is odd,
(RH): = qHin = 4G5’ — aG7 = (RG)ZY — (RG)YZ:
and if ¢ is even,
(RH); = Hi+(¢— D) H; = G/77 = G7,+ (- 1)G/5 = (- 1)G7,
= (RG)Z’ ~ (RG)Zy.
The other three computations are analogous. U

2.6. Pseudofunctions in the bipartite case. In this Subsection, we
assume that I' is bipartite. In that case, the spaces of pseudofunctions
may be equipped with an additional natural operation. We introduce
this operation and explain how it is related to the previous construc-
tions.

We fix a function x : X — {1,—1} such that, for every x ~ y in
X, one has x(y) = —x(z). This function is uniquely defined up to a
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sign change and saying that I" is bipartite amounts to saying that y is
[-invariant.

For k > 1 and H a k-pseudofunction, we define the twist H' of H
the k-pseudofunction defined by

H., =x(x)H,, z~yeX.

If k=0 (resp. k= —1) and H is the k-pseudofunction associated to
the function u on X (resp. to the function u on X that is constant
on neighbours), we let H! be the k-pseudofunction associated with the
function yu.

We directly get

Lemma 2.22. Let k > —1 and H be a k-pseudofunction. We have
HY” = H>'. If k is even, we have HY = HY'. If k is odd, we have
HY — gV

In the same way, if H is an co-pseudofunction, we set UH to be the
oo-pseudofunction defined by

(UH)yy = x(x)Hyy x~yeX.
As in Lemma 2.22, we have the relations
UR=RU and US = —SU.

If k> —1 and H is a k-pseudofunction, we have U(H>") = H>™.

To check the compatibility properties of this operation with the
polyextension map, we introduce an operator on sequences. For k > —1
and (H;);>o a sequence of k-pseudofunctions, we set UH to be the se-
quence defined by

(UH); = (1) H! i even
(UH); = (—1)%H; 1 odd, k even
(UH); = (-=1)7 H! i odd, k odd.

A direct computation using Definition 2.11 and Definition 2.12 yields

Lemma 2.23. Let k> —1. For H in H,EJN), we have
EUH =UELH.
For G in %,@1, we have

D,UG = -UD;G k even
D.UG =UD,G k odd.
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3. PRELIMINARIES FOR THE STUDY OF THE MODEL OPERATORS

Lemma 2.18 above suggests that, in order to study the natural op-
erations on H,, we need to analyse operators defined on sequences of
real numbers by formulae as in Definition 2.16 and 2.17. We call these
operators the model operators. The purpose of the next three Sections
is to develop a precise spectral analysis of the model operators.

Our general strategy for doing this relies on considerations of abstract
harmonic analysis. Indeed, the involutive algebra generated by two self-
adjoint elements R and S with the relations R? = qR + (¢ — 1)R and
S? = 1 is the algebra of the infinite diedral group. In particular, any
x-representation of this algebra on a Hilbert space may be decomposed
(maybe continuously) into irreducible components and these irreducible
components have dimension at most 2, as the infinite diedral group has
a normal abelian subgroup of index 2.

It turns out that, for the model operators, this decomposition maybe
constructed in a very explicit way. We shall build this decomposition.
We will need to split these construction according to the parity of k
and to the eigenvalues of the V operator in the formulae from Definition
2.16 and 2.17. Thus, we need to consider four different cases which will
be carried out in the Subsections 4.1, 4.3, 5.1 and 5.2.

In the present preliminary Section, we introduce notation and facts
that we will use in the construction of the spectral theory of model
operators. Some of them will also be later required in the spectral
analysis of Euclidean fields.

3.1. Algebraic preliminaries. We introduce a general algebraic
framework for the actions of operators R and S which satisfy the prop-
erties of the R and S operators on oo-pseudofunctions.

Let R and S be two symbols and A be the real algebra spanned by R
and S with the relations S? = 1 and R? = ¢+ (¢—1)R. In other words,
A is the quotient of the tensor algebra of the vector space RR@G RS by
the ideal spanned by S? — 1 and R? — ¢ — (¢ — 1) R. We equip A with
the unique involutive anti-automorphism A +— A* such that S* = §
and R* = R.

Set S" = (h%l(QR— (g—1)). A direct computation shows that (5")% =
1. Therefore, A may be seen as the group algebra of the group G
generated by S and S’, which is isomorphic to the infinite diedral group.
In particular, the element 7' = SS” is unitary and the element P defined
by

1

(RS +SR=(1-1)8)

1
P: §(T+T71) —
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is self-adjoint. Set B to be the subalgebra spanned by T'. By construc-
tion, B is the algebra of Laurent polynmials R[T, T~1].

Lemma 3.1. We have A = B&SB. The center C of A is the subalgebra
spanned by P, which is isomorphic to the polynomial algebra R[P].

The explicit form of the center will play a role for determining spec-
tral measures in Section 4 and 5.

Proof. The first property is a direct translation of the fact that A is
the group algebra of G and that G may be written as G = T% LU STZ.
Now, let C' be in C and write

C=> a,T"+8) b,T"
for some sequences (a,) and (b,) in R®. We have

C=8CS=Y a,T™"+8Y bT™"

hence a,, = a_,, and b,, = b_,, for n in Z. Besides, as
S'ST"S = (SS)(S'S)(S'SNT"S" = S(SS")(SS")(S'T"S") = ST* ™,
we get
C=8C8=> a,T"+8Y b,T*™"
hence, for n in Z, b, = by_,, :nbn_g. As b, isnzero for |n| large, we get
b, = 0 for any n. The result easily follows. 0

We shall also need the existence of nice complementary subspaces
for some natural left ideals in A.

Corollary 3.2. One has the following decompositions:
A=C®SC® AR —q)
=Co®SCh A(R+1)
=C®RC®A(S—-1)
=CORCHA(S+1)

Proof. Let us show first the decomposition

(3.1) A=Ca SCa A(S" —1).
Indeed, Lemma 3.1 gives (by exchanging the roles of S and S”)
A=BaBS".

By using the identities, for By, By in B,
Bo+ B1S"= (By+ B1) + B1(S"— 1) = (By — B1) + B1(5" + 1),
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we get
(3.2) A=BaB(S —1)=Ba B(S +1).

Still by Lemma 3.1, as B is the algebra of Laurent polynomials B =
R[T,T~'] and C is the polynomial algebra C = R[T + T~ '], we get

B=CaoC(T-T").
Aswe have T — T ' = —(T+T7') + 2T = —2P + 2T, we get

B=C®CT,
hence, from the first first equality in (3.2),
(3.3) A=CaCT e B(S' —1).
In particular, since ' = 5 + S(S" — 1), this gives
(3.4) A=C+CS+ AS —1).

To conclude the proof of (3.1), we need to show that this sum is a
direct sum. Thus, we take A in A and Cy, C in C such that we have

Co+CiS+AS —1)=0
and we will show that Cp = €7 = A(S" — 1) = 0. Indeed, still as
T=S5+S5(5—1), we have
Co+CiT+ (A-C19)(8"—1)=0.
Use the second equality in (3.2) to find By, By in B with A — C1S =
By + B1(S" + 1), so that
(3.5) (A—C19)(8"—1) = By(S" —1).
We get
Co+ CiT + By(S'—1) =0,
so that (3.3) gives Cy = C; = 0 and By(S" — 1) = 0. By (3.5), we get
A(S"—1) =0 and (3.1) follows.
By changing the roles and signs of S and S’, we also get
A=Cap SCa A(S' +1)
=CpSChAS—1)
=CpSCa AS+1).

The result follows by using the relations (¢ + 1)(S" — 1) = 2(R — q),
(g+1)(S"+1)=2(R+1)and C® S'C=Ca RC. O
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As T spans a normal subgroup of index 2 in G, any self-adjoint
representation of A in a Hilbert space H may be decomposed into a
direct integral of irreducible representations of A and these irreducible
representations have dimension 1 or 2.

There are four representations in dimension 1 which are determined
by letting R (resp. S) be the scalars g or —1 (resp. 1 or —1). Let us now
give explicit generators for the irreducible representations in dimension
2. The four different versions of the generators will be adapted to the
four different sets of model operators that we will consider in Section
4 and Section 5.

The ++ and +— matrices. Set s = ((1] (1)

rato = (§ ) wrtt)= (3 1)
o= (30 aw= (2 ).

The —+ and —— matrices. Set r_ = (q 1 ) and, for ¢t in C,

sty = (1 (Q—l-lt_ g—1
(O q)—l-l

B ( —(¢—1)
a-+(f) = ((q+1)t—(q—1) q2+1—<q _1)t>

s (1) = <—01 (q+ 1)t IL (¢ — 1))

(1) :( 2 —(q+1)t—(q—1))'

—(q+1)t—=(¢—1) @+1+(*—-1)t

) and, for ¢t in C,

The proof of the following Lemma follows from straightforward com-
putations.

Lemma 3.3. Let t be in C. The action of A on C? defined by letting R
act as vy (t) (resp. ro_(t), resp. r—, resp. r_) and S act as sy (resp.
Sy, resp. s_.(t), resp. s__(t)) has a scalar commutant. In all four
cases, the central element P of A acts as the scalar matriz (é (2
This representation is self-adjoint with respect to the symmetric bilin-
ear form defined by a, (t) (resp. a,_(t), resp. a_y(t), resp. a__(t))
on C? and this symmetric bilinear form is the unique one with this
property, up to a scalar multiple. If t is real, this symmetric bilinear
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form is positive definite on R? if and only if |t| < 1. If |t| > 1, it has
signature (1,1).

For t* # 1, these actions are all irreducible and isomorphic to each
other.

3.2. An abstract spectral theorem. In the sequel, we will encounter
self-adjoint representations of the algebra A. To study their spectral
theory, we will need the following abstract form of the spectral theorem
8, Theorem 12.23].

Lemma 3.4. Let V' be a finite dimensional real vector space. Let p be
a non-negative symmetric bilinear form on the space V'[t| of polynomial
functions R — V' and assume that the operator f(t) — tf(t) on V]t
18 bounded and symmetric with respect to p. Then, there exists a com-
pactly supported Radon measure p on R and a p-integrable function
m: R — Q. (V) such that, for any f,g in V[t], one has

Mﬁ@Zéﬁ@U@y@MMU

We wrote Q, (V') for the space of non-negative symmetric bilinear
forms on V. When applied to the concrete examples of representations
of the algebra A from Subsection 3.1, this gives

Corollary 3.5. Let p be non-negative symmetric bilinear form on R2[t]
such that the operators f(t) w— roy(t)f(t) (resp. f(t) — r_.(t)f(t),
resp. f(t) ¥ r_f(t), resp. f(t) — r_f(t)) as well as f(t) — sy f(t)
(resp. f(t) = s f(t), resp. f(t) — s_4()f(t), resp. f(t) —
s__(t)f(t)) are bounded and self-adjoint with respect to p. Then, there
exists a Radon measure p on [—1,1] such that, for any f,g in R?[t],
one has

pf0)= [ U0

where, for —1 <t <1, w(t) is the symmetric bilinear form with matrix
ay i (t) (resp. ay_(t), resp. a_,(t), resp a__(t)) on R2.
Proof. We show the ++ case, the other ones being analogous.

By Lemma 3.3, for f in R?[t], and ¢ in R, we have

1
P 1(7”++(t)3+ + syt () — (g = 1)sy ) f(8) = Lf(2).
Therefore, by Lemma 3.4, there exists a compactly supported Radon

measure 4 on R and a p-integrable function 7 : R — Q, (R?) such
that, for any f, g in R?, one has

ﬂﬁmzéw@u@ywmmw
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By assumption, for any polynomial functions f, g : R — R?, we have

Awwwﬂava@mmw:/wwu@mH@M@MMﬂ

R

éwwa@g@mmwsz@uwww@mmw

R

Therefore, for p-almost any ¢ in R, the operators r,, (¢) and s, are self-
adjoint with respect to the symmetric bilinear form 7(¢). By Lemma
3.3, there exists a p-integrable function ¢ : R — R, with support in
[—1,1] such that, for ¢ in R,

() (v, w) = p(t)v*ar (Hw, v,w € R?

(where v* is the transpose of the column vector v in R?). The conclusion
follows by replacing p with the finite measure @pu. U

3.3. Spectral parametrization. As when studying spectral theory
on X (see [3, Chapter II]), the formulae that will allow to decompose
the model operators rely on the use of a certain rational function on
C. Set as usual

H = {t € C|3t > 0} as well as H, = {u € C|Su > 0, |[u|] > /q}-

We will write H and Eq for the closures of these open subsets of C,
that is,

H={t € C|St >0} and H, = {u € C|Su >0, |[u| > /q}.
We will always denote by Z, the critical interval
7| 2,9 2\/q
! g+1g+1]"

By a result of Kesten [5] (see also [3, Proposition I1.6.3] whose state-

ment is unfortunately mistakenly written), the critical interval is the

spectrum of the natural Markov operator on the space ¢?(X) of square-

integrable functions of X. We retrieve this fact in Subsection 4.2 below.
We shall repeatedly use

Lemma 3.6. The function

1 q
wort= o (us 9)
qg+1 U

maps C* onto C. It induces a biholomorphism from {u € C||u| > \/q}
onto C NI, which sends H, onto H. It also induces a homeomorphism

from Hy onto H. Finally, it maps the circle {u € C||u| = \/q} onto Z,.
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The proof is straightforward.
From now on, we will stick to the notational convention that ¢ and
u are complex numbers that are related through the equation

u? — (¢ + Dtu+q=0.

Note that the other root of the equation is Z.

To determine spectral measures of the model operators, we will use a
standard technique from spectral analysis (see for example [2, Theorem
X.6.1]), which relies on the

Lemma 3.7. Let i be a Borel measure on R with fR Clli(g < 00. Then

the Poisson transform of u may be defined on H by the formula

PM@z%A%QiJ@M)ZGH

Proof. Indeed, for z in H and ¢t in R, if 2 =z + iy, z,y € R, we have

LY R D S
T \t—z T (t—x)?+y*

which is the standard formula for the Poisson kernel of the upper half
plane (see [1, Chapter 7]). O

This Lemma will be applied to a particular harmonic function which
plays a central role in the spectral theory of the tree X. We denote

g+1 V/4q—(g+1)%2

by pg the absolutely continuous measure with density £—= -

on the interval Z, = [—%, z%ﬂ. We will show later that p, is a

probability measure by getting it as the spectral measure associated
to a unit vector and a self-adjoint operator on a Hilbert space. This
construction will rely on

Lemma 3.8. The Poisson transform of p, on H may be defined as
follows. For any t in H, let u be the unique element of H, with u* —
(g + Dtu+q=0. Then, we have

Pway:qilg( U ).

1 —u?

Proof. For t in H, we set F(t) = %% (I_UUQ), where u is the unique

element of H, with ¢g+u? = (¢+1)t. As the function G : u — S (%)

1—u?
is harmonic on H, and continuous on H,, by Lemma 3.6, the function F
is harmonic on H and continuous on H. As G(u) —— 0, by standard
U— 00

properties of harmonic functions (see for example [1, Theorem 7.5]),
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we may write F' as the Poisson transform of the measure v = F(t)dt
on R. Let us show that v = p,.

As G vanishes on the set {u € R||u| > ,/q}, F' vanishes on the set
{t e R|(¢+ 1) |t| > 2,/q}. Therefore, it suffices to determine the value
of G on the set

OH, N~ R ={u € C|Su > 0, [u| =/¢}.
Thus, let w in C with |u| = /g and set t = == (u + ¢/u) = 2 Ru. We

¢ q+1 q+1
ge
A _u q/u_u—¢/u—qfutqu
1 —u? l—w? 1—-¢*/u*  (1—u?)(1—-¢*/u?)
u—q/u 1 u—q/u

— 1 —
(g+ )q2—|—1—u2—q2/u2 g+1 1—1¢27

N U 1 Su
R =
1 —u? g+11—1¢2

The conclusion follows as, if Su > 0, we have

Su = +/q— (Ru)? = %\/4(] — (¢ +1)%t2

which gives

l

3.4. Hilbert spaces of sequences. The construction of the spectral
decomposition of the model operators will rely on the application of
spectral constructions in certain Hilbert spaces of sequences. We now
define precisely these spaces.

For z in R™ and y in RY, we set

(x,y)4+ = Z qi($2iy2i + Toit1Y2it1)
i>0
(z,y)- = xoyo + Z qi(w2i_1y2¢_1 + T2;Ya;)
i>1

We denote the associated real Hilbert spaces of sequences by H, and
H_, that is, Hy (resp. H_) is equal to the space

{xERN Zq;x?<oo} < 00,

i>0

which we equip with the scalar product (.,.); (resp. (.,.)—). We stress
out that the Hilbert spaces H, and H_ have the same underlying vector
space, but not the same scalar product.
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Spectral analysis will require us to use the complexifications H ¢
and H_ ¢ of H; and H_. In this framework, we recall our non standard
convention: for any z in C™ and y in CV, we still set

(z,y)+ = Z q' (22 + Toit1Y2i1)
i>0
(z,y)- = moyo + Z ¢ (T2i-1Y2i—1 + T2iY2i)-
i>1

So that we can define H; ¢ (resp. H_ ) as the space of complex se-

quences
{x e CN Zq%|xi|2 < oo} < 0,

i>0
equipped with the Hermitian scalar product (z,y) — (Z,y); (resp.
(x,y) — (T,y)_), where T is obtained by taking the complex conjugates
of the coordinates of x.

4. THE EVEN MODEL OPERATORS

In this Section, we study operators on scalar sequences defined in
analogy with the operators of Definition 2.16. We actually split the
definition of the model operators according to the eigenvalue of the V
operator, which in the even case, can be ¢ or —1. For these model
operators, we build a complete spectral theory.

4.1. The ++ model operators. In this Subsection, following Defini-
tion 2.16, we consider the operators R, and S, defined on sequences
x = (2;);>0 of real numbers by

(R4+2)o = qzo

(Ry x)i=wxi 1+ (¢ — D i even,i > 2
(Rysx); = quisa i odd.
and
(S412); = Ty i even
(Siyx)i = xiq i odd.

These operators preserve the space of sequences with only finitely many
non zero entries. They satisfy the relations B2, = ¢+ (¢ — 1)R44 and
S%. = 1. In other words, they define a representation of the algebra
A of Subsection 3.1 in the space of sequences of real numbers. In
particular, we set P, = q%l(RJr+S++ + S R —(¢g—1)S4).

The scalar product of H, is adapted to the study of this situation.
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Lemma 4.1. The operators R, and Sy, are bounded and self-adjoint
in Hy.

Thus, these operators define a self-adjoint representation of the al-
gebra A of Subsection 3.1 in H,.

Proof. The fact that the operators are bounded is easy. From the
formulas, it is clear that S, is self-adjoint. Let us check that R,
also is. Indeed, for z,y in H,, we have

(x,y)+ = xoyo + Z qi71(372i713/2i71 + qT2Y2;)-
i>1

Therefore,

(R, y)+ = qroyo + Z qifl(qﬂfm‘ymfl + q(wim1 + (¢ — 1)@2i)yo;)
i>1

= qToYo + Z ' (Toiyoi—1 + T2i—1Y2i + (¢ — 1)Toiya;).
i>1
The conclusion follows as the latter formula is symmetric in x and
Y. U

Recall that 14 stands for the sequence (z;) with o = 1 and z; = 0 for
1 > 1. In this Subsection, we prove the following result which defines
a spectral analysis for the operators R, and Sy .

Proposition 4.2. There exists a unique linear map x +— T(t) from R
to the space R2[t] of polynomial functions R — R? such that 14(t) =
(1) and that, for any x in RN one has
Roiz(t) =1 s (0)2(t) and Sipz(t) = s,3(t) teR.
This map is a linear isomorphism from R™ onto R2[t].
The spectrum of the operator Py, in Hy is the interval I, and, for
any z,y in RN we have

(4.1) @) = [ FO 0 OFOd(0).
Iq
We have used the notation introduced in Subsection 3.1 for the ++
matrices. Recall that v* means the transpose of a column vector v in
R? and that the measure y, is the absolutely continuous measure with

_ 242
density function ¢ — %}—W on Z, (see Subsection 3.3). Note
that the statement implies that p, is a probability measure.

An other way of stating the integral formula would be to say that the

transform x — T induces an isometry from H, onto the space of classes



ADDITIVE REPRESENTATIONS 37

of measurable functions v : Z, — R? with fzq v(t)*ary (H)v(t)dp,(t) <
00.
We begin the proof of Proposition 4.2 by showing that the images
of 1o under R, and S, span the set of sequences with finitely many
non zero entries.

Lemma 4.3. We have A1y = RW.

Proof. This is a standard triagularization argument. Indeed, the for-
mulae defining the operators R, and S, imply by a straightforward
induction that, for ¢ > 0,

((R4454+4)"Lo)oi = 1 and ((Ry4.54+)"10); =0, j > 2i;
(St (Rt S41) Lg)2ipr = 1 and (Sp (R4pS41)'10); =0, j > 2i+1.
The result follows. U

Now, let us construct the joint spectral theory of R, and S,,. For
win C*, we let a4 (u) and b, 4 (u) be the sequences of complex numbers
defined by, for ¢ > 0,

gy (W)g; = byy (W)airr = —qu™" and ayy (w)oipr = byy (u)y = u' ™"

These sequences are built in order to satisfy the following relations.

Lemma 4.4. For u in C*, we have Sy a4 (u) = byy(u) and, for any
P>,
q
(Rivays(u)) = (a + U) byt (u)i + qay(u);
and (Riibyi(u))i = —bis(u)s.

The above relations do not work for ¢+ = 0. To correct this, we
introduce new sequences as follows. For ¢ in C, we choose as in Lemma
3.6, some u in C* with u? — (¢+ 1)tu+ ¢ = 0. We assume that we have
(q + 1)%t? # 4q, so that u® # ¢, and we set

S S L
ayy(t) = 2 g ++( )+q(q—u2) ++ <u>
Bit(t) = Sap(t).

The notation is justified by the fact that, since the right hand-side is in-
variant by the involution u + %, it only depends on ¢. By construction,
one has

(4.2) aiy(t)o=1and B4 (t)o =0.

Besides, note that if ¢ is real, both oy (t) and S, (t) are real sequences.
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We can now get the missing case in Lemma 4.4. Indeed, we have
the following relation between these sequences and the operators intro-
duced in Subsection 3.1.

Lemma 4.5. For t in C with (q + 1)*t* # 4q, we have the matriz

relations:
(550 = (3)
o (Reiitn) =70 (5060

For z in C™ and t in C with (¢ + 1)%% # 4q, we set

~ (z, 04++(75)>+)
x(t) = .
o=(5m):
Note again, that if ¢ is real and z has real coefficients, the vector Z(t)
has real coordinates. Besides, (4.2) reads as

(43) Lo = (p)-

From Lemma 4.1 and Lemma 4.5, we directly get
Lemma 4.6. Fort in C with (¢ + 1)** # 4q and = in R™, we have
Rija(t) = re(0)2(t) and Siia(l) = s42(1).
Let us describe in more details the map = — 7.

Lemma 4.7. For z in R™, the function t — Z(t) is polynomial. The
map = — T induces a linear isomorphism from the space RN onto the
space R2[t] of polynomial functions R — R2.

Proof. Indeed, (4.3) implies that 1o is polynomial, since it is constant.
Besides, by Lemma 4.6, the space of  in R™ such that 7 is polynomial
is stable under the action of the algebra A. Thus, by Lemma 4.3, this
space is equal to R,

Now, by Lemma 3.3, Equation (4.3) and Lemma 4.6, for i > 0, we
have

— t i 0

Thus, the map z — Z maps R® onto polynomial functions R — R2.

It remains to prove that this map is injective. By Lemma 4.3, we
have RN = A1,. Besides, recall from Corollary 3.2 the decomposition
A=R[P]® SR[P]® AR —q). As R{,1; = q1g, we get

R® = (R[P, ] © S R[Py4])1o.
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Therefore, if  is in RN, we can write z = f(Py4 )10 + S;19(Pyy)1o
where f and g are polynomial functions on R. By (4.4), for ¢t in R, we
have

and injectivity follows. O

The sequences oy, (t) and S, (t) are uniquely defined by the rela-
tions in Lemma 4.5.

Corollary 4.8. Let ty be in R and 7,d be in RY with
(5:53) =2 (3) ons (R23) =0 (3)
Then we have v = vyoay+(to) and 6 = yoPB++(to).
Proof. Define a linear map ¢ : R?[t] — R? as follows. For <§> in R?[¢],
by Lemma 4.7, there exists a unique z in R™) with 7 = (g ) Then,

we set ¢ f — (v, )+ . From Lemma 4.6 and the assumption, we
g <57 I>+

have
45) o (st (10)) = (st = ()

=r14(to)p (g((g)
and in the same way,

00 e (o+ () = (51 ) = Gl)
By Lemma 3.3, we get
(i) = () = (30)
and hence, if f(ty) = g(to) =0, ¢ (gég) = 0. Therefore, there exists

a linear map m : R? — R? such that, for any f,g in R[t], ¢ (gég) =

m (ggoi) Now, (4.5) and (4.6) imply that m commutes with the
0

matrices 7, (tg) and sy. Therefore, by Lemma 3.3, m is a scalar
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matrix, that is, there exists a real number A\ with, for any f, ¢ in R[t],

%) (gg:g) =\ (gg{?;) By Lemma 4.7, we get, for any z in R,

(1, 2)+ = Mayi(t),2)+ and (0, 2)1 = A(By1.(t), 2)+

The conclusion follows. O

So far, we have constructed the spectral transform z +— Z in Propo-
sition 4.2. It remains to establish the Plancherel formula (4.1). To
this aim, we will use Corollary 3.5. Indeed, Lemma 4.7 tells us that
we can identify R with the space R2[t], whereas Lemma 4.6 tells us
that the operators R, . and S, then act as the matrices r, (t) and
sy of Subsection 3.1. Therefore, to get (4.1), it suffices to compute
the measure p provided by Corollary 3.5. This computation will use
the notation of Subsection 3.3 and the standard method following from
Lemma 3.7, which relies on the computation of the resolvent function
(1¢, (Pyy —t) '), for ¢ in H. To achieve this computation, we intro-
duce a last family of sequences in C™. For u in C, u ¢ {~1,0,1}, we
set

1 1—1 1 —1
(q;t )u2 (q1+ )Z i>o0.
—u —u

Note that c;(u) belongs to H, ¢ if and only if [u| > /g. A direct
computation gives

o (U)2s = and ¢y (u)2it1 =

Lemma 4.9. Let u be in C with u ¢ {—1,0,1}. Sett = ﬁ(u + 1),
Then we have

Pyyciy(u) = tesy (u) + 1o

We gather the arguments of this Subsection.

Proof of Proposition 4.2. The uniqueness of the transform x +— Z fol-
lows from Lemma 4.3. The fact that it satisfies the required properties
was obtained in (4.3) and Lemma 4.6. We know that it induces a linear
isomorphism from R®™ onto R2[¢] thanks to Lemma 4.7.

It remains to show the Plancherel formula (4.1). Let p be the mea-
sure from Corollary 3.5 applied to the scalar product on R?[¢] which is
obtained by pulling back the scalar product (.,.), under the inverse of
the transform z — Z. Let ¢t be in H. By Lemma 3.3 and Lemma 4.6,
as for s in R, the matrix a, . (s) has upper left coefficient 1, we have,

(Lo, (Pyr — 1) '1o)4 = / !

[—1,1] s—t

du(s).
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By Lemma 4.9, this gives, for u in H, with v* — (¢ + 1)tu + ¢ =0,

/[ : du(s) = (Lo, i (u)) 4 = (g + 1)1_L

_171] s—1 uz’

hence, by Lemma 3.7,

qg+1 U
Pu(t) = - %(1—112)'

The conclusion now follows from Lemma 3.8. O

4.2. Spectral measures in /?(X). To motivate the reader, and in the
hope that this will make our strategy more understandable, we explain
how Proposition 4.2 can be used in order to recover the computation
of spectral measures in ¢?(X) for the natural Markov operator. This
result is due to Kesten [5]. It plays a key role in the spectral theory
developed in [3].

We temporarily come back to the language of trees. We equip the
space ¢?(X) with the bounded self-adjoint operator @ defined by, for

fin £2(X),
q+1Zf r e X.

y~z

Corollary 4.10 (Kesten [5]). For any a in X, the spectral measure of
1, with respect to Q) is the measure .

Proof. In this proof, we use the letters R and S for the operators on
functions on X; defined by, for any ¢ : X; — R,

Rg(z,y) = > g(x,2) and Sg(z,y) = g(y,x), z~y€EX.

27y

As usual, we set P = —5(RS+ SR — (¢ —1)5). For any function f on
X define the function L f on X by

Lf(x,y) = f(z), x~y€X.

When f is in £2(X), we get

ILFls = > L) =(a+1)) f@)?=(g+1)|fll5-

(z,y)eX1 zeX
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Besides, for (z,y) in X, we have
(¢+1)PLf(x,y) = (RS + SR — (¢ = 1)S)Lf(z,y)
=Y Lf(z,2)+ > Lf(y,2) — (g = ) Lf(y,x)

i piby
= @) +af) —(g—Dfy) =D f(2)

We get PL = L(). Thus, determining spectral measures of the elements
of /2(X) with respect to @ is equivalent to determine the spectral
measures of their images by L with respect to P.

Now, we fix a in X and we define an orthogonal sequence (g;)i>o of
elements of £2(X) as follows. For any 7 > 0 and (z,y) in X, we set

gzi(fv,y) =1 d(z,a)=i and 92i+1(33, Z/) = 1d(a:,a):i+1-
d(y,a)=i+1 d(y,a)=t

We have [|gas]|5 = ||g2i11]5 = (¢ + 1)¢’. Besides, the definition immedi-
ately gives Sgo; = goi11, whereas a direct computation yields

Rgo = qg90
(4.7) Rg; = qgi-1 + (¢ —1)g; i even,i > 2
Rg; = git1 7 odd.

For a sequence x = (z;);>0 of real numbers, we set C'x to be the function
Y >0 %ig: on X;. With the notation of Subsection 4.1, the relations
(4.7) give RC = CR,, and SC = CS,,. Moreover, the computa-
tion of the norm of the g;, ¢ > 0, implies that, for z in H,, we have
|Cxz2 = (q+1) ||917||Jr As C1y = go = L1,, the conclusion follows from
Proposition 4.2. U

4.3. The +— model operators. We come back to the study of the
model operators. We now consider the case of the other eigenvalue of
the V operator in Definition 2.16, so that we define the operators R,
and S;_ acting on sequences = = (z;);>o of real numbers by

(R4—x)o = —0
(Ry—z); =xi1+ (¢ — 1)z i even,i > 2
(Ry_x); = qwipy 1 odd.
and
(Sy_x); = Ty i even

(S+,l')i = Ti—1 1 odd.
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Again, these operators preserve the space of sequences with only finitely
many non zero entries. They satisfy the relations R? _ = ¢+ (¢—1)R 4
and S?_ = 1. Thus we still have a representation of the algebra A of
Subsection 3.1 in the space of sequences of real numbers. We now set
Pro= 3RSy + S84 Ry —(¢—1)Sy).

q+1
The same proof as above gives

Lemma 4.11. The operators R,_ and S;_ are bounded and self-
adjoint in H, .

The spectral analysis for this new self adjoint representation of the
algebra A is now defined as follows.

Proposition 4.12. There exists a unique linear map x +— x(t) from
RM™ to the space R2[t] of polynomial functions R — R? such that

fo(t) = (1)> and that, for any z in R™ | one has

R a(t) =r_()2(t) and S,_z(t) = s,.3(t) tER.

This map is a linear isomorphism from R™ onto R2[t].
The spectrum of the operator Py_ in H. is the set Z,U{—1,1} and,
for any x,y in RN, we have

(4.8) (z,9)+ = é /I q z(t) ay— )y (t)dpg(t)

5 (@(=1)%ar—(=Dy(=1) + 2" (1)ar—(1)y(1))
The existence of a discrete component in the spectral measure corre-
spond to the existence of joint eigenvectors for the operators R, and
S+_ in H+.
We start proving Proposition 4.12. As for the ++-model, we can
show

Lemma 4.13. We have Al = RM.

We now adapt the construction of the spectral transform by setting,
for u in C* and 7 > 0,
g ()2 = by (w)oirr = u™" and ay(w)aip1 = by (u)o = u' ™"

A direct computation gives
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Lemma 4.14. For u in C*, we have S;_a;_(u) = by_(u) and, for
any 1 > 1,
(Ro-ap ()i = (L) by (u)i = ap-(u)
u

and (Ry_by—(u)); = gby—(u);.
Again, in order to have the relations above working for every ¢ > 0,
we introduce new sequences. For ¢ in C with (¢ + 1)2t? # 4q, we chose
w in C* with u? — (¢ + 1)tu + ¢ = 0 and we set

: = (3)
(1) = _ N
(1) q_u2a+ (U)+u2_qa+ u
Be-(t) = Sar_(1).
As before, these are functions of ¢, since they are invariant under the
involution u +— £. We still have

(4.9) a;_(t)o=1and B(t);-0 = 0.
We now get
Lemma 4.15. For t in C with (¢ + 1)** # 4q, we have the matriz

relations:
(575000) = ( )
Si-Be( (t)
Ry oy ( (0)
and T = .
(&5mte) =m0 (50
For z in C™) and ¢ in C with (¢ + 1)%t? # 4q, we set
= (z, Oé+(t)>+)
t) = .
o) = ({50,
Note again, that if ¢ is real and z has real coefficients, the vector Z(t)
has real coordinates and that (4.9) gives

(4.10) () = (é) .
From Lemma 4.11 and Lemma 4.15, we directly get

Lemma 4.16. Fort in C with (g + 1)%t* # 4q and x in RW | we have

R a(t) =r_()2(t) and S,_z(t) = s, Z(t).
As in the ++ case, we get

t
t
t
t

)
)
)
)

Lemma 4.17. For z in R™ | the function t — Z(t) is polynomial. The
map x© — T induces a lmear isomorphism between the space RN and
the space of polynomial functions R — R2.
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The proof is analogous to the one of Lemma 4.7. Note that it uses
the relation A = C & SC & A(R+ 1) of Corollary 3.2. In the same way,
we also get

Corollary 4.18. Let ty be in R and 7,9 be in RY with

Sy R, _
) ) () m)
Then we have v = yoa;_(to) and § = o5+ _(to).

We now start establishing the Plancherel formula (4.8). To this
aim, we will compute the measure p associated to the scalar product
(.,.)+ on R® through Corollary 3.5 and the new spectral transform.
The novelty will be the presence of an atomic part. For v in C, u ¢

{_q) 07 Q}a we set
(¢ +u'""
q2 _ u?

q(g+u’

1> 0.
u? — 2

Cr(u)g = and ¢y (u)2i+1 =

A direct computation gives

Lemma 4.19. Let u be in C with u ¢ {—q,0,q}. Set t = qj+1(“ + 1),
Then, we have
P _ci (u) =tep_(u) + 1o.

We may now conclude.

Proof of Proposition 4.12. The existence and uniqueness of the spec-
tral transform z — 7 and its algebraic properties follow from Lemma
4.13, (4.10), Lemma 4.16 and Lemma 4.17.

It remains to show the Plancherel formula (4.8). Let p be the mea-
sure from Corollary 3.5 applied to the scalar product (., .) . By Lemma
3.3 and Lemma 4.16, we have, for ¢ in H,

R =

[7171] S — t

du(s).
By Lemma 4.19, this gives, for v in H, with u* — (¢ + 1)tu + ¢ = 0,

! u
/[—1,1] s — th(S) = (1o, cq—(u)4+ = (¢ + 1)m

Here comes the main difference with the ++- case: the holomorphic
function u — (¢ + 1)q£u2 on H, has no continuous extension to H,,.
To correct this, we will remove the singularities as u = —q¢ and u = q.

Indeed, a direct computation shows that

U qg+1 u q—1 1 1
(q+1)2 2: 2+ - )
q° —u q 1—u 2q 1—t 1+t
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hence, by Lemma 3.7 and Lemma 3.8,

qg+1 U q—1 1 1
Put) = =g 3 -
ut) q7r\s<1—u2)+2q7r\s<1—t 1+t

— P+ ‘-’2%11(7951(15) +PoA(1),

g

where ¢ stands for Dirac measures. The conclusion follows. O

4.4. The + twist. We complete the description of the even model
operators by describing the additional structure related to the twist
operator of bipartite graphs introduced in Subsection 2.6.
Let (x;)i>0 be a sequence of real numbers. We set
(Usx); = (—1)%@- i even
(Usz); = (—1)7 1 i odd.
This defines a unitary operator of H,. Besides, a direct computation
yields
Ry Uy = U Ry R. Uy =UR,_
S Uy = =UsShy Si Uy = -Us S,

By using the definitions, we get
Lemma 4.20. Let t be in C. We have

Uiy (t) = ops (—8) Upay—(t) = oy (=)
Ui Bi4(t) = =B+ (1) UsB-(t) = =B1-(—1).

5. THE ODD MODEL OPERATORS

We now study operators on sequences defined in analogy with the
operators from Definition 2.17. This study will be lead as in Subsec-
tions 4.1 and 4.3. Again, we split the definition of the model operators
according to the eigenvalue of the V operator, which in the odd case,
can be 1 or —1.

5.1. The —+ model operators. We mimic Definition 2.17, and we
consider the operators R_, and S_, defined on sequences z = (x;);>0
of real numbers by

(R_1x); = qTis1 i even
(R_jx)i =i+ (¢ — 1)y i odd.
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and
(S_4x)o = T
(S_yx); = x4 1 even,i > 2
(S_1x); = i1 1 odd.
We still have the relations R%, = ¢+ (¢ — 1)R_; and S?, = 1. Thus,

we get a representation of the algebra A of Subsection 3.1 in the space
of sequences of real numbers. Weset P_, = - (R_,S_,+S_ R_, —

q+1
(¢ —1)S-4).
Now, we change the Hilbert space and use H_ instead.

Lemma 5.1. The operators R_, and S_, are bounded and self-adjoint
m H_.

We hence have a self-adjoint representation of the algebra A in H_.

Proof. One easily checks that the operators are bounded. Recall that,
for any x,y in H_, we have

(z,y)- = 33090"‘2 ¢ (Toi1Yi1+Toiyni) = Z q' (T2 + qT2i11Y2i41)-
i>1 i>0
We get, from the first formula,
(S_yx,y)- = xoy0 + Z ' (Toiyoi—1 + T2i—1Y2)
i>1
and, from the second formula,
(Rojz,y)- = Z q'(q2i1yi + q(w2 + (¢ = D@2ir1)Yaira)
i>0
= Z qi+1($2i+1yzi + ToY2ir1 + (¢ — 1)Zoi41Y2it1).
i>0
The conclusion follows. ]

As above, we define a spectral analysis for the operators R_, and
S ..

Proposition 5.2. There exists a unique map x +— 2(t) from RM to
1

the space R2[t] of polynomial functions R — R? such that 1o(t) = <O

and that, for any = in RN one has
R z(t)=r_3(t) and S_iz2(t) = s_ ()Z(t) teR.

This map is a linear isomorphism from R™ onto R2[t].
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The spectrum of the operator P_, in H_ is the set I, U {—1} and,
for any x,y in RN, we have
(5.1)
2 qg—1

)= o [ e @i+

F(—1)"a- (~1)F(-1).

We start the construction of these objects.
Lemma 5.3. We have Al, = R®™,

Proof. This now follows from the following property which is obtained
by a straightforward induction: for ¢ > 0,

((S—4R_1)"1g)a =1

and ((S_4R_1)"1g); =0, j > 2
(Rt (S—+R-1)"Lg)aip1 = 1
and (R,+(S,+R,+)i]_o)j = 0, j > 2Z + 1.

O

We define sequences in analogy with the previous cases. For u in C*,
we let a_ (u) and b_, (u) be the sequences of complex numbers defined
by, for ¢ > 0,

a4 (u)2i = —qu” a—y (Wi = (u—q+1)u™

by (w)y = u'™ -

b—+(U)2i+1 = —u

By construction, one has
Lemma 5.4. For u in C*, we have

R_jboy(u) =a—i(u) and R_ya_i(u) = qb_i(u) + (¢ — 1)a—(u).
and, for anyi > 1,

(S—pbi(w)i = =01 (u);
and (S—+a— ()i = a— () + (u+2 —q+1) bs(u)i

As in the even cases, to get the formulae above working for every

1 > 0, we introduce new sequences, defined as follows. For ¢ in C with

(q+ 1)2t% # 4q, we take u in C* with u? — (¢ + 1)tu + ¢ = 0 and we set
2

a_i(t) = 2 1_ qa—+(u) + ﬁa—nt (%)

B-+(t) = ! by (u) + q(qquuQ)bJr (%) :
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As usual, one has
(5.2) a_(t)o=1and B_;(t)o =0.

Besides, note that if ¢ is real, both av_ (t) and 5_, (¢) are real sequences.

We can now get the missing case in Lemma 5.4. Indeed, we have
the following relation between these sequences and the operators intro-
duced in Subsection 3.1.

Lemma 5.5. For t in C with (q + 1)*t* # 4q, we have the matriz

relations:
(55 ) =s (520)
ot (i) = (5260)

For z in C™ and ¢ in C with (¢ + 1)%? # 4q, we set
w0 (o 00)
t) = .
0= (o
By (5.2) we get

53 Lo = (y)-

From Lemma 5.1 and Lemma 5.5, we directly get
Lemma 5.6. Fort in C with (¢ + 1)*> # 4q and x in R™, we have
R z(t) = r_2(t) and S_,z(t) = s_, ()3(2).

We have again defined an isomorphism onto polynomial functions
with values in R2,

Lemma 5.7. For z in R™, the function t — Z(t) is polynomial. The
map x — T induces a linear isomorphism between the space RN and
the space of polynomial functions R — R2.

Proof. This is proved as Lemma 4.7. Indeed, by Lemma 5.6, for any
1 > 0, we have

P 1(t) = (g) and R_, P’ 14(t) = <(q _til)ﬁ) :

which shows that the spectral transform maps R®™ into polynomial

functions and that it is surjective. To prove injectivity, one uses the
decomposition A = R[P] & RR[P] & A(S — 1) from Corollary 3.2. O

We still get a uniqueness result:



50 JEAN-FRANCOIS QUINT

Corollary 5.8. Let ty be in R and 7,9 be in RY with

S R_
(52) = () o (3) =+ ()
Then we have v = yoa_4 (to) and 6 = yoB_4(to).

We now focus on the Plancherel formula (5.1). As above, to compute
the resolvent function ¢t +— (1o, (P_y — t)"'1y), we introduce a last
family of sequences in C™V). For w in C, u ¢ {—q,0, 1}, we set

(¢+1u"
(g +u)(1—u)

_ g+ Du -
Coy(u)e; = (q+u)(1—u) and ¢ (u)2ip1 =

We still have

1> 0.

Lemma 5.9. Let u be in C with u ¢ {—q,0,1}. Sett = (14%1@ + 1),
Then, we have

P_ic_(u) =te_y(u)+ 1o.

We are now ready to give the

Proof of Proposition 5.2. The existence and uniqueness of the spectral
transform x +— T and its algebraic properties follow from Lemma 5.3,
(5.3), Lemma 5.6 and Lemma 5.7.

To show the Plancherel formula (5.1), we let u be the measure from
Corollary 3.5 applied to the scalar product (.,.)_. By Lemma 3.3,
Lemma 5.6 and Lemma 5.9, we have, for ¢ in H and v in H, with
u? — (q+ 1)tu+q =0,

/[_ 1 du(s) = (¢+ Du

15—t (g +u)(1—u)

We remove the singularity of this function at u = —q. A direct com-
putation shows that

(¢+Du  2u g—1 1

(q+u)(l—u) 1—u2 q+11+¢

Hence, by Lemma 3.7 and Lemma 3.8,

_ 2 -1
Pu(t) = =Y 1Puq(t) + = 1775,1(t).

The conclusion follows. O
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5.2. The —— model operators. We describe the final set of model
operators. Following Definition 2.17, we define operators R__ and S__
on sequences x = (x;);>o of real numbers by

(R__x); = qTis1 i even
(R__x)i =z + (¢ — 1)y i odd.
and
(S__x)g = —xo
(S__z); =z 1 even,i > 2
(S__x); = x4 1 odd.

They still define a representation of the algebra A of Subsection 3.1 in
the space of sequences of real numbers and we set P__ = ﬁ(R__S__+
S__R__ —(¢q—1)S__). As for Lemma 5.1, we show

Lemma 5.10. The operators R__ and S__ are bounded and self-
adjoint in H_.

We hence have a self-adjoint representation of the algebra A in H_.
The spectral analysis of the operators R__ and S__ states as

Proposition 5.11. There exists a unique map x +— T(t) from RMN to

the space R2[t] of polynomial functions R — R2 such that 1o(t) = <(1)

and that, for any = in RN, one has
R__a(t)=r_3(t) and 5__z(t) = s__()3(t) tEeR.

This map is a linear isomorphism from R® onto R2[t].
The spectrum of the operator P__ in H_ is the set T, U{1} and, for
any z,y in RN we have
(5.4)
@) = = [ a0 + T
RO o ! q

(1) a——(1)y(1).

As for Lemma 5.3, we show
Lemma 5.12. We have Alyg = RM.

We now set, for v in C* and 7 > 0,
a—_(u)y = qu”*

CL,,(U>2¢+1 = (U +q— 1)11/7Z
b,,(U)Qi = Ulii b,,<u>2i+1 = U 4

—1

By construction, one has
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Lemma 5.13. For u in C*, we have
R__b__(u)=a-_(u) and R—_a__(u) = gb__(u) + (¢ — )a__(u).
and, for any i > 1,
(b (u)) = b__(u)
and (S__a__(u)); = —a__(u); + (u + % +q— 1) b__(u);.

To get the relations above working for every ¢ > 0, for ¢ in C with
(q+ 1)t% # 4q, we take u in C* with u? — (¢ + 1)tu + ¢ = 0 and we set

0= e o (4)

q — u? q(u* —q u
ﬂ,,(t) = e _1u2 bff(lb) + mb <%) .

One still has
(55) Oé__<t)0 =1 and ﬁ__(t)o = 0.
We get the missing case in Lemma 5.13.

Lemma 5.14. For t in C with (q + 1)*t* # 4q, we have the matriz
relations:
S__a__(t)\ _ a__(t)
(s__@__a)) =s--(0) (B--(t)
Roa ) _ . (o
and (Rﬁ(t)) - (B(t) '
For z in C™ and t in C with (¢ + 1)%% # 4q, we set

o [T a_(t))-
0= ({5 ))
By (5.5) we have

59 0 = (o).

By Lemma 5.10 and Lemma 5.14, we get
Lemma 5.15. Fort in C with (g + 1)%t* # 4q and x in R™ | we have
R__z(t) = r_2(t) and 5__z(t) = s__(1)3(t).
We still have

Lemma 5.16. For x in R™ | the function t — Z(t) is polynomial. The
map x — T induces a linear isomorphism between the space RM and
the space of polynomial functions R — R2.



ADDITIVE REPRESENTATIONS 53

Corollary 5.17. Let ty be in R and 7,9 be in RN with

(573) =@ () ma (53) = (3):
Then we have v = yoa__(to) and 6 = doB__(to)-

We now prove the Plancherel formula (5.4). To compute the resol-
vent function ¢ — (1, (P__ —t)"'1,), we set, for u in C, u ¢ {—1,0, ¢},

(¢ +Du'™"
q—u)(1+u)

[t Du™ 5,

and c__(u)g41 = T 7>

e (u)y = (

Lemma 5.18. Let u be in C with w ¢ {—1,0,q}. Set t = ﬁ(u‘f‘ 1).
Then we have

P__c__(u)=tc__(u)+ 1.
We conclude by the

Proof of Proposition 5.11. This is proved as the previous analogous
results by using the relation, for v € C, v ¢ {-1,0,1,¢q} and

t= (et

(¢+Du  2u +q—l 1
(q—uw)(14u) 1—u> q+11—t

l

5.3. The — twist. Asin Subsection 4.4, we describe for the odd model
operators the additional structure related to the twist operator of bi-
partite graphs from Subsection 2.6.

Let (x;)i>0 be a sequence of real numbers. We set

k3

—1)z2x, 7 even
(—=1)2z;
-1

(U-z);
(U-w);

i

(—1) = ay i odd.

This defines a unitary operator of H_. We now get
R, U =UR, R U =UR_ S U =-U.5_.
By a direct computation, we have

Lemma 5.19. Let ¢t be in C. We have
Ua_(t) = —a_(—t) and U__,(t) = —B__(—1).
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6. SPECTRAL TRANSFORMS AND THE DEFAULT MAP

We go back to the framework of Subsection 2.3 and Subsection 2.5.
There, we defined an action of the algebra A on the space of oo-
pseudofunctions as well as two actions of the algebra A on spaces of
sequences of pseudofunctions.

We will now transport the results on the model operators to these
two actions and see how they are compatible with the default map.

6.1. Spectral transforms. We set the definition of the model op-
erators in order to mimick the one of the actions of A on spaces of
sequences given in Definitions 2.16, 2.17, 2.19 and 2.20. Therefore, we
can transport back the definition of the spectral transforms associated
to the different model operators to get spectral transforms of sequences
of pseudofunctions. We begin with the actions defined in Definitions
2.16 and 2.17.

Let k>0, ¢t bein R and H = (ZO> be in H}. If k is even, we set
1

(6.1) Sl = (HOV —q_(;]ilvl)Ho>

~ (HY +q ' (q+ 1)tHY
th_( (¢—1)H, — HY .

If k£ is odd, we set

(6.2) NH = ((q - 1)]12V+ quV>

_ —Hy
Sull = (Hlv + (g + 1)ty — (g — 1)H0) '

Note that, even when the operators do not depend on ¢, we mention ¢
in the notation. This will avoid splitting certain statements according
to the parity of k.

In both cases, a direct computation gives

Lemma 6.1. Let k >0, t be in R and H be in Hi. We have

Remark 6.2. The reader may wonder why our definition of the opera-
tors R; and &, is not consistent with our choices for the matrices in
Subsection 3.1. Indeed, for example, when k is even, the action of fR;
on Hj _ is not the one given by the matrix 7, _(t). The reason for this,
and for the choice of normalization in the definition of the operators
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MR, and &} in (6.3) and (6.4) below, is that it will allow for a very sim-
ple formulation of Proposition 6.5 which describes the image under the
spectral transform of the range of the default map of Definition 2.12.

Proposition 6.3. Let k > 0. There exists a unique linear map H —
ﬁ(t) from ’H,EN) to the space H2[t] of Hi valued polynomial functions
with the following properties:
(i) For any H in Hy, one has

H1y(t) = (q OH ) if k is even
0 o
= (H) if k is odd.

(ii) For any H in H,(ﬁN), one has
RH(t) = RH(t) and SH(t) = &,H(t).
This map is a linear isomorphism from ngN) onto Hi[t].

This result is a more or less direct consequence of Propositions 4.2,
4.12, 5.2 and 5.11, as we will soon check. Now, weAwould like to describe
the image under the spectral transform H — H of the range of the
default map of Definition 2.12. To this aim, we first consider the actions

introduced in Definitions 2.19 and 2.20.

Let k> 0,tbein R and G = (g(]) in H2. If k is even, we set
1

(6.3) &G = (q_l(q ~1)G — q—lG}/)

_GE)/
G — ((q —1)Go— Gy 47 (¢* = DG —q (g + 1)tGY)
1o = av .
1
If k£ is odd, we set
-GV
6.4 RG = 1
o4 &= ({4161 1)

P Gy
&6 = (—GY — (g + DtGy — (g — 1)Go> '

Proposition 6.4. Let k > 0. There exists a unique linear map G —
G(t) from ’H,E:N) to the space Hilt] of H2 walued polynomial functions
with the following properties:
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(i) For any G in Hy, one has

— A VO
G1ly(t) = (q G qO (g 1)G) if k is even

= (_OG> if k is odd.

(ii) For any G in chN), one has
R'G(t) = R,G(t) and SG(t) = &S.G(t).
This map s a linear isomorphism from H,iN) onto Hilt].

Again, we will see that this result is essentially a translation of Propo-
sitions 4.2, 4.12, 5.2 and 5.11.

Let us now state a less evident result, which will be the principal
objective of this Section. Its purpose is to explicitely transport the
default map of Definition 2.12 by the spectral transforms. Its simple
formulation justifies our choices of normalization in Propositions 6.3
and 6.4.

Proposition 6.5. Let k > 1, G be in H,(cN_)l and set H = Di,G. Fiz t
in R. If k is even, we have

fiy = (G007 _ (a7 Ha+ Dt ) (Gon)
Gi(t)> ~1 0 Gi(t)V>V )
If k is odd, we have
~ _ (> A (F\VSV
o= (0 ) (30) - (G0,
g (¢+1)t) \Gi(t)> Gy(t)V=Y
As in Definition 2.12, we write D,, for the default map.

-1 -1
Remark 6.6. Note that the matrix (q (zii— L)t qO ) is the inverse of
-1
(g+ 1)t
proof of the Thara trace formula, Theorem 1.4.

the matrix (2 ) The latter matrix already appeared in the

6.2. Simple pseudofields and duality. The proof of Proposition
6.5 will rely on a duality argument. Thus, for £ > 0, we will need to
introduce the dual space of the space Hy. As usual, we construct this
space as a space of families of objects parametrized by Xj.

Let £k > 1. If kis even, kK = 2¢, { > 1, as in Subsection [.5.1, we
write V{(x), z € X, for the space of real valued functions on the sphere
S%(x), the sum of whose values is 0. Then, a k-simple pseudofield is



ADDITIVE REPRESENTATIONS 57

a family (sgy)(y)ex, Where, for any x ~ y in X, s,, is an element of
Vs (2).

If kisodd, k =20+ 1, £ > 0, still as in Subsection 1.5.1, we write
Vi(zy), * ~y € X, for the space of real valued functions on the sphere
S%(xy), the sum of whose values is 0. Then, a k-simple pseudofield is
a family (sgy)(y)ex, Where, for any x ~ y in X, s;, is an element of
Vs (zy).

As for 1-pseudofunctions, we have a natural identification of 1-simple
pseudofields with functions on X;. Indeed, if u is a function on X5, we
can associate to u the 1-simple pseudofield s such that

Sxy:u(xy)(ly_lm)u r~yeX.

We define a 0-simple pseudofield as a function on X. We do not intro-
duce a notion of a (—1)-simple pseudofield.
The finite-dimensional vector space of I'-invariant k-simple pseud-

ofields is denoted by Sy.
Recall from Subsection 1.5.1 that, for £ > 1 and x in X, we have

identified the dual space of Vé(:v) with Vi (z). In the same way, for

¢>0and x ~ yin X, we have identified the dual space of Vg(my) with
Vi (zy). We use this convention and our usual construction to identify
S; with the dual space of Hy. If £ > 1, sisin S, and H is in Hy, we
set

(s, H) = Z ;<5my=Hwy>'

($7y)EF\X1 |F$ m Fy’

If £ =0, and if s in Sy is associated with the function © on X and H
in Hy is associated with the function v on X, we set

(s,H) = Z Fl u(z)v(x).

zel'\ X

6.3. Operations on simple pseudofields. As usual, we define nat-
ural operations on pseudofields.

Let £ > 0 and s be a k-simple pseudofield. If k is even, k = 2¢, ¢ > 1,
for any x ~ y in X, we set s}, = 22;5 Sp.. I kis odd, k =20+ 1,

Y

¢ >0, for any z ~y in X, we set s,,

We get, by using Lemma 1.9.11,

Lemma 6.7. Let k > 0, s be in S, and H be in Hy. We have (s¥, H) =
(s, HY).

= Sy If k=0, we set sV = —s.

If £ > 0 is even, we set

Sit+ ={s € 8kls’' =qs} and S = {s € Sx|s’ = —s}.
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If k is odd, we set
Sit={s €8s =s} and Sp_ = {s € Si|s' = —s}.

In both cases, we have S = S+ © Sj .
Finally, if £ > 1, and s is a k-simple pseudofield, we define the direct
restriction s< of s, which is a (k — 1)-simple pseudofield, as follows.
If kiseven, k=2¢, ¢ > 1, for any x ~ y in X, we set

<:

Sxy

£—1,%
Loy 7" Sy,

where, as in Subsection 1.5.3, IL»* : Vi (z) — Vi (zy) is the adjoint
of the natural operator I., " : Vé_l(xy) — Vz(a:).
If kisodd, k =20+ 1, ¢ > 1, for any x ~ y in X, we set
_ pix
sjy = Jyy Says
where, as in Subsection L5.3, J5* : Vif(zy) — Vi (x) is the adjoint of

the natural operator .J., : Vg(x) — Vg(xy).

Lastly, if £k = 1 and if v is the function on X; such that, for any
x~yin X, s, =v(zy)(1, —1,), we let s< be the 0-simple pseudofield
associated with the function u defined by

(6.5) u(z) = Zv(xy), r e X.

y~z

Again, we have

Lemma 6.8. Let k > 1, s be in S, and H be in Hi_1. We have
(s=,H) = (s,H~).

As usual, the double commutation property holds.

Lemma 6.9. Let k > 2 and s be a k-simple pseudofield. We have
<<V — V<<

Proof. If k > 3, this directly follows from Lemma [.4.4. Let us study
the case k = 2.

In case k = 2, let u and v be the functions on X which are associated
with the 0-simple pseudofields s<< and sY<<. We must show that
u=v.

For  ~ y in X, s,, is a function in Vi (z) and, by the definition of
the objects in Subsection 1.5.3, we have s3, (y) = s4(y), hence s5, =
Suy(y) (1, — 1,). Therefore, by (6.5), for z in X,

u(z) = — Z Szy(y)‘

y~z
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Besides, for # ~ y in X, we have, sy (y) = Z;;g Sz-(y). Again by
(6.5), this gives, for z in X,

V(@) = ) se) =D se(y) == s0s(2),

y~z FT zrx YT zZ~x

27y y#z

where the latter follows from the fact that s,. belongs to Vi (z) for
z ~x. We get u = v as required. 0

Contrarily to what happens in the quadratic case, direct restriction
may be injective on eigenspaces of the V operator.

Lemma 6.10. Let k > 2 and s be a k-simple pseudofield with s< = 0.
If k is even and sV = qs, then s = 0. Ifk is odd and s¥ = s or s¥ = —s,
then s = 0.

Proof. Assume k is even, k = 2¢, £ > 1. Let s be a k-simple pseudofield
with sV = ¢gs. For y,2 ~ x, we have Szy = Sg». We write s, for this
element of Vi{(x) that only depends on z. If s< = 0, for any y ~ x, when

seen as a linear functional on Vg(x), s is 0 on the space [ﬁ;lve_l(xy).
By Proposition 1.4.5, as y runs among the neighbours of x, these spaces
span Ve(x), hence s, = 0 as required.

If k is odd, we proceed in the same way by using Proposition [.4.6 [

6.4. Duality on spaces of sequences. Now that, for £ > 0, we have
introduced the dual space of the space of I'-invariant k-pseudofunctions,
we can define a duality at the level of spaces of sequences. We adopt
the same convention as the one used for defining Hilbert spaces of
sequences of real numbers adapted to the study of the model operators
in Subsection 3.4.

ThUS, for k Z O, if s = (Si)iZO is in S}?‘ and H = (Hi)iZO is in H’(CN),
we set

(s, H) = Z q'((s25, Hai) + (Si+1, Hait1)) if k is even
>0

= Z qi(<32ia H2i> + q<82i+1, H2i+1>) if k£ is odd.
i>0

Besides, we use the same symbols as in Definitions 2.16, 2.17, 2.19 and
2.20 for the analogous operations on sequences of simple pseudofields.
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Thus, for £ > 0 and s in Sy, if k is even, we set

(Rs)o = sq
(R's)o=(q—1)sg — s
(Rs); = (R's); = si-1+ (¢ — 1)s; 1 even,i > 2
(Rs); = (R's); = qsit 1 odd.
(S8); = Sit1 1 even
(Ss)i = si—1 1 odd.
If k£ is odd, we set
(Rs)i = qsin1 1 even
(Rs)i = siz1+ (g —1)s; 1 odd.
(Ss)o = 53
(S's)o = —s¢
(Ss); = (5's); = si1 i even,i > 2

i = Sit+1 1 odd.
As in Lemmas 4.1, 4.11, 5.1 and 5.10, we get

Lemma 6.11. Let k£ > 0, s be in S,If and H be in H,EN). We have
(Rs,H) = (s, RH) and (Ss,H) = (s, SH).

If k is even, we have (R's,H) = (s, R'H) and if k is odd, we have
(8's,H) = (s,5'H).

If s = (si)i>0 is a sequence of simple pseudofields, we will write s¥
for the sequence (s} );>0. All the operators that we have defined on
spaces of sequences commute with this operation.

Lemma 6.12. Let k > 0 and s = (s;)i>0 be a sequence of k-simple
pseudofields. We have R(s") = (Rs)" and S(s") = (Ss)¥. If k is even,
we have R'(sV) = (R's)Y and if k is odd, we have S'(s") = (S's)".

6.5. Construction of the spectral transforms: the even case.
We will build the spectral transform of sequences of pseudofunctions
by analogy with the case of sequences of real numbers. We will use
freely the notation of Subsections 4.1, 4.3, 5.1 and 5.2.

Fix ¢t in R. Let £ > 0 be even. As in Subsection 4.1, if s is in S 4,
we set a,(t) and S,(t) to be the sequences in S} defined by, for i > 0,

as(t); = ap i (t);s and Bs(t); = Bii(t)is.
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In the same way, as in Subsection 4.3, if s is in Sy _, we set a,(t) and
Bs(t) to be the sequences in Sy defined by, for i > 0,

as(t); = oy (t);s and Bs(t); = Bi—(t)is.
Finally, if s is in Sy and s = s + s_ with s4 in Sk 4+ and s_ in S _,
we set a(t) = as, (t) + o, (t) and B,(t) = Bs, (t) + Bs_(t). Note that,
by Lemma 4.7 and Lemma 4.17, the coordinates of these sequences are

polynomial functions of ¢.
We get

Lemma 6.13. Let k > 0 be even and s be in S,. For any t in R, we
have the matriz relations
(6.6)

() - (26) o () - (o)

Converserly, assume vy and § are in Sy and we have

6n (34)=() = ()= (28,

Then, we have v = as(t) and § = Bs(t) where s = 7.

Proof. This is a direct translation of the analogous results for the model
operators. First, we show (6.6). By construction of the objects, it
suffices to prove the result when s is an eigenvector of the V operator.

Then, if s¥ = ¢s, we have (¢ — 1)s — s¥ = —s, hence
(Oésv (t)+ (¢ + 1)tﬁs(t)) _ (qas(t) + (g + 1)tﬁs(t))
ﬁ(q—l)s—sv (t) _Bs <t>

=0 (50)

and (6.6) follows from Lemma 4.6. In the same way, if s¥ = —s, we
have (¢ — 1)s — s¥ = ¢s, hence

(Oésv (t)+ (¢ + 1)tﬂs(t)) e (as(t)>
ﬁ(q—l)s—s\/ (t) Bs(t)
and (6.6) follows from Lemma 4.16.
Now, we take v and § in S such (6.7) holds. We write v = vy, +v_

and 0 = 04 + 6 where 7Y = qv4, 7Y = —v_, 0] = ¢d4 and 6Y = —i_.
By using Lemma 6.12, we get

(ggﬁ —s, (}i) and (g&) =i (1) <gi) |



62 JEAN-FRANCOIS QUINT

From Lemma 4.8, we get 74 = a,, ,(t) and 0 = 3,, ((¢). In the same
way, Lemma 4.18 ensures that v~ = a,_,(t) and _ = 3,_(¢). The
conclusion follows. U

Still by analogy with the case of the model operators, but with a
change of normalization that will be justified later, for H in 'H,(CN) and

tin R, we define H(t) = (gogg) to be the unique element of H; such
1

that, for any s in S, one has

(s, Ho(t)" — (g — D Ho(t)) _ [{as(t), H)
(68) ( (s, L (1) >‘(<ﬁs<t>ﬂ>)'

Proof of Proposition 6.3 in case k is even. Take H in H;. By the con-
structions in Subsections 4.1 and 4.3, for s in Sk, we have a,(t)g = s
and Bs(t)o = 0. Thus, for ¢ in R, we get, from (6.8),

<< (H1)y(1)" <q—1><H10>0<t>>>:(<s,H>>,
(s, (H1), (1) 0

—1ryVv

0
Let us now show that the equivariance properties actually hold. Fix

tin R and H in ’H,(CN). Let J = (jo) and K = <§0) be in H} such
1 1
that, for s in Sy,

(2??5?) = (50 (Eizﬁﬁi) = (.

)
)
q—lK\/
so that H ( ) and RH ( % 0 ) From Lemma 6.11
1

which gives ﬁ)(t) = (q as required.

and Lemma 6.13,
() = (el
Sm) (o 5 (i)
q+1)t\ ((s,Jo) 1 (s¥,Jo)
o )b ) ()

RE(t) = (q—;fg) _ (Jo +q_1(fJ(q— _”1‘@ 1+ qu(q+ 1)ul)
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As Ji = Hy(t), we get RH(t) = (q — 1)Hy(t) — Hi(t)". As
Jo = Ho(t)" = (q — 1) Ho(1),
a straightforward computation gives
Eﬁo(t) = Ho(t)" +q (g + V)tH(t)
and the equivariance property for the operator R holds.

éo be in H2 such that, for s in S,
1

(o 0) = ({50 5. om0 (5. Lo 6

and Lemma 6.13 now give,

((s,Lo>> _ <<Sas<t>,H>) _ <<ﬁs<t>,H>> _ (<s,Jl>)
<SvL1> - <568(t)’H> B <a8(t)7H> B <S7‘]0> .
Reasoning as above, we get gﬁl(t) =Jy= }AIO(t)V — (¢ — 1)}70(25) and
SHo(t) = g 1JY = ¢~ Hy(t).

The uniqueness statement follows from the analogous ones in Propo-
sition 4.2 and Proposition 4.12. 0

In the same way, we let L =

To construct the 7 transform, we do the same constructions, but the
roles of &j 4+ and Sy _ are exchanged. Thus, if s is in Sy 4, we set, for
1> 0,

a(t); = oy (t)is and B(t); = B (t):s

If s isin S _, we set, for ¢ > 0,

ay(t)i = ayy(t)is and B(t)i = By (t)is

As above, if s is in Sy and s = s; +s_ with s; in S+ and s_ in S _,
we set ag(t) = af, (t) + o (t) and B(t) = Bs, (t) + B_(t). By Lemma
4.7 and Lemma 4.17, the coordinates of these sequences are polynomial
functions of ¢.

We now get

Lemma 6.14. Let k > 0 be even and s be in S;. For any t in R, we
have the matriz relations

(550) = (40)

(t)
ot (10 = (SO 04 10510
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Converserly, assume v and § are in Sy and we have

(5)- ) e () ()

Then, we have v = a(t) and § = BL(t) where s = 7.

Now, for G in ”H,(CN) and ¢ in R, we define G(t) = (gogg) to be the

1
unique element of H? such that, for any s in Sy, one has

(s, —G(t)) (B:(1), G)
Proof of Proposition 6.4 in case k is even. This can be obtained from
Lemma 6.14 and (6.9) as in the proof of Proposition 6.3. O

6.6. Construction of the spectral transforms: the odd case.
We proceed to analogous constructions in the odd case. Let £ > 0 be
odd.
For ¢ in R, as in Subsection 5.1, if s is in Sy 4, we set, for ¢ > 0,
as(t)i = a_(t);s and By(t); = B+ (1)is.

In the same way, as in Subsection 5.2, if s is in Sy, _, we set, for ¢ > 0,

() = a__(t)is and fy(t); = f_(t)is.
And, for s in Sk, s = s; + s_ with s; in S 4 and s_ in S, we set

as(t) = as, (t) + as_(t) and Bs(t) = Bs, (t) + Bs_ ().
From Lemma 5.6, Lemma 5.8, Lemma 5.15 and Lemma 5.17, we get

Lemma 6.15. Let kK > 0 be odd and s be in Sy. For any t in R, we
have the matriz relations

(ggzgzg) _ (aSV(t) +%qﬁi)€;3(q_l)sv<t))

and (%Eg) _ <(q - 1)0252)+ qﬁs(t)> |

Converserly, assume v and § are in S and we have

@g) _ (W + (g + 1¥§V— (q— 1)5v)

wa (1) - (=17 )

Then, we have v = a4(t) and § = B4(t) where s = 7.
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ffo(t)
Hy(t)

unique element of H2 such that, for any s in Sy, one has

(6.10) <<saﬁl(t>>) _ ((as(t),m) |

(s, Ho(t)") (Bs(t), H)
Proof of Proposition 6.3 in case k is odd. This follows from Lemma
6.15 and (6.10). O

Again, to construct the 7 transform, we exchange the roles of Sy
and S; . If sisin S 4, we set, for ¢ > 0,
oy (t)i = a__(t)s and B(t); = B (t):s.
If s isin S _, we set, for ¢ > 0,

ay(t)i = a_y(t)is and B(t); = B (t):s.
If sisin & and s = sy + s_ with s; in &4 and s_ in 5, we still

set a(t) = o (1) + o (t) and B(t) = 8., (£) + Bs_(1).
We get again

Lemma 6.16. Let kK > 0 be odd and s be in Sy. For any t in R, we
have the matrix relations

(S’O/s(t)) (—aév (8) + Blgriyist-1)sv (ﬂ)

For H in H,(CN) and ¢t in R, we define ﬁ(t) = ( > to be the

S'BL(t)) ~ B (t)
Roi(t)\ _ ( (g = Deg(t) +aBi(1) )
(Rﬁ;(t)) ( o (t) >

Converserly, assume v and § are in S and we have

(g’/g) _ <—7V + (¢ + 1(235 + (¢ — 1)5V)
s (1) - (109

Then, we have v = o/(t) and 6 = [L(t) where s = 7.

Finally, for G in H,(CN) and ¢ in R, we define va’(t) = (g[)g) to be
1

the unique element of H? such that, for any s in Sk, one has

(6.11) (<s, —fh(t») _ (<a;<t>,a>> |

(s,Go(t)") (B5(t), G)
Proof of Proposition 6.4 in case k is odd. This is now a consequence of
Lemma 6.16 and (6.11). O
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6.7. Twist and spectral transform. In this Subsection, we assume
I' to be bipartite. Then, we can use the language of Subsection 2.6. We
will describe the action of the twist operator on the spectral transform.

For k > 0, we let s — s' be the adjoint operations to the twist
operator on k-simple pseudofields. More concretely, if £ > 1 and s is a
k-simple pseudofield, for x ~ y in X, we set

Sxy = X(Z’)S;py-

If £ =0 and s is the 0-simple pseudofield associated to the function u
on X, we set st to be 0-simple pseudofield associated to the function

XU.
Still by duality with Subsection 2.6, we set, for k > 0 and s in S},

(Us); = (—1)532 i even

i41 N

Us)i = (~1)'Fs]
Us); = (1) & i odd, k odd.

By using Lemma 4.20 and Lemma 5.19, we get

Lemma 6.17. Let k > 0 and s be in S,. Fort in C, we have
UBs(t) = —Ba(—1)
Uas(t) = aa(—t) if k is even
Uas(t) = —aqa(—t) if k is odd.

Thanks to Lemma 2.22 and (6.8) and (6.10), this yields

i ¢t odd, k even

Lemma 6.18. Let k > 0 and H be in ’H,(CN). Fort in C, we have
77T Hy(t)
UH(t) = ~ .
0= (A0
6.8. The adjoint of the default map. Recall that, for £ > 0, the

default map Dy, : H,(ﬁ)l — H,(CN) was defined in Definition 2.12. By
Corollary 2.14, the range of the default map is the null space of the
polyextension map of Definition 2.11. In Subsection 6.4 above, we have
identified the dual space of H,(CN) with 8. Therefore, the default map
gives rise to an adjoint linear map Dj : Sy — SY ;. We can give a
direct description of Dj.

Lemma 6.19. Let k > 1 and s be in S,If. If k is even, we have

(Dis) = 55 — s

« 1 ,
(Dys)i = 531’v—<1v - 5,-<+1, 1> 1.
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If k is odd, we have
(Dys)o = 55" —qst
(Dys)i = s{5" — a5, i> 1.

Proof. This is a direct computation. For example, we explicit the even
case. If k is even, for G in H,EN_)I, we have by definition

(Dys,H) = (s, DyH) = (s9,G{”" + G§~)

+ Z ¢ ({521, G5 = G5 o) + (521, Gy — G3i1)).

i=1

By using Lemma 6.7 and Lemma 6.8, we get

(Dis, H) = (s5" — 57, Go)
+) (g5 = ¢, Gaina) + (0SS = @5, G
i=1
The conclusion follows. The odd case is analogous. 0

6.9. The spectral default. We now prove Proposition 6.5 by using
the precise definition of the spectral transforms given in Subsection
6.5 and Subsection 6.6. The main point of the proof is the following
delicate computation.

Lemma 6.20. Let k > 1 be even, s be in S} and t be in R. We have

(6.12) DiB(t) = ol (t) + Bluc(t).

If k s even, we have

(613)  Djou(t) = s (1) £ Blucv iy 1sev—qraee (1)
If k 1s odd, we have

(6.14) Dras(t) = O/s<V7(q71)s<(t) + B;V<V7(q+1)ts<(t)'

One way to prove this is to use the explicit definitions of the objects
given in Subsections 4.1, 4.3, 5.1, 5.2, 6.5 and 6.6 and the formulas for
the operator Dj, given in Lemma 6.19. We will instead use an argument
based on the uniqueness property in Lemmas 6.14 and 6.16.

We will split the proof according to the parity of k.

Proof of Lemma 6.20 in case k is even. Looking at (6.12) and (6.13)
suggests to introduce § = D;fs(t) + (Dias(t))” and v = RJ. As
R? = g+ (q¢—1)R, we get the second relation in the uniqueness part of
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Lemma 6.16. We will conclude by proving that the first relation also
holds. By Lemma 2.21, Lemma 6.12 and Lemma 6.13, we have

S'6 = D;SB.(t) + (DfSas(t))Y = Dia,(t) + (DiBs(t)” = 46",

[t remains to compute S’vy. Again by Lemma 2.21, Lemma 6.12 and
Lemma 6.13, we have

v = R§ = DiRB,(t) + (D;Ras(t))"
(615) - Dl:ﬁ(q—l)s—sv (t) + (DI:O‘SV (t>>v + (q + 1)t(Dl:Bs(t))va
hence

§'5 = Diag-tye—sv (£) + (DpBur ()" + (g + Lt(Djas(8)) .
Applying the V operator to (6.15) and summing with the last equation
gives
S'y+7" = (¢ — 1) Djas(t) + (¢ — 1)(DpBs(1))"
+ (g + Di(Dyas(t)” + (¢ + DEDEB(E) = (¢ — 1)07 + (¢ + 1)t9,

that is, we have S’y = —yY + (¢ + 1)td + (¢ — 1)6". Therefore, by
Lemma 6.16, we have v = o (t) and 6 = 3/ (¢). Let us determine ;.
By construction in Subsections 4.1, 4.3 and 6.5, we have

as(t)o = Bs(t)1 = s and ag(t); = Bs(t)o = 0.
By using Lemma 6.19 and (6.15), we get
Yo =—((g—1)s — V)< + "< + (¢ + 1)t(—5%)"
=25 —(¢—1)s — (g + 1)ts=".
Thus, we have shown that
Dl:ﬁs(t) + (Dzas(t))v =0= Bésv<f(q71)s<7(q+1)ts<\/ (t)
Applying this identity to sV yields
(DZ&SV <t>>v = ﬁéqs<+(q—1)s\/<—(q+1)tsv<v<t> - DZ’BSV <t>
and therefore, by using the value for v given by (6.15),
(6.16)
Dzﬁ(q—l)S—%V (t) + ﬁéqs<+(q71)sv<7(q+1)ts\/<v (t) + (q + 1)t(DZﬁS(t>>v
=7= a/28V<—(q—1)s<—(q+1)ts<V(t)‘
To conclude, we will temporarily split the proof according to the eigen-

values of the V operator in S.
If s¥ = gs, (6.16) says

—DiBa(t) + UDiB(1))” = ey () = qBie _ys=v (1)



ADDITIVE REPRESENTATIONS 69

As the linear map r — r — tr" is injective on Sg_; for all ¢t ¢ {—1,1}
and as the functions are polynomial in ¢, we get

(6.17) Difs(t) = —ai< (t) + qBi< (t) = —ai<(t) + Biv<(t).
If s¥ = —s, (6.16) says
DiBa(t) + t(DiBs(t)" = =0l yyeev (t) = Bix yeev ().
As above, we get
(6.18) Dpfa(t) = —ali<(t) = B (t) = —ali< () + Biv< (1),
Joining the two cases, we get from (6.17) and (6.18) that (6.12)

holds for any s in S,. We now apply the operator S’ to this identity.
By Lemma 2.21, Lemma 6.12, Lemma 6.13 and Lemma 6.16, this gives

DZO[SU’-) = Oé;<v (t) - /qu+1)ts<+(q—1)s<\/<t) + 6;V<V(t)
and (6.13) follows. O

Proof of Lemma 6.20 in case k is odd. We now consider (6.12) and
(6.14) and we set 0 = gD;5s(t) + (Djas(t))Y and v = S0, so that the
first relation in the uniqueness part of Lemma 6.14 holds. As above,
we will conclude by proving that the second relation also holds. By
Lemma 2.21, Lemma 6.12 and Lemma 6.15, we have

R = QDZR/BS(t) + (DZRas(t))v
= qDjas(t) + (Dr(gBs(t) + (g — Das(t)))"
= qDjas(t) + (¢ — 1)(Dras(t)” + a(Di(Bs(t))) " = 6"

We now compute R'7y. Still by Lemma 2.21, Lemma 6.12 and Lemma
6.15, we have

v =88 =qD;SBs(t) + (D;Sas(t))”
(619) = _QDZBSV (t) + (DZ%V (t))v + (‘D;;/B(q-i-l)ts—(q—l)sv <t>>\/7
hence

7 = (g = 1)y = —q(D}Bsv (1) + qDjarsv (t) + qD5Bigrayes(1)-
and

R'y = —qDjagv (t) + q(Dyfsv (t))"
+ (¢ — 1)(Dyasv (1) + (Dreginyes—(g-1sv (1)
= —qDjasv(t) + q(DiBev (1) + (Dyagros(t))”

Summing up the last two relations gives

Ry +9" = (¢ — 1)y = (Diagiaus(t)” + aDiBgrys(t) = (g + 1)td.
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That is, we have Ry = —yY + (¢ — 1)y + (¢ + 1)td6. Therefore, by
Lemma 6.14, we have v = o/, (t) and 6 = 3 (). We compute 75. By
construction in Subsections 5.1, 5.2 and 6.6, we have

as(t)o=s as(t)y =q (g—1)s
Bs(t)o =0 Bs(th =g 's.
By using Lemma 6.19 and (6.19), we get
Yo =¢""+ (s = (g=1)s")" + ((g = 1)s"= = (g + 1)ts™)"
=2¢s"< + (¢ —1)8V<Y — (¢ + 1)ts=".
We have shown that

qDl:55<t> + (Dzas(t))v =0= Béqsv<+(q71)sv<v7(q+1)ts<\/ (t)

Applying this identity to sV, we get
(DZOJS\/ (t))v = Béqs<+(q—1)s<v—(q+1)ts\/<v (t) - qDZﬁsV (t)7

whence, by using the value for v given by (6.19),

(6.20)
- ZQDZﬁsV (t) + ﬂéqs<+(q—1)s<v—(q+1)tsV<V(t) + (D/;;B(q—irl)ts—(q—1)8v (t))v
=7= al2qu<+(q—1)sV<V—(q+1)ts<\/ (t)
To conclude, we will again temporarily split the proof according to the
eigenvalues of the V operator in Sg.
If sV =s, (6.20) says
= 2qDiBs(t) + (¢ + D)t — (¢ — 1))(DiBs(1))”
= Qgs< (g 1)—(g—1))s<v (1) = Bags<((gr1yi—(g-1)s<v (£)-

As the eigenvalues of the V operator on S;_; are ¢ and —1, the linear
map r — 2qr — ((¢ + 1)t — (¢ — 1))r" is injective on Sy_; for all ¢ ¢
{—1,1}. As the functions are polynomial in ¢, we get

(6.21) Difs(t) = —al< (1) 4 Bic (t) = —av< (1) + Blu<(t).
If sV = —s, (6.20) says
2¢D;Bs(t) + ((¢ + 1)t + (g — 1) (DiBs(t))”
= _O/2qs<+((€I+1)t+(q71))s<V(t) - ngs<+((q4r1)t+(q71))s<\/(t)‘

As above, we get

(6.22) DpBs(t) = —cl<(t) — By<(t) = —ai<(t) + Bov<(t)-
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Joining the two cases, we get from (6.21) and (6.22) that (6.12) holds
for any s in S,. We now apply the operator R’ to this identity. By
Lemma 2.21, Lemma 6.12, Lemma 6.15 and Lemma 6.14, this gives

Dzas(t) = O/s<vf(q71)s< (t> - ﬁéq+1)ts< (t) + ﬁév<v (t)
and (6.14) follows. O

We conclude the Section by the proof of Proposition 6.5, which is a
direct consequence of Lemma 6.20.

Proof of Proposition 6.5. Let G be in H,(ﬁ)l and set H = D,G. We

~

write as usual G = ng and H = }AIO .
Gy H,
First assume that k is even. By the definition of the spectral trans-
form in (6.8), we have, for £ in R and s in Sy,
(s, Ho(t)) = (q~"s¥, Ho(t)" — (¢ — ) Ho(t)) = ¢ {asv (1), H)
= q71<Oésv (t), DkG> = q71<DZOJSv (t), G>

Lemma 6.20 gives

D]:Ofsv (t> - O/SV<V(t) + 6;VV<V7(q71)sV<V7(q+1)tsV< (t)
= a;\/<\/(t) + 5(,15<V—(q+1)tsv< (t)7

hence, by the definition of the spectral transform in (6.11),

(s, Ho(t)) = ¢~ (alwev () + Bpeev _(gr1yesv< (), G)
= —¢ sV GU) + (5T = g g+ 1, Go(t)).
We get Ho(t) = —qLG1(t)V<Y + Go(t)” — ¢ (q + 1)tGo(t)V>" as re-
quired. In the same way, the definitions (6.8) and (6.11) and Lemma
6.20 give
(s, Hh (1)) = (B.(2), H) = (D}Bs(1), G)
= (=0l (t) + Blu< (), G) = (%, Gr (1)) + (sV=", Go(1)),
hence Hy(t) = G1(t)> + Go(t)">V.
Assume now that k is odd. We use (6.9) and (6.10) and Lemma 6.20
to get
(s, Ho(t)) = (B (), H) = (DiBov (1), G)
= (=< (t) + Bl (1), G) = —(sV=Y, Go(1)) — (5%, C1 (1)),
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hence Ho(t) = —Go(t)¥>Y — G4(t)>. Finally, the same arguments give
(s, Hi (1)) = (o (1), H) = (Djas (1), G)

< <V—(g—1)s< t) + 5 V<V—(g+1) ts<( ) >

= (™ = (g = 1)s™, Go(t)) — (=¥ = (¢ + )ts=, G (1)

= ¢(s=, Go(1)) + (g + D)ts™ — sV=Y,Cr (1)),

that is, H, () = ¢Go(t)” +(q+1)tG1(t)> =G (t)¥>" and the Proposition
follows. O

{
(

7. THE SIMPLE TRANSFER OPERATOR

Let £ > 2 and p be a I'-invariant k-Euclidean field. Then, the
successive orthogonal extensions of p define a scalar product p> on
D(0X) (see Subsection 1.4.5). Recall from Subsection 2.3 that we write
Hoo for the space of I'-invariant oo-pseudofunctions, that is, the space
of T-invariant maps X; — D(0X). By abuse of notation, we will still
denote by p> the scalar product associated with p on H.,, which is
defined by, for any H, J in H,

(7.1) D) = S ey (Hay ).

(z,y)eT\ X1 ’Fw n Fy'

Our aim until the end of the article is to establish a Plancherel formula
for p in the spirit of (4.1), (4.8), (5.1) and (5.4). Following the strategy
of the proofs of this formulae, we need to establish a formula for the
resolvent of a certain self-adjoint operator acting on (the completion
of) Ho. To state this resolvent formula, we will use a linear operator
that is an analogue of the quadratic transfer operator of Subsection
[.10.3. The purpose of the present Section is to define this operator
and give some informations on its spectrum.

7.1. Adjoint operations and simple transfer operator. Our defi-
nition will be formulated in the spirit of Subsection I1.6.2. In particular,
it requires for us to introduce the adjoint operation of direct extension.

Let £ > 2 and p be a k-Euclidean field. Recall from Subsection
[.10.3 that, if k£ is even, k = 2¢, £ > 1, for any z ~ y € X, we
write I. TP Vg(x) — Vg_l(xy) for the surjective linear map that

is the adjoint with respect to p, of the natural injective map Iﬁ;l :

Vé_l(xy) — Ve(x). Then, if H is a k-pseudofunction, we let H<r be

the (k — 1)-pseudofunction with Hz} = I VWH,, = ~y € X. We
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equip H; with the scalar product defined by

1
H = g —n.(H, H .
p(H, J) ’Fmﬂry’px( wrJo)s H T € Hy
(z,y)eT\ X1

In the same way, if kisodd, k =2(+1,¢ > 1, forany z ~y € X, we
write JoP Vé(xy) — V€($) for the surjective linear map that is the
adjoint with respect to pg, of the natural injective map Jﬁy : Vé(x) —

Vg(acy). Then, if H is a k-pseudofunction, we let H<? be the (k — 1)-
pseudofunction with ny” = JﬁJpny, x ~y e X. We equip Hy with
the scalar product defined by

1
H,J)= = Pay(Hay, Juy), H,J € Hy.
p( ) Z T, ﬂFy|p y(Hay, Jay) k
(xfy)GF\Xl
By construction, we always have
H><» =H.
By using Lemma [.9.11, we directly get the adjointness property.

Lemma 7.1. Let k > 2 and p be a U'-invariant k-FEuclidean field. For
any H in Hy and J in Hi_1, we have
p(H,J”) =p (H,J).
Note that Lemma 1.10.8 may be translated into
Lemma 7.2. Let k > 2, p be a k-FEuclidean field with orthogonal ezx-
tension p* and H be a k-pseudofunction. We have
V<ot — [<oV>

As in Subsection 1.4.5, we write p* for the orthogonal extension of
p. Now, by analogy with 1.10.4 and 1.10.5, we set

Definition 7.3. Let £ > 2 and p be a [-invariant k-Fuclidean field.
The simple transfer operator S, of p is the linear endomorphism of
‘Hy_1 defined by

SpH =HV<*Y He Hi_1.

By abuse of notation, we will usually also write S, : H; — Hj for
the transfer operator of the orthogonal extension p™ of p. By Lemma
7.2, for H is in ‘Hj, we have

(7.2) S,H = H<»"=Y.
Thus, we get
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Lemma 7.4. Let k > 2 and p be a I'-invariant k-FEuclidean field. For
H in Hyp_1, we have

(SpH)>v = Sp(H>v)-

Note that the V operator is self-adjoint with respect to p, as follows
directly from the definitions (and from Lemma 1.9.11). We write 5’; for
the adjoint of S, with respect to p. We get

Lemma 7.5. Let k > 2 and p be a U'-invariant k-FEuclidean field. For
H in Hyp_1, we have

_ gV>V<p
SIH = H">V<r,

In particular, the operators S, and S; are conjugated by the \V operator,
that is, we have S,(H") = (STH)".

Recall from Subsection 2.6 that, when I' is bipartite, we have in-
troduced the twist operator of pseudofunctions. This operator is then
self-adjoint with respect to p. By Lemma 2.22, we obtain

Lemma 7.6. Assume I' is bipartite. Let k > 2 and p be a I'-invariant
k-Euclidean field. For H in Hy_1, we have

Sp(HY) = —(S,H)! and S}(H') = —(STH)'.

7.2. Spectrum of the simple transfer operator. The resolvent
formula for Euclidean fields will be written by using rational functions
of the simple transfer operator. For this to make sense, we will need
some information on the spectrum of .5,.

We start by exhibiting a subspace of Hj_; where the simple transfer
operator has a very simple behaviour. Recall from Subsection 2.2 that
we have introduced the notion of a (—1)-pseudofunction and that the
space H_1 has dimension 1 or 2.

Lemma 7.7. Let k > 2 and p be a I'-invariant k-FEuclidean field. Let
H be in H_1. Then, we have

S, (H7") = =1 = 51 (17",

In other words, the operators S, and S; preserve the space of (—1)-
pseudofunctions and may be seen on that space as the operator that
maps a function on X that is constant on neighbours to the opposite
function. Note that this implies in particular that, contrarily to the
quadratic transfer operator, the simple transfer operator always admits
1 as an eigenvalue.
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Proof. We prove the statement for S, the other proof being analogous
by using Lemma 7.5. Assume that k is even. Then, by Lemma 2.6, we
have

S (H>k) _ H>"‘+1v<pv _ H>v>’“<pv _ H>v>’f—1v
P = = = .

As H~ is a 0-pseudofunction, by convention, H~Y = —H~. Hence
again by Lemma 2.6,

g <H>k) _ _H>kv _ _Hv>k
", = =
as required. Now, if £ is odd, we have
IS <H>k> _ vy g vettiy o gvsty vyt
., = = = =
and, again, as HY~ is a 0-pseudofunction, HY>Y = —H"~. O

We notice that the spectrum of the simple transfer operator essen-
tially does not depend on the space.

Lemma 7.8. Let k > 2 and p be a I'-invariant k-Fuclidean field. Then,
the spectrum of S, in Hy, is the union of {0} and the spectrum of S, in
Hi—1.

See Corollary 1.10.7 for the analogous result for quadratic transfer
operators.

Proof. By Lemma 7.4, for J in Hj_y, we have (S,J)”Y = S,(J~V). By
(7.2), we have S,H), C H; ;. The result follows. O

Now we prove a universal bound on the spectral radius.

Proposition 7.9. Let k > 2 and p be a I'-invariant k-Fuclidean field.
Then, S, has spectral radius < q in Hy_;.

The proof of the Proposition essentially relies on the following norm
estimate for the adjoint simple transfer operator.

Lemma 7.10. Let k > 2, p be a I'-invariant k-FEuclidean field and H
be in Hy—1. Then, we have HS;HHP < q||H|,. Besides, if k is even
(resp. odd), then equality holds, that is, S;HHP = q|[H||, if and only
if there exists J in Hy_o (resp. Hyp_3) with JY = qJ and H = J>V
(resp. H=J>~).

We have denoted by ||.||, the natural norm induced by p on Hj_1,

that is, [|H||, = \/p~(H, H) for H in Hy_1.
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Proof. Recall that, if 7 > 1 is odd, the V operator is an isometry of
H; with respect to p, whereas if j is even, it is a self-adjoint operator
with spectrum {—1,¢}. In particular, for any H in H;_;, we have
[ HY=Y], < ql[H],. As the <, operator is the adjoint of the isometric
embedding given by direct extension Hy_1 — Hy, we get

(7.3) ST || = 12| < |H=Y), < q|H]l,.
If HY = J~ for some J in Hy_o, by Lemma 2.6, we have
(74) S;H — HV>V<r — J>>V<p — J\/>><p — J\/>‘

Thus, if k is even and JY = ¢J, we get SZ,H =qJ” and
Issel, = all 71, = a 1771, = a I 41l

If £is odd and H = K>~ for some K in H;_3 with KV = ¢K, by
Lemma 2.6, we have

S;H — K>>VAV<p qK>>>v<p _ qK>v>><p _ qK>v>
and again
1Sy, = allE== 1, = g lE=, = g |1 K~ [l, = ¢ [ K7, = ¢ | ],

Conversely, assume HS;H Hp = q| H]|,, so that the two inequalities
in (7.3) must be equalities. We get ||[HY>V<r| = [[HY>Y],, so that
HY=Y belongs to H; ;. By Lemma 2.8, there exists J in Hy_o with
HY =J~.

Assume that & is even. Then, by using (7.4), we get

170, = 1721, = [[SSE |, = a1 H 1, = a 171, = all 71, = 1],

Hence JY = ¢J as required.
Assume that & is odd. Then, again by (7.4), we have

(L, = 1771, = 171, = 10, = 1721, = [ Sy H |, = a ],

Therefore, we obtain HY = ¢H. As HY = J~, we have J~V = ¢J~
which, by Lemma 2.8, implies that we may write J = K~ for some
K in Hy_3 with KV = ¢K. We have H = ¢~ 'J> = ¢ ' K>~ and the
conclusion follows. O

Proposition 7.9 will follow from Lemma 7.10 by an induction argu-
ment which relies on

Lemma 7.11. Let ¢« > 0 and ¢ > 1 be integer. Let H be a 2(-
pseudofunction and G be a 2(i + {)-pseudofunction with G¥ = qG.
Assume that we have H>""' = G>V. Then, there ezists a 2({ — 1)-
pseudofunction J with J¥ = qJ and H = J>V> and G = J>**.
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Proof. We fix £ > 1 and we prove this statement by induction on i > 0.

For i = 0, we have H> = G~V. Thus, Lemma 2.8 gives a (2¢ — 1)-
pseudofunction K with G = K~ and H = KY>. As GV = ¢G, we have
K=Y = ¢K~. Still by Lemma 2.8, there exists a 2(£—1)-pseudofunction
Jwith JV =¢Jand K =J~. Weget H=KY> =J>V> and G = J~~
and we are done.

Now, assume that ¢ > 1 and the result is true for ¢ — 1. As above, by
Lemma 2.8, there exists a (2i+2¢ —1)-pseudofunction K with G = K~
and H>" = KV>. As GY = ¢G, there exists a 2(i+¢—1)-pseudofunction
Gy with GY = ¢Gy and K = G7. We get H>" = K¥> = G7¥>, hence
H>™' = G7V. Therefore, the induction assumption says that there
exists a 2(¢ — 1)-pseudofunction J with JY = ¢J and H = J>¥~ and
Gy = J7". As G = G7>, we get G = J>™ and the conclusion
follows by induction. (l

Proof of Proposition 7.9. Note that Lemma 7.10 directly implies the
Proposition when k£ = 2,3. Indeed from the definitions in Subsection
2.1, the V operator on Mg is —1. Thus, if k£ = 2,3, then S has norm
< ¢ and the conclusion follows. The proof for arbitrary k > 2 will
follows from the same reason by an induction argument.

If kis even, k = 2¢, £ > 1, we claim that, for any 1 < i </, if H
is in Hi_1 and H (S;)ZHH =q"[|H||,, then H = J>*7V for some J in
Hyo; with JV =qJ. If i p: 1, this is Lemma 7.10. If : </ — 1 and the
claim is true for 7, let us show that it is also true for ¢ 4+ 1. Therefore,
we assume that we have

H(S;)H-l HHp _ qi+1 HHHp'

We set G = S;EH . By the inequality in Lemma 7.10, we have
H(S;)ZGHP = ¢' |G|, and [|G]|, = ¢|[H]||,. Hence, on one hand, the

induction assumption says that we may write G = K >*7IV for some
K in Hy—s) with KV = gK, whereas Lemma 7.10 says that we may
write H = L~V for some L in Hap_1) with LY = ¢L. From (7.4), we
get G = S;EH = LV> = ¢L”>, hence K>V = ¢L>, or equivalently,
K> = ¢L>V. As LY = ¢L, we can apply Lemma 7.11. Then, we
know that there exists J in Ho—;_1) with JY = ¢J and K = ¢J~V~
and L = J>". As H = L>V, this gives H = J>*""V, which should be
proved.
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In particular, applying this claim in case ¢ = ¢, as the V operator is
—1 on Hy, we get that (S;)Z has norm < ¢ on Hj_;, which implies
the Proposition in the even case.

Assume that k£ is odd, k =20+ 1, £ > 1. We now claim that for any

1<i <0 if Hisin Hy; and H(S;)iHH = ¢ ||H]| , then H = J>>*
p
for some J in Hj_o;—; with JY = ¢J. If ¢ = 1, this is Lemma 7.10. If

1 < ¢ —1 and the claim is true for 4, let us show that it is also true for
1+ 1. Again, we assume that we have

H (S;)Frl HHp _ qi+1 HHHp

. p
q¢' |G|, and |G|, = g [|H|[,. By the induction assumption, there exists

K in M9 with KY = ¢K and K>* = G. By Lemma 7.10, there
exists L in Hj;_3 with LY = ¢L and L~ = H. We have, by Lemma
2.6,

K — = S;H = [PPVV<e = g [PV = [PV = [PV

and we set G = S;H, so that, by Lemma 7.10, we have H (S;)i G

hence K>*7' = qL”V. By Lemma 7.11, there exists J in Hj_o;_3 with
JV =¢qJand K = ¢J>V> and L = J>*. We get H = J>*" as
required.

As above, the case i = ¢ implies that (Sg)g has norm < ¢‘ on Hj_;.
The Proposition follows in the odd case. U

7.3. Spectrum in the admissible case. In this Subsection, we relate
the simple transfer operator with the quadratic transfer operator of
Section 1.10. We use this relation to show that, when p is admissible,
the spectral radius of S, is not too large. This fact will not be used in
the rest of the present article.

Proposition 7.12. Let k > 2 and p be an admissible I'-invariant k-
Buclidean field. Then S, has spectral radius < \/q in Hy_;.

See Section 1.10 for the definition and equivalent characterizations
of admissible Euclidean fields.

The proof of Proposition 7.12 relies on constructions from quadratic
algebra which also appear in Appendix I[.C. Recall that, if V is a finite-
dimensional real vector space, we have a natural map v — 02,V —
Q(V*) from V to the space of symmetric bilinear forms on V*. It is
defined by setting v?(p, ) = p(v)y(v), for v in V and ¢, in V*. This

map satisfies Cauchy-Schwarz inequality:
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Lemma 7.13. Let V' be a finite-dimensional real vector space. Pick
Vi,...,0. nV and ty,...,t. in R. We have

(&) = (59 ()

meaning that the difference is a non-negative symmetric bilinear form

on V*.
Proof. Indeed, by the standard Cauchy-Schwartz inequality, for any ¢

in VV*, one has
(o) = () ()

Now, recall the notion of a pseudokernel from Subsection 1.8.2. In
Subsection I1.2.1, we have defined natural operations on pseudokernels
that are analogous to the natural operations on pseudofunctions of
Subsection 2.2. For k > 1, if H is a k-pseudofunction we define a k-
pseudokernel L = H? as follows: if k is odd (resp. even), k = 2¢ + 1
(resp. k=2(), £ >0 (resp. £ > 1), for any = ~ y in X, the symmetric
bilinear form on Vi (zy) (resp. V{(x)) associated with L, is HZ,. In

O

other words, for a,b in S(x) (resp. S*(zy)), we have
Luy(a,b) = (Hoy(a) — Hay(b))*.
Besides, note that we have
(7.5) (H”)? = (H*)”.
This definition and Lemma 7.13 directly give

Corollary 7.14. Let k > 1 and H be a k-pseudofunction. If k is
odd, we have (HV)? = (H?)V. If k is even, we have (H")* < q(H?)",
meaning that the difference is a non-negative pseudokernel.

In the same way, if & > 2, and p is a k-Euclidean field, let L be a
k-pseudokernel. We define a (k — 1)-pseudokernel L<r as follows: if k
is even (resp. odd), k = 2¢ (resp. k =20+ 1), £ > 1, and if, for x ~ y
in X, the symmetric bilinear form on V{(x) (resp. Vi (zy)) associated
with L, is 7, then the symmetric bilinear form on Vj*(xy) (resp.
V{(x)) associated with Ly is (L, 1P)*ryy (vesp. (J51P)*ry,). The
notation is the one used in Subsection 1.10.6. Note that, if H is a
k-pseudofunction, we have

(7.6) (H=0)* = (H*)™.
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Finally, let £ > 2 and p be a I'-invariant k-Euclidean field. We change
the convention of Subsection 1.10.3 and we write T}, for the operator
that was denoted by T there. We still call T}, the quadratic transfer
operator. This is an endomorphism of £;_;. As in Corollary I1.6.11,
we can rewrite Lemma [.10.15 as

Lemma 7.15. Let k > 2 and p be a I'-invariant k-FEuclidean field. For
L in Li._1, we have
TpL — L>\/<p\/'

We can now give the

Proof of Proposition 7.12. By Lemma 7.15, for L in L;_;, we have
T,L = L7V<r¥. By Definition 7.3 and Corollary 7.14, we get, for H in
Hi-1,

(SpH)2 — <H>\/<pV)2 < q(H2)>V<pv — qu(HQ),
where we also have used (7.5) and (7.6). Now, iterating this inequality,
we get, for any n > 0, ((f”/QLS”Z’}I-[)2 < T;(HQ). As p is admissible, by
Theorem 1.10.17, T, has spectral radius < 1, hence T;}(H?*) —— 0.

n—o0

We get ¢~/ QS;H —— 0 and the result follows. O
n—oo

7.4. Exceptional eigenvalues. When p is not admissible the spec-

trum of the simple transfer operator may exit the open disk with radius

v/q in C, but in a controlled way.

Proposition 7.16. Let k > 2 and p be a I'-invariant k-FEuclidean field.
Let u € C be a spectral value of S, in Hy—1. If |u| > \/q, then u is real
and simple.

Recall that saying that u is simple amounts to saying that H;_; =
ker(S, —u) & (S, — u)Hy_1 or equivalently ker(S, —u)? = ker(S, — u).

The proof of Proposition 7.16 relies on studying the restriction of .S,
to a certain subspace of Hy_;. The p-orthogonal complement of this
subspace will be described thanks to the following Lemmas.

Lemma 7.17. Let k > —1 be odd and H be a k-pseudofunction. The
following are equivalent.

(i) There exists a (—1)-pseudofunction J with H = J>*"

(ii) One has H>Y = —H~ and HY>Y = —H">.

Lemma 7.18. Let kK > 0 be even, H be a k-pseudofunction and ¢ be
in {—1,1}. The following are equivalent.

(i) There exists a (—1)-pseudofunction J with H = J>*"" and J¥ = e.J.
(ii) One has H>Y =ecH” and H'"Y =ec¢H"~.
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Proof. We prove the two results simultaneously.

(i)=(ii) If k = —1 or k = 0, this directly follows from the definitions.
Now, Lemma 2.6 implies that if this true for k, this is also true for k+2.
The conclusion follows.

(i1)= (i) If k = —1, there is nothing to prove. If £ = 0 and H is a
0-pseudofunction such that H> = e¢H>", ¢ € {—1,1}, by Lemma 2.8,
there exists a (—1)-pseudofunction J with H = J~. Then, we get

>> > >V o >>V o V>>
J7=H =e¢H " =¢J =eJ"77,

hence J = eJ" as required.

Let us conclude by a two steps induction argument. Assume k > 1
and the result holds for £ — 2. Pick H in H; and € in {—1,1} and
assume that we have H>Y = ¢H”> and HY”Y = ¢HY>. By Lemma
2.8, as H”Y = ¢H~”, we can find a (k — 1)-pseudofunction K with
KY = ¢eK and H = K~. In the same way, as H”V = ¢H">, we
can find a (k — 1)-pseudofunction L with LY = ¢L and HY = L~.
Thus, we have L~ = K~V and, again by Lemma 2.8, we can find a
(k — 2)-pseudofunction M with M~ = K and M"Y~ = L. The relations
KY =¢K and LY = ¢L give M~ =M~ and MV>"Y = cM"> and the
conclusion follows by induction. U

Note that, by Lemma 7.7, the spaces of pseudofunctions that ap-
pear in Lemma 7.17 and Lemma 7.18 are stable under the action of
simple transfer operators and their adjoint operators. We will prove
Proposition 7.16 by describing the action of transfer operators on the
orthogonal complements of these subspaces.

To this aim, we introduce some notation. If £ > 2 and p is a I'-
invariant k-Euclidean field, for H in Hy, 4, we set

ApH — H<p> + H<p>\/ and BpH — H<p\/> + H<pV>V.

By construction, A, and B, map Hjy 4 in H;, We summarize the
information that we will need about these operators.

Lemma 7.19. Let k > 2 and p be a I'-invariant k-Euclidean field. The
operators A, : Hr+ — Hiy+ and B, : Hp+ — Hi 4 are self-adjoint.
For H in Hy 4, we have

<(q+1)p(H, H) if k is even,
<2p(H,H) if k is odd.

Equality holds if and only if there exists G in Hy_o with H = G=~.
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Proof. Assume k is even. For H,J in H;, , we have

p(A H, J) = p(H<*, J)+p(H*>Y, J) = p(H<?, J<*)+p(H<*~, J")
= (¢ + Vp(H=, J=),

which is symmetric in H and J. As the <, operator is the adjoint of

the isometric injection >, this gives p(H, A,H) < (¢ + 1)p(H, H) and

equality holds if and only if H = F~ for some F in H;_,. As HY = qH,

we then get 7V = ¢F~, hence, by Lemma 2.8, there exists G' in Hy_o
with ' = G~ and GY = ¢G, so that H = G~~. Besides, we have

p(BpH, J) = (¢+ V)p(H="", J=7),

which is also symmetric in H and J.
The proof in the odd case is analogous. U

The operators A, and B, may be used to describe the action of SZ,
in a large subspace of Hy_1.

Lemma 7.20. Let k > 2, p be a I'-invariant k-FEuclidean field and J, K
be in Hi 4. If k is even, we have

ST(J + K=*Y) = (B,J + (A, — )K)™ — J<Y.
If k is odd, we have
SH(J<r + K<#Y)
= (ByJ + (¢(4, = 1) + (¢ = DB,)K)™" — (J + (¢ = ) K)="".

This Lemma is directly inspired by the proof of the Thara trace for-
mula [4] (see Subsection 1.3).

Proof. This is a direct computation. If k is even, we have, by Lemma
7.5,

ST (J<p + K<p\/) — J<pv>v<p + K<p\/v>v<p
p
— J<VIV<h | F<e>V<h
— (BpJ)<p - J<p\/><p + (ApK)<p . K<p><p
= (B,J)<r — JV 4 (4, K)» — K<,
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as required. If k is odd, in the same way,
ST <J<p i K<pv> _ J<p\/>\/<p + K <pVV>V<p
P

— J<PVIV<h 4 qK<p>v<p + (q . 1)K<pv>v<p

— (BpJ)<p _ J<pv><p + q<ApK)<p _ qK<p><p
+ (g = D(BK)™ — (¢ — NEK="==r

= (BpJ)<* — J*Y + q(A,K)~? — gK*=»
+ (g = D(BK)™ = (¢ — 1)K~

O

The formulae in Lemma 7.20 will give a control of eigenvalues of .S,
due to the following phenomenon.

Lemma 7.21. Let V' be a Euclidean space with scalar product (., .). Let
A and B be self-adjoint endomorphisms of V and r,s > 1 be real num-
bers with (Av,v) < r|jv||* for any v in V. Let C' be the endomorphism
of V2 given in matriz form by

c_ B s(A-1)+(s—1)B
- \—1 —(s—1) '
Let u be a complex eigenvalue of C'. Then, if u is not real or u is not

simple, we have |ul* < s(r —1).

Proof. As in Subsection 1.5, let Vi be the complexification of V' and
denote by v +— T the complex conjugation in Vi. We write (.,.) for
the complex symmetric bilinear form of V¢ whose restriction to V is
the scalar product of V. Thus, the Hermitian form (v, w) — (7,w) is
a Hermitian scalar product on V¢. For v in Vi, we still write [|v|| =

(T, v).
Let u be a complex non real eigenvalue of C'. Then, there exists v, w
in V¢ which are not both 0 such that

(7.7) Bv+s(A—1)w+ (s —1)Bw = w
(7.8) —v— (s — )w = uw.

The second equation gives v = —(u+s— 1)w. In particular, w # 0 and
we can assume ||w|| = 1. Besides, we can eliminate v from (7.7) to get

—uBw + s(A— 1w = —u(u+ s — 1w,
that is,
(7.9) ww +u(s — 1 — B)w+ s(A - 1)w = 0.
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By taking the product with w, as ||w|| = 1, we get the scalar equation
(7.10) u? +u(w, (s — 1 — B)w) + s(w, (A — 1)w) = 0.

We claim that the coefficients of this equation are real numbers. Indeed,
for example, as the endomorphism A is real and self-adjoint, we have,

(w, Aw) = (w, Aw) = (w, AW) = (Aw, W) = (W, Aw),

hence (w, Aw) and also (w, Bw) are real numbers. Since by assump-
tion, u is not a real number, the roots of (7.10) are u and @ and we
have
lu|? = s{w, (A — Dw) < s(r—1)
as required.
Now, let u be a real eigenvalue of C' that is not simple. Then, we
may find v, w,v’,w" in V with v, w not both 0 and

)=o) e () =)+ (o)
As above, (7.7) and (7.8) hold and we can assume that w is a unit
vector. Besides, we now get
(7.11) Bv' +s(A—1w' + (s —1)Bw = w4+ v

' = (s — 1w = uw' +w.

Thus, we have

v=—(u+s—Dwand v' = —(u+s—1)w —w,
so that (7.11) gives
—uBw — Bw+s(A— 1w = —u((u+s— 1w +w) — (u+s— 1w,
hence

ww' +u(s — 1 — B)w' + s(A— 1w +2uw+ (s — 1 — B)w = 0.

Let w” be the orthogonal projection of w’ on the orthogonal comple-
ment of Rw in V. As (7.9) holds, we still have

w*w” +u(s —1 = B)w" + s(A = Dw" + 2uw + (s — 1 — Bjw = 0.

Since (w,w”) = 0, by taking the scalar product with w in this equation,
we obtain

(7.12) (w, (—uB + sA)w") +2u + (w, (s — 1 — B)w) = 0.
As A and B are self-adjoint, by using (7.9), we get
(w, (—uB + sA)w") = ((—uB + sA)w, w")

={(s— (s — Du — v*)w,w") = 0.
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Therefore, (7.12) yields
2u+ (w, (s — 1 — B)w) =0,
that is, u is a double root of (7.10). We get
u? = s(w, (A — Dw) < s(r —1)
as required. O

To deal with certain subtle equality cases in the proof of Proposition
7.16, we will need an enhanced version of Lemma 2.8.

Lemma 7.22. Let a,b in R, k > —1 and H be in Hy 4. Assume that
we have

(7.13) aH>> + bH>Y> = H>V>V.

Then, if k is even, we have H = 0; if k is odd, we have H = 0 or
a—b+1=0.

Proof. Assume k = —1. Then, as the V operator is —1 on 0-
pseudofunctions, the equation reads as

((l— b)H>> — _H>>\/ — _HV>> — —H>>,

the latter holding by the assumption that H isin H_; ;. In other words
we have (a — b+ 1)H = 0 and the conclusion follows.

If k =0, the conclusion holds trivially since Ho 4+ = {0}.

We will prove the general case by a two steps induction. Thus, we
assume that k& > 1 and that the result is true for k — 2. Let H be in
Hy. 4+ such that (7.13) holds. Thus, we have

(aH> —|—bH>v)> — H>V>V.

By Lemma 2.8, there exists J in ‘Hy with H~Y = J~. Again applying
Lemma 2.8, we find K in H;_; with H = K~. As H is in H;_;, a final
application of Lemma 2.8 allows to find an element L in Hj_o_ with
H = L~~. Now, as H satisfies (7.13), Lemma 2.6 gives

CI,L>> + bL>\/> — L>\/>\/
and the conclusion follows from the induction assumption. U
We can now use these tools to give the

Proof of Proposition 7.16. We will actually prove the analogous result
for the adjoint operator S;.
Consider the linear map

Ay My = Hior, (JK) = T+ K=Y,
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By elementary duality arguments, the p-orthogonal complement in
H 1 of the range of A, is the space of H in Hj_; such that H=+H~Y =
0and HY> + HY>Y = 0. By Lemma 7.7, Lemma 7.17 and Lemma 7.18,
the latter space is stable under S; and the spectrum of S;g in this space
is contained in {—1,1}. Now, Lemma 7.20 says that the range of A, is
also stable under S;. We will study the spectrum of S; in APH% + by
means of Lemma 7.21.

First, assume that £ is even. Then, for J, K in Hj 4, Lemma 7.20
may be written as

(7.14) SIA, (é) =A, (% APO_ 1) (}é) :

Thanks to Lemma 7.19, we can apply Lemma 7.21 to the space Hy, +
B, A,-1
-1 0
This tells us that all complex eigenvalues of C, in Hj , which have
modulus > /g are real and simple. A fortiori, by (7.14), the same holds
for the eigenvalues of S; in Ap?‘-[i +- To conclude, we must investigate
the delicate case of eigenvalues with modulus exactly ,/q. This will
require us to have a closer look at the proof of Lemma 7.21.

Thus, let u in C with |u| = /g and assume by contradiction that
u is an eigenvalue of C), in Hi + and that, if u is real (that is, if u €
{—=V4,/q}), this eigenvalue is not simple. By the proof of Lemma
7.21 (see in particular (7.9) and (7.10)), there exists K # 0 in the
complexification Hj, 4 c of Hj 4 with

and the operator C, = ( ) by taking r = ¢+ 1 and s = 1.

(7.15) v*K —uB,K+(A,—1)K =0 and p((4,- 1)K, K) = qp(K, K).

By Lemma 7.19, the second equation implies that there exists L in
Hi—o+c with K = L=~. We get by definition,

APK — L>><p> + L>><p>v — L>> + L>>\/ — (q+ ].)L>>

and
BpK — L>><p\/> + L>><p\/>\/ — L>\/> + L>V>\/’

so that, by (7.15), we have
<u+ g) [>> _ [PV> = [PV
u

By Lemma 7.22, we get L = 0, which contradicts the assumption that
K # 0. The Proposition follows in the even case.



ADDITIVE REPRESENTATIONS 87

We now assume that % is odd. For J, K in Hj 1, Lemma 7.20 now
gives

o () (4 ) ()

By Lemma 7.19, we can apply Lemma 7.21 to the space Hj and

the operator C, = (Bp a(Ap = 1) + (g = 1)Bp) by taking r = 2 and

-1 ~(g-1)
s = ¢. This again tells us that all complex eigenvalues of C), in Hi n
which have modulus > /g are real and simple. By (7.16), the same
holds for the eigenvalues of S; in AyHj .. As above, we will use the
proof of Lemma 7.21 to study the case of eigenvalues with modulus
exactly /q.

Let u in C with |u| = /g and assume by contradiction that u is an
eigenvalue of C), in Hi + and that, if w is real, this eigenvalue is not
simple. Still by the proof of Lemma 7.21, there exists K # 0 in Hj 1 ¢
with
(7.17)

WK +u(qg—1—B,)K+q(A,—1)K =0 and p((A,— 1)K, K) = p(K, K).

By Lemma 7.19, the second equation implies that there exists L in
Hy—2+c with K = L~~. This gives
A K = L>><p> +L>><p>v _ L>> _'_L>>V — 2L>>
P
and, as above,
BpK — L>><p\/> + L>><p\/>\/ — L>\/> + L>V>\/'

Hence, (7.17) yields
(u + g + (q _ 1)) [>> — [>V> — [>V>V
u

As K # 0, we have L # 0, so that, by Lemma 7.22, we get

ut+dig+1=0.
u
The two roots of this equation are —q and —1. This contradicts the

assumption that u has modulus /g and the Proposition follows in the
odd case. 0

7.5. Exceptional quadratic forms. The proof of Proposition 7.16
shows a particular structure of the eigenspaces of S; associated to
eigenvalues with modulus > ,/q. This will allow us to prove a positiv-
ity result on those spaces, which will later play a role in the statement
of the Plancherel formula for Euclidean fields.



88 JEAN-FRANCOIS QUINT

Proposition 7.23. Let k > 2 and p be a I'-invariant k-FEuclidean field.
Let u in R be an eigenvalue of 5’; with [u| > \/q. Then, the symmetric
bilinear form (H,J) — p(H,J") is anisotropic on the eigenspace

{H € Hy1|S]H = uH}.
More precisely, if k is even, il is positive definite if u > /q and negative
definite of u < \/q. If k is odd, it is always positive definite.

Recall that a symmetric bilinear form p on a real vector space V
is said to be anisotropic, or equivalently definite, if, for any v # 0 in
V', one has p(v,v) # 0. In that case, p is either positive definite or
negative definite.

Proof. Let H be in H;_; with S;H = uH. Assume k is even. Then,
by the proof of Proposition 7.16 and by Lemma 7.20, we can find J, K
in Hy 4 with

Jr+ K<»Y =H
B,J + (A, — 1)K =uJ
—J =uK.
We get
p(H,HY) = p(J<v, J*Y) 4+ 2p(J<*, K<7) + p(K <7, K<*V)
= (u® + Dp(K<r, K<) — 2up(K<r, K<r)

241 2
_ vt p(K, ByK) — —
qg+1 qg+1

Note that we have B,J = (1—u*)K — A, K, hence B,K = (u—u"')K+
u A, K. We get

(q+ Lp(H, H") = (u—u)((u + 1)p(K, K) - p(K, A, K)).

p(Ku APK)

By assumption, we have u? > ¢ and by Lemma 7.19, we have
p(K, A,K) < (¢+ 1)p(K, K). The conclusion follows.

Assume now that k is odd. Again by Proposition 7.16 and Lemma
7.20, we get J, K in ‘Hj 4+ with

Jr+ K<*Y =H
(7.18) B,J+q(A, — 1)K + (¢ — 1)B,K = uJ
(7.19) —J—(¢g— 1)K =uK
We have J = —(u+ ¢ — 1)K, hence
H=—(u+q—- 1)K+ K" and HY = ¢K~» —uK=<r".
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We get

p(H,H') = —q(u+q—1)p(K<*, K<7)+(u(ut+q—1)+q)p(K<r, K<r")
_ up(K<p’ K<pVV).

As K<*VY = qK<r 4+ (¢ — 1) K=" this gives

p(H,H") = —q(2u+ q — )p(K<*, K<) + (v + q)p(K <, K<)

2u+qg — 1 u? +
= _—q( 2q )p(Kv A K) + !

Since (7.18) and (7.19) yield

p(K7 BPK)

BK=(u+q—1-qu K+ qu 'A,K,
we finally get

2p(H, H") =
(u?+q) (ut+q—1—qu™ " )p(K, K)+((v’+q)qu™" —q(2u+q—1))p(K, A, K)
=(u+q—1—qu ") (v’ + @p(K,K) — qp(K, A,K)).

By Proposition 7.9, as u is an eigenvalue of S;, we must have —q <
u<—y/qor/g<u<gq. Sinceu+q—1—qu 't =u"(u—1)(u+q)
this number is positive for all those values of u. Now, by Lemma 7.19,
we have p(K, A,K) < 2p(K, K) and the conclusion follows. O

8. A RESOLVENT FORMULA FOR EUCLIDEAN FIELDS

Our objective is still to give a Plancherel formula for H.,, in the
spirit of (4.1), (4.8), (5.1) and (5.4). To this aim, we will start by
establishing a resolvent formula. Let us be more precise.

Let k£ > 2 and p be a I'-invariant k-Euclidean field. We have associ-
ated to p a scalar product on H., by the natural formula (7.1). Let R
and S be the operators acting on H,, which are defined in Subsection
2.5. One easily shows, by using Lemma 1.9.11, that the operators R
and S are bounded and self-adjoint with respect to p. As usual, we set
P = qﬁ(RS—l—SR— (¢—1)S). We still denote by p> the scalar product
of the completion HE_ of H., with respect to p>. We also denote by
p>° the natural complex symmetric bilinear form on the complexifica-
tion %go,c of this completion. Then, for H in H., and t in the upper
half-plane H, the complex number p*>°(H, (P — t)"'H) is well-defined.
In this Section, we establish the following formulas for this number,
which only involve operations in finite-dimensional spaces.
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Proposition 8.1. Let k > 2, p be a I'-invariant k-FEuclidean field, u
be in H, and set t = ﬁ(u + 1), Fiz H in Hyy and J in Hy .
If k is even, we have

00/ 17> 1 oo +1 u -
PR (P = ) ) = S (qu ot 8,) (e = 5,) 7 )
o _ oo u _
p>(J7 7 (P =)t )Z(q+1)mp(J,(U+qu)(u—5p) ')
N e +1 .
P (P -7 = (S - 5) )

PRI (P =) HTT) = (¢ + 1)p(J, Sylu — Sp) T H).
If k is odd, we have

oo 7> —1p>°y _ (g +1Du —1
oo > =1 >y _ (Q+ 1)“ o -1

pP(HTT,(P—t)"'J77) = —(¢+ 1p(H, Sp(u— S,)""J)
pe(JT (P =) H?T) = (¢4 1)p(J, Sp(u— S,) "' H).
Recall from Subsection 3.3 that H, is the set of v in C with Su > 0

and |u| > ,/g. In particular, the formulae make sense as Proposition
7.16 implies that S, has no eigenvalue in H,.

8.1. A formula for inverses. The proof of Proposition 8.1 will rely on
an explicit construction of the vector (P —¢)"'H>" in the completion
of H. with respect to p. This construction will be an analogue of the
ones provided for the model operators. It will require us to show that
certain series converge in ”Hio’(c, which will be ensured by the following

Lemma 8.2. Let k > 2, p be a I'-invariant k-FEuclidean field and H be
in Hy. Then, for every i > 0, we have

p(HY"  HT") < ¢¥p(H, H).

For brevity, we have denoted by p the scalar product obtained from
p on Hy.o; by successive orthogonal extensions.

Proof. Recall the notation of Subsections 2.3 and 2.5. In particular, by
Lemma 2.15, we have, if k is even,

HTT>" — V>V R(H>v>°°> _ RS(H>°O).
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If k is odd, we have HT+>" = SR(H>"). By iterating, we get, for
i >0,

HY>™ = (RS)'(H>™) if k is even
= (SR)(H>™) if k is odd.

To conclude, recall that the operators R and S are self-adjoint in H,
with respect to p. As S? =1, S is an isometry, whereas, as the eigen-

values of R are ¢ and —1, R has norm ¢. Thus, both RS and SR have
norm < ¢q in Hs. The Lemma follows. 0

Thus, we can ensure that the series defined in the following Lemma
converge.

Lemma 8.3. Let k > 2, p be a I'-invariant k-Fuclidean field and H be
in Hy. Fizu in C with |u| > q and set t = qjll(u—l— 4). Then, for H
in Hiy and J in Hy _, the vectors (P —t) " H>" and (P —t)"'J>~
may be defined by the following absolutely converging series in ’Hﬁo’(c
If k is even,

o0

(P_t)_1H>oo _ H+22>oo + H+2i+1>oo)

o0

oo 1 i~ 00 1 [e5S]
(P—t)"'J>" = Q+ Zu (uJ > — g,

If k is odd,
_ [e’s) q+1 > 27~ 00 2i+1 o0
P—t 1H> — H+ > H+ >
( ) (g +u)(1—u) Z + )
[e’s) +1 27 00 2i+1 o0
Pttt =1 (g > = g,
( ) (g —u)(1+u) Z )

=0

Proof. The convergence of the series is a consequence of Lemma 8.2.
The fact that they define (P —¢)"*H>" follows from Lemma 2.18 and
the analogous results for the model operators in Lemmas 4.9, 4.19, 5.9
and 5.18. 0

8.2. Scalar product with large extensions. Now that we have con-
structed (P —t)"*H>" in Lemma 8.3, it remains to evaluate the quan-
tity p>°(H>", (P—t)"YH>"). This will use the following Lemma which
relates this computation with the simple transfer operator.
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Lemma 8.4. Let k > 2, p be a I'-invariant k-FEuclidean field and H, J
be in Hy. For every i > 0, we have

p(HY,J77) = p(S,H, )
p(H+2i+1’ J+>2i) _ p(S;;Hﬂ J) Zf k is even
p(H+2i+1, J+>2i B ((] o 1)J>2i+1) _ qp(S;H> J) if k s odd.

Proof. Let us prove the first formula. This follows from the properties
of the operations on pseudofunctions and an induction argument. In-
deed, assume the formula holds for ¢ > 0 and let us still write S, for
the simple transfer operator of the double orthogonal extension p*.
Then, we have, by using Lemma 7.4,

p(H‘f’QH—Q’ J>2¢+2) — p(S;(H>V>V), J>>) _ p((S;H)>V>V, J>>)
— p(S;H, JZPVVr) = p(S;,H7 JVZZ<Vr) = p(S;fL Jv>v<p)
= p(SyH, S}J) = (S, H, J).

Now we prove the other two formulas. Assume k is even. By the
first formula, we have

p(HY T80 = p(Sy(H?Y), J7Y) = p((S,H)™Y, J7Y)
=p(SiH, J7VV<r) = p(SIH, J).
In the same way, if k is odd,
p(HE 7" — (g = 1)) = p(SLH, (7Y = (g — 1)) <)
= qp(S;H, J).
O

When J is an eigenvector of the V operator, we can also get a formula
for other extensions.

Corollary 8.5. Let k > 2, p be a I'-invariant k-Fuclidean field and
H,J be in Hy. For every 1 > 0, we have,

2441 2i+1 ]. 3
p(H* R ca )= ap(S;HH, J) k even, J' =qJ
=p(SitH, J) k odd, J' =J

= —p(S," H, J) J==J
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and also
21 21 1 -
p(HT 2,07 = =p(S;H H, J) k even, JV = qJ
q
=p(SiHH, J) k odd, JY =J
— _p(SIZ')+1H’ J) JV —

Proof. By Lemma 7.4 and Lemma 8.4, we have

p(H 77 = p(Si(HY), J7) = p((S,H)™, J7)
= p((SéH)>v<p, J)

The first set of formulas easily follows.
Let us study the second set. If i = 0, we have

p(H>,JT) =p(H”,J>Y) = p(H>V<r J)

and the conclusion follows. If ¢ > 1, by Lemma 7.2, Lemma 7.4 and
Lemma 8.4, we have

p(H+2i>’J+>2'L) p(H+21 J+>2z )

S 1(H>V>V> J>\/>)
(S; IH)>V>V7J>V>)
( .

S;_lH)>V>V<pV<p ’ J)
= p((S]H) Y, ) = pl(S,H)Y, ),

p

= p(
= p(
(

The second set of formulas follows. O

8.3. Geometric series and the resolvent formula. We can now
conclude the proof of the resolvent formula which essentially relies on
summing a geometric series.

Proof of Proposition 8.1. We assume that k is even and we compute
p (H>°° (P —t)"'H>"). Take u in C with |u| > ¢ and set as usual

t = q+1 —<(u+%). By Lemma 8.3, Lemma 8.4 and Corollary 8.5, we get

poo<‘[{>°°7 (P . 25>—1‘[{>°") —

o

1 — Z (up H,SiH) + ap(H’ SpHH)) .

=0

By Lemma 7.8 and Proposition 7.9, S, has spectral radius < ¢ in
Hy. Thus, the series Zizo u™"S), converges absolutely in the space of
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endomorphisms of Hy c. We get

= 1 1
Zu’l (uS; + ES;H) = g(qu +S,)(1 —u'S,) ™!
=0
u -1
= g(qu + Sp)(u— Sp)

hence,

oo o0 +1 u
C(H (P — ) HT) = 1

p(H, (qu+ Sp)(u—S,) " H).

We have shown that the two hand-sides of the first formula in Propo-
sition 8.1 are equal for |u| > ¢. Now, as P is self-adjoint, the left
hand-side is a holomorphic function of ¢ as t varies in H. Therefore,
by Lemma 3.6, it is a holomorphic function of u as u varies in H,. By
Proposition 7.16, the right hand-side is a holomorphic function of u as
u varies in H,. Hence, by analytic continuation, the equality holds for
every u in H,. The computation of p>(J>~, (P —t)~'J>7) is analo-
gous.

Still assume k£ is even and let us now compute the complex number
pX(HT>" (P —t)71J>7). As above, we let t,u be in C with |u| > ¢
and ¢+ u? = (¢+1)tu. Again by Lemma 8.3, Lemma 8.4 and Corollary
8.5, we have

pPH”T (Pt =

+1 « i (U i i
IT % (—p(H, SHLT) — gp(H, SpJ)) -

— 2
¢ —u? = q

As p(H,J) =0, we get

. 0 1 — A
poo(H+> ,(P—t)_1J> ): q+ Zu—z (E_g)p([_] SZ—HJ)

¢ —u? = q u
Q‘l‘l S —1 7
=—"—> u'p(H,S,J)

+1 _
= —QTMH, Sy(u—S,) 1)

and we conclude as in the first case.
The remaing cases can be dealt with similarly. U

Later on, we will deduce a Plancherel formula from Proposition 8.1.
For now, we can already say that it allows to control the spectrum of
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the operator P with respect to the scalar product associated to p on
Hoo. We denote by X, the finite set

81) I, = {qil (w%) w R, u| > /g, ker(S, — u) 7A{O}}.

We call ¥, the exceptional spectrum. Note that, if I' is bipartite, we
have ¥, = —, by Lemma 7.6.

Corollary 8.6. Let k > 2 and p be a I'-invariant k-Fuclidean field.
Then, the spectrum of P in the completion HY of Ho with respect to
p 18 contained in the set

Z,u%,U{-1,1}.

We will prove later in Corollary 13.2 that equality actually holds.

Recall from Subsection 3.3 that Z, stands for the critical interval Z, =
[_M M]
g+1’ g+11°

Proof. By Lemma 3.6, the rational function u qul(u + 4) induces
a biholomorphism from the set {u € C||u| > \/q} onto C \ Z,. Thus,
Lemma 7.8, Proposition 7.16 and Proposition 8.1 imply that for any j >
k and any H in H;, the resolvent function t — p®(H>", (P—t)"'H>™)
admits an analytic continuation to the set C\ (Z,UX,U{—1,1}). By

standard properties of self-adjoint operators, this implies the result. [

In the sequel of the article, we will build three families of nonnegative
symmetric bilinear forms on H; parametrized by each of the three sets
Z,, ¥, and {—1,1}. These families will allow us to write a Plancherel
formula for Euclidean fields in Section 13.

9. u-RADICAL PSEUDOFIELDS AND SPECTRAL QUADRATIC FORMS

In this Section, we introduce new algebraic objects that will be
needed in order to construct the above mentioned families of symmetric
bilinear forms.

9.1. u-radical pseudofields. We start by introducing new subspaces
of the space of simple pseudofields. They are defined by an equation
that will later turn out to be related to the formulas in Proposition
6.5. Since this relation relies on the spectral parametrization v —
t = ﬁ(u + %) of Subsection 3.3, we will need to work with complex
simple pseudofields: the space of complex simple pseudofields is the
complexification of the space of simple pseudofields.

For k > 1,if kiseven, k = 20, { > 1, a complex k-simple pseudofield
may be seen as a family (szy)(z4)ex, Where, for z ~ y in X, s, is
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a function S*(z) — C the sum of whose values is 0. If k is odd,
k=20+1,¢ >0, a complex k-simple pseudofield may be seen as a
family (Suy)(@y)ex, where, for z ~ y in X, s,y is a function S*(zy) — C
the sum of whose values is 0. For k = 0, a complex 0-simple pseudofield
may be seen as a function X — C.

Definition 9.1. Let £ > 1, u be in C*, s be a complex k-simple
pseudofield. We say that s is u-radical if s¥<V = us~.

Remark 9.2. This definition is motivated by analogous notions previ-
ously introduced for quadratic pseudofields (see Definition I1.3.7 and
Definition 11.6.17). It will turn out later that it is related to the formula
that appears in Proposition 6.5 (see Lemma 10.3 below).

For k > 1, the space of I'-invariant u-radical complex k-simple pseud-
ofields is denoted by Sy ¢. If u is real, the space of I'-invariant u-radical
k-simple pseudofields is denoted by Sy.

Lemma 9.3. Let k > 2, u be be in C* and s be a u-radical complex
k-simple pseudofield. Then sV< is u-radical. The map s — s'< sends
Spc onto S ¢

Proof. Let s be as in the statement. By Lemma 6.9, we have

VvV <<V <

s us<<Y = us’<<,

V<

hence s'= is u-radical. Now, consider the linear map

S = Sv<781’€u,(C - Slgfl,(C'

To show that it is surjective, we will show that the adjoint map is
injective. Let H be in Hj_; ¢ and assume that there exists J in Hy_1 ¢
with H~Y = JY>Y —uJ”. Then, Lemma 2.8 says that there exists K
in Hy_oc with JY —H = K~ and uJ = K¥>. Weget H =J" — K~ =
u '!KV>V — K>. Thus, we have shown that if H>V belongs to the
orthogonal subspace to Sy in Hjc, then H belongs to the orthogonal
subspace to S,Z“_LC in Hy—1,c, which is the desired statement. O

9.2. The u-opposition map. We describe a relation between u-
radical pseudofiels and Z-radical pseudofields.

Definition 9.4. Let £ > 0, u be in C* and s be complex k-simple
pseudofied. We define the u-opposite I,s of s as follows. If k£ is even,
we set

Is= (g —u?)s" +u*(qg—1)s.
If k£ is odd, we set
Iis = (g —u*)s" +u(qg—1)s.
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Lemma 9.5. Let u in C*, k > 1 and s be a u-radical complex k-simple
pseudofield. Then Is is L-radical.

Proof. This is a straightforward computation. If £ is even, we get

(Ius)\/<\/ q— uz)svv<v + u?(q o 1)8V<V
q-— u2)8<\/ + (q _ 1)(q _ u2)sv<\/ + u2(q o 1)8V<V
q—u*)s~ 4+ q(g—1)s"Y

= g(q —u?)s"~ +q(q — Dus< = g(]us)<.
U u

In the same way, if k is odd,

([us)v<v — (q _ u2)8vv<v + u(q _ 1)SV<\/

= (¢ —u®)s~" +u(g—1)s"<"
— _(q - u2)sv<vv + u<q _ 1)5\/<\/
1
= L=< (T =) butg - )

= g —u)s" <+ g —1)s"
u

O

When u is not one of the special values —¢q, —1, 1 or ¢, the opposition
maps [, and [q are essentially inverse to each other.

Lemma 9.6. Let u be in C*, k > 0 and s be a complex k-simple
pseudofield. We have

2

q . :
Ialys = E(Cf —u?)(1—u?) = (q+1)°¢*(1 —t*)  ifk is even
q
u?

(¢* —u?)(1 —u?) = (¢ +1)*q(1 — t?) if k is odd,

where t = q%(u + 1),
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Proof. If k is even, we have
7
Ial,s = <q - E) (g —u*)s"Y +u?(g —1)s")
7
+ 30— Dl(g —w)s" +u*(g = 1)s)
q
= (@ —a)(alg —u)s +q(g —1)s")
2
q
+5(@=Dlg—w’)s" +¢* (g —1)s

2
q
= — 5= s+ (¢—1)"

and
(g —1)" = (¢ —v?)? = (u(g —1) — g +u?)(ulg — 1) + ¢ — v*)
(9.1) = (g +u)(u—1)(¢ —u)(u+1)
=@ -1 - = 0

The conclusion follows.
If k is odd, we get

+ g = 1)((g—u)s" +ulg—1)s)
= — Sl —wPs 4 T = (g~ D)s*

+ %(q — (g —u?)s" +qlg—1)%s
=q(qg = 1)*s — —5(q —u*)’s.

Again, the conclusion follows from (9.1).

Corollary 9.7. Let u be in C \ {—q,—1,0,1,q}. For k > 1, the
u-opposition map I,, induces a linear isomorphism from the space of u-
radical complex k-simple pseudofields onto the space of L-radical com-

plex k-simple pseudofields.

The opposition map is also compatible with restriction of u-radical

pseudofields.
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Lemma 9.8. Let u in C*, k > 1 and s be a u-radical complex k-simple
pseudofield. If k is even, we have

(Is)'< = L1,(sV<).
u
If k is odd, we have
1
(I,8)"s = =IL,(s"%).
u

Proof. Again, this is a straightforward computation. For k even, we
get

(IUS)V< — (q _ u2)8vv< + u2(q - 1)8V<
= qlg —u?)s= +q(g—1)s"<
= %(q —u’)s" +q(g—1)s"" = %Iu(sv<)-

For k odd, we get
1
(Is)"< = (g —u®)s~ +u(q—1)s'~ = a(q —u?)sVY +u(g —1)s'<

1 V<
= u[u(s ).
O
9.3. Adjoint operations and transfer operator on pseudofields.
We will now relate the theory of u-radical pseudofields to the spectral
theory of the simple transfer operator S,. To this aim, we introduce
adjoint operations on pseudofields in analogy with the language of Sub-
section 7.1.
Let £ > 1 and p be a ['-invariant k-Euclidean field. We use p to
define as usual a natural scalar product on Sg. Let r,s be in S;. If £ is

even, k = 2¢, ¢ > 1, let, for every = in X, p} be the bilinear form dual
to p, on Vif(z). We set,

>k 1 *
p(r,s) = Z = P (Tays Say)-
I',NT,|
(x’y)GF\Xl
In the same way, if k is odd, k =20+ 1, £ > 0, let, for every x ~ y in
X, pj, be the bilinear form dual to p,, on Vi (zy). We set,

* 1 *
p(r,s) = Z T Pay(Tays Suy)-
I,NT,
($7y)EF\X1
Assume k > 2. We also introduce the adjoint operator of restriction
of pseudofields. Let s be in S,_; and let us define s”» in S;,. We use
the notation of Subsection 1.10.6 and Subsection I1.6.2. If k is even,
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k=20,0>1, forx ~yin X, we set 557 = I sy, If K is odd,
k=20+1,0>1, forxz ~yin X, we set s;j" = Jﬁ;‘“’sxy. As usual, we
get

Lemma 9.9. Let k > 2 and p be a U'-invariant k-Euclidean field. For
rin Sg and s in S,_1, we have p~*(r<,s) = p*(r,s77).

Still assume k£ > 2 and p is a I'-invariant k-Euclidean field. In
Subsection 7.1, we have defined the simple transfer operator S, acting
on the space of ['-invariant (k — 1)-pseudofunctions by the formula

SpH = H>v<pv, H e Hy ;.

The adjoint S; of S, with respect to the Euclidean structure may be
defined by the formula

SIH=H""<r He M.

Now, the adjoint of these operator with respect to the duality are linear
endomorphisms of Sj; which should formally be written as .S; and

S;T = 5’;*. To avoid the latter heavy notation we write .S, instead. In
other words, we set

_ oopVLV
Sps =577 s € S,

The adjoint SZT) of this operator with respect to the Euclidean structure
on S is defined by

S;s =35V 5 € 8.

Note that all these operators have the same spectrum and that we still
have the relation

Sp(s¥) = (S1s)Y, s €Sy

Using these definitions, we get a direct relationship between the spec-
trum of S, and the theory of u-radical pseudofields.

Lemma 9.10. Let k > 2 and p be a I'-invariant k-FEuclidean field. Fix
win C* and s in Sg_1c. Then, s”7 is u-radical if and only if S,s = us.

Proof. By construction, we have s7»< = s and s77V<" = Ss. O

As for pseudofunctions, we also denote by S5, and S; the linear en-
domorphisms of Sy ¢ defined by

V>,V T V<>
Sps =s~"77" and S)s = s v, se S,

which can be thought of as the transfer operator and adjoint transfer
operator associated to the orthogonal extension p* of p. We directly
get
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Lemma 9.11. Let k > 2 and p be a I'-invariant k-FEuclidean field. For
any s in Hy, we have
SH(s%) = (Sp)< and Sy(s<Y) = (Sps)~"
9.4. The dual spectral bilinear form. We now introduce natural
bilinear forms on spaces of u-radical simple pseudofields which are as-

sociated to the choice of a Euclidean field. These forms will play a key
role in the statement of the Plancherel formula for Euclidean fields.

Definition 9.12. Let k£ > 2 and p be a ['-invariant k-Euclidean field.
For u in C*, we define the dual spectral bilinear form p} associated to
p on Sy as the bilinear form

pi(r,s) =p*(r, [,(s)) —p " (r<, L,(s)<), rse€ Sre-
This bilinear form is actually symmetric.

Lemma 9.13. Let k > 2 and p be a I'-invariant k-FEuclidean field. For
u in C*, the dual spectral bilinear form py, is symmetric on Sy .

Proof. This is again a direct computation. Let r,s be in S¢. As the
V operator is symmetric, we have p*(r, I,,(s)) = p*(L.(r), s). Now, if k
is even, we have V< = ur<V and s¥< = us<", hence

P (S Lu(s)S) = p 7 (rS, (g — u?)s¥S (g — 1)s7)
<, u(g — u?)s<Y +uP(qg—1)s%)
“(ulg = u?)r=Y +uP(g = 1)r<, %)
*((q u2 T’V< +u?(q —1)r<, s%)
N

If k£ is odd, we have
gsV< + (g — 1)s¥V<Y = sV = 5=V
hence ¢s¥< = us<Y — (¢ — 1)us=~, which gives
L(s)" = (¢ —u’)g  us™ +ulg —1)(1 —q")s".

As in the even case, we get p—*(r<, [,(s)<) = p~*(Lu(r)<,s<). This
shows that p, is symmetric. O

)

We have a non degeneracy criterion for p.

Proposition 9.14. Let k > 2 and p be a I'-invariant k-FEuclidean field.
For uw in C*, the bilinear form

(92) (Ta S) = p*(T, 8) - p_7*(7ﬂ<a S<) = p*(T - T<>p7 S — S<>p)
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a
is non degenerate on Spc X Sic if and only if neither u nor I are
eigenvalues of the simple transfer operator S,. Therefore, if this is the
case and if in addition u ¢ {—q,—1,1,q}, then p} is non degenerate.

To show non degeneracy, we shall use the following elementary

Lemma 9.15. Let V be a finite-dimensional vector space over a field
K with characteristic # 2 and p be a non degenerate symmetric bilinear
form on V. Let W be a subspace of V' and assume that the restriction
of p to W 1is non degenerate, so that the p-orthogonal projection m :
V — W is well-defined. Let U = Wr be the p-orthogonal complement
of W and X and 'Y be complementary subspaces of U in V. Then the
bilinear form (z,y) — p(m(x),n(y)) is non degenerate on X X Y.

Proof of Proposition 9.14. Note that the second claim follows from the
first and Corollary 9.7. We now prove the first claim.

First, assume for example that u is an eigenvalue of S,. Then, by
Lemma 9.10, there exists s # 0 in Sy_1,c with 877 € S)'¢. For r in SEC,
we have, by Lemma 9.9, p*(r, s77) = p—*(r<, s), hence the bilinear form
in (9.2) is degenerate.

To prove the converse, we will apply the criterion in Lemma 9.15.
Indeed, the linear map

<>
SHr S p,ch — Sk,(C;

is the p-orthogonal projection onto the subspace S,?_"l(c, so that the
linear map
SHr S — S<>p, Sk,(C — Sk,(Ca
is the p-orthogonal projection onto the p-orthogonal complement of
S,:fl c- Thus, by Lemma 9.15, to conclude, it suffices to show that Sy ¢
q
and S;' are complentary subspaces to S;”, ¢ in Sk.c.

Indeed, as by assumption v is not an eigenvalue of S,, Lemma 9.10
says that S, ¢ NSie = {0}. Now, by definition, S is the null space
of the linear map

s> s’ —us<, Ske = Sk-1c,
hence its codimension in Sy ¢ is less than the dimension of S;_; ¢. Since
it intersects S,:_”l ¢ trivially, this codimension is exactly equal to the
dimension of &1 ¢ and we get Sy c = S,:fl C @S}j’c as required. In the
a
same way, as I is not an eigenvalue of S, we get Sic = S,j_pl cDSie
and the conclusion follows by Lemma 9.15.

The definition and the properties of the opposition operators yield
the following adjointness formulae.
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Lemma 9.16. Let k > 2, p be a I'-invariant k-FEuclidean field and u

be in C*. Sett = (h%l(u + ). Ifris in Sic and s is in S'c, we have
p’%([ur, s) = p,(r,1us).

If k is even, the latter is equal to

(g + 1)1 = )" (r,s) = p~*(r=,5%)).
If k is odd, it is equal to

q(q+1)*(1 =) (p(r", ) —p~"(r=, s9)).
Proof. Indeed, by Definition 9.12, we have

P Lus) = p(r, LLus) — p~(r<, (LI 25)).

The conclusion follows from this identity and Lemma 9.6 and Lemma
9.13. 0

9.5. The spectral bilinear form. We will now study the dual object
to p;, which will later turn out to be related to the resolvent formula
for p obtained in Proposition 8.1.

Let k£ > 2 and p be a I'-invariant k-Euclidean field. Pick u in C ~
{—¢,—1,0,1, ¢} such that neither u nor  are eigenvalues of Sj,. Then,
by Proposition 9.14, the dual spectral bilinear form p; is non degenerate
on Sy c. Therefore, it defines by duality a symmetric bilinear form p,
on Hj ¢ whose null space is the range of the map

(93) G— GV — UG>, Hk—l,(C — 'Hk@.

For H,J in Hyc, we have p,(H,J) = (r,J) where r is the unique
element of Sy such that, for any s in Sy, one has (s, H) = p;(r, s).

Definition 9.17. Let £ > 2 and p be a I'-invariant k-Euclidean field.
For u as above, the symmetric bilinear form p, on Hyc is called the
spectral bilinear form associated to w.

The purpose of this Subsection is to give a formula for computing p,
on eigenspaces of the operator V.

Proposition 9.18. Let k > 2 and p be a I'-invariant k-FEuclidean field,
H and J be in Hyc and u be in C~{—¢q,—1,0,1,q} such that neither
u nor L are eigenvalues of S,. Set t = ﬁ(u + 1) and

-1
H = (u—S,)" (% - sp) h=(q+8S;—(q+1)tS,) ' H.
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If k is even, we have

PuHLT) =L —pl(q = SDH' ) Y =l Y =0
= iup(spH’, J) HY=—-HJ" =qJ
:—ip(SpH',J) HY =qH,J' =—-J
_ u21_ (L= SOH,T) Y = —HJ =]

If k is odd, we have

_pllg— 5,)(1+S,)H'J)

J(H, T H = H,J =J
PulH, J) @)t D)
1
= —p(SpH’, J) H'=-HJ"=J
= (S, T) HY = H.J" =~
u
:p((Q+Sp)(1_Sp)HI7J) H\/:_H J\/:_J
(q+u)(u—1) ’ '

This result relies on constructions in Sic. Let £ > 2, p be a I'-
invariant k-Euclidean field and u« be in C* such that v and % are not
eigenvalues of S,. Pick r in S c. Then, by Proposition 9.14, there

q
exists a unique element r, in S such that, for any s in S, one has

pi(r,s) = p*(ru,s) —p " (ry7, 7).

In case r is an eigenvector of the V operator, we can give a formula for
defining 7,,.

Lemma 9.19. Let k > 2, p be a I'-invariant k-FEuclidean field, r be in
Skc and u be in C* such that neither u nor L are eigenvalues of S,.

Set

-1
c=(u—Sh (% - s;) (r<) € Sp_1c.
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Then, r,, may be written as r, = r +a”>» +b">*" where b = (u — S})c
and a € Si_1c s defined as follows:

e
az(——S;L) c, k even, r¥ = qr
u
(5-3) V
a=q|S,——]¢ k even, r’ = —r
u
a:<q—1+g—52,>6, k odd, r¥ =r
u
az(q—l—g+S;>c, k odd, r¥ = —r.
u

Proof. We take a,b,c to be as in the statement and we set s = r +
a’>r +bV>»V, We want to show that s = r,,. By definition, we need to

q
show that s is u-radical and that s — s<7» —r is p-orthogonal to S}"c.
First we show the latter. By construction, as a">»< = a", we have

<>p _p— b\/>p\/ <>p b\/>p\/<>p — b\/>p\/ —r<>p _ (S;b)>p.

s— S - T

We have b = (u — S)c, hence, (£ — Sf)b = r=. This gives

u p

<>p =Y _ Lo
u

S§— S

Y

a
hence s — s<7» — r is p-orthogonal to S)"c.
To conclude, we must prove that s is u-radical. First we compute

(9.4) us = ur~ +ua” + uSib = ua" + gb,

where we have again used the identity (£—S1)b = r<. The computation
of sY<Y will depend on the parity of k.
If k is even, we have

V<V V<V V>,V<V V>,VV<V
§VSY = VSV gVRVSY p pYeeYVS

=<V 4 (Sla)Y + b+ (g — 1)(SIh)”
=Y 1 (Sha)" +ab+ (g — 1) IBY — (¢ — 1)r.
u

Together with (9.4), this gives

7 —us<Y =(rV —(qg—1)r)< + (S; —u)a+ (q— l)gb
u

= (Y~ (= DN+ (S~ w) (a— (g = D7e).

u
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q
u

sY7 —us™ =1+ (S —u) (a —(q— 1)%0)
e
= (8] — ) (a—irS;c— EC> :
which is 0 by assumption. In the same way, if r¥ = —r, we get

v> o<V < T (-1
s us qr= +(S) — u) (a (q 1)uc>

If r¥ = qr, by using the relation r< = (u — S}T,) ( S;) ¢, we get

— (ST _ — qSt 4 >
(S) —u) (a qS)c+ uc ,
which is also 0.
If £ is odd, we have
sV =YY 4 (STa)Y + gb+ (¢ — 1)b.
Thanks to (9.4), we get

sV —us = (r'< + (S —u)a+ (¢ — 1)b)v .

If r¥ = r, we have

PS4+ (ST —wa+ (g—1)b= (S —u) (a—%c—{—S;c—(q—l)c) =0.

If r¥ = —r, we have
'S4+ (ST —wa+ (g—1)b= (S} — ) (a—i—%c—S;c— (q — 1)c> = 0.
The Lemma follows. O

We shall need a formula for computing certain values of the bilinear
forms.

Lemma 9.20. Let k > 2 and p be a I'-invariant k-Euclidean field. Let
f € C(x) be a rational function with no poles at 0 and on the spectrum
of Sp. Then, for every r,s in Sic, we have

P (F(SD(r9), 87<Y) = p*(Spf (Sp)r, 9).

Proof. First note that, by Lemma 7.8, f(S,) is a well-defined endo-
morphism of S;. Besides, as all spaces are finite dimensional, we can
assume that f is a polynomial function. Then, from Lemma 9.11, we

get f(S])(r<) = (f(Sp)r)<, hence
P (F(SP(r), 87<Y) = P (f(Sp)r, s7<77) = p*(£(Sp)r, Shs)
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We can now write formulae for the quantity p*(r,, s) = p*(r, s%), for
r,s € Spc. Unfortunately, the formulae depend on the parity of k£ and
the eigenvalue of the V operator.

Lemma 9.21. Let k > 2 and p be a U'-invariant k-Fuclidean field, r
and s be in S c and u be in C*. Assume neither u nor L are eigenvalues
of Sp. Sett = qul(u + 1) and
-1
P==8)7 (2-5,) r=(a+S-(a+ 1S

If k is even, we have

. 1,
p (TU,S) = 5]7 ((q2 - Sz)rl7 S) Tv =qr, Sv =qs
2
-1
— u p*(SpT/,S) rv - —r §V — gs
u
2 2
= U q p*(SpTI, S) ,r,\/ = gqr, 8\/ — g
Uu
g (= Ss) Y ——ns = s
If k is odd, we have
P (ru, ) = 0" ((q = Sp) (1 4 Sp)r', 5) r =rs" =5
—1
— (U+Q)(U )p*(SpT’/,S) PV = —r, & =g
u
- 1
_ (u Q)(u+ )p*(Spr’,s) 7"\/ — 7”, SV - —g
P SIA-SIs) = —ns = s

Proof. We only establish the first two cases.
Assume k is even and sV = ¢gs. Let a,b,c be as in Lemma 9.19, so
that we have r, =7 +a">? +bV>?V. We write

(9.5) p*(ru,s) =p"(r,s) +p "(a,s=) +p~" (b, s"Y)
1

=p*(r,s) +p* (—a + b, SV<V) .
q

If r¥ = gr, Lemma 9.19 says that

1 1 1
—a+b:<u+g s ST) i —(qt = Sp)c.
q u q q

By Lemma 9.20, we get

1 1
p (&a + b, 3V<V> = %p*(Sp(qt — Sp)r', ).
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We use the identity in C(z),
qg+1 x(qt — ) 1 q* — 22
q q+22—(qg+ Dtz  qq+22—(qg+ Dtz
* 1, % 2 2
to deduce from (9.5) that p*(ry, s) = 2p*((¢° — Sp)r', s).

If ¥ = —r, note that p*(r,s) = 0, so that, from (9.5), we get
p*(ry,s) = p* (%a + 0, SV<V>. Now, Lemma 9.19 says that %a +b=
“Qu’lc. By Lemma 9.20, we get p*(ry, s) = “Z’lp*(Spr’, s) as required.

The other cases are obtained in the same way. U

1+

To conclude, we will need another set of formulae.

Lemma 9.22. Let k > 2, p be a I'-invariant k-Fuclidean field and u
be in C~ {—q,—1,0,1,q}. Pickr,s in Sxc. Then, we have

(L, rs) = ﬁp*(r, 5) k even, s¥ = qs
— mp*(r,S) k even, s¥ = —s
= = u)l(u " 1)p*(r, s) kodd, s’ = s
— o u)1<u - 1)p*(r,s) k odd, s¥ = —s.

w2

Proof. By Lemma 9.6, we have I 1r = Aoy lar i k is even
and I;'r = ——% __Tar if k is odd.

q(q®—u?)(u?=1)" 4
Assume for example k is even and sV = ¢s. From the Definition 9.4

of the opposition map [ 1 we have
2 2
* ok q \2 q
P (I%r,s)—p (r, ( —E)s —i—ﬁ(q—l)s)

L, 2 9 3 3 2 q 2 *
= 5P (r, (¢°v" —¢° +q —Q)S):E(U — 1)p*(r,s)

and the conclusion follows.
The other cases are dealt with in the same way. U

We conclude the

Proof of Proposition 9.18. Take H and J in Hy ¢ and let r and s be the
elements of S ¢ such that, for any G in Hy ¢, one has p(H, G) = (r, G)
and p(J,G) = (s,G). For a in S}, we have

(a, H) = p"(r.a) = p*(re,a) — p~*(rs,a™) = py (I, 'rs, a),
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so that, by definition, we get p,(H, J) = pj;([u’lrg, s) and the Proposi-
tion follows from Lemma 9.21 and Lemma 9.22. U

9.6. u-radical pseudofields in the bipartite case. When I' is bi-
partite, the twist operation of Subsection 2.6 and Subsection 6.7 inter-
acts with the previous constructions. Let us write how this interaction
works.

First, by the dual version of Lemma 2.22, we directly get,

Lemma 9.23. Assume I' is bipartite. Let k > 1, u be in C* and s be
in Spc. Then s is u-radical if and only if st is (—u)-radical. Besides,
we have

(1us)' = (=1)* I~y (s).
Using these properties, straightforward computations yield

Lemma 9.24. Assume T is bipartite. Let k > 2, p be a I'-invariant
k-Euclidean field and u be in C*. For r,s in S ¢, we have
Pl (' s') = (=1)*p;(r, s).

If u* ¢ {1,¢°} and neither u nor L is an eigenvalue of S,, for H,J in
Hic, we have

P (H', J) = (=1)"pu(H, J).

Note that the condition on u in the latter statement is symmetric in
view of Lemma 7.6.

10. t-RADICAL PAIRS AND FULL SPECTRAL QUADRATIC FORMS

In this Section we continue the algebraic constructions that are nec-
essary in order to state the Plancherel formula for Euclidean fields.

10.1. ¢-radical pairs. We start by introducing a new subspace of S
and relate it to the range of the default map of Subsection 2.3 thanks
to Proposition 6.5.

Definition 10.1. Let £ > 1, ¢ be in C and s = zo be a pair of
1

complex k-simple pseudofields. Then, s is said to be t-radical if one

has
GEN_ (0 a \(s
sy —1 (¢+1)t) \s7 )"

For k > 1, the space of t-radical pairs in S,ic is denoted by 8,3% If

t is real, the space of t-radical pairs in S? is denoted by S,f’t.
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Remark 10.2. Note that the matrix ) already appeared

0 q
-1 (¢+1)t
in the proof of the Thara trace formula in Subsection 1.3.

We will relate the notion of a t-radical pair to the formulas in Proposi-
tion 6.5. To this aim, for £ > 0, we introduce a natural duality between

S? and Hz. For s = (zo) in §7 and H = (go> in H2, we set
1 1

<8, H> = <$0, H0> —+ <81, H1>
Then, Proposition 6.5 translates into

Lemma 10.3. Let k > 1, s be in S¢ and t be in R. Then s is t-radical
if and only if, for every G in 7—[,@1, one has (s, DyG(t)) = 0.

Recall that Dy, is the default map that was defined in Subsection 2.3.

Proof. Indeed, Proposition 6.5 gives, is k is even,

0 {(5)-( 1) (52 0)

and if k is odd,

0= (8 1) (5)-(5) )

The Proposition follows as, by Proposition 6.4, the linear map G —
G(t) sends 7-[,(}1)1 onto Hi . O

In Lemma 10.3, we have established a relation between t-radical
pairs and the range of the polyextension map. Now, from Lemma 2.21,
Proposition 6.3 and Proposition 6.4, we should see a link between t-
radical pairs and the operators of (6.1) and (6.1). Note that the adjoint
operators of these operators may be defined by the following formulae.
S0

S ) in S?, if k is even, we have
1

V_(g—1
GIS: (81 (_q1 Vi )81>

\
S RS

For s =
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If k£ is odd, we have

. qsy
s = (<q —1)si+ )
&rs = (—sg +(¢+ tsy — (¢ — 1)51> .

Vv
81

Lemma 10.4. Let k > 1, t be in C and s be a t-radical pair of complex
k-simple pseudofields. The pairs R;s and S;s are t-radical.

Proof. As mentioned above this can be seen as a consequence as Lemma
2.21, Proposition 6.3, Proposition 6.4 and Lemma 10.3. We can also
get it by a straightforward computation. We shall use the fact that the

—1 _
inverse of the matrix (_01 (q —1(—1 1)t) is the matrix <q (;]_T 1)t 01>.

Assume £ is even. We get
<V
S*s)V<Y — < _q31 )
( t ) Sév—i—q 1(q_1)5(\)/<\/

0 q (6* )<_ 8[\)/<
1 (g+1)t) T T (g = D)st — s+ g g+ Vtsy<)

As s is t-radical, we have sy < = ¢s7¥ and —s{<+q g+ 1)tsy~ = s5".
0 q .
*\V<V * o)<
We get (S5s) = (_1 (g+ l)t) (&5s)< as required. In the same
way, we have

(Rs)V<Y = gsg” + (q —1)sg=" )

((q + Dtsg¥ 4+ g7 (¢? = Dtsg=" —gsy”

0 q x \<
(O L) @)
_ (¢ + Dtsg= +q(g — 1)s7 — gs{~
=5 <+ ¢ g+ 1)y + (¢ — Ditsy — (¢ + 1)ts)

_ gsg "’ +aqlqg —1)s7
—s9° + (q+ Dtsg¥ + (¢ — Vtsy )

where we have used again the relation —sy< + ¢7'(¢ + Dtsy~ =
sgV.  Still by using the relation sj< = g¢sy, we get (Ris)V<V =

(—01 G+ 1>t) (BRs)"



112 JEAN-FRANCOIS QUINT

Assume now k is odd, so that we write

<V
qsq

* \V<V
(Rs) = (((] _ 1)S\l/<v + 85\/)

( 0 ¢ ) (9R75)< = ( q(q — 1)st +qsg~ )

-1 (¢+1)t) —qsy <+ (¢F = DtsT + (g + Dtsy= ) -
As s§<Y = ¢s7, we get sy= = sV — (¢ — 1)sy, which gives equality
of the first lines. Besides, from s{<Y = —s5 + (¢ + 1)tsT, we get
qs{< + (g — 1)sy=Y = —s5" + (¢ + 1)tsy" which leads to the equality
of the second lines. It remains to compute

(6:5>\/<\/ — (_85\/ + (q + 1)t51<\/ - (q - 1)8\1/<V)

s
0 q ‘)< qsy~
(—1 (4+ 1>t) (Sis)” = ( +(g-1s5)
The relation sy<Y = g¢sT implies the equality of the second lines,
whereas the relation s{<Y = —s5 + (¢ + 1)tsy implies the equality
of the first lines. O

10.2. t-radical pairs and u-radical pseudofields. We will now re-
late t-radical pairs to the theory of Section 9. This relies on diago-
.. . 0 q
nalizing the matrix <_1 (q+ 1)t
matrix are the roots of the equation ¢* + u = (q + 1)tu. This fact was

already used in Subsection 1.3.
To proceed to the diagonalization, we introduce a change of variables
in spaces of pairs. Let k > 0 and fix u,t in C with ¢*> + u = (¢ + 1)tu

and u? # ¢ or equivalently (q + 1)t? # 4q. For H = (Z?) in Hi ¢, we

). Note that the eigenvalues of this

set

(10.1) 5, H = (g g) (fﬁ) .

As u? # ¢, this map is invertible and we get

1 1 —qg ' H
1 q u 0
(10.2) 5 = ( . ) (H1>.

The adjoint endomorphism 67 of d, and its inverse (6)~! = (&

defined by, for all s = (z?) in 82,

«._ (4 ¢ S0 =1 1 1 —u So
o= (0 1) () marte= 2 (e ) ()
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Lemma 10.5. Let u be in C*, with u?> # q, and set t = ﬁ(u + 1),

Then, for k > 1, a pair s = (?}) of complex k-simple pseudofields
1

1s t-radical, if and only if the pseudofield sy — usy is u-radical and

the pseudofield sy — Lsy is L-radical. The map 9, induces a linear

q
. . u 2
isomorphism from S}j,(c &5 SIZC onto Sk:fc-

-1 (¢+1)t
<Z g) Then U is invertible and a direct computation shows that

Proof. Let T be the matrix ( 0 q ) and U be the matrix

u

U diagonalizes T', that is, we have U~'TU = (8 2) The conclusion

follows. O

10.3. Diagonalization map and natural operators. Let us trans-
port the operators of Lemma 10.4 via the diagonalization map 9,,. For
u in C*, by abuse of notation, we still write [, for the endomorphism of
Hy.c that is adjoint to the u-opposition map of Definition 9.4. When
u? # ¢, we define two endomorphisms p,, and o, of 7-[%7@ which we write
in the following matrix forms.

If k£ is even, we set

1 —(q = 1)u? I,
10. = _
(10.3) P q_uQ(_q 1u2I% (g — 1)

1 (—(q —Du ¢ 'ul, ) |

q— u? —qflﬂjg u(g —1)

and o, =

Their adjoint endomorphisms are defined by
1 —(q—1)u? —q_1u21q)
10.4 .= u

1 —(q—1Du —qtul
q—u?

* J—
and o), =

If £ is odd, we set

1 (—(g—-Du? ol
(10.5) — ( —uls  q(g— 1))
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Their adjoint endomorphisms are defined by

(10.6) g (—(q ~Du?  —uls )

g —u? ul, q(g—1)

1 [—(q— 1.
and o, = ( (g = Du Ly )

q — u? q_1u2[u u(q—jl)

By using Lemma 9.6, one can check that in both cases, one has
p2 =q+ (q¢—1)p, and 02 = 1. Besides, by Lemma 9.5, both p} and

aq
o,, preserve the space Si'c @ Sy'c.

Lemma 10.6. Letk > 0, u be in C~\{—/q,0,/q} andt = qul(u+%).
One has 6, R = pudy and 6,6, = 0,0,.

Proof. Assume k is even and take H in Hjc. We get

(i) == (7).
hence

pone (i) = (Zitin ) = (e it ym):

where we have used Definition 9.4. On the other hand, by (6.1), we

have
()= () < (3

and therefore
H '\ —(¢— 1)u*H B H
0Py (—uH) N ((q —u?)HY —q(q—1)H) — Pudu —ul )’

By symmetry, we also get p,d, <—§H> = 0, R <_§IH>, hence, as

u? # q, pudy = 0,R¢. The other computations can be lead in the same
way. ]

10.4. Doubling of quadratic forms. We will now use the diago-
nalization map §, to construct symmetric bilinear forms on H; with
respect to which the operators R; and &; are self adjoint.

Proposition 10.7. Let k > 0 and t,u be in C with q +u? = (q+ 1)tu.
Assume (q+1)%t? # 4q and t*> # 1. Define Qi,@ as the space of complex
symmetric bilinear forms © on Hj, o such that the linear operators R,
and S, are symmetric with respect to .
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If k is even, for w in QZ,(C, set ®,m to be the symmetric bilinear form

o) i () (200))
on Hyc.

If k is odd, for m in Q};C, set ®,m to be the symmetric bilinear form

(H,J) Zmﬁ ((-ZIH) ’ (—ij>)
on Hyc.

Then, the map @, is a linear isomorphism from Q’,;(C onto the space
of symmetric bilinear forms on Hyc.

Proof. Let us prove that the map ®, is injective. Pick 7 in QZ}C and
assume that @, is 0. Set xy = (§;1)*7. Then y is a symmetric
bilinear form on H; and, by Lemma 10.6, the operators p, and o,
are symmetric with respect to x. By (10.2) and the assumption, x has
trivial restriction to Hy x {0}. Let us show that this implies x = 0.

If k is even, from (10.3), we see that the endomorphism of ’H%C with

matrix <8 ag v 1) is symmetric with respect to xy. We get, for H, J

in Hc, as (8 o 1)) (]g) ~0,
((0) 6w 0) (7)) =
hence X(( ) ( )) — 0. Still by (10.3), the endomorphism

—-1) 0
(q 1 is symmetric with respect to x, so that we get

L ) 0) -

hence y (<1q0H> , (S)) = (. Since by Lemma 9.6, [? is invertible,

we get x = 0 as required.
If k is odd, from (10.5), we see that the endomorphisms of H} ¢ with

matrices ( )
0 ul, qlg—1) 0
(0 CJ(q—l)) e ( 4 0)

are symmetric with respect to xy and we proceed as in the previous
case.

gl
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In both cases, we have shown that the map ®, is injective. Now,
we will show that it surjective. We fix a symmetric bilinear form ¢ on
Hyc and we set

1

I_

T T P12 —1)
1

I¥p if £k is odd.

I¥p if k£ is even

T alg 11— 8)
By using Lemma 9.6, this definition ensures that, for H, J in Hj, ¢, one
has
w(H, I,J) = gp’(I%H, J).
We define a linear endomorphism «,, on HZ’C which is written in matrix
form as

1 -1,
10.7 Qy = 1 a(a=1) if k is even
—— 1
Tl
1 _Ll]u . .
=|_ 1 ‘1; if £ is odd.
1%

As «, is self adjoint with respect to ¢ @ ¢', it defines a symmetric
bilinear form x on Hi,@ that is, for H, J in ”Hic,

X(H,J)=(p@ ¢ )(H, o)) = (¢ & ¢)(H,J).

A direct computation using (10.3) and (10.5) shows that p, and o, are
symmetric with respect to x. We set m = 4} x, so that, by Lemma 10.6,
R, and G, are symmetric with respect to m. By construction, we have
o, = . U

10.5. The full dual spectral bilinear form. Given k£ > 2 and p a
[-invariant k-Euclidean field, in Definition 9.17, we have introduced
the spectral bilinear forms p, associated with p. By Proposition 10.7
these objects define symmetric bilinear forms on H; with respect to
which the operators R; and G; are symmetric. In order to describe the
null spaces of these forms, we start by constructing dual objects.

We keep using the notation (10.7) and we introduce a new operator
Bu: Hi e — Hic. Foruin C*, we set

1 S
By = 1 a(a=1) if k£ is even
Q(q—l)I% 1
U qi—lfu i )
= %[q g if £ is odd.
g—1"u u
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For u? # g, this operator is a multiple of the inverse of the operator «,,
in (10.7). Indeed, by using Lemma 9.6, we get

’ )2 _ (g + 1) —4q

if k£ 1s even

(10.8)  aufe = < -7

u(g —1) (¢—1)
2\ 2 242
— 1)“t* — 4
:q(u) =TT A odd.
u(q —1) (¢—1)
Besides, the adjoint operator 3 of /3, is defined by the matrix
1 LT
(10.9) = ( 1 a(a=1) “) if £ is even
u — 1, 1
q(q—1)
-
- (%‘[ 1 ) if k is odd.
e U

Definition 10.8. Let k£ > 2, p be a ['-invariant k-Euclidean field and
t be in C* with (q+1)?t* # 4q. Choose u in C* with (q+ 1)tu = ¢+ u?
and equip the space Sy'¢ @ S,f’(c with the bilinear form p} ® p%. We set
p>* to be the symmetric bilinear form on S,ffc such that the bilinear

form (5;)*]9?’* is defined by the matrix /3 with respect to p; @& p%. We

call pf’* the full dual spectral bilinear form associated with p on S,ffc

aq
In other words, for 7, s in §'c ® &), we have
e (05, 0s) = (0, ® P3)(r, Bs)-

Note that symmetry of the matrices defining pt2 ™ follows from Lemma
9.16.
Below, we summarize the properties of this bilinear form.

Proposition 10.9. Let k > 2 be even, p be a I'-invariant k-FEuclidean
field and t be in C with (q+ 1)? # 4q. Then, for every r,s in S,?:(tc, we
have

" (r, Rs) = py" (Rir,s) and p;”" (1, 6]s) = p;" (&), 5).

Ift* # 1 and none of the two roots of the equation (q+ 1)tu = q+u?
is an eigenvalue of Sy, then the full dual spectral bilinear form p?’* S
non degenerate on S,zé

If t is real, then p.™* is real.

If t belongs to the interior of the interval Z,, then pf’* 1s real and
positive definite on the real vector space S,?’t.
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If V is a real vector space and p is a complex symmetric bilinear form
on the complexification V¢ of V', then p is said to be real if p(V, V) C R,
that is, if p is obtained by complexification of a real symmetric bilinear
form on V.

As in Subsection 3.3, we write Z, for the interval [—%, %].

To prove positivity, we shall use

Lemma 10.10. Let V and W be finite dimensional complex vector
spaces, equipped with Hermaitian scalar products p and q. Let a,d be in
Rand B:W —V and C :V — W be complex linear maps which are
adjoint to each other with respect to p and q. Then, on V & W, the
Hermitian form defined by the matrix

(e )

is positive if and only if a or d is positive and the endomorphism ad —
BC of V' s positive.

Proof. Note that BC' is a non-negative Hermitian endomorphism of V
since p(BCv,v") = q(Cv,Cv') for v,v" in V.

g, g defines a positive Hermitian form r on
V' x W. Then, necessarily, a and d are positive. Now, pick v # 0 in V
and let us show that adp(v,v) > p(BCwv,v). If p(BCv,v) = 0, there is
nothing to prove. If p(BCwv,v) > 0, note that we have

' ((8> ’ <C(']U)> — (v, BCW).

Hence, by applying Cauchy-Schwarz inequality to the positive Hermit-
ian form r, we get

= () () () (2)

= ap(v,v)dq(Cv, Cv) = adp(v, v)p(v, BCv).

As we have assumed p(BCuv,v) > 0, we get p(BCv,v) < adp(v,v) as
required.

Conversely, assume a or d is positive and the Hermitian endomor-
phism ad— BC'is positive in V. Then, as BC' is non-negative, necessar-
ily, both a and d are positive. Now, take v in V and w in W which are
not both 0. We must show the positivity of the following real number

s= (v w) (g 5) (5}) — ap(v, v) + 2¢(Cv, w) + dg(w, w).

Assume the matrix
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If v =0, then w # 0 and s = dg(w,w) > 0. If w = 0, then v # 0 and
s = ap(v,v) > 0. If v # 0 and w # 0, we have, by Cauchy-Schwarz
inequality,

s > ap(v,v) — 2q(Cw, C’v)%q(w,w)% + dp(v,v).

As ad — BC' is positive, we have ¢(Cv,Cv) = p(BCv,v) < adp(v,v)
and we get

s > ap(v,v) — 2a2d3p(v, v)2q(w,w)? + dp(v,v)
1 2
= ((ﬁp(v,v) ) > 0.

The conclusion follows. O

N|=
[SIE

Proof of Proposition 10.9. We choose u to be one of the roots of the
equation u? + ¢ = (¢ + 1)tu. Note that the assumption (q + 1)%¢* # 4q
amounts to u?> # ¢. The adjointness properties rely on elementary
a

matrix computations in S« ® §;' using (10.4) and (10.6) and Lemma
10.6.

Assume that 2 # 1, so that u? ¢ {1,¢*} and also that neither u
nor 1 are eigenvalues of S,. Then, by Proposition 9.14, the bilinear
forms p} and p% are non degenerate. Therefore, the symmetric bilinear

form (6%)*p>*, which is defined by an invertible matrix with respect to
ps @ p% is non degenerate. By Lemma 10.5 and Definition 10.8, pf’* is
non degenerate.
Assume that ¢ is real, and let us show that pf’* is real, which is to
Q2
say that, for 7, s in &', one has

(10.10) pe"(r,s) = pi"(7,5).

As by assumption (¢ + 1)*?* # 4q, either ¢t belongs to R \ Z, or ¢
belongs to the interior of Z,. In the first case, both u and I are real
numbers and all our previous constructions are real constructions, so
that pf ™ can easily be seen to be real.

It remains to deal with the case where t belongs to the interior of the
interval Z,, which we now assume. In particular, both u and I are non
real with modulus ,/q. Therefore, by Proposition 7.16, none of them
is an eigenvalue of S, hence by the previous, p?’* is non degenerate.
To show that the bilinear form pf’* is real, we will check the action of
complex conjugation on all previous constructions. First, we note that,

- g
as t is real, one has u = 4. Therefore, we have S - = S} as subspaces
of 8jc. By the Definition 9.4 of the opposition map I, we have, for s
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in SI?,(C?
(10.11) I,s =143

and, by the Definition 9.12 of the dual spectral bilinear form p;, we
have, for r, s in S} ¢,

(10.12) pi(r,s) = pa(T,5).
Finally, by the definition of the diagonalization map 4, in (10.1), for r

q
3 u 3 u
in §¢¢ and s in §p'¢,

(10.13) @ — 5 (i) .

Putting together (10.11), (10.12) and (10.13), we get (10.10) from the
Definition 10.8 of p;*.

It remains to prove that, still for ¢ in the interior of Z,, the full
dual spectral bilinear form pf ™ is positive definite on the real vector
space S,?’t. We will show the equivalent statement that the Hermit-
ian form p* : (r,s) — py*(T,s) is positive definite on the complex
vector space S,f(tc Again, this will require us to have a closer look
at the definition of all the objects. First, as the real bilinear form
(r,s) = p*(r,s) — p~*(r<,s<) is non-negative on S, the Hermitian
form (r,s) — p*(7,s) — p—*(7<,s<) is non-negative on Sic. As by
Proposition 7.16, neither v nor £ is an eigenvalue of S,, by Proposi-
tion 9.14, the Hermitian form (r, s) — p*(7, s) —p~—* (7=, s<) is positive
definite on . We denote it by p;. To conclude, we will consider the
space Sy ¢ @Sk%(c which is equipped with the positive definite Hermitian
form p; @ p%. On this space, there is a natural anti-automorphism -,

which is 7, :u(r, s) +— (5,7) and (10.13) can be rewritten as
(10.14) Fis = 0tus s €SP B S
By the Definition 9.12 of the dual spectral bilinear forms p; and p%,

q
! U ! u
for 7,7 in S and s, 8" in 5, we have

oo () (2)) = e (n (2). (35))-

This, together with the definition of pi* and (10.14), implies that
(10.15)

() () mern ()2 5)=(9)
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To conclude, we will apply the criterion in Lemma 10.10.
If k is even, by Lemma 9.6 and (10.9), we have

(¢+1)?
(O LI)B _ qqu(l—t?) 2[% '
Ly I, g (1 - 12)

As
2813 (1)~ Il
P - A= )+ 1 (- 17)
— - ) (g + 1) > 0

by Lemma 10.10 and (10.15), the Hermitian form $.* is positive defi-

nite.
o)

If k is odd, by Lemma 9.6 and (10.9), we have

2
(0 I )ﬁ _ q%(l—ﬁ) %I

S}

)—‘:

=q (1=t =) (g+1)*—(¢g—1)%

2 (g +1) 2 2,2
— 1— ) (4q — (¢ + 1)%?) > 0,
G- )4 17
again by Lemma 10.10 and (10.15), the Hermitian form p-"* is positive
definite. 0

10.6. The full spectral bilinear form. Given £ > 2 and p a I'-
invariant k-Euclidean field, we now introduce the dual objects to the
bilinear forms defined above.

Let ¢ be a complex number such that ¢ §é {13 +1 —4=1 and none of
the roots of the equation (¢ + 1)tu = ¢ + u? is an elgenvalue of S,.
We have defined the full dual spectral bilinear form p;’ 2* on the space
SQC of I'-invariant ¢-radical pairs of complex k-simple pseudofields. In
Prop081t10n 10.9, we have shown that this bilinear form is non degen—
erate. Therefore, by duality, it defines a symmetric bilinear form p?
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on the space Hz,c of I'-invariant pairs of complex k-pseudofunctions
whose null space is the range of the map
(10.16)

9 9 (G Gy~ 0 -1 Gy
Hk—1,<c - sz,({jaG = (G1) = (G\l/>v ~\g (q+ )t Gr )

For H,J in Hj ¢, we have pj(H,J) = (r,.J) where r is the unique
element of S,ffc such that, for any s in S,f:é, one has (s, H) = p7*(r, s).

Definition 10.11. Let £ > 2 and p be a ['-invariant k-Euclidean field.
For t as above, the symmetric bilinear form p7 on H3 ¢ is called the full
spectral bilinear form associated to t.

The full spectral bilinear form p? will appear in the Plancherel for-
mula for Euclidean fields on the continuous part of the spectrum of
Corollary 8.6, which is the critical interval Z,.

In Proposition 9.18, we have established formulae for computing the
spectral bilinear form p,,, which are rather heavy to state. Fortunately,
these formulae will be sufficient to characterize p?.

Proposition 10.12. Let k > 2 and p be a I'-invariant k-Fuclidean
field. Fiz t a complex number with t* ¢ {1, (qi—qlﬁ} and choose u to be

a root of the equation (¢ + 1)tu = q + u®. Assume neither u nor L is
an eigenvalue of S,. Then p? enjoys the following properties.
(i) For every H,J in Hic, we have,

p?(%tH, J) = pf(H, R, J) and p?(GtH, J) = pf(H, SiJ).

(i) For every H,J in Hyc, we have

v (<_JZ[H) ’ (—ij)) = (¢ — 1)*u’p,(H, J) if k is even
= (¢ — 1)?up,(H, J) if k is odd.

Conversely, p? is the unique bilinear form on 7—[27@ that satisfies the
two properties above.

Proof. The uniqueness statement directly follows from Proposition
10.7.

(i) is the direct consequence of the analogous property established
for p>* in Proposition 10.9.

(11) will follow from the explicit form of the matrices 3, in (10.9).
Indeed, as p;* is defined by the formula

aq
P (05, 0s) = (0, ® pa)(r, Bys), 1.5 € Siic © Spe,
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the bilinear form p? is defined by the dual formula
pi(0, H, 0,0 T) = (pu ®pa)(H, B, T), H,J€Hpe.

For H in Hy ¢, we get, from (10.2),

s (7 _ 1 H
w 0 q—u2 —uH

and, from (10.7) and (10.8),

2
g1 (lgl) _ ((Z:B?u) (—q_l(q _Hl)_quH> if k is even

1 /(g —u)’ oy o
= 5 (W) —(g— 1),11%]_] if k£ is odd.

The conclusion follows. O

10.7. t-radical pairs in the bipartite case. As in Subsection 9.6, if
I' is bipartite, the twist operation of Subsection 2.6 and Subsection 6.7
induces a symmetry in the previous constructions.

In analogy with Lemma 9.23, one can show

Lemma 10.13. Assume I' is bipartite. Let k > 1, t be in C and
2
s = (§0> be in S,?C. Then s is t-radical iof and only if ( Sol) is

1 51
(—t)-radical.

Then, by direct computations, we get

Lemma 10.14. Assume I' is bipartite. Let k > 2, p be a I'-invariant

k-Euclidean field and t be in C, t* # (qiql)g. Forr,s in S,f:fc, we have

! {
2,% o So 2,%

If moreover t* # 1 and none of the roots of the equation q + u?> =
(¢ + Dtu is an eigenvalue of Sy, for H,J in Hyc, we have

2 Hé) (Hé>> 2
P , = pi(H, J).
W((—Hi e ((H,J)

The last property could also be seen as a consequence of Lemma
9.23, Lemma 9.24 and the uniqueness part in Proposition 10.12
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11. EXCEPTIONAL QUADRATIC FORMS

For k > 2 and p a I'-invariant k-Euclidean field, we have introduced
the objects that will allow to write the Plancherel formula on the con-
tinuous part of the spectrum in Corollary 8.6, which is the critical
interval Z,. We now focus on the objects that will appear on the ex-
ceptional spectrum %, defined in (8.1). Thus, we will now construct a
family of quadratic forms parametrized by X,.

11.1. The exceptional spectral bilinear form. Let k£ > 2 and p be
a [-invariant k-Euclidean field. Recall from Proposition 7.16 that, if u
is an eigenvalue of the simple transfer operator S, such that |u| > /g,
then wu is real and simple. We then write I for the unique projection

of Hy, onto ker(S, — u) that commutes with S,. In other words, for H
in Hy, we have S,IIH = ullyH and H — I, H € (S, — u)H,.

Definition 11.1. Let £ > 2, p be a I'-invariant k-Euclidean field and
u be a real eigenvalue of the simple transfer operator S, with |u| > /q.
We define the exceptional spectral bilinear form p$* associated to p and
u on H;, as the bilinear form

po(H,J) = p(Il, H, J<Y2), H,J € Hy.
By Lemma 2.22 and Lemma 7.6, we have

Lemma 11.2. Assume I' is bipartite. Let k > 2, p be a I'-invariant k-
FEuclidean field and u be a real eigenvalue of the simple transfer operator
Sp with |u| > \/q. For H,J in H;, we have

Py (H T = (1) pi(H, J).

The exceptional spectral bilinear form enjoys nonnegativity proper-
ties.

Proposition 11.3. Let k > 2, p be a I'-invariant k-FEuclidean field
and u be a real eigenvalue of the simple transfer operator S, with |u| >
V4. The exceptional spectral bilinear form pg* is symmetric. It is
nonnegative if u > \/q or k is odd; it is nonpositive if u < —,/q and
k is even. Its null space is exactly (S, —u)Hy. In particular, this null
space contains the range of the map Hi_1 — Hi, G — GV=Y —uG~.

Note that the adjoint operator H;’T of I} with respect to p is the
projection onto ker(S; — u) that commutes with S;. The symmetry of
e relies on

Lemma 11.4. Let k > 2, p be a I'-invariant k-Fuclidean field and u
be a real eigenvalue of the simple transfer operator S, with |u| > \/q.
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For H in Hy, we have
u, pV _ u pV
et (H<Y>) = (TILH)<rY>.
Proof. The definition of the operators in Subsection 7.1 gives S,H =
H<»V>VY and S;H = HV<rV> hence
S;(H<pv>) — [<pV>V<pV> (SpH)<pv>_

Therefore, if f is a polynomial function, we have f(SZT,)(H <PVZ) =
(f(Sp)H)<*¥>. The conclusion follows as we can find a polynomial
function f with f(S,) = II% and hence f(ST) = II%1. O

By abuse of notation, we also denote by I} and Hg’T the projections
of Hi—1 onto ker(S, — u) and ker(S! — u) that commute respectively
with S, and S;.

Lemma 11.5. Let k > 2, p be a I'-invariant k-FEuclidean field and u
be a real eigenvalue of the simple transfer operator S, with |u| > \/q.
For H in Hy, we have

T (H<r) = (T4 H) <
and this element is 0 if and only if H belongs to (S, — u)Hy.

Proof. Write J = IIDH and H — J = S,K — uK for some K in Hy.
Still by the definitions in Subsection 7.1, we have

H = J% 4 K<rV>V<r — g K< = J< 4 SHK<?) — uK =
and, in the same way,
SI(JP) = J<PV2Vsr = (S,J)° = uJ=,
We get ITWT(H<r) = J<» = (II4*H)<» as required.

Assume now J<» = 0. As we have J<*V>V = S J = uJ and u # 0,
we get J =0 and H = S, K — uK, which should be proved. 0

Proof of Proposition 11.53. Let us prove the symmetry of the excep-
tional spectral bilinear form. For H,J in Hj, we have, by Lemma
11.4,

po (H,J) = p(Il, H, J<PV>Y) = p(H, HZ,T(J<,,V>>)
= p(H, (T1)~7">) = p(H=Y>, T18J) = p*(J, H).

Now, for the other statements, recall from Proposition 7.23, that
the symmetric bilinear form (H,J) — p(H, JV) is positive definite on
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ker(S) — u) if u > Vk or k is odd and that it is negative definite if
u < —vk and k is even. For H,J in ‘H;, we have, by Lemma 11.5,
p(IL N (H=), T (<)) = p((IH) =, (IL;.]) <)
= p(IL, H, (IL;.J)<*¥>)
= p(H, I (1L 1)<">))
= p(H (IIL) )
= p(H, (HZJ)<Z)V>> = pZX(Hv J)>

where we have used Lemma 11.4 and the fact that II)IT) = II7. The
remainder of the Proposition is now a consequence of Proposition 7.23,
Lemma 11.5 and the fact that, for G in H;_;, we have GV —uG~ =
(Sp —u)(G”). O

11.2. Values on H;, + and Hy . In the study of the spectral theory of
Euclidean fields, we will need more information on the behaviour of the
exceptional spectral bilinear forms on eigenspaces of the V operator.
On these eigenspaces, we can rewrite the definition of the exceptional
spectral bilinear forms.

Corollary 11.6. Let k > 2, p be a I'-invariant k-FEuclidean field, u be
a real eigenvalue of the simple transfer operator S, with |u| > \/q, H
be in Hi 4 and J be in Hy_. We have

Py (H,H) = gp(HzH, H) if k is even
= up(Il; H, H) if k is odd
P, ) = —up(IT], J)
pu (H,J) = —up(Il, H, J)
= EP(H, ITJ) if k is even
= up(H, 11, J) if k is odd.

Proof. By the definitions of the simple transfer operator S, and of its
adjoint operator SZT, in Subsection 7.1, and by Definition 11.1, we get

PiS(J, J) = p(ITL, J<0V=) = —p(IT14J, JV<r¥>) = —p(I1%J, ST.J)
= —p(SpIL,J, J) = —up(IL} J, J)

as required. The other formulae are obtained by the same technique.
O

We also can show that the exceptional spectral bilinear forms are
not 0 on the eigenspaces of the V operator.
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Corollary 11.7. Let k > 2, p be a I'-invariant k-Fuclidean field and
u be a real eigenvalue of the simple transfer operator S, with |u| > |/q.
Then, the restrictions of p;* to Hy+ and Hy _ are not 0.

Proof. Assume by contradiction that we have p®(H,J) = 0 for any

u

H,J in Hj ;. Then, by Proposition 11.3, we have
Hi+ C (S, — u)Hg.

As the p-orthogonal complement of Hy, 4 in Hy, is Hy,—, we get
ker(S; —u) C Hp—.

Therefore, by assumption, we can find H # 0 in H; with S;H =uH
and HY = —H. As SJH = H'<*Y>, we get H<*Y> = —uH. Since
u # 0, we have H<» # 0 and

H<Y — F<oV><p — _ H<».

By Proposition 7.9 and the assumption, we have /g < |u| < ¢. Thus,
(—u) does not belong to the set of eigenvalues of the V operator, a
contradiction.

One proves that pg* is non zero on Hy _ in the same way. O

11.3. The full exceptional spectral bilinear form. We now ap-
ply the doubling procedure of Section 10.4 to the exceptional spectral
bilinear forms. Recall from (8.1) that, for p in Py, ¥, stands for the
exceptional spectrum.

Definition 11.8. Let £ > 2, p be a I'-invariant k-Euclidean field and ¢
be in 3,. In other words, we have (¢ + 1)?t* > 4¢* and the unique real
number v such that ¢ + u? = (¢ + 1)tu and u? > ¢ is an eigenvalue of
the simple transfer operator S,. We denote by pf *“* the unique bilinear
form on H? such that

(i) The operators R, and &, of (6.1) and (6.2) are symmetric with
respect to p2™.

(ii) For H,J in Hy, one has

ex H J q ex ] 1
P2 ((—uH) 7 (—uJ)) = <u - E> po(H, J) if k is even

_ (1 _ i) pON(H,J) i ks odd.

u?

We call pf’ex the full exceptional spectral bilinear form associated to
p and t.
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,ex

Note that the existence and uniqueness of pf are warranted by
Proposition 10.7. Indeed, by the defintion of ¥, in (8.1), we have
(g + 1)*t* > 4q and, by Proposition 7.9, we have u? < ¢*, hence t* < 1.

From Lemma 11.2 and Definition 11.8, we directy get

Lemma 11.9. Assume I' is bipartite. Let k > 2, p be a I'-invariant
k-Euclidean field and t be in ¥,,. For H,J in H3, we have

eX Hz JZ eX
e () () -

The full exceptional spectral bilinear is non-negative.

Proposition 11.10. Let k > 2, p be a I'-invariant k-Fuclidean field
andt be in X,. Then, the full exceptional spectral bilinear form pf’eX 18
nonnegative.

Proof. Let u be the root of the equation g+u? = (¢g+1)tu with |u| > \/q.
The proof of the Proposition follows from a careful rereading of the
proof of Proposition 10.7. Indeed, following this proof, we set, for H, J
n Hk,

1
(g +1)*(1 —12)

1

= (I,H, I,J if k is odd.
MRS L

Since Proposition 7.9 implies t> < 1, the symmetric bilinear form p%*

pa(H,J) = pX(1,H,1,J) if £ is even

on Hj enjoys the same sign properties as p¢*. Now, from the proof of
Proposition 10.7, we see that, if k is even, the bilinear form (8, 1)*p>*™
is defined by the matrix u=!'(u? — ¢) ‘o, of (10.7) with respect to
p @ p%; if k is odd, it is defined by the matrix ¢ 'u=t(u? — ¢) Lay,.
Note that the diagonal coefficients of «, are 1 if k is even, and have
the same sign as u is k is odd. The conclusion follows from Lemma 9.6,

the non-negativity criterion in Lemma 10.10 and Proposition 11.3. [

12. SPECIAL QUADRATIC FORMS

Given k > 2 and a I'-invariant k-Euclidean field p, for ¢ in C, we have
constructed in Section 10 the full spectral bilinear form p? which will be
used to write the Plancherel formula on the continuous part Z, of the
spectrum in Corollary 8.6. Then, in Section 11, we have constructed
the full exceptional spectral bilinear form p?™ to write this formula at
the points ¢ in ¥,. It remains to study the behaviour of the formula
at the special points 1 and —1 of the spectrum: this is the purpose of

this Section.
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The constructions below rely on a direct analogy we the study of
skew quadratic fields and skew dual kernels in Section I1.6 and Section
I1.7.

12.1. Skew fields. We introduce a final algebraic object that is related
to the behaviour of the theory of u-radical simple pseudofields at the
degenerated values u € {—q,—1,1,¢}. Tts definition comes from a
straightforward analogy with Subsection I1.6.1.

Definition 12.1. Let k£ > 1.
A k-skew field is a k-simple pseudofield s such that sV = —s and
<V <
If k is even, a reverse k-skew field is a k-simple pseudofield s such
that sV = —s and s<V = s~.
If £k is odd, a reverse k-skew field is a k-simple pseudofield s such
that s¥ = s and s<V = —s~.

S

The space of I-invariant k-skew fields is denoted by G}. The space

of T'-invariant reverse k-skew fields is denoted by Q,gfl).
From the dual version of Lemma 2.22, we get

Lemma 12.2. Assume I' is bipartite. Let k > 1 and s be a k-simple
pseudofield. Then s is a k-skew field if and only if st is a reverse k-skew
field.

Let us now relate these new objects to the formerly introduced ones.
First, note that skew fields are 1-radical. Indeed, the definitions directly
give.

Lemma 12.3. Let k > 1 and s be a k-simple pseudofield.
If s is a k-skew field, then s is 1-radical.
If s is a reverse k-skew field, then s is (—1)-radical.

Skew fields can be built from g-radical simple pseudofields.

Lemma 12.4. Let k > 1 and s be a k-simple pseudofield.

Assume k is even. If s is g-radical, then qs — s” is a k-skew field. If
s is (—q)-radical, then qs — s is a reverse k-skew field.

Assume k is odd. If s is q-radical, then s — sV is a k-skew field. If s
is (—q)-radical, then s+ s¥ is a reverse k-skew field.

Proof. First, we assume that & is even. As ¥V = ¢s+(g—1)s", we have
(gs — s¥)Y = s¥ — gs. Besides, if s is ¢g-radical, we have sV<V = ¢s<.
We get

(qs . Sv><v _ qs<v gV v qs< _ —(qs _ Sv><7
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that is, ¢s — s" is a k-skew field. If s is (—¢)-radical, the same compu-
tation shows that gs — sV is a reverse k-skew field.

Now assume that % is odd. If s is g-radical, we have sV<V = ¢s<. As
sV = gs¥< 4+ (g — 1)s¥<Y, this gives s<¥ = sV< 4+ (¢ — 1)s=. We get

(s — S\/)<\/ — gV VSV = gv< (q— 1)s< —gs< = —(s . 8v><’
that is, s — sV is a k-skew field. Again, if s is (—¢)-radical, the same
computation shows that s + sV is a reverse k-skew field. U

Direct restriction preserves skew fields.

Lemma 12.5. Let k > 2 and s be a k-simple pseudofield. If s is a
k-skew field, then s< is a (k — 1)-skew field. If s is a reverse k-skew
field, then s< is a reverse (k — 1)-skew field. Direct restriction maps

GL onto GL_, and GV onto GV

Proof. The fact that direct restriction preserves the space of k-skew
fields and the one of reverse k-skew fields follows directly from the
definitions and from Lemma 6.9.

For example, we show that the direct restriction maps G onto G _;.
As usual, we will prove that the adjoint map is injective. Thus, let
H be in H;_; and assume that H> is orthogonal to G}, that is, there
exists J in Hy 4 and K in Hy_y 4 with H” = J4+K~. If k is even (resp.
odd), we get (H—K)”Y =q(H—-K)> (resp. (H—K)”V = (H-K)~),
hence, by Lemma 2.8, there exists L in Hy o with LY = gL (resp.
LY = L) and H = K + L”. Therefore, H is orthogonal to G;_; as
should be proved. The proof for reverse skew fields is analogous. [

Remark 12.6. By reasoning as in Proposition I1.6.16, one could show
that the projective limit of the projective system (G})i>1 (resp.
(Q,i_l))kzl may be seen as the space of harmonic I'-equivariant skew-

symmetric (resp. symmetric) maps from X; to the space Dy(0X) of
distributions 6 on 0X with (1) = 0.

Remark 12.7. In view of the analogy between the language of skew
fields and the one of skew quadratic fields in Section II.6, it would be
tempting to introduce the notions of a field and of a reverse field, by
mimicking the language of Section I.4. Thus, if £ > 1 is even, we could
define a k-field (resp. a reverse k-field) as a k-simple pseudofield s
with s¥ = ¢s and s<¥ = s< (resp. s<¥ = —s%). If k is odd, a k-field
(resp. a reverse k-field) would be a k-simple pseudofield s with s¥ = s
(resp. s¥ = —s) and s<¥ = ¢s<. But, by Lemma 6.10, for k£ > 2, direct
restriction would induce a linear isomorphism from the space of k-fields
(resp. reverse k-fields) onto the space of (k — 1)-fields (resp. reverse
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(k — 1)-fields). Then, in view of the identification between 1-simple
pseudofields and functions on X7, the space of 1-fields (resp. reverse
1-fields), would just be the space of harmonic skew-symmetric (resp.
symmetric) functions on X;. Note that the I-invariant functions of
this kind play a role in the proof of the Thara trace formula in Theorem
1.4.

12.2. The special dual spectral bilinear forms. Given a Euclidean
field, in analogy with the quadratic case (see Subsection 11.7.5), we

build scalar products on the spaces of skew fields and reverse skew
fields.

Definition 12.8. (k even) Let k > 2 be even and p be a I'-invariant
k-Euclidean field. For r,s in G}, we set

* 1
PP () = g () = 5p (% %),

For r, s in Q,Efl), we also set
Sp,* q I . < <
p(—l)(rw S) = mp (Ta S) - §p ' (T ) S )
We call pi”* and p?‘i’;‘) the special dual spectral symmetric bilinear
forms associated to p.

Definition 12.9. (k odd) Let & > 2 be odd and p be a I'-invariant
k-Euclidean field. For r,s in G}, we set

* 1 1
PP (r,s) = §p*(r,s) - 1p7,*(?ﬂ<7$<)_
For r, s in Q,Efl), we also set
* 1 * 1 — %
p?371)<r’ s) = §p (rys) — mp (1<, 59).

We call pi”* and p?‘i’;‘) the special dual spectral symmetric bilinear
forms associated to p.

These forms define scalar products.
Lemma 12.10. Let k > 2 and p be a I'-invariant k-Euclidean field.
The special dual symmetric bilinear forms pi*™* and p?j) are positive
definite on Q,i and g,(;”.
Proof. This directly follows from the fact that, as ¢ > 1, we have
4 > 1 > 1 O
q+1 2 q+1°

In case I is bipartite, these forms are identified by the twist operator.
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Lemma 12.11. Assume I' is bipartite. Let k > 2 and p be a T'-
invariant k-Euclidean field. For r,s in G}, we have

P (o) = P (r,s)
12.3. The special spectral bilinear forms. We now use duality to

build quadratic forms on spaces of pseudofunctions.
Let £ > 2 and p be a I'-invariant k-Euclidean field. Lemma 12.10

tells us that the special dual symmetric bilinear forms pi™* and p?i’f)

are non degenerate on G; and Q,gfl). Therefore, by duality, they define
symmetric bilinear forms pi” and p?‘il) on Hy. For H,J in Hy, we have
Py (H,J) = (r,J) and p? | (H,J) = (s, J) where r (resp. s) is the
unique element of G} (resp. Q',(C_l)) such that (a, H) = p{**(r,a) (resp.
(a, ) = p”(s,a)) for any a in G} (resp. Q,gfl)).

Definition 12.12. The symmetric bilinear forms p}® and p?i )y are
called the special symmetric bilinear forms associated to p.

We summarize the properties of pi’ and p?il). Recall from Proposi-
tion 7.9 that the operators (¢ — S,) and (g + S,) are invertible.

Proposition 12.13. Let k > 2 and p be a I'-invariant k-Fuclidean
field. The special bilinear forms p* and p?il) are non-negative on Hy.
The null space of pi° is Hiy +Hp_y . If k is even, the null space
ofp?lil) is Hiq +Hi_y - If k is odd, the null space ofp‘z‘lil) is Hy— +
1t
If k is even, for H,J in Hy _, one has
pr(H, J) = (q+ 1)p((1+ S,)(q — Sp) "' H, J)
p?rll)(H, J) = (q+1)p((1 = S,)(q+ Sp) " H, J).
If k 1s odd, for H,J in Hy_, one has
pP(H, J) = 2p((g+ Sp) (g — S,) " H, J)
and, for H,J in Hy 4, one has
p?}il)(H7 J) =2p((q — Sp)(q+ Sp)_lH» J).

We will prove this statement in the same way as we proved Proposi-
tion 9.18 of which it can be seen as a degenerated version.

By Lemma 12.10, the dual special bilinear form pi* is non degener-
ate on Gj. Therefore, for any r in Sy _, there exists r1 in G} such that,
for any s in G}, one has

Sp,*(

p*(r,s) = p""(r1, 5).



ADDITIVE REPRESENTATIONS 133

In the same way, the dual special bilinear form pi‘i’f) is non degenerate

on g,ﬁ‘”. If k is even (resp. odd), for any r in Sy (resp. Sk ), there
exists r(_) in g,‘;” such that, for any s in Q,i_l), one has
pr(r,s) = p(r-), 8).
Below, we give a formula to compute r; and r_;). This is an analogue
of Lemma 9.19.
Lemma 12.14. Let k > 2 and p be a I'-invariant k-Fuclidean field.
If k is even, for r in Sk _, we have

g+l q+1

r—qa’” +a”"" and r_qy = r+qb”r —b7rY

(&

where

1 1
0= L (g=5) %) and b= T+ 5) 0,

If k is odd, for r in Sk _, we have
r=2r—a’® +a*" where a = 2(q—S,) " (r<Y).
For r in Sk 4+, we have
r_1y =2r — b = b7*Y where b= 2(q + S,) " (r<Y).

Proof. We assume that k is even and we check the formula for r;.
Therefore, we set

1 +1
o= 1t (q—S,) " H(r=Y) and s = %, _ qa”? +a’rY.
q
First we claim that s is a k-skew field. Indeed, on one hand, as
r¥ = —r, we have
s+ sV = _qa>p + a7V — qa>pv + o>V = Q.

On the other hand, we have

<+ 5<V = Q+1T<_qa+a>pv<+‘J+1T<v_qav+a>pv<v

qg+1

1
— r<—qa+(5pa)v+Q+
q

r<Y —qa" + S,a.
By definition, a satisfies the equation

+1
(12.1) Sya + 7 20<V = ga,

q

hence s< + s<V = (.
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Now, to conclude, we must show that ¢ = qqus — % <>»

orthogonal to G}. Let us compute this k-simple pseudofield. We get

2
+1 1
c=r——L g Lo I Ty —(S,a)""r —r

S —7ris p*-

q+1 g+1 2 2 P
— La>l)v J— ET<>P — MG>P — l(Spa)v>P‘
q+1 2q 2(¢g+1) 2

Using (12.1) yields

q a>Pv_gav>P_Ma>P — L

CcC = =
qg+1 2 2(¢g+1) qg+1
hence c is indeed p*-orthogonal to G} as required and therefore r; = s.
The formula for r_; is obtained in the same way.
Assume now k is odd and let us again check the formula for ;. Thus,
we set

(a”"+a”) =2 (a"+a)>7,

a=2(q—S,) '(r~¥)and s = 2r —a”* +a”*".

Again, we claim that s is a k-skew field. Indeed, as r¥ = —r, we have

sV = —s. Besides,

<4 sV =< g @ZPVS £ o<V _ gV 1 g>PVEY.
As S,a = a”rV<Y, the definition of a yields
(12.2) a”?'<Y 4+ 2r<Y = ga and a”?V< +2r< =a" — (¢ — 1)a.

We get
5+ s5V=da"-(¢q—la—a+qa—a’ =0
as required.
As in the even case, to conclude, we need to show that the k-simple

pseudofield ¢ defined by ¢ = %s — qﬁs<>P — r is p*-orthogonal to Gj}.
Indeed, the definitions of the objects give
cC=7T — 1a>P + 1a>Pv i LT<>P La/>l7 i La>PV<>P —r
2 qg+1 qg+1 qg+1
— 1a>p\/ _ L <>p _ Qa%) _ La>p\/<>p'
2 qg+1 2(¢+1) q+1
Thanks to (12.2), we have
1 1 —1
c=—-a"" ———(a" - (¢—1)a)” — L7
2 qg+1 2(¢+1)
— 1a>pv — —av>p L1G>P
2 q+1 2(¢+1)
1 1
:§(a>pV+a>p)_q+1(aV+a)>p
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Thus, c¢ is p*-orthogonal to G} and hence 11 = s. The same method
yields the formula for r_;. O

Proof of Proposition 12.13. By construction, the null space of pi¥ is
the orthogonal subspace of G} in H; and the null space of p?‘il) is the

orthogonal subspace of Q,g_l) in Hy. The description of these spaces in
the Proposition directly follows from the definition of skew fields and
reverse skew fields.

We now check the formulae. Assume that & is even and take 7, s in
Sk.—. We keep the notation of Lemma 12.14. As s¥ = —s, we get

1
p(ns) = 4 D5 (G arss).
By Lemma 9.11 and Lemma 12.14, we have
q+1 _ q+1 .
a”r = q ((q—5p) 1T,)<\/>p\/ = q Splq — Sp) br.

Now, we have
1+ (q + 1)Sp(q - Sp)il = Q(l + Sp)(q - Sp)ila
hence
p(ri,s) = (g + Dp" (1 + Sp) (g — Sp)~'r, s)
and the first formula follows. The other three are obtained in the same
way. U

As usual, we have a symmetry property in the bipartite case. From
Lemma 12.11, we get

Lemma 12.15. Assume I' is bipartite and let k > 2 and p be a I'-
invariant k-Euclidean field. For H,J in Hy, we have

p?il) (H27 ‘]l) = pslp(Ha J)
12.4. The full special spectral bilinear forms. We now use the

special bilinear forms to build bilinear forms on H? in the spirit of the
doubling technique of Proposition 10.7.

Definition 12.16. Let £ > 2 and p be a I'-invariant k-Fuclidean field.

_ (Ho _ (o) . e
For H = (H1> and J = <J1) in Hj, we set

P%SP(H, J) =p(¢Ho + Hy,qJo + J1)

and p?’f%(H, J) = pigl)(qu — Hy,qJy — Jl)'
1%

The bilinear forms p?’s and p?’fl) are called the full special spectral
bilinear forms associated to p.

P
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We summarize the properties of the full special spectral bilinear
forms.

Proposition 12.17. Let k > 2 and p be a I'-invariant k-Fuclidean

field. The full special spectral bilinear forms p>™ and p?fll’) are non-

negative on Hy. The null space of p7™® is the space

H
Hi e+ (M) + { (_q H) ‘ He Hk} .

If k is even, the null space ofp?’_sﬁ’) 1s the space

H
Hi o+ (Hi)* + { (qH)’H € Hk}

If k is odd, the null space ofp?’_slf) is the space

M2+ (M, )+ { (q@) ‘ e H} |

In both cases, the operators Ry and S are symmetric with respect

to p?’Sp and the operators R_1) and Sy are symmetric with respect

2,
to p(_sﬁ’).

Proof. The non-negativity properties and the description of the null

spaces directly follows from Proposition 12.13 and Definition 12.16.
Assume £k is even and let us show that the operators fR; and &, are

Hy

symmetric with respect to p7™. Recall from (6.1) that, for H = I
1

~1 v
in H3, we have &1 H = ( ¢ Hy ) Therefore, for H = <H0>

Hy — (¢ —1)Hy H,
and J = (JO) in Hz,
Ji

Py V(S H, ) = pP(HY + Hy — (g = 1)Ho, gy + 1),

By Proposition 12.13 Hy + Hy and H; + HY belong to the null space
of pi’. Thus, we get

PP (&1 H, J) = —piP(qHo + Hi,qJo + J1)-
By symmetry, we obtain p?** (&, H, J) = p?**(H, &,.J) as required. In

- _ (Hy +q g+ 1)HY
the same way, still by (6.1), we have R H = ( (q— VH — HY )
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hence

PR, J) = pP(gHy + gy + (g — ) Hy, g + 1)
= —pPP(qHo + Hi,qJo + J).

Again, we get pi*P (R H, J) = p7™(H,R1J).
The other cases may be obtained by the same method. U

In the bipartite case, Definition 12.16 and Lemma 12.15 yield

Lemma 12.18. Assume I' is bipartite and let k > 2 and p be a I'-
invariant k-Euclidean field. For H,J in H3, we have

HZ > ( Jz ))

2,8p 0 0 —_ ,SP

p_ I _p H7J .
() () -

13. A PLANCHEREL FORMULA FOR EUCLIDEAN FIELDS

In this final Section, we state and prove the Plancherel formula for
a I-invariant Euclidean field p. We use this formula to compute the
spectrum of the natural geometric operator of Subsection 1.1, acting
on the space of I'-invariant maps X — HP.

13.1. The formula and its spectral consequences. Given k > 2
and a ['-invariant k-Euclidean field p, we use the previously introduced
notions to write the following Plancherel formula for the non nega-
tive symmetric bilinear form Ejp obtained by pulling back the natural

scalar product on H,, by the polyextension map Ej : H,EN) — Heoo-

Theorem 13.1. Let k > 2 and p be a I'-invariant k-FEuclidean field.
For any H,J in H,(CN), we have

(13.1)
00 _ Q+ 1 2017 T 249
PU(BH, Bel) = 5 [ 2, T s e
(g — 1)) prHE), I(t) + qu;jl)p?%ﬁm, J(1))
ST (1) (=)

The polyextension map Ej was defined in Subsection 2.3. The spec-
tral transform H — H, H,E;N) — H2[t] was constructed in Proposition
6.3. For ¢t in C with (¢ + 1)%*t? # 4q, the full spectral bilinear form p?
on H? was introduced in Definition 10.8. The exceptional spectrum %,
was introduced in (8.1) and, for ¢ in ¥,,, we defined the full exceptional
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spectral bilinear form pf’ex on H3 in Definition 11.8. Finally, for ¢ =1
or t = —1, we defined the full special spectral bilinear form p;*® on H3
in Definition 12.16.

Note that, if I' is bipartite, the symmetry properties in the spec-
tral part of the formula which come from Lemma 10.14, Lemma 11.9
and Lemma 12.18 are compatible with the equivariance property of
the polyextension map established in Lemma 2.23 and the one of the
spectral transform established in Lemma 6.18.

In analogy with the case of the model operators that we studied
in Section 4 and Section 5, the proof of the formula in Theorem 13.1
will rely on the identification of the boundary values in the resolvent
formula of Proposition 8.1.

Before beginning the proof, we use the formula to compute spectra
of natural operators. First, we can complete Corollary 8.6.

Corollary 13.2. Let k > 2 and p be a I'-invariant k-FEuclidean field.
Then, the spectrum of P in the completion HY, of Ho with respect to
p s the set

Z,ux,U{-1,1}.

Proof. Note that, by Lemma 7.8, we have ¥,+ = ¥,. Hence, we can
replace p by a large orthogonal extension. In particular, by Corollary
2.7, we can assume that we have H;, . # {0} and H, _ # {0}.

By Lemma 2.18, for H in ", we have PE,H = E,,PH. By Lemma
6.1 and Proposition 6.3, for ¢ in R, we have Igl?l(t) — tH(t). By
Proposition 10.12, for ¢ in the interior of Z,, the full spectral bilinear
form p? is positive definite. By Proposition 11.3, for ¢ in %, the full
* is non zero. By Proposition
25 are also non

exceptional spectral bilinear form p;°
12.17, the full special spectral bilinear forms pf’sP and P
zero. Therefore, by Theorem 13.1, the spectrum of P in the closure of
EkH,(CN) in H?, is Z,U¥,U{—1,1}. The conclusion follows by applying
this property to all orthogonal extensions of p. O

We can also use the Plancherel formula to prove our first statement.

Proof of Corollary 1.53. This is obtained as in Corollary 4.10 where we
retrieved the computation of the spectral measures of the operator @)
acting on ¢*(X).

Indeed, as in the proof of Corollary 4.10, we consider the natural
operator L : F(X, HP)' — F(Xy, H?)' = HP_ defined by, for z ~ y
in X and f in F(X,HP)', Lf(z,y) = f(z). We still have PL = LQ
and a direct computation using Lemma 1.9.11 shows that p(Lf, Lf) =
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(g + D)p(f, f). Therefore, by Corollary 13.2, the spectrum Xy of @) in
F(X, HP)' is contained in Z, UX, U {—1,1}.

Conversely, by Proposition 10.12, for ¢ in the interior of Z,, the full
spectral bilinear form p? is positive definite, hence we have Z, C Y.
Besides, note that, by construction, for every f in F(X, HP)', we have
RLf = qLf. As by Proposition 12.17, the full special spectral bilinear
forms p>*® and p?flf) are 0 on H; | for all even j > k, the special points
(—1) and 1 do not belong to Yx. Finally, with no loss of generality,
we can assume that k is even. For ¢ in ¥,, let u be the root of the
equation ¢ + u* = (¢ + 1)tu with \/g < |u| < q. By Corollary 11.7,
we know that the exceptional spectral bilinear form p¢* is non zero on
Hy o This implies that ¥, is contained in ¥ x. The result follows. [

We now go back to proving Theorem 13.1.

13.2. Particular values of spectral quadratic forms. The resol-
vent formulae in Proposition 8.1 are obtained only for certain particular
vectors. To deduce from these particular cases the general Plancherel
formula in Theorem 13.1, we will need the following uniqueness crite-
rion. Recall that the operators R and &; were introduced in (6.1) and
(6.2).

Proposition 13.3. Let kK > —1, u be in C* and set t = ﬁ(u + 4).

Let @w be a symmetric bilinear form on szc such that the operators R,
and S, are symmetric with respect to w.
Then, if k is even, w is entirely determined by the bilinear forms

an==((1).(7))

on Hiyc X Hiyc and Hy—c X Hi—c as well as the bilinear form

H 0
me=((5)(5))
on Hk7+7c X H}g7_7((j.

If k is odd, w is entirely determined by the bilinear forms

aao=((3).(9))

on Hiyc X Hi+c and Hy—c X Hy—c as well as the bilinear form

== () (1))

on %k,—&—,(c X 'Hk’_#c.
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In particular, we can compute the values of the bilinear forms that
appear in our other uniqueness criterion, that is, Proposition 10.7.

Corollary 13.4. Let k > —1, u be in C* and set t = qul(u +2). Let

w be a symmetric bilinear form on ,Hi,c such that the operators Ry
and &, are symmetric with respect to w. Take H in Hic and J in

Hk’777C'

=((um) ()

=((w) ()
=) () = om0 ((5).
“ ((—];H> ’ (—fH) u
=((w) () = e meen=((5) )
=((Con) () =002 () (6 0))

The proofs rely on a case by case description of invariant bilinear
forms.

Lemma 13.5. Fiz t,u in C with ¢ + uv* = (¢ + 1)tu. In each of the
following siz systems of matriz equations, the space of solutions is a
complex line.

The space of solutions of the system

(13.2) ((q f 1)t —01) A=4 (g « J—r11)t)
-1

is the space CAy where Ay = (1 i) and we have

(1 —u) 4y (ju) = Lp oy,

qg+1
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The space of solutions of the system

(13.3) (_ql(‘q1+ e 2) B—B (—01 —ql(;z + 1)t>

0 —q\ , 0 —q!
(—Q‘l O)B_B(—q 0)

2

is the space CBy where By = (Zt q1t> and we have

(0 =5 (L) =T -

The space of solutions of the system

(13.4) ((q Y _01) C=cC (_01 _q_l(g * 1)2?)

(o)e-el )

0

is the space CCy where Cy = ( (1)> and we have

(1 —u)Cy (fu) = (¢ —1u.

The space of solutions of the system

(13.5) (? 1 )D:D(g qil)
(o Y =2 (it 1)

F+1— (-1t (g+1)t—(¢g—1)
is the space CDy where Dy = (q+1 )t —(qg—1) 2

and we have

(1 — ( > q+u)(u—1).

The space of solutions of the system

(13.6) (_01 i 1> E=E ( Oq q_—11>

<(1) S 1): - 1>> E=E <—(q+ 1)t1— (g—1) —01>



142 JEAN-FRANCOIS QUINT

2 2 _ B
1s the space CEy where Fy = (C(]q i bjiq(q _11)§ (g + Dt;‘ (q 1))

and we have

The space of solutions of the system

(13.7) G ;&)F:F(glafo
(E»@+1ﬁ;m_n)F:F(—@+D;—M—U PJ

-1 1
1 O) and we have

(1 ﬂgm(iJ:q—L

Proof of Proposition 13.3. The proof is a direct consequence of the
explicit formulae in Lemma 13.5. For example, assume k is even.
Then, by (6.1), the action of R, on H , ¢ is given by the matrix

is the space CFy where Fy = (q

((q—lc—jl)t _01) whereas the action of &; is given by the matrix

01

1 0)°
in Lemma 13.5 has dimension 1 and is generated by the matrix A
whose top left coefficient is non zero, the restriction of w to the space
Hi ¢ X Hi ¢ is completely determined by the bilinear form

s ((1).(2))

on Hy ¢ X Hi+c. In the same way we use (13.3) and (13.4) to prove
that the restrictions of @ to the spaces Hj _ o x Hi _ ¢ and Hj , o X
Hz,_,c are determined respectively by the bilinear forms

s ((1).(2))

on Hk7,7c X ,Hk’,,(c and

(o) ()

Therefore, as the space of solution to the system (13.2)

on %k,—&—,(c X 'Hk’_#c.
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We proceed similarly in the odd case by using (13.4), (13.5) and
(13.6). 0

Proof of Corollary 13.4. As above, if k is even, it follows from (13.2)
in Lemma 13.5 that the restriction of w to the space Hz +c Is given by
a formula of the form

w ((Z?) 7 (j?)) = X(Ho, Jo) + x(Hi, J1) + tx(Ho, J1) + tx(H1, Jo),

for Hy, Hy, Jy, J1 in Hi 4+ c, where x is a symmetric bilinear form on
H H

Hy+c. The formula for @ ((—uH) , (—uH)) follows. The other

cases are dealt with in the same way.

13.3. Imaginary parts of rational functions. As for the Plancherel
formulas associated to the model operators (4.1), (4.8), (5.1) and (5.4),
the proof of the Plancherel formula for Euclidean fields will rely on
the identification of the boundary values of certain harmonic functions
on H. These harmonic functions are the imaginary parts of the resol-
vent, functions which appear in Proposition 8.1. We will need purely
algebraic formulae in order to compute these imaginary parts.

Lemma 13.6. Let A be a real algebra and a be an element of A. Let
t be in I, and u be in C* with ¢ + u* = (¢ + 1)tu, so that |u| = \/q.
Assume that u— a is invertible in the complexification Ac of A. Define
elements of Ac by setting

by = —— (u+qa)(u - a)

b_+:(q+u)1_u)(u+a)(u—a)

b__:(q_u(1+u)(u+a)(u—a)
c=alu—a)"
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Then, the imaginary parts of these elements are given by
1 Su

Sbyy = mm(‘f —a®)(q— (g + Dta+a*)™

1 Su _

2 Su _
Sb_, = (q—i——l)ZTtQ(l +a)(qg—a)(qg— (g+ Dta+a®)""
N 2 Su o1

Se = —S(u)alg — (¢ + Dta +a?)~".
Proof. Note that the formulae make sense. Indeed, as a is real and
u— a is invertible, so is £ —a = uw— a. Therefore, ¢ — (¢ + 1)ta+a* =
(v —a)(L — a) is invertible.
Let us compute the imaginary part of by,. We set ny, = u(qu + a)
and d,, = (1 —u?)(u — a), so that by ; = n, ,d;L, hence

Sbyy = S(nyrdiy)(dyrdiy) ™

By taking in account that |u| = /g, we get

nasdrs = ulgu + a)(1 — 7)(3 — ) = (g + ua — ¢ — qiia) (7 — a)
= q2u + qa — q3ﬂ — qﬂ2a — qu2a — ua® + q3a + qﬂa2,
which gives S(nyydyy) = (¢ + 1)S(u)(¢? — a?). Besides, we have

doiTis = (1= w)(1 = B)(1 +u)(1 +)(u - o)(@ - a)
=(g+1*(1 —t*)(q — (¢ + Dta+ a?).

The conclusion follows. The other formulae are obtained in the same
way. U

13.4. Isolated singularities of harmonic functions. To deal with
the discrete part of the Plancherel formula in Theorem 13.1, we will
need to recall standard properties of non-negative harmonic functions
which can be found in [1, Chapter 7]. We use the notation of Subsection
3.3 for Poisson transforms.

Lemma 13.7. Let p be a positive Borel measure on R and a < b be

in R. Assume that fR ?’i(;) < o0 so that the Poisson transform of u is

well-defined. Then, we have

[ Puta+in)ds — Su(a}) + al(ab) + (),
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Proof. This is a straightforward computation. By the definition of the
Poisson transform and Fubini Theorem, for y > 0, we have

/abPu(x+1y // :z:gdt,u
i} %/R/ab e

We will apply the Dominated Convergence Theorem to determine the
limit of the above integral as y — 0. To show the domination, we note
that, for t <a—1and a <z <b, we have (t —z)? > (t —a)> > 1. We
get, for y > 0,

(t—a)>+1<2(t—1x)* + 297

hence
Yy < 2y
(x—t)?24+y> ~ (t—a)?+1
and
b
ydx 2(b—a)y
13. < .
(138) /Q(x—t)2+y2 SU—ar+1

Similarly, for t > b+ 1 and y > 0,
b
ydzx 2(b—a)y
13.9 <
(13.9) /a(ac—t)2+y2 T (t-0b2+1
Besides, for any ¢ in R and y > 0, we have

b ydx b—t a—t
—~——— = arctan — arctan .
( 5 t t

r—t)?+y Y y
The latter quantity satisfies
b—t a—t
(13.10) arctan — arctan <
Yy Y
and
arctan —— — arctan —— —0 ift<aort>b
Yy Yy y—0
b— a—t )
(13.11)  arctan — arctan —T ifa<t<b
Yy Yy y—0
— a—t ™ .
arctan — arctan —— ift=aort=0b.
y  y—0 2

The bounds in (13.8), (13.9) and (13.10), together with the assump-

tion that fR (ii(ttg < 00, allow us to apply the Dominated Convergence

Theorem to the convergence in (13.11). The conclusion follows. O




146 JEAN-FRANCOIS QUINT

We shall use this property to remove isolated singularities of har-
monic functions.

Corollary 13.8. Let  be a positive Borel measure on R with fR Clli(ttz,) <

0o. Fix s in R and assume that there exists a harmonic function F on
H such that, for any z in H,

Pu(z) = Ls < ! > +F(2)

™ s—z
and that F(x 4+ iy) — 0 uniformly for x in a neighborhood of s in R.
Y—>

Then, there exists a positive Borel measure v on R whose support does
not contain s such that p = 5 + v and one has F = Pu.

Proof. Note that we have

(13.12) S (3 - (;Hy)) — 0

uniformly for x in a compact subset of R that does not contain s. There-
fore, by the assumption and by Lemma 13.7, there exists a neighbor-
hood N of s in R such that, for any closed interval I C N with s ¢ I,
one has u(I) = 0. Hence, we can write pt = ads + v where a > 0 and
v is a positive Radon measure whose support does not contain t.

As | (i’jr(g < 00, we still have fR (li:—(;) < 00. Saying that the support
of v does not contain s amounts to saying that there exists € > 0 such
that, for v-almost any ¢ in R, one has |s — t| > €. For y > 0, this gives

1 y 2y
3 — <
d(S—(tHy)) (s =12 +y* = (s—1)* +&%
hence, by (13.12) and the Dominated Convergence Theorem,

Pu(s+1y) s 0.

For z € H, we have

04—1%< 1 ) = F(2) — Pu(2).

™ s—z
By applying this identity to z = s + 7y and letting y go to 0, we get

a—1

— 0,
Yy y—0
hence o = 1. The conclusion follows. O

By applying elementary properties of holomorphic functions, we get
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Corollary 13.9. Let i be a positive Borel measure on R with fR ?i(ttg <
00. Fiz s in R and assume that there exists an open neighborhood U of
s in C and a holomorphic function F' on U \ {s}, with a simple pole

at s, such that

1
F(UNR) CR and Pu(z) = =SF(z), ze€UNH.
T
Then, we have u = v — ads where a is the residue of F at s and v is a
positive Borel measure on R whose support does not contain s.

The reader should beware the sign of a in the formula p = v — ads.
In particular, the assumption imply a < 0.

13.5. Residue computations. When applying Corollary 13.9, we
will need to compute the residues of certain meromorphic functions.
They will always be given by the following elementary

Lemma 13.10. Let V' be a finite-dimensional complex vector space
and T be an endomorphism of V. Let s be a simple eigenvalue of T
and I be the projection on ker(T — s) with null space (T — s)V. Let
F € Clz,t] be a polynomial function. Then, the meromorphic operator
valued function on C

G:zw F(z,T)(z—T)!
has at most a simple pole at s, with residue F(s, s)II.

Proof. Write = =1 —1I. As TTI = slI, we get, for any z in C that is
not an eigenvalue of T,

G(2)=F(z,T)(z—=T) 'l + F(2,T)(z—T)"'=2
F(z,s)

Z—5
On one hand, by assumption, s is not an eigenvalue of T in =V =
(T — s)V. Thus, the meromorphic function z — F(z,T)(z — T)"'2
is holomorphic at s. On the other hand, the meromorphic function
Z %H has at most a simple pole at s, with residue F'(s, s)II. The
conclusion follows. O

M+ F(z,T)(z - T) =

We will also need to use the change of coordinates of Subsection 3.3
in residue computations. This is possible thanks to an easy formula of
complex analysis.

Lemma 13.11. Let U and V' be open subsets of C and ¢ : U — V
be a biholomorphism. Let w be in V and F be a holomorphic function
on V ~ {w} with a simple pole at w, with residue a. Set z = ! (w).
Then, F o ¢ has a simple pole at z, with residue ¢'(z) 'a.
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13.6. Proof of the Plancherel formula when /¢ and —,/q are
not eigenvalues of S,. When ,/q or —,/q is an eigenvalue of the
simple transfer operator S, the resolvent formulae in Proposition 8.1
have no continuous extension in the neighborhood of the boundary
points of the critical interval Z, in C and the proof of Theorem 13.1 is
slightly more complicated. Therefore, we start by assuming that this
is not the case.

Proof of Theorem 13.1 when \/q and —./q are not eigenvalues of S,,.

Recall that the definition of the scalar product on H, in (7.1), as well
as Lemma 1.9.11, imply that the operators R and S defined on H,
in Subsection 2.5 are self-adjoint with respect to this scalar product
p>°. Therefore, by Lemma 2.18, the natural operators R and S of
Definition 2.16 and Definition 2.17, which act on H,(CN) , are symmetric
with respect to the pull-back of p*™ under the polyextension map, that

is, for H, J in ’H,(CN), we have

pOO<EkRH, Ekj) = pOO(REkH, EkJ)

and, in the same way, p™(EySH, J) = p™(ExH, ESJ).

We use the spectral transform constructed in Proposition 6.3 to iden-
tify /H,(CN) with the space Hz[t] of polynomial functions R — H3i. By
Lemma 6.1, for ¢ in R, the operators of (6.1) and (6.2) satisfy

Therefore, by using Lemma 3.4 as in the proof of Corollary 3.5, we get
that there exists a Radon measure  on R with support in [—1, 1] and
an integrable Borel map ¢ — w@;, R — Q, (H?) from R to the space of
non-negative symmetric bilinear forms on H} such that

(i) for p-almost any ¢ in R, the operators R; and &, of (6.1) and (6.2)
are symmetric with respect to w;.

(i1) for any H,J in ’H,({N), one has

(13.14) P (BRH, EpJ) /R (B (), T(t)du(?).

As we did for the model operators in Section 4 and Section 5, we
will now use the resolvent formulae of Proposition 8.1 to compute these
spectral invariants. More precisely, we will relate the bilinear forms w;
to the families of bilinear forms constructed in Sections 9, 10, 11 and
12.

Indeed, the properties of the spectral transform in Proposition 6.3,
together with (13.13) and Lemma 3.7, imply that, for H in H,(gN), the
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function
1
Z _%poo<(P — Z)ilEkH, EkH)
i
on H is the Poisson transform of the measure wt(ﬁ](t), ﬁ(t))du(t) on
R.

Let us have a closer look at the expression for the resolvent given in
Proposition 8.1. First, we consider the right hand-side of these formulae
as meromorphic functions of v in C with |u| > ,/g. By Proposition
7.16, all the eigenvalues of S, in the set {u € C||u| > ,/q} are real and
simple. By Proposition 7.9, all these eigenvalues have absolute value
< ¢q. Therefore, the right hand-side of the resolvent formulae define
meromorphic functions of u, |u| > /g, with at most simple poles in
the finite set

{u e R Ju| > v/g,ker(Sy, —u) # {03} U{-q, ¢}

and these functions are real on the real line. Now, consider the same
formulae as meromorphic functions of £. Recall from Lemma 3.6 that
the function u +— t = q%l(u + 4) induces a biholomorphism from the
set {u € C| |u| > ,/q} onto the set C\Z, and that this biholomorphism
maps the real set {u € R||u| > ,/q} onto R \ Z,. Hence, the formulae
in Proposition 8.1 define meromorphic functions of ¢t in C \ Z, with at
most simple poles in the set ¥, U{—1,1}, where 3, is defined in (8.1),
and these functions are real on R N\ Z,.

Assume temporarily that k is even. By Proposition 6.3, for H in

Hp, the sequences H1y and H1; admit respectively as spectral trans-

g 'HY 0
forms the constant functions with value ( 0 ) and ( H)' Besides,

the Definition 2.11 of the polyextension map gives E(H1y) = H>™
and Ey(H1,) = H*>”. Thus, from the discussion above on the con-
sequences of the formulae of Proposition 8.1, for H in H; 4 and J in
Hy —, the Poisson transforms of the positive measures

= (5)-()) w0 ()

as well as the Poisson transform of the signed measure

- () ()

are the imaginary parts of meromorphic functions of ¢t in C \ Z, with
at most simple poles in the set ¥, U{—1, 1}, and which take real values
on R N\ Z,. By Proposition 13.3, Lemma 13.7 and Corollary 13.9, this
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tells us that, after maybe changing the normalization, we can assume
that there exists a Radon measure v with support in Z, such that

p=v+ Y 6+6 40

e,

If k£ is odd, the analogous arguments imply the same conclusion.

In both cases, it remains to compute the values of @, for ¢ in 3, U
{—1,1}, and of the bilinear forms valued measure w;dv(t).

We first compute the values on ¥,. As in (13.1), we will show that
they are related to the full exceptional spectral bilinear forms of Section
11. By the reasoning above and by Corollary 13.9, it suffices to compute
the residues of the meromorphic functions of Proposition 8.1 at their
poles in the set ¥,U{—1,1}. For example, assume that & is even. Take
H in Hj, . Again, Definition 2.11, Proposition 6.3 and Proposition 8.1
tell us that the Poisson transform of the positive measure

= ((5)-()

is the imaginary part of the function on Hi,

lg+1 wu _1
;Tl——u?p(H’ (qu + Sp)(u—5,)"" H),
where Su > 0 and ¢ + u? = (¢ + 1)tu. Note that the right hand-side
of the above is a meromorphic function of u, |u| > /g, with at most
simple poles on the spectral values of S,. Fix s in ¥, and let v be the
spectral value of S, with ¢+v* = (¢+1)sv and v > ,/g. By Proposition
7.16 and Lemma 13.10, the residue of the right hand-side of (13.15) at
v 18

lg+1 w

™ q 1—v2

(13.15) t

(q+1)* »°
1-— U2p

1
p(H, (qu+ Sp)ILH) = — (H, I H),

where, as in Subsection 11.1, II} stands for the projection of Hj onto

ker(S, — v) with null space (S, — v)Hj. The derivative of the function
ur—t = qul(u + 1) is the function u — t = q%“i;q. Therefore, by
Lemma 13.11, the residue at s of the right hand-side of (13.15), viewed

as a function of ¢, is
1 v»—ql(g+1)?* 22
g+1 v © ¢ 1- 2P

() = L4 —a
)t -

H,TI°H).
— 2P ILH)

By Corollary 13.9, we get
H H g+1v2—¢q )
w0 m (1) (1)) =




ADDITIVE REPRESENTATIONS 151

Take now J in Hj,_. Still by Definition 2.11, Proposition 6.3 and
Proposition 8.1, the Poisson transform of the positive measure

= () ()

is the imaginary part of the function on Hi,

(1317)  te %QZ(q +1) p(J, (w4 qS,)(u—S,) ).

q2_u2

By Proposition 7.9, Proposition 7.16 and Lemma 13.10, the residue at
v of the above, viewed as a function of u, is

L, , V2 v
—a'(g+1) qg_—vgp(‘L I1,.J),

so that by Corollary 13.9 and Lemma 13.11,

(13.18) @4 ((‘5) , (g)) = g+ 1);]2__1;22]9((], mmJ).

Finally, again by Definition 2.11, Proposition 6.3 and Proposition 8.1,
the Poisson transform of the signed measure

- ((2) ()

is the imaginary part of the function on Hi,

a+1
s

(13.19) t p(J, Sp(u — Sp) " H).

By Proposition 7.16 and Lemma 13.10, the residue at v of the above,
viewed as a function of wu, is

qg+1

vp(J, 1, H),

so that by Corollary 13.9 and Lemma 13.11,

(13.20) =, ((Ig ) , (3)) _ q_TUZp(J, MUH).

Recall that, by construction, the operators R, and &, are symmetric
with respect to the symmetric bilinear form w, on Hz. Therefore,
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Corollary 13.4, together with (13.16), (13.18) and (13.20), gives

3.
e () () -5
)-

vH

(-7n)
= () ()
= ((M)-(L0))) = - D=,

By comparing the latter with the formulae in Corollary 11.6, we get,
from Definition 11.8, @, = (¢ — 1)p>** as in the statement of the
Plancherel formula (13.1). The case where k is odd can be obtained by
analogous computations.

Now, we compute the values of w; and w_; which will be related to
the full special spectral bilinear forms of Section 12. To simplify, we
assume that k is even and we compute w;. We still let A be in Hy, +
and J be in H;, . By Proposition 7.9, the left hand-side of (13.15) and
(13.19) is holomorphic at u = ¢g. Thus, by Definition 2.11, Proposition
6.3, Proposition 8.1 and Lemma 13.7, we get

sy = (1)) = () ()0

Besides, the residue at ¢ of the right hand-side of (13.17), viewed as a
function of u, is
1 _
_%Q?)(q + Dp(J, (Sp + 1)(g — Sp) 1J>-
By the same arguments as above, we get

w22 = (7). (7)) = e Dl (8, e =507,

By comparing (13.21) and (13.22) with the formulae in Proposition
12.13 and the Definition 12.16 of the full special spectral quadratic
forms, and lastly, by using the uniqueness result in Proposition 13.3,

we get @y = 2(q+1) p% “* as required in (13.1). In the same way, one can

show that @) = (qH)p? ei‘ The case where k is odd can be dealt
with analogously.

So far, we have determined the behaviour of the Plancherel formula
(13.1) on the finite set ¥, U {—1,1}. To conclude, we will investigate
its behaviour on the critical interval Z,. As above, we assume for
example that k is even and we pick H in Hp 4 and J in Hy_. As
usual, for ¢ in H, write u for the unique solution of the equation g+u? =
(¢ + Dtu with Su > 0. Recall that we assume for the moment that
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neither /g nor —,/q is a spectral value of the simple transfer operator
Sp. Therefore, Lemma 3.6, Proposition 7.16 and our former residue
computations ensure that the function

1
(13.23) 1 L=
qg 1—-u

p(H, (qu + Sp)(u - Sp)_lH)

_(g-1) EZE e ((15) | (ﬁl))

is holomorphic on H and admits a holomorphic continuation in the
neighborhood of H. Besides this function goes to 0 as t goes to 0o, so
that it is bounded on H. As the imaginary part of this holomorphic
function is the Poisson transform of the positive measure

= (). (2)

by [1, Theorem 7.5], this measure is absolutely continuous with respect
to the Lebesgue measure and its density function is given by the imagi-
nary part of the continuous extension of the right hand-side of (13.23).
Since all the residue terms in this right hand-side are real, by the imag-
inary part computations in Lemma 13.6, this density function is the
function

1
s —
2

gl (> = S))(q— (g+ DtS, + 57) " H)\/4q — (q + 1)
on the interval Z,. Reasoning in the same way and using the meromor-
phic function in (13.17), one shows that the positive measure

= (0)- ()0

is absolutely continuous with respect to the Lebesgue measure with
density function

2
¢ 1 _
te 5Pl (= )= (g + DS, + S )V — (g + 1)
on Z,. Finally, the same arguments imply, by using the the meromor-

phic function in (13.19), that the signed measure

 (2)- ()

is absolutely continuous with respect to the Lebesgue measure with
density function

+1 -
te =L p( Sya — (a+ 1)tS, + SB) 7 H)VAg — (g + 17282
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on Z,. By Proposition 13.3, up to a change of normalization, we can

assume that v is the measure \/4q — (¢ + 1)2¢2d¢ on the interval Z, and
that the bilinear forms w,, t € Z,, satisfy the relations:

= ((5).(8)) - s
(13.24) w5 ((‘é) : <‘é)> = %ﬁp(i (1—-82)J,)

- (£) () o

where we have set
Hy=(q— (q+1)tS, + S2)'H and J; = (¢ — (¢ + D)tS, + S2) 7.

Let us show that these formulae allow to relate these bilinear forms to
the full spectral bilinear forms of Section 10. Take t to be an interior
point of Z, and choose a root u of the equation g + u? = (¢ + 1)tu. As
by construction, the operators R; and &, are symmetric with respect
to wy, we get from (13.24), by Corollary 13.4,

() (50 s
(13.25) 1w, ((—{u) : (_L)) = %u;ﬁ (7, (1= 5,)00)

() ()= s

where we used the relation
(" —u?)(u® — 1) = (¢ +1)*u*(1 — 7).

By comparing (13.25) with the formulae for the spectral bilinear form
Py in Proposition 9.18, the uniqueness result in Proposition 10.12 gives

1 . . . .
Wy = %ﬂp? as requlred. The same Computatlons work in case k is
T q—1

odd. O

13.7. Proof of the Plancherel formula in the general case. If
V/q or —,/q is a spectral value of the simple transfer operator S,, we
must modify the end of the argument of the preceding proof. Indeed,
holomorphic functions as the one in (13.23) do not admit an analytic
continuation to a neighborhood of H since they have a singularity at
at least one of the endpoints of the interval Z,. However, it will turn
out that these singularities are compensated by the vanishing at these
endpoints of the coefficient \/4g — (¢ + 1)%¢2 in (13.1).
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To show this precisely, we start by describing some model harmonic
functions.

Lemma 13.12. For z in H, let w be the unique element of H with
T(w+wt) =z and set F(z) = S(1 —w)~'. Then the harmonic
function F' is the Poisson transform of the function f :t — %ﬂ / % on
(—1,1], that is, for z = x + iy in H, we have

1 [t 1+t ydt
13.26 F(z)=— [ 4/ .
( ) (2) 27?/_1 1—t(x—t)2 +y2

Proof. As F is a non-negative harmonic function, by [1, Theorem 7.24],
there exists a positive Borel measure p on R with fR ii(t? < oo and
¢ > 0 such that, for z = = + ¢y in H, one has F(z) = Pu(z) + cy.

As F(z) — 0, one has ¢ = 0. Besides, one has F(z + iy) — 0
Z—+00 y—=

uniformly for x in a compact set of R~.[—1, 1], so that, by Lemma 13.7,
the measure p has support in [—1, 1]. A direct computation gives, that,
uniformly for ¢ in a compact set of [—1, 1), one has

1 [T+1¢
Flt+i YR
t+iy) o\ 1

Therefore, by Lemma 13.7, there exists d > 0 such that u =

% i—:’ilmgldt + dd;. Let G be the Poisson transform of the measure

% %1|t‘§1dt, so that G is given by the right hand-side of (13.26).

Then, G is a non-negative harmonic function and, for z in H, we have

(13.27) F(z) = G(z) + %% (1 L Z) |

We claim that d = 0, which implies the Lemma.
Indeed, fix s > 0 and set w =1+ s(1 4+ 4) and z = 3(w +w™'). On
one hand, we have

1 1
(13.28) F(z) =S (m) =35
On the other hand, we have
o SP(149)? 2is*
1+ s(1+1) 1+ s(1+1) 1+s(1+414)’

21—2)=1—s(14+14)—

hence

(13.29) %( ! ):HS.

1—2 52
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Now, as G > 0, (13.27), (13.28) and (13.29) give

i>§1+s‘
2s T m s2

Letting s go to 0 gives d = 0 as required. U

From this computation, we deduce a statement that will be directly
applicable to the proof of Theorem 13.1.

Corollary 13.13. Let v be a finite positive Borel measure on Z,. Let
F be the holomorphic function on H, with F(u) —— 0 such that, for
U—00
any u in H,, one has
Pu(t) = SF(u),

where t = qul(u—i— 4). Assume that F' admits a meromorphic extension
to a neighborhood of H, with at most simple poles with real residues at
V4 and —./q. Then the measure v is absolutely continuous with respect
to the Lebesgue measure, with density function

1 ,
t— SF(u) =QF (%t%— %\/4q— (g + 1)2t2)

on 1.

Proof. By assumption, there exist real numbers a and b and a holo-
morphic function G' on a neighborhood of H, such that, for any u in
H,, one has

a b

+ .
u—y/q u+t./q
As G admits a continuous extension to the boundary and G(u) — 0,
U—00

by [1, Theorem 7.5, the function ¢ — JG(u) on H is the Poisson
transform of its restriction to R, whereas, after a change of variable,
Lemma 13.13 implies that the functions

1 1
t— S and t — &
(u—\/&) <u+\/§>

are the Poisson transforms of their restrictions to the interior of Z,.
The conclusion follows. O

F(u) = G(u) +

Proof of Theorem 13.1 in the general case. The proof can be lead ex-
actly as in the case where /g and /—q are not eigenvalues of S,.
Indeed, Proposition 7.16 implies that /g and /—¢ are at most simple
roots of the minimal polynomial of S, and hence that we can apply
Corollary 13.13 to functions such as the one in (13.23). O
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