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Abstract. Building on [6] and [7], we continue to study unitary
representations of tree lattices. We prove a Plancherel formula for
representations obtained by orthogonal extension from a Euclidean
field. This allows us to compute the spectrum of natural operators
associated to these representations.
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1. Introduction

1.1. The spectral problem for unitary representaions of tree
lattices. We fix an integer q ≥ 2 and a homogeneous tree X of degree
q+1: in other words, every vertex of X has q+1 neighbours. We let Γ
be a cofinite lattice ofX, that is, Γ is a discrete group of automorphisms
of X and the quotient Γ\X is finite. The purpose of this article is to
develop a spectral theory for certain unitary representations of Γ.

Let us precise what kind of spectral theory we have in mind. Given
a vector space V equipped with an action of Γ, we let F(X, V )Γ denote
the space of all maps X → V which are Γ-equivariant. This space
comes with a natural linear operator Q associated to the geometry of
X. For f in F(X, V )Γ and x in X, we write

Qf(x) =
1

q + 1

∑
y∼x

f(y).

Assume V is equipped with a Hilbert space structure and the action
of Γ on V is unitary. Then, we can equip F(X, V )Γ with the natural
scalar product defined by, for f, g in F(X, V )Γ,

⟨f, g⟩ =
∑

x∈Γ\X

1

|Γx|
⟨f(x), g(x)⟩

(where, for x in X, Γx is the stabilizer of x in Γ). One easily checks that
the operator Q has norm ≤ 1 and that it is self-adjoint with respect
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to this scalar product. We are interested in understanding the spectral
invariants of this self-adjoint operator.

Example 1.1. Assume Γ is the free group generated by a finite set S with
|S| = r ≥ 2 and that X is the natural tree associated with this data (so
that q = 2r − 1). Let x be the vertex of X whose neighbours are the
sx and s−1x for s in S. Then, the map f 7→ f(x) is an isometry from
F(X, V )Γ onto V which conjugates the operator Q and the operator
v 7→ 1

2r

∑
s∈S(sv + s−1v) on V .

Example 1.2. Let V be ℓ2(Γ), equipped with the left regular repre-
sentation. In this case, elements of F(X, V )Γ can be thought of as
Γ-invariant functions f on Γ×X. The map f 7→ f(e, x) is an isometry
from F(X, V )Γ onto ℓ2(X). Then, we can see Q as the natural Markov
operator on X defined by

Qg(x) =
1

q + 1

∑
y∼x

g(y), g ∈ ℓ2(X), x ∈ X.

The spectrum of this operator was computed by Kesten [5]: this is the

interval [−2
√
q

q+1
,
2
√
q

q+1
]. We give a proof of this fact in Corollary 4.10.

According to our knowledge, very few examples are known, where
the spectral invariants of Q can be explicitely computed. The purpose
of this article is to provide a wide family of unitary representations
where such computations can be achieved.

1.2. Euclidean fields. In [6], we have introduced the notion of a k-
quadratic field, where k ≥ 2 is an integer. The vector space Fk of all
Γ-invariant k-quadratic fields has finite dimension. It can be thought
of as an analogue of a space of sections of a vector bundle over the
quotient space Γ\X1, where X1 is the set of oriented edges of X. There
is a natural surjective map

(1.1) Fk+1 → Fk, p 7→ p−

and the projective limit of the system (Fk)k≥2 may be identified with
the space of Γ-invariant symmetric bilinear forms on the space D(∂X),
where ∂X is the boundary of X, D(∂X) is the space of locally constant
functions on ∂X and D(∂X) is the quotient of the latter by constant
functions.

In Fk, there is a non empty convex open cone Pk whose elements are
called Γ-invariant k-Euclidean fields. This set comes with a natural
non linear map

Pk → Pk+1, p 7→ p+,
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which is called the orthogonal extension, and which plays the role of a
section of the map in (1.1). In other words, we have (p+)− = p for p in
Pk.

Starting from p in Pk, by iterating orthogonal extension, one ends
up with an element of the projective limit of the system (Fj)j≥k, which
turns out to be a Γ-invariant scalar product p∞ on the space D(∂X).
The completion of this space with respect to p∞ is denoted by Hp.
Thus, Hp is a unitary representations of Γ.

It is our hope that a very precise understanding of the spectral ques-
tions of Subsection 1.1 for these particular representations would lead
to a better knowledge of the general case, and in particular of the case
of certain representations appearing in probability theory and dynam-
ical systems.

In this article, we build a complete spectral theory that allows a
detailed description of the spectral invariants of Q in F(X,Hp)Γ. This
is achieved in Theorem 13.1 where we establish a Plancherel formula.
The elements of this formula will be built along the paper. It yields

Corollary 1.3. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and
Hp be the associated unitary representation of Γ. The spectrum of the

operator Q in F(X,Hp)Γ is Σp ∪ [−2
√
q

q+1
,
2
√
q

q+1
]. The associated spectral

measures are absolutely continuous on the interval [−2
√
q

q+1
,
2
√
q

q+1
].

The set Σp is a finite subset of (−1,−2
√
q

q+1
) ∪ (

2
√
q

q+1
, 1) which can be

empty in certain cases. It is defined precisely in (8.1) by means of the
spectral values of the simple transfer operator Sp, which is a linear en-
domorphism of a finite-dimensional vector space. The simple transfer
operator is an analogue of the quadratic transfer operator Tp that ap-
peared in [6]. The quadratic transfer operator Tp acted on the space
Lk−1 of Γ-invariant (k − 1)-pseudokernels, which is a space of func-
tions with two variables. The simple transfer operator will act on the
space Hk−1 of Γ-invariant (k − 1)-pseudofunctions, which is a space of
functions with one variable. This space will play a key role in all our
constructions.

1.3. The Ihara trace formula. Part of these constructions rely on
analogies with the case where the representation V of Γ is the trivial
representation. Then, the space F(X, V )Γ is simply the space H0 of
Γ-invariant functions on X. In that case, the spectrum of the operator
Q is related to the spectrum of an other operator, acting on the space
H1 of Γ-invariant functions on X1: in our study the role of the lat-
ter operator will be played by the simple transfer operator mentioned
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above. The relations between those two operators on H0 and H1 are
at the core of the Ihara trace formula [4]. To motivate the reader, we
will now briefly recall the proof of this formula.

We equip the space H1 with the operator T defined by

Tu(x, y) =
∑
z∼y
z ̸=x

u(y, z), u ∈ H1, x ∼ y ∈ X.

The original reason for studying this operator was that, for n ≥ 1, the
number 1

n
tr(T n) can be interpretated as a number of closed loops of

length n in the quotient graph Γ\X when this makes sense.
To relate the spectrum of Q, acting on H0, to the one of T , acting on

H1, we start by equipping these spaces with the natural scalar products
defined by, for a, b in H0 and u, v in H1,

⟨a, b⟩ =
∑

x∈Γ\X

1

|Γx|
a(x)b(x)

and ⟨u, v⟩ =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
u(x, y)v(x, y).

There are two natural embeddings L : H0 → H1 and R : H0 → H1

which may be defined by

La(x, y) = a(x) and Ra(x, y) = a(y), a ∈ H0, x ∼ y ∈ X.

With respect to the natural Euclidean structures, the adjoint operators
L† and R† may be defined by

L†u(x) =
∑
y∼x

u(x, y) and R†u(x) =
∑
y∼x

u(y, x), u ∈ H1, x ∈ X.

Let E be the orthogonal complement in H1 of the space LH0 + RH0.
It will turn out that both E and E⊥ are T -invariant.

Indeed, the space E is the space of all functions u on X1 wich satisfy,
for any x in X, ∑

y∼x

u(x, y) =
∑
y∼x

u(y, x) = 0.

In particular, for such a function, we have Tu(x, y) = −u(y, x) for any
x ∼ y in X. Thus, E is stable under T and the spectrum of T in E
is (at most) {−1, 1}. The dimensions of the associated eigenspaces are
combinatorial invariants of the action of Γ on X which may be related
to the cardinalities of the sets Γ\X and Γ\X1 when Γ is torsion free.
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Now, we analyse the action of T on E⊥ = LH0 + RH0. For a, b in

H0, set B

(
a
b

)
= La+Rb. A direct computation shows the relation

TB

(
a
b

)
= B

(
0 −1
q (q + 1)Q

)(
a
b

)
.

Note that, for t in R with (q+1)2t2 ̸= 4q, the eigenvalues of the matrix(
0 −1
q (q + 1)t

)
are the two roots of the equation q + u2 = (q + 1)tu.

For t =
2
√
q

q+1
(resp. t = −2

√
q

q+1
), the matrix is not diagonalizable and

its eigenvalue is
√
q (resp. −√

q). Thus, the spectrum of the operator(
0 −1
q (q + 1)Q

)
, acting on H2

0, is the set of all roots of the equation

q+ u2 = (q+1)tu, where t runs among the eigenvalues of Q, acting on
H0.

To conclude, we need to analyse the null space of the linear map
B. Say that a function u on X is constant on neighbours if, for every
x, y, z in X with x ∼ y and x ∼ z, we have u(y) = u(z). If u is such
a function, let Iu be the function on X whose value on x in X is the
value of u on the neighbours of x: again, Iu is constant on neighbours.
Write H−1 for the space of Γ-invariant functions that are constant on
neighbours. Then, the null space of B is the space{(

u
−Iu

)∣∣∣∣u ∈ H−1

}
⊂ H2

0.

Let us describe H−1 more precisely. There are two cases, depending
on whether the action of Γ on X is bipartite or not: we say that the
action of Γ on X is bipartite if, for some (equivalently any) x in X,
all the integral numbers d(x, γx), γ ∈ Γ, are even. If the action of Γ
on X is not bipartite, the space H−1 is reduced to constant functions.
If the action of Γ on X is bipartite, the space H−1 has dimension 2.
Depending on the case, the spectrum of Q in H−1 is either {1} or
{−1, 1}. Besides, an application of the maximum principle shows that
all the eigenvalues of Q in H0/H−1 are contained in (−1, 1).

Summarizing this discussion, we can relate the spectra of Q and T
as follows.

Theorem 1.4 (Ihara [4]). The eigenspace of T associated to 1 (resp.
−1) is the space of all skew symmetric (resp. symmetric) functions u
on X1 with

∑
y∼x u(x, y) = 0 for any x in X. The operator T admits

q as an eigenvalue with multiplicity 1. The associated eigenline is the
space of constant functions. If the action of Γ on X is bipartite, the
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operator T admits −q as an eigenvalue with multiplicity 1. The other
eigenvalues of T are the roots of the equation q + u2 = (q + 1)tu where
t runs among the eigenvalues of P in (−1, 1). For each such t and
u, the dimension of the eigenspace of T associated to u is equal to the
dimension of the eigenspace of P associated to t. If (q+1)2t2 ̸= 4q, then
u is a simple eigenvalue of T . If (q+1)2t2 = 4q, the characteristic space
associated to u has dimension twice the dimension of the eigenspace.

In a finite-dimensional vector space, an eigenvalue of a linear oper-
ator is said to be simple if the associated eigenspace is equal to the
associated characteristic subspace; in other words, the dimension of
the eigenspace is equal to the multiplicity of the eigenvalue as a root
of the characteristic polynomial.

The spaces H−1, H0 and H1 will play a role in this article. More gen-
erally, we will handle a sequence of finite-dimensional spaces (Hk)k≥−1.
For k ≥ −1, the elements ofHk will be called Γ-invariant k-pseudofunc-
tions. The space Hk will be equipped with an automorphism H 7→ H∨

and an embedding H 7→ H> into Hk+1. The embeddings L and R will
be respectively written as H 7→ H> and H 7→ H∨>∨.
The construction of the objects that appear in the Plancherel formula

of Theorem 13.1 will use the action of the matrix

(
0 −1
q (q + 1)t

)
on the

space H2
k, for t in [−2

√
q

q+1
,
2
√
q

q+1
] ∪ Σp.

1.4. Structure of the article. References to [6] and to [7] are indi-
cated with I and II.

In Section 2, we introduce the language of pseudofunctions. The
spectral problem of Subsection 1.1 was set by means of the space
F(X,Hp)Γ of Γ-equivariant maps X → Hp, where, as in Subsection
1.2, Hp is the completion of D(∂X) with respect to the scalar product
associated to a Euclidean field p. It will actually be more convenient
to use instead the space F(X1, H

p)Γ of Γ-equivariant maps X1 → Hp.
Pseudofunctions are truncated maps X1 → D(∂X) in the same way as
the pseudokernels of [6] and [7] could be thought of as truncated maps
X1 → D(∂2X). The space of all Γ-equivariant maps X1 → D(∂X)
will be denoted by H∞. For any k ≥ −1, we introduce the notion
of a k-pseudofunction. The boundary cases k ∈ {−1, 0, 1} are related
to the objects appearing in the proof of Theorem 1.4. The space of
all Γ-invariant k-pseudofunctions is denoted by Hk: this is a finite-
dimensional vector space with a natural embedding in the space H∞.
We define operations on pseudofunctions in analogy with the operations
on pseudokernels appearing in Section II.2. We use these operations
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to define the polyextension map Ek : H(N)
k → H∞, where H(N)

k is the
space of finitely supported sequences of elements of Hk. The range of
the polyextension map is the span in H∞ of the image of Hk by the
natural operators associated to the geometry of the tree. The polyex-
tension map allows to encode the action of these operators by operators
acting on sequences of real numbers, which we call the model opera-
tors. Model operators appear implicitely in the study of the harmonic
analysis on X and X1 in [3]. The polyextension map is not injective
but its null space may be determined in an explicit manner.

In the next three Sections, we study the model operators.
In Section 3, we collect independent facts from algebra and harmonic

analysis that will be used throughout the article in the construction of
spectral transforms and spectral formulas.

In the parallel Sections 4 and 5, we study the model operators. In-
deed, as for pseudokernels in Section I.8, the definition of a k-pseud-
ofunction depends on the parity of the integer k ≥ −1. So do the
definitions of the model operators. Section 4 is devoted to the study of
the even model operators whereas Section 5 is devoted to the study of
the odd model operators. In both cases, we define spectral transforms
which are isomorphisms from R(N) onto the space R2[t] of polynomial
functions with values in R2. The spectral transforms conjugate the
model operators with actions on R2[t] of 2 by 2 matrices with coef-
ficients in R[t]. By computing the resolvent of certain operators, we
determine their spectral measures in order to state a Plancherel for-
mula for the spectral transforms. These computations will serve as a
model for the statement of the Plancherel formula for Euclidean fields.

In Section 6, we use the study of the model operators on scalar
sequences to define the spectral transform of sequences of pseudo-
functions. For k ≥ 0, the spectral transform is a linear isomorphism

H(N)
k

∼−→ H2
k[t], from the set of finitely supported sequences of elements

of Hk onto the space of polynomial functions with values in H2
k. Its

definition relies on the constructions of the previous sections. We de-
scribe the image under the spectral transform of the null space of the

polyextension map Ek in H(N)
k by means of the action of the matrix(

0 −1
q (q + 1)t

)
of Subsection 1.3 on the space H2

k−1[t]. The computa-

tions of this Section rely on the use of the dual space Sk of the space
Hk, which is called the space of k-simple pseudofields by analogy with
the space of k-quadratic pseudofields of Section I.10.

Now that we have built a spectral transform, we aim at proving the
Plancherel formula in Theorem 13.1.
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In Section 7, we introduce the simple transfer operator Sp, by analogy
with the quadratic transfer operator of Section I.10. For k ≥ 2, if p is
a Γ-invariant k-Euclidean field, the quadratic transfer operator Tp was
an endomorphism of the space Lk−1 of (k−1)-pseudokernels. Now, the
simple transfer operator Sp is an endomorphism of the space Hk−1 of
(k−1)-pseudofunctions. We give informations on the spectral structure
of Sp.

In Section 8, we give a formula for the resolvent of a certain self-
adjoint operator on F(X1, H

p)Γ. This formula relates the resolvent
with the meromorphic function u 7→ (u − Sp)

−1 with values in the
space of endomorphisms of the finite-dimensional vector space Hk−1.

We aim at using this resolvent formula to describe the spectral mea-
sures of this operator. To better understand the formula, we will pro-
ceed to new algebraic constructions.

In Section 9, we study u-radical simple pseudofields. For u ∈ C∗,
the notion of a u-radical simple pseudofields is defined by analogy with
the notion of a radical quadratic pseudofield in Section II.3 and that of
a q-radical quadratic pseudofield in Section II.6. For k ≥ 0, the space
Su
k,C of Γ-invariant u-radical k-simple pseudofields is a subspace of the

space Sk,C of complex Γ-invariant k-simple pseudofields, which is the
complexification of Sk. Given k ≥ 2 and a Γ-invariant k-Euclidean field
p, we associate to p a natural complex symmetric bilinear form p∗u on
Su
k,C.
In Section 10, we study t-radical pairs of simple pseudofields. For

t in C, the notion of a t-radical pair of simple pseudofields is de-
fined as above, but the complex number u is replaced by the matrix(

0 q
−1 (q + 1)t

)
. For k ≥ 0, the space S2,t

k,C of Γ-invariant t-radical

pairs of k-simple pseudofields is a subspace of S2
k,C. For (q+1)2t2 ̸= 4q,

by diagonalizing the matrix, one gets an identification of S2,t
k,C with

Su
k,C ⊕S

q
u
k,C where u is a root of the equation q+ u2 = (q+1)tu. When

k ≥ 2 and p is a Γ-invariant k-Euclidean field, we use this structure and
the previous construction of p∗u to define a complex symmetric bilinear

form p2,∗t on S2,t
k,C. When t belongs to the critical interval (−2

√
q

q+1
,
2
√
q

q+1
),

the bilinear form p2,∗t is real and positive definite on S2,t
k . The dual

object is a non-negative symmetric bilinear form p2t on H2
k whose null

space is exactly the image of the null space of the polyextension map
Ek of Section 2 by the evaluation at t of the spectral transform of Sec-
tion 6. We call p2t the spectral bilinear form associated to t. It will

allow to write the Plancherel formula on the interval (−2
√
q

q+1
,
2
√
q

q+1
).
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In Section 11, we introduce the objects that will allow to write the
Plancherel formula at the points of the set Σp of Subsection 1.2, which
we call the exceptional spectrum. Exceptional spectral values are real
numbers t for which one of the roots of the equation

q + u2 = (q + 1)tu

belongs to (−q,−√
q)∪(

√
q, q) and is an eigenvalue of the simple trans-

fer operator Sp. The study of the spectrum of Sp in Section 7 and that
of the notion of a t-radical pair of simple pseudofields in Section 10 al-
low to associate to t in Σp a non-negative symmetric bilinear form p2,ext

on H2
k. We call p2,ext the exceptional spectral bilinear form associated

to t.
In Section 12, we handle the remaining two points of the spectrum,

which are −1 and 1. Those two points do not appear in Corollary 1.3
which only deals with harmonic analysis in the space of Γ-equivariant
functions X → Hp. When studying instead Γ-equivariant functions
X1 → Hp, these two spectral values appear in the computations. The
same phenomenon happens in the spectral decompositions of the action
of the full group of automorphisms G of X on the spaces ℓ2(X) and
ℓ2(X1) in [3]. It is then related to the construction of the special unitary
representations of G. It also takes place in the Ihara trace formula,
Theorem 1.4, through the study of the space that was denote by E
in Subsection 1.3. In our case, in analogy with the notion of a skew
quadratic field in II.6, we define the notions of a skew field and of
a reverse skew field. The space G1

k of Γ-invariant k-skew fields is a

subspace of S1
k ; the space G(−1)

k of Γ-invariant reverse k-skew fields is

a subspace of S(−1)
k . If k ≥ 2 and p is a Γ-invariant k-Euclidean field,

we can associate to p scalar products psp,∗1 and psp,∗(−1) on G1
k and G(−1)

k .

This construction is a direct translation for k-skew fields and reverse
k-skew fields of the construction of the skew weight metric on k-skew
quadratic fields in Section II.7. From psp,∗1 and psp,∗(−1), we build non-

negative symmetric bilinear forms p2,sp1 and p2,sp(−1) on H2
k, which we call

the special spectral bilinear forms associated to 1 and −1.
In the final Section 13, we gather the previous constructions and

results to state the Plancherel formula. For k ≥ 2 and p a Γ-invariant
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k-Euclidean field, we write this formula as

p∞(EkH,EkJ) =
q + 1

2π(q − 1)

∫ 2
√

q

q+1

− 2
√
q

q+1

p2t (Ĥ(t), Ĵ(t))
√

4q − (q + 1)2t2dt

+ (q − 1)
∑
t∈Σp

p2,ext (Ĥ(t), Ĵ(t)) +
q − 1

2(q + 1)
p2,sp1 (Ĥ(1), Ĵ(1))

+
q − 1

2(q + 1)
p2,sp(−1)(Ĥ(−1), Ĵ(−1)),

where H and J are in H(N)
k . We prove this formula by comparing the

boundary values of the resolvent function constructed in Section 8 with
the formulas established in Section 10 for the spectral bilinear forms,
in Section 11 for the exceptional spectral bilinear forms and in Section
12 for the special spectral bilinear forms.

1.5. Notation. We use the general notation introduced in Subsection
I.1.8 and Subsection I.2.1. In particular, we have d(x) = q + 1 for any
x in X.

If E is a set, we let EN be the set of sequences of elements of E.
If V is a vector space, we write V (N) ⊂ V N for the set of finitely

supported sequences, that is, sequences (xi)i≥0 such that xi = 0 for all
large enough i. For v in V and i ≥ 0, we let v1i be the sequence in
V (N) all of whose coefficients are 0, except the i-th one which is equal
to v.

We will often write elements u of V 2 as column matrices u =

(
v
w

)
,

where v and w are in V . In this case, we write u∗ =
(
v w

)
for the

associate line matrix.
Let V be a real vector space. We write VC for the complexification

of V , that is, VC = C⊗ V . One has a natural embedding V ⊂ VC and
VC may be written as VC = V ⊕ iV . We then write v 7→ v for the
natural complex conjugation in VC, so that, for v in V , one has v = v
and iv = −iv

Any object defined in terms of real linear algebra on real vector
spaces defines an analoguous complexified object on complexified spa-
ces: we usually denote the two objects by the same letters. For exam-
ple, if T : V → V is a real linear map, we still write T : VC → VC for
the complex linear map defined by T (v+ iw) = Tv+ iTw for v, w in V .
In particular, we adopt the following convention: if p is a symmetric
bilinear form on V , then p also stands for the complex bilinear form
on VC whose restriction to V is p. Thus, the natural Hermitian form
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on VC associated to p is defined as p̃ : (v, w) 7→ p(v, w), VC × VC → C.
Then, p is positive definite as a real bilinear form on V if and only if p̃
is positive definite as a Hermitian form on VC.

The space of polynomial functions R → V is denoted by V [t].

2. Pseudofunctions

We introduce a family (Hk)k≥−1 of vector spaces which will serve to
define the spectral invariants associated to a Euclidean field. In case
k = −1, 0, 1, these spaces are essentially the same as the ones used in
the proof of the Ihara trace formula, Theorem 1.4.

2.1. Pseudofunctions and the special cases k = −1, 0, 1. We start
by defining k-pseudofunctions for k ≥ 1. Recall that, for x in X and
ℓ ≥ 0, we write Sℓ(x) for the sphere with radius ℓ and center x and

V
ℓ
(x) for the quotient of the space of real valued functions on Sℓ(x) by

the constant functions. In the same way, for x ∼ y in X, we set

Sℓ(xy) = {z ∈ X|min(d(x, z), d(y, z)) = ℓ}

and we let V
ℓ
(xy) be the quotient of the space of real valued functions

on Sℓ(xy) by the constant functions.

Definition 2.1. Let k ≥ 1. If k is even, k = 2ℓ, ℓ ≥ 1, a k-
pseudofunction is a family (Hxy)(x,y)∈X1 where, for any x ∼ y in X,

Hxy is an element of V
ℓ
(x). If k is odd, k = 2ℓ + 1, ℓ ≥ 0, a k-

pseudofunction is a family (Hxy)(x,y)∈X1 where, for any x ∼ y in X,

Hxy is an element of V
ℓ
(xy).

The finite dimensional vector space of Γ-invariant k-pseudofunctions
is denoted by Hk.

In case k = 1, for x ∼ y in X, the space V
0
(xy) has dimension 1.

Therefore, if H is a 1-pseudofunction, we can write Hxy = u(xy)1y,
x ∼ y ∈ X, for some uniquely defined function u on X1. In the
sequel, we shall use this convention to identify 1-pseudofunctions with
functions on X1. In particular, as in Subsection 1.3, the space H1 will
also be seen as the space of Γ-invariant functions on X1.

Following this identification, let us define 0-pseudofunctions and
(−1)-pseudofunctions.

By convention, we say that a 0-pseudofunction is a pair (0, u), where
u is a function on X and we write H0 for the space of Γ-invariant
0-pseudofunctions.

As in Subsection 1.3, we will say that a function u on X is constant
on neighbours if, for any x in X and for any neighbours y, z of X,
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one has u(y) = u(z). The space of functions that are constant on
neighbours has dimension 2. The space of Γ-invariant functions that
are constant on neighbours has dimension 1 or 2. The action of Γ
on X (or if this makes sense, the associated quotient graph) is called
bipartite in case this dimension is 2. There is a natural involution on
the space of functions on X that are constant on neighbours: if u is
such a function, we define the opposite of u as the function whose value
on x in X is the value of u on neighbours of x.

Again by convention, a (−1)-pseudofunction is a pair (−1, u), where
u is a function on X that is constant on neighbours and we write H−1

for the space of Γ-invariant (−1)-pseudofunctions.

Remark 2.2. We have slightly changed the definitions of H0 and H−1

with respect to the ones used in Subsection 1.3. The reason for these
formal modifications will be clear in the next Subsection.

2.2. Operations on pseudofunctions. We define natural algebraic
operations on pseudofunctions which are analogues of the ones defined
on pseudokernels in Section II.2.1.

Definition 2.3. Let k ≥ 1 and H be a k-pseudofunction.
If k is even, for any x ∼ y in X, we set H∨

xy =
∑

z∼x
z ̸=y

Hxz. We call

H∨ the reversal of H. The map H 7→ H∨ is a linear automorphism of
the space of k-pseudofunctions.

If k is odd, for any x ∼ y in X, we set H∨
xy = Hyx. We call H∨ the

inversion of H. The map H 7→ H∨ map is an involution of the space
of k-pseudofunctions.

Note that, if k = 1, and H is the 1-pseudofunction associated to
the function u on X1, then H∨ is the 1-pseudofunction associated to
the function (x, y) 7→ −u(yx) on X1. By convention, if k = 0 and
H is the 0-pseudofunction associated to the function u on X, we set
H∨ to be the 0-pseudofunction associated to the function x 7→ −u(x)
on X. If k = −1 and H is the (−1)-pseudofunction associated to the
function u on X that is constant on neighbours, we set H∨ to be the
(−1)-pseudofunction associated to the function −v on X, where v is
the opposite of u. These choices will be justified by Lemma 2.6 below.

If k ≥ −1 is odd, the inversion is an involution of Hk and we will
use the notation

Hk,+ = {H ∈ Hk|H∨ = H} and Hk,− = {H ∈ Hk|H∨ = −H}.
In particular, we have Hk = Hk,+ ⊕ Hk,−. If k is even (and ≥ 2),
the reversal is not an involution, but a direct computation gives (see
Lemma II.6.15):
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Lemma 2.4. Let k ≥ 0 be even and H be a k-pseudofunction. We
have H∨∨ = qH + (q − 1)H∨.

In other words, if k ≥ 0 is even, the endomorphism H 7→ H∨ of Hk

is diagonalizable, with eigenvalues q and −1. We then set

Hk,+ = {H ∈ Hk|H∨ = qH} and Hk,− = {H ∈ Hk|H∨ = −H}.
We still have Hk = Hk,+ ⊕Hk,−.

Let us now define extensions of pseudofunctions. For x ∼ y in X,
we use the notation of Subsection I.4.2 for the natural injections:

Iℓxy : V
ℓ
(xy) → V

ℓ+1
(x), ℓ ≥ 0,

J ℓ
xy : V

ℓ
(x) → V

ℓ
(xy), ℓ ≥ 1.

Definition 2.5. Let k ≥ 1 and H be a k-pseudofunction. We define
the direct extension H> of H, which is a (k + 1)-pseudofunction, as
follows.

If k is odd, k = 2ℓ+1, ℓ ≥ 0, for any x ∼ y inX, we setH>
xy = IℓxyHxy.

If k is even, k = 2ℓ, ℓ ≥ 1, for any x ∼ y in X, we set H>
xy = J ℓ

xyHxy.
Direct extension is a linear embedding from the space of k-pseudo-

functions into the space of (k + 1)-pseudofunctions.

By convention, if k = 0 and H is the 0-pseudofunction associated to
the function u on X, we set H> to be the 1-pseudofunction associated
to the function (x, y) 7→ u(x) on X1. If k = −1 and H is the (−1)-
pseudofunction associated to the function u on X, we set H> to be the
0-pseudofunction associated to the function u on X.

By analogy with the case of pseudokernels (see Lemma II.2.3), if H
is a pseudofunction, we will sometimes write H+ instead of H>∨ and
call it the orthogonal extension of H.

As for pseudokernels, we have a commutation property.

Lemma 2.6. Let k ≥ −1 and H be a k-pseudofunction. We have
L∨>> = L>>∨.

Proof. In case k ≥ 1, this is proved as in Lemma II.2.4. Let us prove
the cases where k = 0 and k = −1. This will justify our conventions.

If k = 0, assume that H is the 0-pseudofunction associated with
the function u on X. Then, we need to prove that H>>∨ = −H>>.

Indeed, for every x ∼ y in X, we have H>
xy = u(x)1y (in V

0
(xy)), hence

H>>
xy = u(x)1y (in V

1
(x)). We get

H>>∨
xy = u(x)

∑
z∼x
z ̸=y

1z = −u(x)1y = −H>>
xy ,
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which should be proved.
If k = −1, assume that H is the (−1)-pseudofunction associated

with the function u on X, where u is constant on neighbours. Let v
be the opposite of u. Then, on one hand, H>> is the 1-pseudofunction
associated with the function (x, y) 7→ u(x) on X1, hence H

>>∨ is as-
sociated with the function (x, y) 7→ −u(y). On the other hand, H∨ is
the (−1)-pseudofunction associated with the function −v on X, hence
H∨>> is associated with the function (x, y) 7→ −v(x). The conclusion
follows since by definition, for (x, y) in X1, one has u(y) = v(x). □

We will later need to know that the eigenspaces of the ∨ operator
are not reduced to {0}.
Corollary 2.7. For k ≥ −1, one has Hk,− ̸= {0}. If k is large enough,
one has Hk,+ ̸= {0}.
Proof. Let H−1 and H0 = H>

−1 be respectively the (−1)-pseudofunction
and the 0-pseudofunction associated with the constant function with
value 1 on X. By construction, one has H∨

−1 = −H−1 and H∨
0 = −H0.

For k ≥ 1, define by induction a k-pseudofunction Hk by setting Hk =
H>

k−1. By Lemma 2.6, we get H∨
k = −Hk for any k ≥ −1, hence

Hk,− ̸= {0}.
Let us now show that we have Hk,+ ̸= {0} if k is large enough.
Assume that k is even, k = 2ℓ, ℓ ≥ 1. Let S ⊂ X be a system

of representatives for the action of Γ: thus, we have ΓS = X and
Γx ∩ S = {x} for x in S. Then, an element H in Hk,+ may be seen
as a family (Hx)x∈S, where, for x in S, Hx is a Γx-invariant element of

V
ℓ
(x). Fix x in S. If ℓ is large enough, the finite group Γx has more

than one orbit in the sphere Sℓ(x). Therefore, the space V
ℓ
(x) contains

a non zero Γx-invariant element. We get Hk,+ ̸= {0}.
Assume that k is odd, k = 2ℓ + 1, ℓ ≥ 0. Let Y be the set of non

ordered pairs {x, y} with x, y in X and x ∼ y. The set Y may be
seen as the quotient of X1 by the natural involution (x, y) 7→ (y, x).
For {x, y} in Y , we let Γ{x,y} be the stabilizer of {x, y} in Γ. Let now
S ⊂ Y be a system of representatives for the action of Γ. An element
H in Hk,+ may be seen as a family (H{x,y}){x,y}∈S, where, for {x, y} in

S, H{x,y} is a Γ{x,y}-invariant element of V
ℓ
(xy). Fix {x, y} in S. As

above, if ℓ is large enough, the finite group Γ{x,y} has more than one
orbit in the sphere Sℓ(xy). Again, this implies Hk,+ ̸= {0}. □

Let us now state an analogue of Lemma II.2.5.

Lemma 2.8. Let k ≥ −1 and G,H be k-pseudofunctions. Assume
that we have G> = H>∨.
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If k ≥ 0, there exists a (k− 1)-pseudofunction F with G = F∨> and
H = F>.

If k = −1, we have G+H = 0.

Proof. The cases k = 0,−1 directly follow from the definitions.
Assume k = 1. Let u and v be the functions on X1 associated with

G and H. For x ∼ y in X, we have, in V
1
(x),

u(xy)1y = I0xyGxy =
∑
z∼x
z ̸=y

I0xzHxz =
∑
z∼x
z ̸=y

v(xz)1z.

As 1y = −
∑

z∼x
z ̸=y

1z, this gives∑
z∼x
z ̸=y

(v(xz) + u(xy))1z = 0.

Thus, for any y, z ∼ x, y ̸= z, we have v(xz) + u(xy) = 0. As q ≥ 2,
there exists a function w on X such that, for any x ∼ y in X, one has
v(xy) = w(x) = −u(xy). The conclusion follows by our conventions on
0-pseudofunctions.

Assume k is even, k = 2ℓ, ℓ ≥ 1. For x ∼ y in X, we have, in V
ℓ
(xy),

J ℓ
xyGxy = J ℓ

yxHyx.

In particular, for every z in Sℓ−1(x) with y /∈ [xz], the function Gxy ∈
V

ℓ
(x) is constant on the set

{w ∈ Sℓ(x)|z ∈ [xw]},

that is, we may write Gxy = Iℓ−1
xy Fyx where Fyx is in V

ℓ−1
(xy). In other

words, we have G = F∨>. As G> = H>∨, we get, by using Lemma 2.6,
H>∨ = F∨>> = F>>∨, hence H = F>.
The proof in the odd case is analogous. □

2.3. The polyextension map. The spaces Hk, k ≥ −1, are embed-
ded into each other through the direct extension map. We will now
study their direct limit and encode some elements of this direct limit
by sequences of pseudofunctions.

We shall say that a ∞-pseudofunction is any map X1 → D(∂X).
The space of Γ-invariant ∞-pseudofunctions is denoted by H∞. Recall
from Subsections I.4.4 and I.7.3 that we have defined natural operators

N ℓ
x : V

ℓ
(x) ↪→ D(∂X) x ∈ X, ℓ ≥ 1

and N ℓ
xy : V

ℓ
(xy) ↪→ D(∂X) x ∼ y ∈ X, ℓ ≥ 0.
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For k ≥ 1, if H is a k-pseudofunction, we set H>∞
to be the ∞-

pseudofunction defined by, for x ∼ y in X,

H>∞

xy = N ℓ
xHxy k = 2ℓ, ℓ ≥ 1

H>∞

xy = N ℓ
xyHxy k = 2ℓ+ 1, ℓ ≥ 0.

One easily checks that one has

(2.1) (H>)>
∞
= H>∞

.

Thus, one can extend the construction in case k = 0 or k = −1 by
using (2.1) as a definition.

Let i ≥ 0, k ≥ −1 and H be a k-pseudofunction. We denote by H>i

and H+i
the (k + i)-pseudofunctions obtained from H respectively by

i sucessive direct extensions and by i successive orthogonal extensions.
Note that, by Lemma 2.6, we have

(2.2) H+i>> = H>>+i

.

This formalism allows us to compare the different notions of extension
through the following generalization of Lemma 2.8.

Proposition 2.9. Let k ≥ 0 and (Hi)i≥0 be a sequence of k-pseudofunc-
tions with Hi = 0 for i large enough. Set

H =
∑
i≥0

H+i>∞

i

Then H = 0 if and only if there exists a sequence (Gi)i≥0 of (k − 1)-
pseudofunctions with Gi = 0 for i large enough such that

H0 = G∨>∨
1 +G∨>

0(2.3)

Hi = G∨>∨
i+1 −G>

i−1 i ≥ 1.

The proof uses the following consequence of Lemma 2.8.

Lemma 2.10. Let i ≥ 1, k ≥ 0 and H be a k-pseudofunction. Assume
that there exists a (k+ i− 1)-pseudofunction G with H+i

= G>. Then,

there exists a (k−1)-pseudofunction F with H = F> and G = F∨+i−1>.

Proof. We show the result by induction on i ≥ 1. If i = 1, this is
Lemma 2.8. Assume i ≥ 2 and the result holds for i − 1. By Lemma
2.8, there exists a (k + i − 2)-pseudofunction G1 with H+i−1

= G>
1

and G = G∨>
1 . The induction assumption says that there exists a

(k − 1)-pseudofunction F with H = F> and G1 = F∨+i−2>. We get

G = F∨+i−2>∨> = F∨+i−1> and the conclusion follows. □
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Proof of Proposition 2.9. Assume that (2.3) holds. Then, a direct com-
putation gives

H = G∨+>∞

1 +G∨>∞

0 +
∑
i≥1

G∨+i+1>∞

i+1 −G>+i>∞

i−1

=
∑
i≥0

G∨+i>∞

i −G>+i+1>∞

i .

For i ≥ 0, Lemma 2.6, (2.1) and (2.2) give

G∨+i>∞

i −G>+i+1>∞

i = (G∨+i>>
i −G>+i+1

i )>
∞
= (G>>∨+i

i −G>+i+1

i )>
∞

= 0.

We get H = 0 as required.
Conversely, we may assume that there exists i withHi ̸= 0. Then, we

set j = max{i ≥ 0|Hi ̸= 0} and we prove the statement by induction
on j. If j = 0, there is nothing to prove. If j = 1, this is Lemma
2.8. Thus, we assume j ≥ 2 and the statement holds for j − 1. By
assumption, we have the following equality of (k+ j)-pseudofunctions:

−H+j

j =

j−1∑
i=0

H+i>j−i

i =

(
j−1∑
i=0

H+i>j−i−1

i

)>

.

Lemma 2.10 tells us that we can find a (k − 1)-pseudofunction A with
Hj = A> and

(2.4)

j−1∑
i=0

H+i>j−i−1

+ A∨+j−1> = 0.

We define a new sequence (Ji)i≥0 of k-pseudofunctions by setting

Ji = Hi 0 ≤ i ≤ j − 3

Jj−2 = Hj−2 + A∨>∨

Jj−1 = Hj−1

Ji = 0 i ≥ j.

We want to apply the induction assumption to this new sequence. In-
deed, we compute

j−1∑
i=0

J+i>j−1−i

i =

j−1∑
i=0

H+i>j−1−i

i + A∨>∨+j−2> = 0,
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where the last equality follows from (2.4). Thus, the induction assump-
tion tells us that there exists a sequence (Fi)i≥0 of (k− 1)-pseudofunc-
tions, with finitely many non zero terms, such that

J0 = F∨>∨
1 + F∨>

0(2.5)

and Ji = F∨>∨
i+1 − F>

i−1, i ≥ 1.

We set Gi = Fi for i ̸= j − 1 and Gj−1 = Fj−1 − A. One easily
checks that (2.3) holds. Indeed, for i /∈ {j − 2, j}, it is equivalent to
(2.5) since Hi = Ji. For i = j − 2, it also follows from (2.5) since
Hj−2 − Jj−2 = −A∨>∨ = (Gj−1 − Fj−1)

∨>∨. Finally, for i = j, (2.5)
gives F∨>∨

j+1 −F>
j−1 = 0, hence G∨>∨

j+1 −G>
j−1 = A> = Hj as required. □

This result leads us to define two natural linear maps.

Definition 2.11. Let k ≥ 0. For (Hi)i≥0 in H(N)
k , we set

Ek(Hi)i≥0 =
∑
i≥0

H+i>∞

i ∈ H∞.

We call the linear map Ek : H(N)
k → H∞ the k-polyextension map.

Definition 2.12. Let k ≥ 0. For (Gi)i≥0 in H(N)
k−1, we set Dk(Gi)i≥0 ∈

H(N)
k to be the sequence (Hi)i≥0 given by (2.3). We call the linear map

Dk : H(N)
k−1 → H(N)

k the k-default map.

2.4. Injectivity of the default map. To complete the preceding pic-
ture, we will show that the default map Dk is injective. More generally,
we have

Proposition 2.13. Let k ≥ −1 and (Gi)i≥0 be a sequence of k-pseud-
ofunctions. Assume that we have

G∨>∨
1 = −G∨>

0(2.6)

G∨>∨
i+1 = G>

i−1 i ≥ 1.(2.7)

Then, if k is odd, there exists a (−1)-pseudofunction J such that, for
any i ≥ 0, one has

(2.8) G2i = G2i+1 = (−1)iJ∨i>k+1

.

If k is even, there exists a (−1)-pseudofunction J such that, for any
i ≥ 0, one has

(2.9) G2i = (−1)iJ∨i+1>k+1

and G2i+1 = (−1)i+1J∨i>k+1

.

Conversely, in both cases, if (Gi)i≥0 is of the form in (2.8) or (2.9),
then (2.6) and (2.7) hold.
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Proof. First we check that the condition is sufficient. Let J be a (−1)-
pseudofunction.

Assume k is odd and (2.8) holds. Then, we have G0 = G1 = J>k+1
.

Hence, by Lemma 2.6, G∨>
0 = G∨>

1 = J∨>k+2
and, as the ∨-operator is

(−1) on 0-pseudofunctions,

G∨>∨
1 = J∨>k+2∨ = J∨>∨>k+1

= −J∨>k+2

= −G∨>
0 .

By the same arguments, for i ≥ 1,

G∨>∨
2i −G>

2i−2 = G∨>∨
2i+1−G>

2i−1 = (−1)iJ∨i>k+1∨>∨− (−1)i−1J∨i−1>k+2

= (−1)i+1J∨i+1>k+2 − (−1)i−1J∨i−1>k+2

= 0,

which should be proved.
Assume k is even and (2.9) holds. On one hand, we have

G∨>∨
1 +G∨>

0 = −J>k+1∨>∨ + J∨>k+1∨> = J∨>k+2 − J∨>k+2

= 0.

On the other hand, for i ≥ 1,

G∨>∨
2i+1 −G>

2i−1 = (−1)i+1J∨i>k+1∨>∨ − (−1)iJ∨i−1>k+2

= (−1)i+2J∨i+1>k+2 − (−1)iJ∨i−1>k+2

= 0

and, for i ≥ 0,

G∨>∨
2i+2 −G>

2i = (−1)i+1J∨i+2>k+1∨>∨ − (−1)iJ∨i+1>k+2

= (−1)i+2J∨i+3>k+2 − (−1)iJ∨i+1>k+2

= 0.

Conversely, whether k is odd or even, let (Gi)i≥0 be a sequence of
k-pseudofunctions such that (2.6) and (2.7) hold. We will prove by
induction on k ≥ −1 that (Gi)i≥0 is of the form in (2.8) or (2.9),
depending on the parity of k.

If k = −1, the equations read as G0 = G1 and Gi−1 + G∨
i+1 = 0 for

i ≥ 1. The conclusion directly follows by taking J = G0.
Assume k ≥ 0 and the result is true for k − 1. By Lemma 2.8, as

(2.6) holds, there exists a (k − 1)-pseudofunction H0 with

(2.10) G∨
1 = H>

0 and G∨
0 = −H∨>

0 .

Still by Lemma 2.8, as (2.7) holds, for i ≥ 1, there exists a (k − 1)-
pseudofunction Hi with

(2.11) G∨
i+1 = H>

i and Gi−1 = H∨>
i .

From (2.10) and (2.11) in case i = 1, we get G∨
0 = −H∨>

0 and G0 =
H∨>

1 , hence

(2.12) H∨>∨
1 +H∨>

0 = 0.
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Besides, by (2.10) and (2.11), we have, for all i ≥ 1, G∨
i = H>

i−1,
whereas, by (2.11), Gi = H∨>

i+1. Thus, we get

(2.13) H∨>∨
i+1 = H>

i−1.

By (2.12) and (2.13), we can apply the induction assumption to the
sequence (Hi)i≥0.

If k is even, this tells us that there exists a (−1)-pseudofunction J

with, for i ≥ 0, H2i = H2i+1 = (−1)iJ∨i>k
. By applying (2.11), we get,

thanks to Lemma 2.6,

G2i = H∨>
2i+1 = (−1)iJ∨i>k∨> = (−1)iJ∨i+1>k+1

G2i+1 = H∨>
2i+2 = (−1)i+1J∨i+1>k∨> = (−1)i+1J∨i>k+1

.

If k is odd, there exists a (−1)-pseudofunction J with, for i ≥ 0,

H2i = (−1)iJ∨i+1>k
and H2i+1 = (−1)i+1J∨i>k

. We get, as the ∨
operator is −1 on 0-pseudofunctions,

G2i = H∨>
2i+1 = (−1)i+1J∨i>k∨> = (−1)iJ∨i>k+1

G2i+1 = H∨>
2i+2 = (−1)i+1J∨i>k∨> = (−1)iJ∨i>k+1

.

The Proposition follows by induction. □

From Proposition 2.9 and Proposition 2.13, we get

Corollary 2.14. Let k ≥ 0. Then, the k-default map Dk is injective
and the null space of the k-polyextension map Ek is the range of Dk.
In other words, we have an exact sequence

0 −→ H(N)
k−1

Dk−→ H(N)
k

Ek−→ H∞.

Proof. Let (Gi)i≥0 be a sequence of (k − 1)-pseudofunctions such that
Gi = 0 for large enough i. Assume that (2.6) and (2.7) hold and let J
be the (−1)-pseudofunction as in Proposition 2.13. As Gi = 0 for large
enough i, we have J = 0, hence G = 0. In particular, this tells us that
the default map Dk is injective.

Besides, let H be in H(N)
k and assume that EkH = 0. The above

tells us that the sequence (Gi)i≥0 of (k − 1)-pseudofunctions obtained
by applying Proposition 2.9 to H is uniquely determined by H. In
particular, it is Γ-invariant, that is, H belongs to the range of the
default map Dk, as should be proved. □

2.5. Operations on ∞-pseudofunctions. We will now define natu-
ral operations on H∞ and show that they can be transfered to opera-

tions on H(N)
k thanks to the polyextension map.
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Let H be an ∞-pseudofunction. By analogy with Definition 2.3, we
define the reversal RH and the inversion SH of H by

RHxy =
∑
z∼x
z ̸=y

Hxz and SHxy = Hyx, x ∼ y ∈ X.

The maps R and S define linear operators of H∞ and we have S2 = 1
and, as in Lemma 2.4, R2 = q + (q − 1)R. Frome these definitions, we
directly get

Lemma 2.15. Let k ≥ −1 and H be a k-pseudofunction. If k is even,
we have R(H>∞

) = H∨>∞
. If k is odd, we have S(H>∞

) = H∨>∞
.

We will now define analogues of these maps on H(N)
k .

Definition 2.16. (k even) Let k ≥ 0 be an even integer, k = 2ℓ, ℓ ≥ 0,
and H = (Hi)i≥0 be a sequence of k-pseudofunctions.
The reversal RH of H is the sequence of k-pseudofunctions defined

by

(RH)0 = H∨
0

(RH)i = Hi−1 + (q − 1)Hi i even, i ≥ 2

(RH)i = qHi+1 i odd.

The inversion SH of H is the sequence of k-pseudofunctions defined
by

(SH)i = Hi+1 i even

(SH)i = Hi−1 i odd.

Definition 2.17. (k odd) Let k ≥ −1 be an odd integer, k = 2ℓ + 1,
ℓ ≥ −1, and H = (Hi)i≥0 be a sequence of k-pseudofunctions.

The reversal RH of H is the sequence of k-pseudofunctions defined
by

(RH)i = qHi+1 i even

(RH)i = Hi−1 + (q − 1)Hi i odd.

The inversion SH of H is the sequence of k-pseudofunctions defined
by

(SH)0 = H∨
0

(SH)i = Hi−1 i even, i ≥ 2

(SH)i = Hi+1 i odd.
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One directly checks that the relations R2 = q+ (q− 1)R and S2 = 1
still hold. Besides, these maps are compatible with the polyextension
map.

Lemma 2.18. Let k ≥ 0 and H = (Hi)i≥0 be in H(N)
k . We have

Ek(RH) = REk(H) and Ek(SH) = SEk(H).

Proof. Assume k is even. By definition, we get

Ek(H) =
∑
i≥0

H+i>∞
= H>∞

0 +
∑
i≥1

(H+2i−1>
2i−1 +H+2i

2i )>
∞
.

Now, H0 belongs toHk and, for i ≥ 1, H+2i−1>
2i−1 +H+2i

2i belongs toHk+2i,
so that Lemma 2.15 gives RH>∞

0 = H∨>∞

0 and

R(H+2i−1>
2i−1 +H+2i

2i )>
∞
= (H+2i−1>∨

2i−1 +H+2i∨
2i )>

∞
.

Using Lemma 2.4, we get

H+2i−1>∨
2i−1 +H+2i∨

2i = H+2i

2i−1 +H+2i−1>∨∨
2i

= qH+2i−1>
2i + (H2i−1 + (q − 1)H2i)

+2i

,

which gives REk(H) = Ek(RH).
In the same way, we have

Ek(H) =
∑
i≥0

(H+2i>
2i +H+2i+1

2i+1 )>
∞
.

As, for i ≥ 0, H+2i>
2i +H+2i+1

2i+1 belongs to Hk+2i+1, Lemma 2.15 gives

SEk(H) =
∑
i≥0

(H+2i>
2i+1 +H+2i+1

2i )>
∞
,

which should be proved.
The proof in case k is odd is analogous. □

Finally, to describe the behaviour of these operators R and S in the
null space of the polyextension map, we define a new pair of operators
R′ and S ′ as follows.

Definition 2.19. (k even) Let k ≥ 0 be an even integer, k ≥ 2ℓ, ℓ ≥ 0,
and G = (Gi)≥0 be a sequence of k-pseudofunctions. The antireversal
of G is the sequence R′G of k-pseudofunctions defined by

(R′G)0 = (q − 1)G0 −G∨
0

(R′G)i = Gi−1 + (q − 1)Gi i even, i ≥ 2

(R′G)i = qGi+1 i odd.
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Definition 2.20. (k odd) Let k ≥ −1 be an odd integer, k ≥ 2ℓ + 1,
ℓ ≥ −1, and G = (Gi)≥0 be a sequence of k-pseudofunctions. The
antiinversion of G is the sequence S ′G of k-pseudofunctions defined by

(S ′G)0 = −G∨
0

(S ′G)i = Gi−1 i even, i ≥ 2

(S ′G)i = Gi+1 i odd.

Note that, in the even case, the maps R and R′ only differ by their
action on the first component. So do the maps S and S ′ in the odd
case.

These maps allow to describe the action of the reversal and the in-
version on the range of the default map.

Lemma 2.21. Let k ≥ 0 and G = (Gi)i≥0 be in H(N)
k−1. If k is even,

we have

Dk(RG) = RDk(G) and Dk(S
′G) = SDk(G).

If k is odd, we have

Dk(R
′G) = RDk(G) and Dk(SG) = SDk(G).

Proof. These are straightforward computations. For example, we deal
with the reversion action in case k is even. We set H = DkG. For
i = 0, we have H0 = G∨>∨

1 +G∨>
0 , hence

(RH)0 = G∨>∨∨
1 +G∨>∨

0 = (G0 + (q − 1)G1)
∨>∨ + qG∨>

1

= (RG)∨>∨
1 + (RG)∨>0

as required. For i ≥ 1, we have Hi = G∨>∨
i+1 −G>

i−1, hence, if i is odd,

(RH)i = qHi+1 = qG∨>∨
i+2 − qG>

i = (RG)∨>∨
i+1 − (RG)∨>∨

i−1 ;

and if i is even,

(RH)i = Hi−1+(q−1)Hi = G∨>∨
i −G>

i−2+(q−1)G∨>∨
i+1 − (q−1)G>

i−1

= (RG)∨>∨
i+1 − (RG)>i−1.

The other three computations are analogous. □

2.6. Pseudofunctions in the bipartite case. In this Subsection, we
assume that Γ is bipartite. In that case, the spaces of pseudofunctions
may be equipped with an additional natural operation. We introduce
this operation and explain how it is related to the previous construc-
tions.

We fix a function χ : X → {1,−1} such that, for every x ∼ y in
X, one has χ(y) = −χ(x). This function is uniquely defined up to a



26 JEAN-FRANÇOIS QUINT

sign change and saying that Γ is bipartite amounts to saying that χ is
Γ-invariant.

For k ≥ 1 and H a k-pseudofunction, we define the twist H ≀ of H
the k-pseudofunction defined by

H ≀
xy = χ(x)Hxy x ∼ y ∈ X.

If k = 0 (resp. k = −1) and H is the k-pseudofunction associated to
the function u on X (resp. to the function u on X that is constant
on neighbours), we let H ≀ be the k-pseudofunction associated with the
function χu.

We directly get

Lemma 2.22. Let k ≥ −1 and H be a k-pseudofunction. We have
H ≀> = H>≀. If k is even, we have H ≀∨ = H∨≀. If k is odd, we have
H ≀∨ = −H∨≀.

In the same way, if H is an ∞-pseudofunction, we set UH to be the
∞-pseudofunction defined by

(UH)xy = χ(x)Hxy x ∼ y ∈ X.

As in Lemma 2.22, we have the relations

UR = RU and US = −SU.

If k ≥ −1 and H is a k-pseudofunction, we have U(H>∞
) = H ≀>∞

.
To check the compatibility properties of this operation with the

polyextension map, we introduce an operator on sequences. For k ≥ −1
and (Hi)i≥0 a sequence of k-pseudofunctions, we set UH to be the se-
quence defined by

(UH)i = (−1)
i
2H ≀

i i even

(UH)i = (−1)
i+1
2 H ≀

i i odd, k even

(UH)i = (−1)
i−1
2 H ≀

i i odd, k odd.

A direct computation using Definition 2.11 and Definition 2.12 yields

Lemma 2.23. Let k ≥ −1. For H in H(N)
k , we have

EkUH = UEkH.

For G in H(N)
k−1, we have

DkUG = −UDkG k even

DkUG = UDkG k odd.
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3. Preliminaries for the study of the model operators

Lemma 2.18 above suggests that, in order to study the natural op-
erations on H∞, we need to analyse operators defined on sequences of
real numbers by formulae as in Definition 2.16 and 2.17. We call these
operators the model operators. The purpose of the next three Sections
is to develop a precise spectral analysis of the model operators.

Our general strategy for doing this relies on considerations of abstract
harmonic analysis. Indeed, the involutive algebra generated by two self-
adjoint elements R and S with the relations R2 = qR + (q − 1)R and
S2 = 1 is the algebra of the infinite diedral group. In particular, any
∗-representation of this algebra on a Hilbert space may be decomposed
(maybe continuously) into irreducible components and these irreducible
components have dimension at most 2, as the infinite diedral group has
a normal abelian subgroup of index 2.

It turns out that, for the model operators, this decomposition maybe
constructed in a very explicit way. We shall build this decomposition.
We will need to split these construction according to the parity of k
and to the eigenvalues of the ∨ operator in the formulae from Definition
2.16 and 2.17. Thus, we need to consider four different cases which will
be carried out in the Subsections 4.1, 4.3, 5.1 and 5.2.

In the present preliminary Section, we introduce notation and facts
that we will use in the construction of the spectral theory of model
operators. Some of them will also be later required in the spectral
analysis of Euclidean fields.

3.1. Algebraic preliminaries. We introduce a general algebraic
framework for the actions of operators R and S which satisfy the prop-
erties of the R and S operators on ∞-pseudofunctions.

Let R and S be two symbols and A be the real algebra spanned by R
and S with the relations S2 = 1 and R2 = q+(q−1)R. In other words,
A is the quotient of the tensor algebra of the vector space RR⊕RS by
the ideal spanned by S2 − 1 and R2 − q − (q − 1)R. We equip A with
the unique involutive anti-automorphism A 7→ A∗ such that S∗ = S
and R∗ = R.

Set S ′ = 1
q+1

(2R−(q−1)). A direct computation shows that (S ′)2 =

1. Therefore, A may be seen as the group algebra of the group G
generated by S and S ′, which is isomorphic to the infinite diedral group.
In particular, the element T = SS ′ is unitary and the element P defined
by

P =
1

2
(T + T−1) =

1

q + 1
(RS + SR− (q − 1)S)
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is self-adjoint. Set B to be the subalgebra spanned by T . By construc-
tion, B is the algebra of Laurent polynmials R[T, T−1].

Lemma 3.1. We have A = B⊕SB. The center C of A is the subalgebra
spanned by P , which is isomorphic to the polynomial algebra R[P ].

The explicit form of the center will play a role for determining spec-
tral measures in Section 4 and 5.

Proof. The first property is a direct translation of the fact that A is
the group algebra of G and that G may be written as G = T Z ⊔ ST Z.
Now, let C be in C and write

C =
∑
n

anT
n + S

∑
n

bnT
n

for some sequences (an) and (bn) in R(Z). We have

C = SCS =
∑
n

anT
−n + S

∑
n

bnT
−n,

hence an = a−n and bn = b−n for n in Z. Besides, as
S ′ST nS ′ = (SS)(S ′S)(S ′S ′)T nS ′ = S(SS ′)(SS ′)(S ′T nS ′) = ST 2−n,

we get

C = S ′CS ′ =
∑
n

anT
−n + S

∑
n

bnT
2−n,

hence, for n in Z, bn = b2−n = bn−2. As bn is zero for |n| large, we get
bn = 0 for any n. The result easily follows. □

We shall also need the existence of nice complementary subspaces
for some natural left ideals in A.

Corollary 3.2. One has the following decompositions:

A = C ⊕ SC ⊕ A(R− q)

= C ⊕ SC ⊕ A(R + 1)

= C ⊕RC ⊕ A(S − 1)

= C ⊕RC ⊕ A(S + 1)

Proof. Let us show first the decomposition

(3.1) A = C ⊕ SC ⊕ A(S ′ − 1).

Indeed, Lemma 3.1 gives (by exchanging the roles of S and S ′)

A = B ⊕ BS ′.

By using the identities, for B0, B1 in B,
B0 +B1S

′ = (B0 +B1) +B1(S
′ − 1) = (B0 −B1) +B1(S

′ + 1),
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we get

(3.2) A = B ⊕ B(S ′ − 1) = B ⊕ B(S ′ + 1).

Still by Lemma 3.1, as B is the algebra of Laurent polynomials B =
R[T, T−1] and C is the polynomial algebra C = R[T + T−1], we get

B = C ⊕ C(T − T−1).

As we have T − T−1 = −(T + T−1) + 2T = −2P + 2T , we get

B = C ⊕ CT,

hence, from the first first equality in (3.2),

(3.3) A = C ⊕ CT ⊕ B(S ′ − 1).

In particular, since T = S + S(S ′ − 1), this gives

(3.4) A = C + CS +A(S ′ − 1).

To conclude the proof of (3.1), we need to show that this sum is a
direct sum. Thus, we take A in A and C0, C1 in C such that we have

C0 + C1S + A(S ′ − 1) = 0

and we will show that C0 = C1 = A(S ′ − 1) = 0. Indeed, still as
T = S + S(S ′ − 1), we have

C0 + C1T + (A− C1S)(S
′ − 1) = 0.

Use the second equality in (3.2) to find B0, B1 in B with A − C1S =
B0 +B1(S

′ + 1), so that

(3.5) (A− C1S)(S
′ − 1) = B0(S

′ − 1).

We get

C0 + C1T +B0(S
′ − 1) = 0,

so that (3.3) gives C0 = C1 = 0 and B0(S
′ − 1) = 0. By (3.5), we get

A(S ′ − 1) = 0 and (3.1) follows.
By changing the roles and signs of S and S ′, we also get

A = C ⊕ SC ⊕ A(S ′ + 1)

= C ⊕ S ′C ⊕ A(S − 1)

= C ⊕ S ′C ⊕ A(S + 1).

The result follows by using the relations (q + 1)(S ′ − 1) = 2(R − q),
(q + 1)(S ′ + 1) = 2(R + 1) and C ⊕ S ′C = C ⊕RC. □
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As T spans a normal subgroup of index 2 in G, any self-adjoint
representation of A in a Hilbert space H may be decomposed into a
direct integral of irreducible representations of A and these irreducible
representations have dimension 1 or 2.

There are four representations in dimension 1 which are determined
by letting R (resp. S) be the scalars q or−1 (resp. 1 or−1). Let us now
give explicit generators for the irreducible representations in dimension
2. The four different versions of the generators will be adapted to the
four different sets of model operators that we will consider in Section
4 and Section 5.

The ++ and +− matrices. Set s+ =

(
0 1
1 0

)
and, for t in C,

r++(t) =

(
q (q + 1)t
0 −1

)
a++(t) =

(
1 t
t 1

)
r+−(t) =

(
−1 (q + 1)t
0 q

)
a+−(t) =

(
1 −t
−t 1

)
.

The −+ and −− matrices. Set r− =

(
q − 1 q
1 0

)
and, for t in C,

s−+(t) =

(
1 (q + 1)t− (q − 1)
0 −1

)
a−+(t) =

(
2 (q + 1)t− (q − 1)

(q + 1)t− (q − 1) q2 + 1− (q2 − 1)t

)
s−−(t) =

(
−1 (q + 1)t+ (q − 1)
0 1

)
a−−(t) =

(
2 −(q + 1)t− (q − 1)

−(q + 1)t− (q − 1) q2 + 1 + (q2 − 1)t

)
.

The proof of the following Lemma follows from straightforward com-
putations.

Lemma 3.3. Let t be in C. The action of A on C2 defined by letting R
act as r++(t) (resp. r+−(t), resp. r−, resp. r−) and S act as s+ (resp.
s+, resp. s−+(t), resp. s−−(t)) has a scalar commutant. In all four

cases, the central element P of A acts as the scalar matrix

(
t 0
0 t

)
.

This representation is self-adjoint with respect to the symmetric bilin-
ear form defined by a++(t) (resp. a+−(t), resp. a−+(t), resp. a−−(t))
on C2 and this symmetric bilinear form is the unique one with this
property, up to a scalar multiple. If t is real, this symmetric bilinear
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form is positive definite on R2 if and only if |t| < 1. If |t| > 1, it has
signature (1, 1).

For t2 ̸= 1, these actions are all irreducible and isomorphic to each
other.

3.2. An abstract spectral theorem. In the sequel, we will encounter
self-adjoint representations of the algebra A. To study their spectral
theory, we will need the following abstract form of the spectral theorem
[8, Theorem 12.23].

Lemma 3.4. Let V be a finite dimensional real vector space. Let p be
a non-negative symmetric bilinear form on the space V [t] of polynomial
functions R → V and assume that the operator f(t) 7→ tf(t) on V [t]
is bounded and symmetric with respect to p. Then, there exists a com-
pactly supported Radon measure µ on R and a µ-integrable function
π : R → Q+(V ) such that, for any f, g in V [t], one has

p(f, g) =

∫
R
π(t)(f(t), g(t))dµ(t).

We wrote Q+(V ) for the space of non-negative symmetric bilinear
forms on V . When applied to the concrete examples of representations
of the algebra A from Subsection 3.1, this gives

Corollary 3.5. Let p be non-negative symmetric bilinear form on R2[t]
such that the operators f(t) 7→ r++(t)f(t) (resp. f(t) 7→ r−+(t)f(t),
resp. f(t) 7→ r−f(t), resp. f(t) 7→ r−f(t)) as well as f(t) 7→ s+f(t)
(resp. f(t) 7→ s+f(t), resp. f(t) 7→ s−+(t)f(t), resp. f(t) 7→
s−−(t)f(t)) are bounded and self-adjoint with respect to p. Then, there
exists a Radon measure µ on [−1, 1] such that, for any f, g in R2[t],
one has

p(f, g) =

∫
[−1,1]

π(t)(f(t), g(t))dµ(t),

where, for −1 ≤ t ≤ 1, π(t) is the symmetric bilinear form with matrix
a++(t) (resp. a+−(t), resp. a−+(t), resp a−−(t)) on R2.

Proof. We show the ++ case, the other ones being analogous.
By Lemma 3.3, for f in R2[t], and t in R, we have

1

q + 1
(r++(t)s+ + s+r++(t)− (q − 1)s+)f(t) = tf(t).

Therefore, by Lemma 3.4, there exists a compactly supported Radon
measure µ on R and a µ-integrable function π : R → Q+(R2) such
that, for any f, g in R2, one has

π(f, g) =

∫
R
π(t)(f(t), g(t))dµ(t).
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By assumption, for any polynomial functions f, g : R → R2, we have∫
R
π(t)(r++(t)f(t), g(t))dµ(t) =

∫
R
π(t)(f(t), r++(t)g(t))dµ(t)∫

R
π(t)(s+f(t), g(t))dµ(t) =

∫
R
π(t)(f(t), s+g(t))dµ(t).

Therefore, for µ-almost any t in R, the operators r++(t) and s+ are self-
adjoint with respect to the symmetric bilinear form π(t). By Lemma
3.3, there exists a µ-integrable function φ : R → R+ with support in
[−1, 1] such that, for t in R,

π(t)(v, w) = φ(t)v∗a++(t)w, v, w ∈ R2

(where v∗ is the transpose of the column vector v in R2). The conclusion
follows by replacing µ with the finite measure φµ. □

3.3. Spectral parametrization. As when studying spectral theory
on X (see [3, Chapter II]), the formulae that will allow to decompose
the model operators rely on the use of a certain rational function on
C. Set as usual

H = {t ∈ C|ℑt > 0} as well as Hq = {u ∈ C|ℑu > 0, |u| > √
q}.

We will write H and Hq for the closures of these open subsets of C,
that is,

H = {t ∈ C|ℑt ≥ 0} and Hq = {u ∈ C|ℑu ≥ 0, |u| ≥ √
q}.

We will always denote by Iq the critical interval

Iq =

[
−

2
√
q

q + 1
,
2
√
q

q + 1

]
.

By a result of Kesten [5] (see also [3, Proposition II.6.3] whose state-
ment is unfortunately mistakenly written), the critical interval is the
spectrum of the natural Markov operator on the space ℓ2(X) of square-
integrable functions ofX. We retrieve this fact in Subsection 4.2 below.

We shall repeatedly use

Lemma 3.6. The function

u 7→ t =
1

q + 1

(
u+

q

u

)
maps C∗ onto C. It induces a biholomorphism from {u ∈ C| |u| > √

q}
onto C∖Iq which sends Hq onto H. It also induces a homeomorphism

from Hq onto H. Finally, it maps the circle {u ∈ C||u| = √
q} onto Iq.
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The proof is straightforward.
From now on, we will stick to the notational convention that t and

u are complex numbers that are related through the equation

u2 − (q + 1)tu+ q = 0.

Note that the other root of the equation is q
u
.

To determine spectral measures of the model operators, we will use a
standard technique from spectral analysis (see for example [2, Theorem
X.6.1]), which relies on the

Lemma 3.7. Let µ be a Borel measure on R with
∫
R

dµ(t)
1+t2

<∞. Then
the Poisson transform of µ may be defined on H by the formula

Pµ(z) = 1

π

∫
R
ℑ
(

1

t− z

)
dµ(t) z ∈ H.

Proof. Indeed, for z in H and t in R, if z = x+ iy, x, y ∈ R, we have

1

π
ℑ
(

1

t− z

)
=

1

π

y

(t− x)2 + y2
,

which is the standard formula for the Poisson kernel of the upper half
plane (see [1, Chapter 7]). □

This Lemma will be applied to a particular harmonic function which
plays a central role in the spectral theory of the tree X. We denote

by µq the absolutely continuous measure with density q+1
2π

√
4q−(q+1)2t2

1−t2

on the interval Iq =
[
−2

√
q

q+1
,
2
√
q

q+1

]
. We will show later that µq is a

probability measure by getting it as the spectral measure associated
to a unit vector and a self-adjoint operator on a Hilbert space. This
construction will rely on

Lemma 3.8. The Poisson transform of µq on H may be defined as
follows. For any t in H, let u be the unique element of Hq with u2 −
(q + 1)tu+ q = 0. Then, we have

Pµq(t) =
q + 1

π
ℑ
(

u

1− u2

)
.

Proof. For t in H, we set F (t) = q+1
π
ℑ
(

u
1−u2

)
, where u is the unique

element of Hq with q+u
2 = (q+1)t. As the function G : u 7→ ℑ

(
u

1−u2

)
is harmonic on Hq and continuous on Hq, by Lemma 3.6, the function F

is harmonic on H and continuous on H. As G(u) −−−→
u→∞

0, by standard

properties of harmonic functions (see for example [1, Theorem 7.5]),
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we may write F as the Poisson transform of the measure ν = F (t)dt
on R. Let us show that ν = µq.

As G vanishes on the set {u ∈ R| |u| ≥ √
q}, F vanishes on the set

{t ∈ R|(q + 1) |t| ≥ 2
√
q}. Therefore, it suffices to determine the value

of G on the set

∂Hq ∖R = {u ∈ C|ℑu > 0, |u| = √
q}.

Thus, let u in C with |u| = √
q and set t = 1

q+1
(u+ q/u) = 2

q+1
ℜu. We

get

2iℑ
(

u

1− u2

)
=

u

1− u2
− q/u

1− q2/u2
=
u− q2/u− q/u+ qu

(1− u2)(1− q2/u2)

= (q + 1)
u− q/u

q2 + 1− u2 − q2/u2
=

1

q + 1

u− q/u

1− t2
,

which gives

ℑ
(

u

1− u2

)
=

1

q + 1

ℑu
1− t2

.

The conclusion follows as, if ℑu ≥ 0, we have

ℑu =
√
q − (ℜu)2 = 1

2

√
4q − (q + 1)2t2.

□

3.4. Hilbert spaces of sequences. The construction of the spectral
decomposition of the model operators will rely on the application of
spectral constructions in certain Hilbert spaces of sequences. We now
define precisely these spaces.

For x in R(N) and y in RN, we set

⟨x, y⟩+ =
∑
i≥0

qi(x2iy2i + x2i+1y2i+1)

⟨x, y⟩− = x0y0 +
∑
i≥1

qi(x2i−1y2i−1 + x2iy2i)

We denote the associated real Hilbert spaces of sequences by H+ and
H−, that is, H+ (resp. H−) is equal to the space{

x ∈ RN

∣∣∣∣∣∑
i≥0

q
i
2x2i <∞

}
<∞,

which we equip with the scalar product ⟨., .⟩+ (resp. ⟨., .⟩−). We stress
out that the Hilbert spacesH+ andH− have the same underlying vector
space, but not the same scalar product.
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Spectral analysis will require us to use the complexifications H+,C
and H−,C of H+ and H−. In this framework, we recall our non standard
convention: for any x in C(N) and y in CN, we still set

⟨x, y⟩+ =
∑
i≥0

qi(x2iy2i + x2i+1y2i+1)

⟨x, y⟩− = x0y0 +
∑
i≥1

qi(x2i−1y2i−1 + x2iy2i).

So that we can define H+,C (resp. H−,C) as the space of complex se-
quences {

x ∈ CN

∣∣∣∣∣∑
i≥0

q
i
2 |xi|2 <∞

}
<∞,

equipped with the Hermitian scalar product (x, y) 7→ ⟨x, y⟩+ (resp.
(x, y) 7→ ⟨x, y⟩−), where x is obtained by taking the complex conjugates
of the coordinates of x.

4. The even model operators

In this Section, we study operators on scalar sequences defined in
analogy with the operators of Definition 2.16. We actually split the
definition of the model operators according to the eigenvalue of the ∨
operator, which in the even case, can be q or −1. For these model
operators, we build a complete spectral theory.

4.1. The ++ model operators. In this Subsection, following Defini-
tion 2.16, we consider the operators R++ and S++ defined on sequences
x = (xi)i≥0 of real numbers by

(R++x)0 = qx0

(R++x)i = xi−1 + (q − 1)xi i even, i ≥ 2

(R++x)i = qxi+1 i odd.

and

(S++x)i = xi+1 i even

(S++x)i = xi−1 i odd.

These operators preserve the space of sequences with only finitely many
non zero entries. They satisfy the relations R2

++ = q+ (q− 1)R++ and
S2
++ = 1. In other words, they define a representation of the algebra

A of Subsection 3.1 in the space of sequences of real numbers. In
particular, we set P++ = 1

q+1
(R++S++ + S++R++ − (q − 1)S++).

The scalar product of H+ is adapted to the study of this situation.



36 JEAN-FRANÇOIS QUINT

Lemma 4.1. The operators R++ and S++ are bounded and self-adjoint
in H+.

Thus, these operators define a self-adjoint representation of the al-
gebra A of Subsection 3.1 in H+.

Proof. The fact that the operators are bounded is easy. From the
formulas, it is clear that S++ is self-adjoint. Let us check that R++

also is. Indeed, for x, y in H+, we have

⟨x, y⟩+ = x0y0 +
∑
i≥1

qi−1(x2i−1y2i−1 + qx2iy2i).

Therefore,

⟨R++x, y⟩+ = qx0y0 +
∑
i≥1

qi−1(qx2iy2i−1 + q(x2i−1 + (q − 1)x2i)y2i)

= qx0y0 +
∑
i≥1

qi(x2iy2i−1 + x2i−1y2i + (q − 1)x2iy2i).

The conclusion follows as the latter formula is symmetric in x and
y. □

Recall that 10 stands for the sequence (xi) with x0 = 1 and xi = 0 for
i ≥ 1. In this Subsection, we prove the following result which defines
a spectral analysis for the operators R++ and S++.

Proposition 4.2. There exists a unique linear map x 7→ x̂(t) from R(N)

to the space R2[t] of polynomial functions R → R2 such that 1̂0(t) =(
1
0

)
and that, for any x in R(N), one has

R̂++x(t) = r++(t)x̂(t) and Ŝ++x(t) = s+x̂(t) t ∈ R.
This map is a linear isomorphism from R(N) onto R2[t].

The spectrum of the operator P++ in H+ is the interval Iq and, for
any x, y in R(N), we have

(4.1) ⟨x, y⟩+ =

∫
Iq
x̂(t)∗a++(t)ŷ(t)dµq(t).

We have used the notation introduced in Subsection 3.1 for the ++
matrices. Recall that v∗ means the transpose of a column vector v in
R2 and that the measure µq is the absolutely continuous measure with

density function t 7→ q+1
2π

√
4q−(q+1)2t2

1−t2
on Iq (see Subsection 3.3). Note

that the statement implies that µq is a probability measure.
An other way of stating the integral formula would be to say that the

transform x 7→ x̂ induces an isometry from H+ onto the space of classes



ADDITIVE REPRESENTATIONS 37

of measurable functions v : Iq → R2 with
∫
Iq v(t)

∗a++(t)v(t)dµq(t) <
∞.

We begin the proof of Proposition 4.2 by showing that the images
of 10 under R++ and S++ span the set of sequences with finitely many
non zero entries.

Lemma 4.3. We have A10 = R(N).

Proof. This is a standard triagularization argument. Indeed, the for-
mulae defining the operators R++ and S++ imply by a straightforward
induction that, for i ≥ 0,

((R++S++)
i10)2i = 1 and ((R++S++)

i10)j = 0, j > 2i;

(S++(R++S++)
i10)2i+1 = 1 and (S++(R++S++)

i10)j = 0, j > 2i+ 1.

The result follows. □

Now, let us construct the joint spectral theory of R++ and S++. For
u in C∗, we let a++(u) and b++(u) be the sequences of complex numbers
defined by, for i ≥ 0,

a++(u)2i = b++(u)2i+1 = −qu−i and a++(u)2i+1 = b++(u)2i = u1−i.

These sequences are built in order to satisfy the following relations.

Lemma 4.4. For u in C∗, we have S++a++(u) = b++(u) and, for any
i ≥ 1,

(R++a++(u))i =
( q
u
+ u
)
b++(u)i + qa++(u)i

and (R++b++(u))i = −b++(u)i.

The above relations do not work for i = 0. To correct this, we
introduce new sequences as follows. For t in C, we choose as in Lemma
3.6, some u in C∗ with u2− (q+1)tu+ q = 0. We assume that we have
(q + 1)2t2 ̸= 4q, so that u2 ̸= q, and we set

α++(t) =
1

u2 − q
a++(u) +

u2

q(q − u2)
a++

( q
u

)
β++(t) = Sα++(t).

The notation is justified by the fact that, since the right hand-side is in-
variant by the involution u 7→ q

u
, it only depends on t. By construction,

one has

(4.2) α++(t)0 = 1 and β++(t)0 = 0.

Besides, note that if t is real, both α++(t) and β++(t) are real sequences.
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We can now get the missing case in Lemma 4.4. Indeed, we have
the following relation between these sequences and the operators intro-
duced in Subsection 3.1.

Lemma 4.5. For t in C with (q + 1)2t2 ̸= 4q, we have the matrix
relations: (

S++α++(t)
S++β++(t)

)
= s+

(
α++(t)
β++(t)

)
and

(
R++α++(t)
R++β++(t)

)
= r++(t)

(
α++(t)
β++(t)

)
.

For x in C(N) and t in C with (q + 1)2t2 ̸= 4q, we set

x̂(t) =

(
⟨x, α++(t)⟩+
⟨x, β++(t)⟩+

)
.

Note again, that if t is real and x has real coefficients, the vector x̂(t)
has real coordinates. Besides, (4.2) reads as

(4.3) 1̂0(t) =

(
1
0

)
.

From Lemma 4.1 and Lemma 4.5, we directly get

Lemma 4.6. For t in C with (q + 1)2t2 ̸= 4q and x in R(N), we have

R̂++x(t) = r++(t)x̂(t) and Ŝ++x(t) = s+x̂(t).

Let us describe in more details the map x 7→ x̂.

Lemma 4.7. For x in R(N), the function t 7→ x̂(t) is polynomial. The
map x 7→ x̂ induces a linear isomorphism from the space R(N) onto the
space R2[t] of polynomial functions R → R2.

Proof. Indeed, (4.3) implies that 1̂0 is polynomial, since it is constant.
Besides, by Lemma 4.6, the space of x in R(N) such that x̂ is polynomial
is stable under the action of the algebra A. Thus, by Lemma 4.3, this
space is equal to R(N).

Now, by Lemma 3.3, Equation (4.3) and Lemma 4.6, for i ≥ 0, we
have

(4.4) P̂ i
++10(t) =

(
ti

0

)
and ̂S++P i

++10(t) =

(
0
ti

)
.

Thus, the map x 7→ x̂ maps R(N) onto polynomial functions R → R2.
It remains to prove that this map is injective. By Lemma 4.3, we

have R(N) = A10. Besides, recall from Corollary 3.2 the decomposition
A = R[P ]⊕ SR[P ]⊕A(R− q). As R++10 = q10, we get

R(N) = (R[P++]⊕ S++R[P++])10.
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Therefore, if x is in R(N), we can write x = f(P++)10 + S++g(P++)10

where f and g are polynomial functions on R. By (4.4), for t in R, we
have

x̂(t) =

(
f(t)
g(t)

)
and injectivity follows. □

The sequences α++(t) and β++(t) are uniquely defined by the rela-
tions in Lemma 4.5.

Corollary 4.8. Let t0 be in R and γ, δ be in RN with(
S++γ
S++δ

)
= s+

(
γ
δ

)
and

(
R++γ
R++δ

)
= r++(t0)

(
γ
δ

)
.

Then we have γ = γ0α++(t0) and δ = γ0β++(t0).

Proof. Define a linear map φ : R2[t] → R2 as follows. For

(
f
g

)
in R2[t],

by Lemma 4.7, there exists a unique x in R(N) with x̂ =

(
f
g

)
. Then,

we set φ

(
f
g

)
=

(
⟨γ, x⟩+
⟨δ, x⟩+

)
. From Lemma 4.6 and the assumption, we

have

(4.5) φ

(
r++(t)

(
f(t)
g(t)

))
=

(
⟨γ,R++x⟩+
⟨δ, R++x⟩+

)
=

(
⟨R++γ, x⟩+
⟨R++δ, x⟩+

)
= r++(t0)φ

(
f(t)
g(t)

)
and in the same way,

(4.6) φ

(
s+

(
f(t)
g(t)

))
=

(
⟨γ, S++x⟩+
⟨δ, S++x⟩+

)
= s+φ

(
f(t)
g(t)

)
.

By Lemma 3.3, we get

φ

(
tf(t)
tg(t)

)
=

(
⟨γ, P++x⟩+
⟨δ, P++x⟩+

)
= t0φ

(
f(t)
g(t)

)
and hence, if f(t0) = g(t0) = 0, φ

(
f(t)
g(t)

)
= 0. Therefore, there exists

a linear map m : R2 → R2 such that, for any f, g in R[t], φ
(
f(t)
g(t)

)
=

m

(
f(t0)
g(t0)

)
. Now, (4.5) and (4.6) imply that m commutes with the

matrices r++(t0) and s+. Therefore, by Lemma 3.3, m is a scalar
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matrix, that is, there exists a real number λ with, for any f, g in R[t],

φ

(
f(t)
g(t)

)
= λ

(
f(t0)
g(t0)

)
. By Lemma 4.7, we get, for any x in R(N),

⟨γ, x⟩+ = λ⟨α++(t), x⟩+ and ⟨δ, x⟩+ = λ⟨β++(t), x⟩+.

The conclusion follows. □

So far, we have constructed the spectral transform x 7→ x̂ in Propo-
sition 4.2. It remains to establish the Plancherel formula (4.1). To
this aim, we will use Corollary 3.5. Indeed, Lemma 4.7 tells us that
we can identify R(N) with the space R2[t], whereas Lemma 4.6 tells us
that the operators R++ and S++ then act as the matrices r++(t) and
s+ of Subsection 3.1. Therefore, to get (4.1), it suffices to compute
the measure µ provided by Corollary 3.5. This computation will use
the notation of Subsection 3.3 and the standard method following from
Lemma 3.7, which relies on the computation of the resolvent function
⟨10, (P++− t)−110⟩+ for t in H. To achieve this computation, we intro-
duce a last family of sequences in C(N). For u in C, u /∈ {−1, 0, 1}, we
set

c++(u)2i =
(q + 1)u1−i

1− u2
and c++(u)2i+1 =

(q + 1)u−i

1− u2
i ≥ 0.

Note that c++(u) belongs to H+,C if and only if |u| > √
q. A direct

computation gives

Lemma 4.9. Let u be in C with u /∈ {−1, 0, 1}. Set t = 1
q+1

(u + q
u
).

Then we have

P++c++(u) = tc++(u) + 10.

We gather the arguments of this Subsection.

Proof of Proposition 4.2. The uniqueness of the transform x 7→ x̂ fol-
lows from Lemma 4.3. The fact that it satisfies the required properties
was obtained in (4.3) and Lemma 4.6. We know that it induces a linear
isomorphism from R(N) onto R2[t] thanks to Lemma 4.7.

It remains to show the Plancherel formula (4.1). Let µ be the mea-
sure from Corollary 3.5 applied to the scalar product on R2[t] which is
obtained by pulling back the scalar product ⟨., .⟩+ under the inverse of
the transform x 7→ x̂. Let t be in H. By Lemma 3.3 and Lemma 4.6,
as for s in R, the matrix a++(s) has upper left coefficient 1, we have,

⟨10, (P++ − t)−110⟩+ =

∫
[−1,1]

1

s− t
dµ(s).



ADDITIVE REPRESENTATIONS 41

By Lemma 4.9, this gives, for u in Hq with u
2 − (q + 1)tu+ q = 0,∫

[−1,1]

1

s− t
dµ(s) = ⟨10, c++(u)⟩+ = (q + 1)

u

1− u2
,

hence, by Lemma 3.7,

Pµ(t) = q + 1

π
ℑ
(

u

1− u2

)
.

The conclusion now follows from Lemma 3.8. □

4.2. Spectral measures in ℓ2(X). To motivate the reader, and in the
hope that this will make our strategy more understandable, we explain
how Proposition 4.2 can be used in order to recover the computation
of spectral measures in ℓ2(X) for the natural Markov operator. This
result is due to Kesten [5]. It plays a key role in the spectral theory
developed in [3].

We temporarily come back to the language of trees. We equip the
space ℓ2(X) with the bounded self-adjoint operator Q defined by, for
f in ℓ2(X),

Qf(x) =
1

q + 1

∑
y∼x

f(y), x ∈ X.

Corollary 4.10 (Kesten [5]). For any a in X, the spectral measure of
1a with respect to Q is the measure µq.

Proof. In this proof, we use the letters R and S for the operators on
functions on X1 defined by, for any g : X1 → R,

Rg(x, y) =
∑
z∼x
z ̸=y

g(x, z) and Sg(x, y) = g(y, x), x ∼ y ∈ X.

As usual, we set P = 1
q+1

(RS +SR− (q− 1)S). For any function f on

X define the function Lf on X1 by

Lf(x, y) = f(x), x ∼ y ∈ X.

When f is in ℓ2(X), we get

∥Lf∥22 =
∑

(x,y)∈X1

Lf(x, y)2 = (q + 1)
∑
x∈X

f(x)2 = (q + 1) ∥f∥22 .
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Besides, for (x, y) in X1, we have

(q + 1)PLf(x, y) = (RS + SR− (q − 1)S)Lf(x, y)

=
∑
z∼x
z ̸=y

Lf(z, x) +
∑
z∼y
z ̸=x

Lf(y, z)− (q − 1)Lf(y, x)

=
∑
z∼x
z ̸=y

f(z) + qf(y)− (q − 1)f(y) =
∑
z∼x

f(z).

We get PL = LQ. Thus, determining spectral measures of the elements
of ℓ2(X) with respect to Q is equivalent to determine the spectral
measures of their images by L with respect to P .

Now, we fix a in X and we define an orthogonal sequence (gi)i≥0 of
elements of ℓ2(X1) as follows. For any i ≥ 0 and (x, y) in X1, we set

g2i(x, y) = 1 d(x,a)=i
d(y,a)=i+1

and g2i+1(x, y) = 1d(x,a)=i+1
d(y,a)=i

.

We have ∥g2i∥22 = ∥g2i+1∥22 = (q+ 1)qi. Besides, the definition immedi-
ately gives Sg2i = g2i+1, whereas a direct computation yields

Rg0 = qg0

Rgi = qgi−1 + (q − 1)gi i even, i ≥ 2(4.7)

Rgi = gi+1 i odd.

For a sequence x = (xi)i≥0 of real numbers, we set Cx to be the function∑
i≥0 xigi on X1. With the notation of Subsection 4.1, the relations

(4.7) give RC = CR++ and SC = CS++. Moreover, the computa-
tion of the norm of the gi, i ≥ 0, implies that, for x in H+, we have
∥Cx∥22 = (q+1) ∥x∥2+. As C10 = g0 = L1a, the conclusion follows from
Proposition 4.2. □

4.3. The +− model operators. We come back to the study of the
model operators. We now consider the case of the other eigenvalue of
the ∨ operator in Definition 2.16, so that we define the operators R+−
and S+− acting on sequences x = (xi)i≥0 of real numbers by

(R+−x)0 = −x0
(R+−x)i = xi−1 + (q − 1)xi i even, i ≥ 2

(R+−x)i = qxi+1 i odd.

and

(S+−x)i = xi+1 i even

(S+−x)i = xi−1 i odd.
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Again, these operators preserve the space of sequences with only finitely
many non zero entries. They satisfy the relations R2

+− = q+(q−1)R++

and S2
+− = 1. Thus we still have a representation of the algebra A of

Subsection 3.1 in the space of sequences of real numbers. We now set
P+− = 1

q+1
(R+−S+− + S+−R+− − (q − 1)S+−).

The same proof as above gives

Lemma 4.11. The operators R+− and S+− are bounded and self-
adjoint in H+.

The spectral analysis for this new self adjoint representation of the
algebra A is now defined as follows.

Proposition 4.12. There exists a unique linear map x 7→ x̂(t) from
R(N) to the space R2[t] of polynomial functions R → R2 such that

1̂0(t) =

(
1
0

)
and that, for any x in R(N), one has

R̂+−x(t) = r+−(t)x̂(t) and Ŝ+−x(t) = s+x̂(t) t ∈ R.

This map is a linear isomorphism from R(N) onto R2[t].
The spectrum of the operator P+− in H+ is the set Iq ∪{−1, 1} and,

for any x, y in R(N), we have

(4.8) ⟨x, y⟩+ =
1

q

∫
Iq
x̂(t)∗a+−(t)ŷ(t)dµq(t)

+
q − 1

2q
(x̂(−1)∗a+−(−1)ŷ(−1) + x̂∗(1)a+−(1)ŷ(1))

The existence of a discrete component in the spectral measure corre-
spond to the existence of joint eigenvectors for the operators R+− and
S+− in H+.

We start proving Proposition 4.12. As for the ++-model, we can
show

Lemma 4.13. We have A10 = R(N).

We now adapt the construction of the spectral transform by setting,
for u in C∗ and i ≥ 0,

a+−(u)2i = b+−(u)2i+1 = u−i and a+−(u)2i+1 = b+−(u)2i = u1−i.

A direct computation gives
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Lemma 4.14. For u in C∗, we have S+−a+−(u) = b+−(u) and, for
any i ≥ 1,

(R+−a+−(u))i =
( q
u
+ u
)
b+−(u)i − a+−(u)i

and (R+−b+−(u))i = qb+−(u)i.

Again, in order to have the relations above working for every i ≥ 0,
we introduce new sequences. For t in C with (q + 1)2t2 ̸= 4q, we chose
u in C∗ with u2 − (q + 1)tu+ q = 0 and we set

α+−(t) =
q

q − u2
a+−(u) +

u2

u2 − q
a+−

( q
u

)
β+−(t) = Sα+−(t).

As before, these are functions of t, since they are invariant under the
involution u 7→ q

u
. We still have

(4.9) α+−(t)0 = 1 and β(t)+−0 = 0.

We now get

Lemma 4.15. For t in C with (q + 1)2t2 ̸= 4q, we have the matrix
relations: (

S+−α+−(t)
S+−β+−(t)

)
= s+

(
α+−(t)
β+−(t)

)
and

(
R+−α+−(t)
R+−β+−(t)

)
= r+−(t)

(
α+−(t)
β+−(t)

)
.

For x in C(N) and t in C with (q + 1)2t2 ̸= 4q, we set

x̂(t) =

(
⟨x, α+−(t)⟩+
⟨x, β+−(t)⟩+

)
.

Note again, that if t is real and x has real coefficients, the vector x̂(t)
has real coordinates and that (4.9) gives

(4.10) 1̂0(t) =

(
1
0

)
.

From Lemma 4.11 and Lemma 4.15, we directly get

Lemma 4.16. For t in C with (q + 1)2t2 ̸= 4q and x in R(N), we have

R̂+−x(t) = r+−(t)x̂(t) and Ŝ+−x(t) = s+x̂(t).

As in the ++ case, we get

Lemma 4.17. For x in R(N), the function t 7→ x̂(t) is polynomial. The
map x 7→ x̂ induces a linear isomorphism between the space R(N) and
the space of polynomial functions R → R2.



ADDITIVE REPRESENTATIONS 45

The proof is analogous to the one of Lemma 4.7. Note that it uses
the relation A = C ⊕SC ⊕A(R+1) of Corollary 3.2. In the same way,
we also get

Corollary 4.18. Let t0 be in R and γ, δ be in RN with(
S+−γ
S+−δ

)
= s+

(
γ
δ

)
and

(
R+−γ
R+−δ

)
= r+−(t0)

(
γ
δ

)
.

Then we have γ = γ0α+−(t0) and δ = γ0β+−(t0).

We now start establishing the Plancherel formula (4.8). To this
aim, we will compute the measure µ associated to the scalar product
⟨., .⟩+ on R(N) through Corollary 3.5 and the new spectral transform.
The novelty will be the presence of an atomic part. For u in C, u /∈
{−q, 0, q}, we set

c+−(u)2i =
(q + 1)u1−i

q2 − u2
and c+−(u)2i+1 =

q(q + 1)u−i

u2 − q2
i ≥ 0.

A direct computation gives

Lemma 4.19. Let u be in C with u /∈ {−q, 0, q}. Set t = 1
q+1

(u + q
u
).

Then, we have
P+−c+−(u) = tc+−(u) + 10.

We may now conclude.

Proof of Proposition 4.12. The existence and uniqueness of the spec-
tral transform x 7→ x̂ and its algebraic properties follow from Lemma
4.13, (4.10), Lemma 4.16 and Lemma 4.17.

It remains to show the Plancherel formula (4.8). Let µ be the mea-
sure from Corollary 3.5 applied to the scalar product ⟨., .⟩+. By Lemma
3.3 and Lemma 4.16, we have, for t in H,

⟨10, (P+− − t)−110⟩+ =

∫
[−1,1]

1

s− t
dµ(s).

By Lemma 4.19, this gives, for u in Hq with u
2 − (q + 1)tu+ q = 0,∫

[−1,1]

1

s− t
dµ(s) = ⟨10, c+−(u)⟩+ = (q + 1)

u

q2 − u2
.

Here comes the main difference with the ++ case: the holomorphic
function u 7→ (q + 1) u

q2−u2 on Hq has no continuous extension to Hq.

To correct this, we will remove the singularities as u = −q and u = q.
Indeed, a direct computation shows that

(q + 1)
u

q2 − u2
=
q + 1

q

u

1− u2
+
q − 1

2q

(
1

1− t
− 1

1 + t

)
,
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hence, by Lemma 3.7 and Lemma 3.8,

Pµ(t) = q + 1

qπ
ℑ
(

u

1− u2

)
+
q − 1

2qπ
ℑ
(

1

1− t
− 1

1 + t

)
=

1

q
Pµq(t) +

q − 1

2q
(Pδ1(t) + Pδ−1(t)),

where δ stands for Dirac measures. The conclusion follows. □

4.4. The + twist. We complete the description of the even model
operators by describing the additional structure related to the twist
operator of bipartite graphs introduced in Subsection 2.6.

Let (xi)i≥0 be a sequence of real numbers. We set

(U+x)i = (−1)
i
2xi i even

(U+x)i = (−1)
i+1
2 xi i odd.

This defines a unitary operator of H+. Besides, a direct computation
yields

R++U+ = U+R++ R+−U+ = U+R+−

S++U+ = −U+S++ S+−U+ = −U+S+−.

By using the definitions, we get

Lemma 4.20. Let t be in C. We have

U+α++(t) = α++(−t) U+α+−(t) = α+−(−t)
U+β++(t) = −β++(−t) U+β+−(t) = −β+−(−t).

5. The odd model operators

We now study operators on sequences defined in analogy with the
operators from Definition 2.17. This study will be lead as in Subsec-
tions 4.1 and 4.3. Again, we split the definition of the model operators
according to the eigenvalue of the ∨ operator, which in the odd case,
can be 1 or −1.

5.1. The −+ model operators. We mimic Definition 2.17, and we
consider the operators R−+ and S−+ defined on sequences x = (xi)i≥0

of real numbers by

(R−+x)i = qxi+1 i even

(R−+x)i = xi−1 + (q − 1)xi i odd.
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and

(S−+x)0 = x0

(S−+x)i = xi−1 i even, i ≥ 2

(S−+x)i = xi+1 i odd.

We still have the relations R2
−+ = q + (q − 1)R−+ and S2

−+ = 1. Thus,
we get a representation of the algebra A of Subsection 3.1 in the space
of sequences of real numbers. We set P−+ = 1

q+1
(R−+S−++S−+R−+−

(q − 1)S−+).
Now, we change the Hilbert space and use H− instead.

Lemma 5.1. The operators R−+ and S−+ are bounded and self-adjoint
in H−.

We hence have a self-adjoint representation of the algebra A in H−.

Proof. One easily checks that the operators are bounded. Recall that,
for any x, y in H−, we have

⟨x, y⟩− = x0y0+
∑
i≥1

qi(x2i−1y2i−1+x2iy2i) =
∑
i≥0

qi(x2iy2i+qx2i+1y2i+1).

We get, from the first formula,

⟨S−+x, y⟩− = x0y0 +
∑
i≥1

qi(x2iy2i−1 + x2i−1y2i)

and, from the second formula,

⟨R−+x, y⟩− =
∑
i≥0

qi(qx2i+1y2i + q(x2i + (q − 1)x2i+1)y2i+1)

=
∑
i≥0

qi+1(x2i+1y2i + x2iy2i+1 + (q − 1)x2i+1y2i+1).

The conclusion follows. □

As above, we define a spectral analysis for the operators R−+ and
S−+.

Proposition 5.2. There exists a unique map x 7→ x̂(t) from R(N) to

the space R2[t] of polynomial functions R → R2 such that 1̂0(t) =

(
1
0

)
and that, for any x in R(N), one has

R̂−+x(t) = r−x̂(t) and Ŝ−+x(t) = s−+(t)x̂(t) t ∈ R.

This map is a linear isomorphism from R(N) onto R2[t].
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The spectrum of the operator P−+ in H− is the set Iq ∪ {−1} and,
for any x, y in R(N), we have
(5.1)

⟨x, y⟩− =
2

q + 1

∫
Iq
x̂(t)∗a−+(t)ŷ(t)dµq(t)+

q − 1

q + 1
x̂(−1)∗a−+(−1)ŷ(−1).

We start the construction of these objects.

Lemma 5.3. We have A10 = R(N).

Proof. This now follows from the following property which is obtained
by a straightforward induction: for i ≥ 0,

((S−+R−+)
i10)2i = 1

and ((S−+R−+)
i10)j = 0, j > 2i;

(R−+(S−+R−+)
i10)2i+1 = 1

and (R−+(S−+R−+)
i10)j = 0, j > 2i+ 1.

□

We define sequences in analogy with the previous cases. For u in C∗,
we let a−+(u) and b−+(u) be the sequences of complex numbers defined
by, for i ≥ 0,

a−+(u)2i = −qu−i a−+(u)2i+1 = (u− q + 1)u−i

b−+(u)2i = u1−i b−+(u)2i+1 = −u−i.

By construction, one has

Lemma 5.4. For u in C∗, we have

R−+b−+(u) = a−+(u) and R−+a−+(u) = qb−+(u) + (q − 1)a−+(u).

and, for any i ≥ 1,

(S−+b−+(u))i = −b−+(u)i

and (S−+a−+(u))i = a−+(u)i +
(
u+

q

u
− q + 1

)
b−+(u)i.

As in the even cases, to get the formulae above working for every
i ≥ 0, we introduce new sequences, defined as follows. For t in C with
(q+1)2t2 ̸= 4q, we take u in C∗ with u2 − (q+1)tu+ q = 0 and we set

α−+(t) =
1

u2 − q
a−+(u) +

u2

q(q − u2)
a−+

( q
u

)
β−+(t) =

1

u2 − q
b−+(u) +

u2

q(q − u2)
b−+

( q
u

)
.
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As usual, one has

(5.2) α−+(t)0 = 1 and β−+(t)0 = 0.

Besides, note that if t is real, both α−+(t) and β−+(t) are real sequences.
We can now get the missing case in Lemma 5.4. Indeed, we have

the following relation between these sequences and the operators intro-
duced in Subsection 3.1.

Lemma 5.5. For t in C with (q + 1)2t2 ̸= 4q, we have the matrix
relations: (

S−+α−+(t)
S−+β−+(t)

)
= s−+(t)

(
α−+(t)
β−+(t)

)
and

(
R−+α−+(t)
R−+β−+(t)

)
= r−

(
α−+(t)
β−+(t)

)
.

For x in C(N) and t in C with (q + 1)2t2 ̸= 4q, we set

x̂(t) =

(
⟨x, α−+(t)⟩−
⟨x, β−+(t)⟩−

)
.

By (5.2) we get

(5.3) 1̂0(t) =

(
1
0

)
.

From Lemma 5.1 and Lemma 5.5, we directly get

Lemma 5.6. For t in C with (q + 1)2t2 ̸= 4q and x in R(N), we have

R̂−+x(t) = r−x̂(t) and Ŝ−+x(t) = s−+(t)x̂(t).

We have again defined an isomorphism onto polynomial functions
with values in R2.

Lemma 5.7. For x in R(N), the function t 7→ x̂(t) is polynomial. The
map x 7→ x̂ induces a linear isomorphism between the space R(N) and
the space of polynomial functions R → R2.

Proof. This is proved as Lemma 4.7. Indeed, by Lemma 5.6, for any
i ≥ 0, we have

P̂ i
−+10(t) =

(
ti

0

)
and ̂R−+P i

−+10(t) =

(
(q − 1)ti

ti

)
,

which shows that the spectral transform maps R(N) into polynomial
functions and that it is surjective. To prove injectivity, one uses the
decomposition A = R[P ]⊕RR[P ]⊕A(S − 1) from Corollary 3.2. □

We still get a uniqueness result:
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Corollary 5.8. Let t0 be in R and γ, δ be in RN with(
S−+γ
S−+δ

)
= s−+(t0)

(
γ
δ

)
and

(
R−+γ
R−+δ

)
= r−

(
γ
δ

)
.

Then we have γ = γ0α−+(t0) and δ = γ0β−+(t0).

We now focus on the Plancherel formula (5.1). As above, to compute
the resolvent function t 7→ ⟨10, (P−+ − t)−110⟩, we introduce a last
family of sequences in C(N). For u in C, u /∈ {−q, 0, 1}, we set

c−+(u)2i =
(q + 1)u1−i

(q + u)(1− u)
and c−+(u)2i+1 =

(q + 1)u−i

(q + u)(1− u)
i ≥ 0.

We still have

Lemma 5.9. Let u be in C with u /∈ {−q, 0, 1}. Set t = 1
q+1

(u + q
u
).

Then, we have

P−+c−+(u) = tc−+(u) + 10.

We are now ready to give the

Proof of Proposition 5.2. The existence and uniqueness of the spectral
transform x 7→ x̂ and its algebraic properties follow from Lemma 5.3,
(5.3), Lemma 5.6 and Lemma 5.7.

To show the Plancherel formula (5.1), we let µ be the measure from
Corollary 3.5 applied to the scalar product ⟨., .⟩−. By Lemma 3.3,
Lemma 5.6 and Lemma 5.9, we have, for t in H and u in Hq with
u2 − (q + 1)tu+ q = 0,∫

[−1,1]

1

s− t
dµ(s) =

(q + 1)u

(q + u)(1− u)
.

We remove the singularity of this function at u = −q. A direct com-
putation shows that

(q + 1)u

(q + u)(1− u)
=

2u

1− u2
− q − 1

q + 1

1

1 + t
.

Hence, by Lemma 3.7 and Lemma 3.8,

Pµ(t) = 2

q + 1
Pµq(t) +

q − 1

q + 1
Pδ−1(t).

The conclusion follows. □
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5.2. The −− model operators. We describe the final set of model
operators. Following Definition 2.17, we define operators R−− and S−−
on sequences x = (xi)i≥0 of real numbers by

(R−−x)i = qxi+1 i even

(R−−x)i = xi−1 + (q − 1)xi i odd.

and

(S−−x)0 = −x0
(S−−x)i = xi−1 i even, i ≥ 2

(S−−x)i = xi+1 i odd.

They still define a representation of the algebra A of Subsection 3.1 in
the space of sequences of real numbers and we set P−− = 1

q+1
(R−−S−−+

S−−R−− − (q − 1)S−−). As for Lemma 5.1, we show

Lemma 5.10. The operators R−− and S−− are bounded and self-
adjoint in H−.

We hence have a self-adjoint representation of the algebra A in H−.
The spectral analysis of the operators R−− and S−− states as

Proposition 5.11. There exists a unique map x 7→ x̂(t) from R(N) to

the space R2[t] of polynomial functions R → R2 such that 1̂0(t) =

(
1
0

)
and that, for any x in R(N), one has

R̂−−x(t) = r−x̂(t) and Ŝ−−x(t) = s−−(t)x̂(t) t ∈ R.

This map is a linear isomorphism from R(N) onto R2[t].
The spectrum of the operator P−− in H− is the set Iq ∪ {1} and, for

any x, y in R(N), we have
(5.4)

⟨x, y⟩− =
2

q + 1

∫
Iq
x̂(t)∗a−−(t)ŷ(t)dµq(t) +

q − 1

q + 1
x̂(1)∗a−−(1)ŷ(1).

As for Lemma 5.3, we show

Lemma 5.12. We have A10 = R(N).

We now set, for u in C∗ and i ≥ 0,

a−−(u)2i = qu−i a−−(u)2i+1 = (u+ q − 1)u−i

b−−(u)2i = u1−i b−−(u)2i+1 = u−i.

By construction, one has
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Lemma 5.13. For u in C∗, we have

R−−b−−(u) = a−−(u) and R−−a−−(u) = qb−−(u) + (q − 1)a−−(u).

and, for any i ≥ 1,

(S−−b−−(u))i = b−−(u)i

and (S−−a−−(u))i = −a−−(u)i +
(
u+

q

u
+ q − 1

)
b−−(u)i.

To get the relations above working for every i ≥ 0, for t in C with
(q+1)2t2 ̸= 4q, we take u in C∗ with u2 − (q+1)tu+ q = 0 and we set

α−−(t) =
1

q − u2
a−−(u) +

u2

q(u2 − q)
a−−

( q
u

)
β−−(t) =

1

q − u2
b−−(u) +

u2

q(u2 − q)
b−−

( q
u

)
.

One still has

(5.5) α−−(t)0 = 1 and β−−(t)0 = 0.

We get the missing case in Lemma 5.13.

Lemma 5.14. For t in C with (q + 1)2t2 ̸= 4q, we have the matrix
relations: (

S−−α−−(t)
S−−β−−(t)

)
= s−−(t)

(
α−−(t)
β−−(t)

)
and

(
R−−α−+(t)
R−−β−−(t)

)
= r−

(
α−−(t)
β−−(t)

)
.

For x in C(N) and t in C with (q + 1)2t2 ̸= 4q, we set

x̂(t) =

(
⟨x, α−−(t)⟩−
⟨x, β−−(t)⟩−

)
.

By (5.5) we have

(5.6) 1̂0(t) =

(
1
0

)
.

By Lemma 5.10 and Lemma 5.14, we get

Lemma 5.15. For t in C with (q + 1)2t2 ̸= 4q and x in R(N), we have

R̂−−x(t) = r−x̂(t) and Ŝ−−x(t) = s−−(t)x̂(t).

We still have

Lemma 5.16. For x in R(N), the function t 7→ x̂(t) is polynomial. The
map x 7→ x̂ induces a linear isomorphism between the space R(N) and
the space of polynomial functions R → R2.
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Corollary 5.17. Let t0 be in R and γ, δ be in RN with(
S−−γ
S−−δ

)
= s−−(t0)

(
γ
δ

)
and

(
R−−γ
R−−δ

)
= r−

(
γ
δ

)
.

Then we have γ = γ0α−−(t0) and δ = δ0β−−(t0).

We now prove the Plancherel formula (5.4). To compute the resol-
vent function t 7→ ⟨10, (P−−−t)−110⟩, we set, for u in C, u /∈ {−1, 0, q},

c−−(u)2i =
(q + 1)u1−i

(q − u)(1 + u)
and c−−(u)2i+1 =

(q + 1)u−i

(u− q)(1 + u)
i ≥ 0.

Lemma 5.18. Let u be in C with u /∈ {−1, 0, q}. Set t = 1
q+1

(u + q
u
).

Then we have

P−−c−−(u) = tc−−(u) + 10.

We conclude by the

Proof of Proposition 5.11. This is proved as the previous analogous
results by using the relation, for u ∈ C, u /∈ {−1, 0, 1, q} and
t = 1

q+1
(u+ q

u
),

(q + 1)u

(q − u)(1 + u)
=

2u

1− u2
+
q − 1

q + 1

1

1− t
.

□

5.3. The − twist. As in Subsection 4.4, we describe for the odd model
operators the additional structure related to the twist operator of bi-
partite graphs from Subsection 2.6.

Let (xi)i≥0 be a sequence of real numbers. We set

(U−x)i = (−1)
i
2xi i even

(U−x)i = (−1)
i−1
2 xi i odd.

This defines a unitary operator of H−. We now get

R−+U− = U−R−+ R−−U− = U−R−− S−+U− = −U−S−−.

By a direct computation, we have

Lemma 5.19. Let t be in C. We have

U−α−+(t) = −α−−(−t) and U−β−+(t) = −β−−(−t).
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6. Spectral transforms and the default map

We go back to the framework of Subsection 2.3 and Subsection 2.5.
There, we defined an action of the algebra A on the space of ∞-
pseudofunctions as well as two actions of the algebra A on spaces of
sequences of pseudofunctions.

We will now transport the results on the model operators to these
two actions and see how they are compatible with the default map.

6.1. Spectral transforms. We set the definition of the model op-
erators in order to mimick the one of the actions of A on spaces of
sequences given in Definitions 2.16, 2.17, 2.19 and 2.20. Therefore, we
can transport back the definition of the spectral transforms associated
to the different model operators to get spectral transforms of sequences
of pseudofunctions. We begin with the actions defined in Definitions
2.16 and 2.17.

Let k ≥ 0, t be in R and H =

(
H0

H1

)
be in H2

k. If k is even, we set

StH =

(
q−1H∨

1

H∨
0 − (q − 1)H0

)
(6.1)

RtH =

(
H∨

0 + q−1(q + 1)tH∨
1

(q − 1)H1 −H∨
1

)
.

If k is odd, we set

RtH =

(
H∨

1

(q − 1)H1 + qH∨
0

)
(6.2)

StH =

(
−H∨

0

H∨
1 + (q + 1)tH∨

0 − (q − 1)H0

)
.

Note that, even when the operators do not depend on t, we mention t
in the notation. This will avoid splitting certain statements according
to the parity of k.

In both cases, a direct computation gives

Lemma 6.1. Let k ≥ 0, t be in R and H be in H2
k. We have

RtStH +StRtH − (q − 1)StH = (q + 1)tH.

Remark 6.2. The reader may wonder why our definition of the opera-
tors Rt and St is not consistent with our choices for the matrices in
Subsection 3.1. Indeed, for example, when k is even, the action of Rt

on H2
k,− is not the one given by the matrix r+−(t). The reason for this,

and for the choice of normalization in the definition of the operators
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R′
t and S′

t in (6.3) and (6.4) below, is that it will allow for a very sim-
ple formulation of Proposition 6.5 which describes the image under the
spectral transform of the range of the default map of Definition 2.12.

Proposition 6.3. Let k ≥ 0. There exists a unique linear map H 7→
Ĥ(t) from H(N)

k to the space H2
k[t] of H2

k valued polynomial functions
with the following properties:
(i) For any H in Hk, one has

Ĥ10(t) =

(
q−1H∨

0

)
if k is even

=

(
0
H

)
if k is odd.

(ii) For any H in H(N)
k , one has

R̂H(t) = RtĤ(t) and ŜH(t) = StĤ(t).

This map is a linear isomorphism from H(N)
k onto H2

k[t].

This result is a more or less direct consequence of Propositions 4.2,
4.12, 5.2 and 5.11, as we will soon check. Now, we would like to describe

the image under the spectral transform H 7→ Ĥ of the range of the
default map of Definition 2.12. To this aim, we first consider the actions
introduced in Definitions 2.19 and 2.20.

Let k ≥ 0, t be in R and G =

(
G0

G1

)
in H2

k. If k is even, we set

S′
tG =

(
q−1(q − 1)G1 − q−1G∨

1

−G∨
0

)
(6.3)

R′
tG =

(
(q − 1)G0 −G∨

0 + q−1(q2 − 1)tG1 − q−1(q + 1)tG∨
1

G∨
1

)
.

If k is odd, we set

R′
tG =

(
−G∨

1

(q − 1)G1 − qG∨
0

)
(6.4)

S′
tG =

(
G∨

0

−G∨
1 − (q + 1)tG∨

0 − (q − 1)G0

)
.

Proposition 6.4. Let k ≥ 0. There exists a unique linear map G 7→
qG(t) from H(N)

k to the space H2
k[t] of H2

k valued polynomial functions
with the following properties:
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(i) For any G in Hk, one has

}G10(t) =

(
q−1G∨ − q−1(q − 1)G

0

)
if k is even

=

(
0

−G

)
if k is odd.

(ii) For any G in H(N)
k , one has

}R′G(t) = R′
t
qG(t) and |SG(t) = S′

t
qG(t).

This map is a linear isomorphism from H(N)
k onto H2

k[t].

Again, we will see that this result is essentially a translation of Propo-
sitions 4.2, 4.12, 5.2 and 5.11.

Let us now state a less evident result, which will be the principal
objective of this Section. Its purpose is to explicitely transport the
default map of Definition 2.12 by the spectral transforms. Its simple
formulation justifies our choices of normalization in Propositions 6.3
and 6.4.

Proposition 6.5. Let k ≥ 1, G be in H(N)
k−1 and set H = DkG. Fix t

in R. If k is even, we have

Ĥ(t) =

(
qG0(t)

>

qG1(t)
>

)
−
(
q−1(q + 1)t q−1

−1 0

)(
qG0(t)

∨>∨

qG1(t)
∨>∨

)
.

If k is odd, we have

Ĥ(t) =

(
0 −1
q (q + 1)t

)(
qG0(t)

>

qG1(t)
>

)
−
(
qG0(t)

∨>∨

qG1(t)
∨>∨

)
.

As in Definition 2.12, we write Dk for the default map.

Remark 6.6. Note that the matrix

(
q−1(q + 1)t q−1

−1 0

)
is the inverse of

the matrix

(
0 −1
q (q + 1)t

)
. The latter matrix already appeared in the

proof of the Ihara trace formula, Theorem 1.4.

6.2. Simple pseudofields and duality. The proof of Proposition
6.5 will rely on a duality argument. Thus, for k ≥ 0, we will need to
introduce the dual space of the space Hk. As usual, we construct this
space as a space of families of objects parametrized by X1.
Let k ≥ 1. If k is even, k = 2ℓ, ℓ ≥ 1, as in Subsection I.5.1, we

write V ℓ
0 (x), x ∈ X, for the space of real valued functions on the sphere

Sℓ(x), the sum of whose values is 0. Then, a k-simple pseudofield is
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a family (sxy)(x,y)∈X1 where, for any x ∼ y in X, sxy is an element of
V ℓ
0 (x).
If k is odd, k = 2ℓ + 1, ℓ ≥ 0, still as in Subsection I.5.1, we write

V ℓ
0 (xy), x ∼ y ∈ X, for the space of real valued functions on the sphere
Sℓ(xy), the sum of whose values is 0. Then, a k-simple pseudofield is
a family (sxy)(x,y)∈X1 where, for any x ∼ y in X, sxy is an element of
V ℓ
0 (xy).
As for 1-pseudofunctions, we have a natural identification of 1-simple

pseudofields with functions on X1. Indeed, if u is a function on X1, we
can associate to u the 1-simple pseudofield s such that

sxy = u(xy)(1y − 1x), x ∼ y ∈ X.

We define a 0-simple pseudofield as a function on X. We do not intro-
duce a notion of a (−1)-simple pseudofield.

The finite-dimensional vector space of Γ-invariant k-simple pseud-
ofields is denoted by Sk.
Recall from Subsection I.5.1 that, for ℓ ≥ 1 and x in X, we have

identified the dual space of V
ℓ
(x) with V ℓ

0 (x). In the same way, for

ℓ ≥ 0 and x ∼ y in X, we have identified the dual space of V
ℓ
(xy) with

V ℓ
0 (xy). We use this convention and our usual construction to identify

Sk with the dual space of Hk. If k ≥ 1, s is in Sk and H is in Hk, we
set

⟨s,H⟩ =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
⟨sxy, Hxy⟩.

If k = 0, and if s in S0 is associated with the function u on X and H
in H0 is associated with the function v on X, we set

⟨s,H⟩ =
∑

x∈Γ\X

1

|Γx|
u(x)v(x).

6.3. Operations on simple pseudofields. As usual, we define nat-
ural operations on pseudofields.

Let k ≥ 0 and s be a k-simple pseudofield. If k is even, k = 2ℓ, ℓ ≥ 1,
for any x ∼ y in X, we set s∨xy =

∑
z∼x
z ̸=y

sxz. If k is odd, k = 2ℓ + 1,

ℓ ≥ 0, for any x ∼ y in X, we set s∨xy = syx. If k = 0, we set s∨ = −s.
We get, by using Lemma I.9.11,

Lemma 6.7. Let k ≥ 0, s be in Sk and H be in Hk. We have ⟨s∨, H⟩ =
⟨s,H∨⟩.

If k ≥ 0 is even, we set

Sk,+ = {s ∈ Sk|s∨ = qs} and Sk,− = {s ∈ Sk|s∨ = −s}.
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If k is odd, we set

Sk,+ = {s ∈ Sk|s∨ = s} and Sk,− = {s ∈ Sk|s∨ = −s}.

In both cases, we have Sk = Sk,+ ⊕ Sk,−.
Finally, if k ≥ 1, and s is a k-simple pseudofield, we define the direct

restriction s< of s, which is a (k − 1)-simple pseudofield, as follows.
If k is even, k = 2ℓ, ℓ ≥ 1, for any x ∼ y in X, we set

s<xy = Iℓ−1,∗
xy sxy,

where, as in Subsection I.5.3, Iℓ−1,∗
xy : V ℓ

0 (x) → V ℓ−1
0 (xy) is the adjoint

of the natural operator Iℓ−1
xy : V

ℓ−1
(xy) → V

ℓ
(x).

If k is odd, k = 2ℓ+ 1, ℓ ≥ 1, for any x ∼ y in X, we set

s<xy = J ℓ,∗
xy sxy,

where, as in Subsection I.5.3, J ℓ,∗
xy : V ℓ

0 (xy) → V ℓ
0 (x) is the adjoint of

the natural operator J ℓ
xy : V

ℓ
(x) → V

ℓ
(xy).

Lastly, if k = 1 and if v is the function on X1 such that, for any
x ∼ y in X, sxy = v(xy)(1y−1x), we let s

< be the 0-simple pseudofield
associated with the function u defined by

(6.5) u(x) =
∑
y∼x

v(xy), x ∈ X.

Again, we have

Lemma 6.8. Let k ≥ 1, s be in Sk and H be in Hk−1. We have
⟨s<, H⟩ = ⟨s,H>⟩.

As usual, the double commutation property holds.

Lemma 6.9. Let k ≥ 2 and s be a k-simple pseudofield. We have
s<<∨ = s∨<<.

Proof. If k ≥ 3, this directly follows from Lemma I.4.4. Let us study
the case k = 2.

In case k = 2, let u and v be the functions on X which are associated
with the 0-simple pseudofields s<<∨ and s∨<<. We must show that
u = v.

For x ∼ y in X, sxy is a function in V 1
0 (x) and, by the definition of

the objects in Subsection I.5.3, we have s<xy(y) = sxy(y), hence s
<
xy =

sxy(y)(1y − 1x). Therefore, by (6.5), for x in X,

u(x) = −
∑
y∼x

sxy(y).
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Besides, for x ∼ y in X, we have, s∨xy(y) =
∑

z∼x
z ̸=y

sxz(y). Again by

(6.5), this gives, for x in X,

v(x) =
∑
y∼x

∑
z∼x
z ̸=y

sxz(y) =
∑
z∼x

∑
y∼x
y ̸=z

sxz(y) = −
∑
z∼x

sxz(z),

where the latter follows from the fact that sxz belongs to V 1
0 (x) for

z ∼ x. We get u = v as required. □

Contrarily to what happens in the quadratic case, direct restriction
may be injective on eigenspaces of the ∨ operator.

Lemma 6.10. Let k ≥ 2 and s be a k-simple pseudofield with s< = 0.
If k is even and s∨ = qs, then s = 0. If k is odd and s∨ = s or s∨ = −s,
then s = 0.

Proof. Assume k is even, k = 2ℓ, ℓ ≥ 1. Let s be a k-simple pseudofield
with s∨ = qs. For y, z ∼ x, we have sxy = sxz. We write sx for this
element of V ℓ

0 (x) that only depends on x. If s
< = 0, for any y ∼ x, when

seen as a linear functional on V
ℓ
(x), sx is 0 on the space Iℓ−1

xy V
ℓ−1

(xy).
By Proposition I.4.5, as y runs among the neighbours of x, these spaces

span V
ℓ
(x), hence sx = 0 as required.

If k is odd, we proceed in the same way by using Proposition I.4.6 □

6.4. Duality on spaces of sequences. Now that, for k ≥ 0, we have
introduced the dual space of the space of Γ-invariant k-pseudofunctions,
we can define a duality at the level of spaces of sequences. We adopt
the same convention as the one used for defining Hilbert spaces of
sequences of real numbers adapted to the study of the model operators
in Subsection 3.4.

Thus, for k ≥ 0, if s = (si)i≥0 is in SN
k and H = (Hi)i≥0 is in H(N)

k ,
we set

⟨s,H⟩ =
∑
i≥0

qi(⟨s2i, H2i⟩+ ⟨s2i+1, H2i+1⟩) if k is even

=
∑
i≥0

qi(⟨s2i, H2i⟩+ q⟨s2i+1, H2i+1⟩) if k is odd.

Besides, we use the same symbols as in Definitions 2.16, 2.17, 2.19 and
2.20 for the analogous operations on sequences of simple pseudofields.
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Thus, for k ≥ 0 and s in Sk, if k is even, we set

(Rs)0 = s∨0

(R′s)0 = (q − 1)s0 − s∨0

(Rs)i = (R′s)i = si−1 + (q − 1)si i even, i ≥ 2

(Rs)i = (R′s)i = qsi+1 i odd.

(Ss)i = si+1 i even

(Ss)i = si−1 i odd.

If k is odd, we set

(Rs)i = qsi+1 i even

(Rs)i = si−1 + (q − 1)si i odd.

(Ss)0 = s∨0

(S ′s)0 = −s∨0
(Ss)i = (S ′s)i = si−1 i even, i ≥ 2

(Ss)i = (S ′s)i = si+1 i odd.

As in Lemmas 4.1, 4.11, 5.1 and 5.10, we get

Lemma 6.11. Let k ≥ 0, s be in SN
k and H be in H(N)

k . We have

⟨Rs,H⟩ = ⟨s, RH⟩ and ⟨Ss,H⟩ = ⟨s, SH⟩.

If k is even, we have ⟨R′s,H⟩ = ⟨s, R′H⟩ and if k is odd, we have
⟨S ′s,H⟩ = ⟨s, S ′H⟩.

If s = (si)i≥0 is a sequence of simple pseudofields, we will write s∨

for the sequence (s∨i )i≥0. All the operators that we have defined on
spaces of sequences commute with this operation.

Lemma 6.12. Let k ≥ 0 and s = (si)i≥0 be a sequence of k-simple
pseudofields. We have R(s∨) = (Rs)∨ and S(s∨) = (Ss)∨. If k is even,
we have R′(s∨) = (R′s)∨ and if k is odd, we have S ′(s∨) = (S ′s)∨.

6.5. Construction of the spectral transforms: the even case.
We will build the spectral transform of sequences of pseudofunctions
by analogy with the case of sequences of real numbers. We will use
freely the notation of Subsections 4.1, 4.3, 5.1 and 5.2.

Fix t in R. Let k ≥ 0 be even. As in Subsection 4.1, if s is in Sk,+,
we set αs(t) and βs(t) to be the sequences in SN

k defined by, for i ≥ 0,

αs(t)i = α++(t)is and βs(t)i = β++(t)is.
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In the same way, as in Subsection 4.3, if s is in Sk,−, we set αs(t) and
βs(t) to be the sequences in SN

k defined by, for i ≥ 0,

αs(t)i = α+−(t)is and βs(t)i = β+−(t)is.

Finally, if s is in Sk and s = s+ + s− with s+ in Sk,+ and s− in Sk,−,
we set αs(t) = αs+(t) + αs−(t) and βs(t) = βs+(t) + βs−(t). Note that,
by Lemma 4.7 and Lemma 4.17, the coordinates of these sequences are
polynomial functions of t.

We get

Lemma 6.13. Let k ≥ 0 be even and s be in Sk. For any t in R, we
have the matrix relations
(6.6)(

Sαs(t)
Sβs(t)

)
=

(
βs(t)
αs(t)

)
and

(
Rαs(t)
Rβs(t)

)
=

(
αs∨(t) + (q + 1)tβs(t)

β(q−1)s−s∨(t)

)
.

Converserly, assume γ and δ are in SN
k and we have

(6.7)

(
Sγ
Sδ

)
=

(
δ
γ

)
and

(
Rγ
Rδ

)
=

(
γ∨ + (q + 1)tδ
(q − 1)δ − δ∨

)
.

Then, we have γ = αs(t) and δ = βs(t) where s = γ0.

Proof. This is a direct translation of the analogous results for the model
operators. First, we show (6.6). By construction of the objects, it
suffices to prove the result when s is an eigenvector of the ∨ operator.
Then, if s∨ = qs, we have (q − 1)s− s∨ = −s, hence(

αs∨(t) + (q + 1)tβs(t)
β(q−1)s−s∨(t)

)
=

(
qαs(t) + (q + 1)tβs(t)

−βs(t)

)
= r++(t)

(
αs(t)
βs(t)

)
and (6.6) follows from Lemma 4.6. In the same way, if s∨ = −s, we
have (q − 1)s− s∨ = qs, hence(

αs∨(t) + (q + 1)tβs(t)
β(q−1)s−s∨(t)

)
= r+−(t)

(
αs(t)
βs(t)

)
and (6.6) follows from Lemma 4.16.

Now, we take γ and δ in SN
k such (6.7) holds. We write γ = γ+ + γ−

and δ = δ+ + δ− where γ∨+ = qγ+, γ
∨
− = −γ−, δ∨+ = qδ+ and δ∨− = −δ−.

By using Lemma 6.12, we get(
Sγ+
Sδ+

)
= s+

(
γ+
δ+

)
and

(
Rγ+
Rδ+

)
= r++(t)

(
γ+
δ+

)
.
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From Lemma 4.8, we get γ+ = αγ+,0(t) and δ+ = βγ+,0(t). In the same
way, Lemma 4.18 ensures that γ− = αγ−,0(t) and δ− = βγ−,0(t). The
conclusion follows. □

Still by analogy with the case of the model operators, but with a

change of normalization that will be justified later, for H in H(N)
k and

t in R, we define Ĥ(t) =

(
Ĥ0(t)

Ĥ1(t)

)
to be the unique element of H2

k such

that, for any s in Sk, one has

(6.8)

(
⟨s, Ĥ0(t)

∨ − (q − 1)Ĥ0(t)⟩
⟨s, Ĥ1(t)⟩

)
=

(
⟨αs(t), H⟩
⟨βs(t), H⟩

)
.

Proof of Proposition 6.3 in case k is even. Take H in Hk. By the con-
structions in Subsections 4.1 and 4.3, for s in Sk, we have αs(t)0 = s
and βs(t)0 = 0. Thus, for t in R, we get, from (6.8),(

⟨s, (̂H10)0(t)
∨ − (q − 1)(̂H10)0(t)⟩

⟨s, (̂H10)1(t)⟩

)
=

(
⟨s,H⟩

0

)
,

which gives Ĥ10(t) =

(
q−1H∨

0

)
as required.

Let us now show that the equivariance properties actually hold. Fix

t in R and H in H(N)
k . Let J =

(
J0
J1

)
and K =

(
K0

K1

)
be in H2

k such

that, for s in Sk,(
⟨s, J0⟩
⟨s, J1⟩

)
=

(
⟨αs(t), H⟩
⟨βs(t), H⟩

)
and

(
⟨s,K0⟩
⟨s,K1⟩

)
=

(
⟨αs(t), RH⟩
⟨βs(t), RH⟩

)
,

so that Ĥ(t) =

(
q−1J∨

0

J1

)
and R̂H(t) =

(
q−1K∨

0

K1

)
. From Lemma 6.11

and Lemma 6.13,(
⟨s,K0⟩
⟨s,K1⟩

)
=

(
⟨Rαs(t), H⟩
⟨Rβs(t), H⟩

)
=

(
0 (q + 1)t
0 (q − 1)

)(
⟨αs(t), H⟩
⟨βs(t), H⟩

)
+

(
1 0
0 −1

)(
⟨αs∨(t), H⟩
⟨βs∨(t), H⟩

)
=

(
0 (q + 1)t
0 (q − 1)

)(
⟨s, J0⟩
⟨s, J1⟩

)
+

(
1 0
0 −1

)(
⟨s∨, J0⟩
⟨s∨, J1⟩

)
.

We get K0 = J∨
0 + (q + 1)tJ1 and K1 = (q − 1)J1 − J∨

1 , hence

R̂H(t) =

(
q−1K∨

0

K1

)
=

(
J0 + q−1(q − 1)J∨

0 + q−1(q + 1)tJ∨
1

(q − 1)J1 − J∨
1

)
.
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As J1 = Ĥ1(t), we get R̂H1(t) = (q − 1)Ĥ1(t)− Ĥ1(t)
∨. As

J0 = Ĥ0(t)
∨ − (q − 1)Ĥ0(t),

a straightforward computation gives

R̂H0(t) = Ĥ0(t)
∨ + q−1(q + 1)tĤ1(t)

and the equivariance property for the operator R holds.

In the same way, we let L =

(
L0

L1

)
be in H2

k such that, for s in Sk,(
⟨s, L0⟩
⟨s, L1⟩

)
=

(
⟨αs(t), SH⟩
⟨βs(t), SH⟩

)
, so that ŜH(t) =

(
q−1L∨

0

L1

)
. Lemma 6.11

and Lemma 6.13 now give,(
⟨s, L0⟩
⟨s, L1⟩

)
=

(
⟨Sαs(t), H⟩
⟨Sβs(t), H⟩

)
=

(
⟨βs(t), H⟩
⟨αs(t), H⟩

)
=

(
⟨s, J1⟩
⟨s, J0⟩

)
.

Reasoning as above, we get ŜH1(t) = J0 = Ĥ0(t)
∨ − (q − 1)Ĥ0(t) and

ŜH0(t) = q−1J∨
1 = q−1Ĥ1(t)

∨.
The uniqueness statement follows from the analogous ones in Propo-

sition 4.2 and Proposition 4.12. □

To construct the q. transform, we do the same constructions, but the
roles of Sk,+ and Sk,− are exchanged. Thus, if s is in Sk,+, we set, for
i ≥ 0,

α′
s(t)i = α+−(t)is and β′

s(t)i = β+−(t)is.

If s is in Sk,−, we set, for i ≥ 0,

α′
s(t)i = α++(t)is and β′

s(t)i = β++(t)is.

As above, if s is in Sk and s = s+ + s− with s+ in Sk,+ and s− in Sk,−,
we set α′

s(t) = α′
s+
(t) + α′

s−(t) and β
′
s(t) = βs+(t) + βs−(t). By Lemma

4.7 and Lemma 4.17, the coordinates of these sequences are polynomial
functions of t.

We now get

Lemma 6.14. Let k ≥ 0 be even and s be in Sk. For any t in R, we
have the matrix relations(

Sα′
s(t)

Sβ′
s(t)

)
=

(
β′
s(t)
α′
s(t)

)
and

(
R′α′

s(t)
R′β′

s(t)

)
=

(
α′
(q−1)s−s∨(t) + (q + 1)tβ′

s(t)

β′
s∨(t)

)
.
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Converserly, assume γ and δ are in SN
k and we have(

Sγ
Sδ

)
=

(
δ
γ

)
and

(
R′γ
R′δ

)
=

(
(q − 1)γ − γ∨ + (q + 1)tδ

δ∨

)
.

Then, we have γ = α′
s(t) and δ = β′

s(t) where s = γ0.

Now, for G in H(N)
k and t in R, we define qG(t) =

(
qG0(t)
qG1(t)

)
to be the

unique element of H2
k such that, for any s in Sk, one has

(6.9)

(
⟨s, qG0(t)

∨⟩
⟨s,− qG1(t)⟩

)
=

(
⟨α′

s(t), G⟩
⟨β′

s(t), G⟩

)
.

Proof of Proposition 6.4 in case k is even. This can be obtained from
Lemma 6.14 and (6.9) as in the proof of Proposition 6.3. □

6.6. Construction of the spectral transforms: the odd case.
We proceed to analogous constructions in the odd case. Let k ≥ 0 be
odd.

For t in R, as in Subsection 5.1, if s is in Sk,+, we set, for i ≥ 0,

αs(t)i = α−+(t)is and βs(t)i = β−+(t)is.

In the same way, as in Subsection 5.2, if s is in Sk,−, we set, for i ≥ 0,

αs(t)i = α−−(t)is and βs(t)i = β−−(t)is.

And, for s in Sk, s = s+ + s− with s+ in Sk,+ and s− in Sk,−, we set
αs(t) = αs+(t) + αs−(t) and βs(t) = βs+(t) + βs−(t).

From Lemma 5.6, Lemma 5.8, Lemma 5.15 and Lemma 5.17, we get

Lemma 6.15. Let k ≥ 0 be odd and s be in Sk. For any t in R, we
have the matrix relations(

Sαs(t)
Sβs(t)

)
=

(
αs∨(t) + β(q+1)ts−(q−1)s∨(t)

−βs∨(t)

)
and

(
Rαs(t)
Rβs(t)

)
=

(
(q − 1)αs(t) + qβs(t)

αs(t)

)
.

Converserly, assume γ and δ are in SN
k and we have(

Sγ
Sδ

)
=

(
γ∨ + (q + 1)tδ − (q − 1)δ∨

−δ∨
)

and

(
Rγ
Rδ

)
=

(
(q − 1)γ + qδ

γ

)
.

Then, we have γ = αs(t) and δ = βs(t) where s = γ0.
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For H in H(N)
k and t in R, we define Ĥ(t) =

(
Ĥ0(t)

Ĥ1(t)

)
to be the

unique element of H2
k such that, for any s in Sk, one has

(6.10)

(
⟨s, Ĥ1(t)⟩
⟨s, Ĥ0(t)

∨⟩

)
=

(
⟨αs(t), H⟩
⟨βs(t), H⟩

)
.

Proof of Proposition 6.3 in case k is odd. This follows from Lemma
6.15 and (6.10). □

Again, to construct the q. transform, we exchange the roles of Sk,+

and Sk,−. If s is in Sk,+, we set, for i ≥ 0,

α′
s(t)i = α−−(t)is and β′

s(t)i = β−−(t)is.

If s is in Sk,−, we set, for i ≥ 0,

α′
s(t)i = α−+(t)is and β′

s(t)i = β−+(t)is.

If s is in Sk and s = s+ + s− with s+ in Sk,+ and s− in Sk,−, we still
set α′

s(t) = α′
s+
(t) + α′

s−(t) and β
′
s(t) = βs+(t) + βs−(t).

We get again

Lemma 6.16. Let k ≥ 0 be odd and s be in Sk. For any t in R, we
have the matrix relations(

S ′α′
s(t)

S ′β′
s(t)

)
=

(
−α′

s∨(t) + β′
(q+1)ts+(q−1)s∨(t)

β′
s∨(t)

)
(
Rα′

s(t)
Rβ′

s(t)

)
=

(
(q − 1)α′

s(t) + qβ′
s(t)

α′
s(t)

)
.

Converserly, assume γ and δ are in SN
k and we have(

S ′γ
S ′δ

)
=

(
−γ∨ + (q + 1)tδ + (q − 1)δ∨

δ∨

)
and

(
Rγ
Rδ

)
=

(
(q − 1)γ + qδ

γ

)
.

Then, we have γ = α′
s(t) and δ = β′

s(t) where s = γ0.

Finally, for G in H(N)
k and t in R, we define qG(t) =

(
qG0(t)
qG1(t)

)
to be

the unique element of H2
k such that, for any s in Sk, one has

(6.11)

(
⟨s,− qG1(t)⟩
⟨s, qG0(t)

∨⟩

)
=

(
⟨α′

s(t), G⟩
⟨β′

s(t), G⟩

)
.

Proof of Proposition 6.4 in case k is odd. This is now a consequence of
Lemma 6.16 and (6.11). □
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6.7. Twist and spectral transform. In this Subsection, we assume
Γ to be bipartite. Then, we can use the language of Subsection 2.6. We
will describe the action of the twist operator on the spectral transform.

For k ≥ 0, we let s 7→ s≀ be the adjoint operations to the twist
operator on k-simple pseudofields. More concretely, if k ≥ 1 and s is a
k-simple pseudofield, for x ∼ y in X, we set

s≀xy = χ(x)sxy.

If k = 0 and s is the 0-simple pseudofield associated to the function u
on X, we set s≀ to be 0-simple pseudofield associated to the function
χu.

Still by duality with Subsection 2.6, we set, for k ≥ 0 and s in SN
k ,

(Us)i = (−1)
i
2 s≀i i even

(Us)i = (−1)
i+1
2 s≀i i odd, k even

(Us)i = (−1)
i−1
2 s≀i i odd, k odd.

By using Lemma 4.20 and Lemma 5.19, we get

Lemma 6.17. Let k ≥ 0 and s be in Sk. For t in C, we have

Uβs(t) = −βs≀(−t)
Uαs(t) = αs≀(−t) if k is even

Uαs(t) = −αs≀(−t) if k is odd.

Thanks to Lemma 2.22 and (6.8) and (6.10), this yields

Lemma 6.18. Let k ≥ 0 and H be in H(N)
k . For t in C, we have

ÛH(t) =

(
Ĥ0(t)

≀

−Ĥ1(t)
≀

)
.

6.8. The adjoint of the default map. Recall that, for k ≥ 0, the

default map Dk : H(N)
k−1 → H(N)

k was defined in Definition 2.12. By
Corollary 2.14, the range of the default map is the null space of the
polyextension map of Definition 2.11. In Subsection 6.4 above, we have

identified the dual space of H(N)
k with SN

k . Therefore, the default map
gives rise to an adjoint linear map D∗

k : SN
k → SN

k−1. We can give a
direct description of D∗

k.

Lemma 6.19. Let k ≥ 1 and s be in SN
k . If k is even, we have

(D∗
ks)0 = s<∨

0 − s<1

(D∗
ks)i =

1

q
s∨<∨
i−1 − s<i+1, i ≥ 1.
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If k is odd, we have

(D∗
ks)0 = s<∨

0 − qs<1

(D∗
ks)i = s∨<∨

i−1 − qs<i+1, i ≥ 1.

Proof. This is a direct computation. For example, we explicit the even

case. If k is even, for G in H(N)
k−1, we have by definition

⟨D∗
ks,H⟩ = ⟨s,DkH⟩ = ⟨s0, G∨>∨

1 +G∨>
0 ⟩

+
∞∑
i=1

qi−1(⟨s2i−1, G
∨>∨
2i −G>

2i−2⟩+ q⟨s2i, G∨>∨
2i+1 −G>

2i−1⟩).

By using Lemma 6.7 and Lemma 6.8, we get

⟨D∗
ks,H⟩ = ⟨s<∨

0 − s<1 , G0⟩

+
∞∑
i=1

⟨qi−1s∨>∨
2i−2 − qis<2i, G2i−1⟩+ ⟨qi−1s∨>∨

2i−1 − qis<2i+1, G2i⟩.

The conclusion follows. The odd case is analogous. □

6.9. The spectral default. We now prove Proposition 6.5 by using
the precise definition of the spectral transforms given in Subsection
6.5 and Subsection 6.6. The main point of the proof is the following
delicate computation.

Lemma 6.20. Let k ≥ 1 be even, s be in SN
k and t be in R. We have

(6.12) D∗
kβs(t) = −α′

s<(t) + β′
s∨<(t).

If k is even, we have

(6.13) D∗
kαs(t) = α′

s<∨(t) + β′
s∨<∨−(q−1)s<∨−(q+1)ts<(t).

If k is odd, we have

(6.14) D∗
kαs(t) = α′

s<∨−(q−1)s<(t) + β′
s∨<∨−(q+1)ts<(t).

One way to prove this is to use the explicit definitions of the objects
given in Subsections 4.1, 4.3, 5.1, 5.2, 6.5 and 6.6 and the formulas for
the operator D∗

k given in Lemma 6.19. We will instead use an argument
based on the uniqueness property in Lemmas 6.14 and 6.16.
We will split the proof according to the parity of k.

Proof of Lemma 6.20 in case k is even. Looking at (6.12) and (6.13)
suggests to introduce δ = D∗

kβs(t) + (D∗
kαs(t))

∨ and γ = Rδ. As
R2 = q+(q− 1)R, we get the second relation in the uniqueness part of
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Lemma 6.16. We will conclude by proving that the first relation also
holds. By Lemma 2.21, Lemma 6.12 and Lemma 6.13, we have

S ′δ = D∗
kSβs(t) + (D∗

kSαs(t))
∨ = D∗

kαs(t) + (D∗
kβs(t))

∨ = δ∨.

It remains to compute S ′γ. Again by Lemma 2.21, Lemma 6.12 and
Lemma 6.13, we have

γ = Rδ = D∗
kRβs(t) + (D∗

kRαs(t))
∨

= D∗
kβ(q−1)s−s∨(t) + (D∗

kαs∨(t))
∨ + (q + 1)t(D∗

kβs(t))
∨,(6.15)

hence

S ′γ = D∗
kα(q−1)s−s∨(t) + (D∗

kβs∨(t))
∨ + (q + 1)t(D∗

kαs(t))
∨.

Applying the ∨ operator to (6.15) and summing with the last equation
gives

S ′γ + γ∨ = (q − 1)D∗
kαs(t) + (q − 1)(D∗

kβs(t))
∨

+ (q + 1)t(D∗
kαs(t))

∨ + (q + 1)tD∗
kβs(t) = (q − 1)δ∨ + (q + 1)tδ,

that is, we have S ′γ = −γ∨ + (q + 1)tδ + (q − 1)δ∨. Therefore, by
Lemma 6.16, we have γ = α′

γ0
(t) and δ = β′

γ0
(t). Let us determine γ0.

By construction in Subsections 4.1, 4.3 and 6.5, we have

αs(t)0 = βs(t)1 = s and αs(t)1 = βs(t)0 = 0.

By using Lemma 6.19 and (6.15), we get

γ0 = −((q − 1)s− s∨)< + s∨< + (q + 1)t(−s<)∨

= 2s∨< − (q − 1)s< − (q + 1)ts<∨.

Thus, we have shown that

D∗
kβs(t) + (D∗

kαs(t))
∨ = δ = β′

2s∨<−(q−1)s<−(q+1)ts<∨(t).

Applying this identity to s∨ yields

(D∗
kαs∨(t))

∨ = β′
2qs<+(q−1)s∨<−(q+1)ts∨<∨(t)−D∗

kβs∨(t)

and therefore, by using the value for γ given by (6.15),

(6.16)

D∗
kβ(q−1)s−2s∨(t) + β′

2qs<+(q−1)s∨<−(q+1)ts∨<∨(t) + (q + 1)t(D∗
kβs(t))

∨

= γ = α′
2s∨<−(q−1)s<−(q+1)ts<∨(t).

To conclude, we will temporarily split the proof according to the eigen-
values of the ∨ operator in Sk.

If s∨ = qs, (6.16) says

−D∗
kβs(t) + t(D∗

kβs(t))
∨ = α′

s<−ts<∨(t)− qβ′
s<−ts<∨(t).
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As the linear map r 7→ r − tr∨ is injective on Sk−1 for all t /∈ {−1, 1}
and as the functions are polynomial in t, we get

(6.17) D∗
kβs(t) = −α′

s<(t) + qβ′
s<(t) = −α′

s<(t) + β′
s∨<(t).

If s∨ = −s, (6.16) says
D∗

kβs(t) + t(D∗
kβs(t))

∨ = −α′
s<+ts<∨(t)− β′

s<+ts<∨(t).

As above, we get

(6.18) D∗
kβs(t) = −α′

s<(t)− β′
s<(t) = −α′

s<(t) + β′
s∨<(t).

Joining the two cases, we get from (6.17) and (6.18) that (6.12)
holds for any s in Sk. We now apply the operator S ′ to this identity.
By Lemma 2.21, Lemma 6.12, Lemma 6.13 and Lemma 6.16, this gives

D∗
kαs(t) = α′

s<∨(t)− β′
(q+1)ts<+(q−1)s<∨(t) + β′

s∨<∨(t)

and (6.13) follows. □

Proof of Lemma 6.20 in case k is odd. We now consider (6.12) and
(6.14) and we set δ = qD∗

kβs(t) + (D∗
kαs(t))

∨ and γ = Sδ, so that the
first relation in the uniqueness part of Lemma 6.14 holds. As above,
we will conclude by proving that the second relation also holds. By
Lemma 2.21, Lemma 6.12 and Lemma 6.15, we have

R′δ = qD∗
kRβs(t) + (D∗

kRαs(t))
∨

= qD∗
kαs(t) + (D∗

k(qβs(t) + (q − 1)αs(t)))
∨

= qD∗
kαs(t) + (q − 1)(D∗

kαs(t))
∨ + q(D∗

k(βs(t)))
∨ = δ∨.

We now compute R′γ. Still by Lemma 2.21, Lemma 6.12 and Lemma
6.15, we have

γ = Sδ = qD∗
kSβs(t) + (D∗

kSαs(t))
∨

= −qD∗
kβs∨(t) + (D∗

kαs∨(t))
∨ + (D∗

kβ(q+1)ts−(q−1)s∨(t))
∨,(6.19)

hence

γ∨ − (q − 1)γ = −q(D∗
kβs∨(t))

∨ + qD∗
kαs∨(t) + qD∗

kβ(q+1)ts(t).

and

R′γ = −qD∗
kαs∨(t) + q(D∗

kβs∨(t))
∨

+ (q − 1)(D∗
kαs∨(t))

∨ + (D∗
kα(q+1)ts−(q−1)s∨(t))

∨

= −qD∗
kαs∨(t) + q(D∗

kβs∨(t))
∨ + (D∗

kα(q+1)ts(t))
∨

Summing up the last two relations gives

R′γ + γ∨ − (q − 1)γ = (D∗
kα(q+1)ts(t))

∨ + qD∗
kβ(q+1)ts(t) = (q + 1)tδ.
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That is, we have R′γ = −γ∨ + (q − 1)γ + (q + 1)tδ. Therefore, by
Lemma 6.14, we have γ = α′

γ0
(t) and δ = β′

γ0
(t). We compute γ0. By

construction in Subsections 5.1, 5.2 and 6.6, we have

αs(t)0 = s αs(t)1 = q−1(q − 1)s

βs(t)0 = 0 βs(t)1 = q−1s.

By using Lemma 6.19 and (6.19), we get

γ0 = q∨< + (s∨<∨ − (q − 1)s∨<)∨ + ((q − 1)s∨< − (q + 1)ts<)∨

= 2qs∨< + (q − 1)s∨<∨ − (q + 1)ts<∨.

We have shown that

qD∗
kβs(t) + (D∗

kαs(t))
∨ = δ = β′

2qs∨<+(q−1)s∨<∨−(q+1)ts<∨(t).

Applying this identity to s∨, we get

(D∗
kαs∨(t))

∨ = β′
2qs<+(q−1)s<∨−(q+1)ts∨<∨(t)− qD∗

kβs∨(t),

whence, by using the value for γ given by (6.19),

(6.20)

− 2qD∗
kβs∨(t) + β′

2qs<+(q−1)s<∨−(q+1)ts∨<∨(t) + (D∗
kβ(q+1)ts−(q−1)s∨(t))

∨

= γ = α′
2qs∨<+(q−1)s∨<∨−(q+1)ts<∨(t).

To conclude, we will again temporarily split the proof according to the
eigenvalues of the ∨ operator in Sk.

If s∨ = s, (6.20) says

− 2qD∗
kβs(t) + ((q + 1)t− (q − 1))(D∗

kβs(t))
∨

= α′
2qs<−((q+1)t−(q−1))s<∨(t)− β′

2qs<−((q+1)t−(q−1))s<∨(t).

As the eigenvalues of the ∨ operator on Sk−1 are q and −1, the linear
map r 7→ 2qr − ((q + 1)t − (q − 1))r∨ is injective on Sk−1 for all t /∈
{−1, 1}. As the functions are polynomial in t, we get

(6.21) D∗
kβs(t) = −α′

s<(t) + β′
s<(t) = −α′

s<(t) + β′
s∨<(t).

If s∨ = −s, (6.20) says

2qD∗
kβs(t) + ((q + 1)t+ (q − 1))(D∗

kβs(t))
∨

= −α′
2qs<+((q+1)t+(q−1))s<∨(t)− β′

2qs<+((q+1)t+(q−1))s<∨(t).

As above, we get

(6.22) D∗
kβs(t) = −α′

s<(t)− β′
s<(t) = −α′

s<(t) + β′
s∨<(t).
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Joining the two cases, we get from (6.21) and (6.22) that (6.12) holds
for any s in Sk. We now apply the operator R′ to this identity. By
Lemma 2.21, Lemma 6.12, Lemma 6.15 and Lemma 6.14, this gives

D∗
kαs(t) = α′

s<∨−(q−1)s<(t)− β′
(q+1)ts<(t) + β′

s∨<∨(t)

and (6.14) follows. □

We conclude the Section by the proof of Proposition 6.5, which is a
direct consequence of Lemma 6.20.

Proof of Proposition 6.5. Let G be in H(N)
k−1 and set H = DkG. We

write as usual qG =

(
qG0

qG1

)
and Ĥ =

(
Ĥ0

Ĥ1

)
.

First assume that k is even. By the definition of the spectral trans-
form in (6.8), we have, for t in R and s in Sk,

⟨s, Ĥ0(t)⟩ = ⟨q−1s∨, Ĥ0(t)
∨ − (q − 1)Ĥ0(t)⟩ = q−1⟨αs∨(t), H⟩
= q−1⟨αs∨(t), DkG⟩ = q−1⟨D∗

kαs∨(t), G⟩.

Lemma 6.20 gives

D∗
kαs∨(t) = α′

s∨<∨(t) + β′
s∨∨<∨−(q−1)s∨<∨−(q+1)ts∨<(t)

= α′
s∨<∨(t) + β′

qs<∨−(q+1)ts∨<(t),

hence, by the definition of the spectral transform in (6.11),

⟨s, Ĥ0(t)⟩ = q−1⟨α′
s∨<∨(t) + β′

qs<∨−(q+1)ts∨<(t), G⟩

= −q−1⟨s∨<∨, qG1(t)⟩+ ⟨s< − q−1(q + 1)ts∨<∨, qG0(t)⟩.

We get Ĥ0(t) = −q−1
qG1(t)

∨<∨ + qG0(t)
> − q−1(q + 1)t qG0(t)

∨>∨ as re-
quired. In the same way, the definitions (6.8) and (6.11) and Lemma
6.20 give

⟨s, Ĥ1(t)⟩ = ⟨βs(t), H⟩ = ⟨D∗
kβs(t), G⟩

= ⟨−α′
s<(t) + β′

s∨<(t), G⟩ = ⟨s<, qG1(t)⟩+ ⟨s∨<∨, qG0(t)⟩,

hence Ĥ1(t) = qG1(t)
> + qG0(t)

∨>∨.
Assume now that k is odd. We use (6.9) and (6.10) and Lemma 6.20

to get

⟨s, Ĥ0(t)⟩ = ⟨βs∨(t), H⟩ = ⟨D∗
kβs∨(t), G⟩

= ⟨−α′
s∨<(t) + β′

s<(t), G⟩ = −⟨s∨<∨, qG0(t)⟩ − ⟨s<, qG1(t)⟩,
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hence Ĥ0(t) = − qG0(t)
∨>∨ − qG1(t)

>. Finally, the same arguments give

⟨s, Ĥ1(t)⟩ = ⟨αs(t), H⟩ = ⟨D∗
kαs(t), G⟩

= ⟨α′
s<∨−(q−1)s<(t) + β′

s∨<∨−(q+1)ts<(t), G⟩

= ⟨s<∨∨ − (q − 1)s<∨, qG0(t)⟩ − ⟨s∨<∨ − (q + 1)ts<, qG1(t)⟩

= q⟨s<, qG0(t)⟩+ ⟨(q + 1)ts< − s∨<∨, qG1(t)⟩,

that is, Ĥ1(t) = q qG0(t)
>+(q+1)t qG1(t)

>− qG1(t)
∨>∨ and the Proposition

follows. □

7. The simple transfer operator

Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. Then, the
successive orthogonal extensions of p define a scalar product p∞ on
D(∂X) (see Subsection I.4.5). Recall from Subsection 2.3 that we write
H∞ for the space of Γ-invariant ∞-pseudofunctions, that is, the space
of Γ-invariant maps X1 → D(∂X). By abuse of notation, we will still
denote by p∞ the scalar product associated with p on H∞, which is
defined by, for any H, J in H∞,

(7.1) p∞(H, J) =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
p∞(Hxy, Jxy).

Our aim until the end of the article is to establish a Plancherel formula
for p in the spirit of (4.1), (4.8), (5.1) and (5.4). Following the strategy
of the proofs of this formulae, we need to establish a formula for the
resolvent of a certain self-adjoint operator acting on (the completion
of) H∞. To state this resolvent formula, we will use a linear operator
that is an analogue of the quadratic transfer operator of Subsection
I.10.3. The purpose of the present Section is to define this operator
and give some informations on its spectrum.

7.1. Adjoint operations and simple transfer operator. Our defi-
nition will be formulated in the spirit of Subsection II.6.2. In particular,
it requires for us to introduce the adjoint operation of direct extension.

Let k ≥ 2 and p be a k-Euclidean field. Recall from Subsection
I.10.3 that, if k is even, k = 2ℓ, ℓ ≥ 1, for any x ∼ y ∈ X, we

write Iℓ−1,†p
xy : V

ℓ
(x) → V

ℓ−1
(xy) for the surjective linear map that

is the adjoint with respect to px of the natural injective map Iℓ−1
xy :

V
ℓ−1

(xy) → V
ℓ
(x). Then, if H is a k-pseudofunction, we let H<p be

the (k − 1)-pseudofunction with H
<p
xy = Iℓ−1,†p

xy Hxy, x ∼ y ∈ X. We
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equip Hk with the scalar product defined by

p(H, J) =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
px(Hxy, Jxy), H, J ∈ Hk.

In the same way, if k is odd, k = 2ℓ+1, ℓ ≥ 1, for any x ∼ y ∈ X, we

write J ℓ,†p
xy : V

ℓ
(xy) → V

ℓ
(x) for the surjective linear map that is the

adjoint with respect to pxy of the natural injective map J ℓ
xy : V

ℓ
(x) →

V
ℓ
(xy). Then, if H is a k-pseudofunction, we let H<p be the (k − 1)-

pseudofunction with H
<p
xy = J ℓ,†p

xy Hxy, x ∼ y ∈ X. We equip Hk with
the scalar product defined by

p(H, J) =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
pxy(Hxy, Jxy), H, J ∈ Hk.

By construction, we always have

H><p = H.

By using Lemma I.9.11, we directly get the adjointness property.

Lemma 7.1. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. For
any H in Hk and J in Hk−1, we have

p(H, J>) = p−(H<p , J).

Note that Lemma I.10.8 may be translated into

Lemma 7.2. Let k ≥ 2, p be a k-Euclidean field with orthogonal ex-
tension p+ and H be a k-pseudofunction. We have

H>∨<p+ = H<p∨>.

As in Subsection I.4.5, we write p+ for the orthogonal extension of
p. Now, by analogy with I.10.4 and I.10.5, we set

Definition 7.3. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
The simple transfer operator Sp of p is the linear endomorphism of
Hk−1 defined by

SpH = H>∨<p∨ H ∈ Hk−1.

By abuse of notation, we will usually also write Sp : Hk → Hk for
the transfer operator of the orthogonal extension p+ of p. By Lemma
7.2, for H is in Hk, we have

(7.2) SpH = H<p∨>∨.

Thus, we get
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Lemma 7.4. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. For
H in Hk−1, we have

(SpH)>∨ = Sp(H
>∨).

Note that the ∨ operator is self-adjoint with respect to p, as follows
directly from the definitions (and from Lemma I.9.11). We write S†

p for
the adjoint of Sp with respect to p. We get

Lemma 7.5. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. For
H in Hk−1, we have

S†
pH = H∨>∨<p .

In particular, the operators Sp and S
†
p are conjugated by the ∨ operator,

that is, we have Sp(H
∨) = (S†

pH)∨.

Recall from Subsection 2.6 that, when Γ is bipartite, we have in-
troduced the twist operator of pseudofunctions. This operator is then
self-adjoint with respect to p. By Lemma 2.22, we obtain

Lemma 7.6. Assume Γ is bipartite. Let k ≥ 2 and p be a Γ-invariant
k-Euclidean field. For H in Hk−1, we have

Sp(H
≀) = −(SpH)≀ and S†

p(H
≀) = −(S†

pH)≀.

7.2. Spectrum of the simple transfer operator. The resolvent
formula for Euclidean fields will be written by using rational functions
of the simple transfer operator. For this to make sense, we will need
some information on the spectrum of Sp.

We start by exhibiting a subspace of Hk−1 where the simple transfer
operator has a very simple behaviour. Recall from Subsection 2.2 that
we have introduced the notion of a (−1)-pseudofunction and that the
space H−1 has dimension 1 or 2.

Lemma 7.7. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. Let
H be in H−1. Then, we have

Sp

(
H>k

)
= −H∨>k

= S†
p

(
H>k

)
.

In other words, the operators Sp and S†
p preserve the space of (−1)-

pseudofunctions and may be seen on that space as the operator that
maps a function on X that is constant on neighbours to the opposite
function. Note that this implies in particular that, contrarily to the
quadratic transfer operator, the simple transfer operator always admits
1 as an eigenvalue.
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Proof. We prove the statement for Sp, the other proof being analogous
by using Lemma 7.5. Assume that k is even. Then, by Lemma 2.6, we
have

Sp

(
H>k

)
= H>k+1∨<p∨ = H>∨>k<p∨ = H>∨>k−1∨.

As H> is a 0-pseudofunction, by convention, H>∨ = −H>. Hence
again by Lemma 2.6,

Sp

(
H>k

)
= −H>k∨ = −H∨>k

as required. Now, if k is odd, we have

Sp

(
H>k

)
= H>k+1∨<p∨ = H∨>k+1<p∨ = H∨>k∨ = H∨>∨>k−1

and, again, as H∨> is a 0-pseudofunction, H∨>∨ = −H∨>. □

We notice that the spectrum of the simple transfer operator essen-
tially does not depend on the space.

Lemma 7.8. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. Then,
the spectrum of Sp in Hk is the union of {0} and the spectrum of Sp in
Hk−1.

See Corollary I.10.7 for the analogous result for quadratic transfer
operators.

Proof. By Lemma 7.4, for J in Hk−1, we have (SpJ)
>∨ = Sp(J

>∨). By
(7.2), we have SpHk ⊂ H>∨

k−1. The result follows. □

Now we prove a universal bound on the spectral radius.

Proposition 7.9. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
Then, Sp has spectral radius < q in Hk−1.

The proof of the Proposition essentially relies on the following norm
estimate for the adjoint simple transfer operator.

Lemma 7.10. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and H
be in Hk−1. Then, we have

∥∥S†
pH
∥∥
p
≤ q ∥H∥p. Besides, if k is even

(resp. odd), then equality holds, that is,
∥∥S†

pH
∥∥
p
= q ∥H∥p if and only

if there exists J in Hk−2 (resp. Hk−3) with J∨ = qJ and H = J>∨

(resp. H = J>>).

We have denoted by ∥.∥p the natural norm induced by p on Hk−1,

that is, ∥H∥p =
√
p−(H,H) for H in Hk−1.
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Proof. Recall that, if j ≥ 1 is odd, the ∨ operator is an isometry of
Hj with respect to p, whereas if j is even, it is a self-adjoint operator
with spectrum {−1, q}. In particular, for any H in Hk−1, we have
∥H∨>∨∥p ≤ q ∥H∥p. As the <p operator is the adjoint of the isometric
embedding given by direct extension Hk−1 ↪→ Hk, we get

(7.3)
∥∥S†

pH
∥∥
p
= ∥H∨>∨<p∥ ≤ ∥H∨>∨∥p ≤ q ∥H∥p .

If H∨ = J> for some J in Hk−2, by Lemma 2.6, we have

(7.4) S†
pH = H∨>∨<p = J>>∨<p = J∨>><p = J∨>.

Thus, if k is even and J∨ = qJ , we get S†
pH = qJ> and∥∥S†

pH
∥∥
p
= q ∥J>∥p = q ∥J>∨∥p = q ∥H∥p .

If k is odd and H = K>> for some K in Hk−3 with K∨ = qK, by
Lemma 2.6, we have

S†
pH = K>>∨>∨<p = qK>>>∨<p = qK>∨>><p = qK>∨>

and again∥∥S†
pH
∥∥
p
= q ∥K>∨>∥p = q ∥K>∨∥p = q ∥K>∥p = q ∥K>>∥p = q ∥H∥p .

Conversely, assume
∥∥S†

pH
∥∥
p
= q ∥H∥p, so that the two inequalities

in (7.3) must be equalities. We get ∥H∨>∨<p∥ = ∥H∨>∨∥p, so that

H∨>∨ belongs to H>
k−1. By Lemma 2.8, there exists J in Hk−2 with

H∨ = J>.
Assume that k is even. Then, by using (7.4), we get

∥J∨∥p = ∥J∨>∥p =
∥∥S†

pH
∥∥
p
= q ∥H∥p = q ∥H∨∥p = q ∥J>∥p = q ∥J∥p .

Hence J∨ = qJ as required.
Assume that k is odd. Then, again by (7.4), we have

∥H∨∥p = ∥J>∥p = ∥J∥p = ∥J∨∥p = ∥J∨>∥p =
∥∥S†

pH
∥∥
p
= q ∥H∥p .

Therefore, we obtain H∨ = qH. As H∨ = J>, we have J>∨ = qJ>

which, by Lemma 2.8, implies that we may write J = K> for some
K in Hk−3 with K∨ = qK. We have H = q−1J> = q−1K>> and the
conclusion follows. □

Proposition 7.9 will follow from Lemma 7.10 by an induction argu-
ment which relies on

Lemma 7.11. Let i ≥ 0 and ℓ ≥ 1 be integer. Let H be a 2ℓ-
pseudofunction and G be a 2(i + ℓ)-pseudofunction with G∨ = qG.

Assume that we have H>2i+1
= G>∨. Then, there exists a 2(ℓ − 1)-

pseudofunction J with J∨ = qJ and H = J>∨> and G = J>2(i+1)
.
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Proof. We fix ℓ ≥ 1 and we prove this statement by induction on i ≥ 0.
For i = 0, we have H> = G>∨. Thus, Lemma 2.8 gives a (2ℓ − 1)-

pseudofunction K with G = K> and H = K∨>. As G∨ = qG, we have
K>∨ = qK>. Still by Lemma 2.8, there exists a 2(ℓ−1)-pseudofunction
J with J∨ = qJ and K = J>. We get H = K∨> = J>∨> and G = J>>

and we are done.
Now, assume that i ≥ 1 and the result is true for i−1. As above, by

Lemma 2.8, there exists a (2i+2ℓ−1)-pseudofunction K with G = K>

andH>2i
= K∨>. AsG∨ = qG, there exists a 2(i+ℓ−1)-pseudofunction

G1 with G∨
1 = qG1 and K = G>

1 . We get H>2i
= K∨> = G>∨>

1 , hence

H>2i−1
= G>∨

1 . Therefore, the induction assumption says that there
exists a 2(ℓ − 1)-pseudofunction J with J∨ = qJ and H = J>∨> and

G1 = J>2i
. As G = G>>

1 , we get G = J>2(i+1)
and the conclusion

follows by induction. □

Proof of Proposition 7.9. Note that Lemma 7.10 directly implies the
Proposition when k = 2, 3. Indeed from the definitions in Subsection
2.1, the ∨ operator on H0 is −1. Thus, if k = 2, 3, then S†

p has norm
< q and the conclusion follows. The proof for arbitrary k ≥ 2 will
follows from the same reason by an induction argument.

If k is even, k = 2ℓ, ℓ ≥ 1, we claim that, for any 1 ≤ i ≤ ℓ, if H

is in Hk−1 and
∥∥∥(S†

p

)i
H
∥∥∥
p
= qi ∥H∥p, then H = J>2i−1∨ for some J in

Hk−2i with J
∨ = qJ . If i = 1, this is Lemma 7.10. If i ≤ ℓ− 1 and the

claim is true for i, let us show that it is also true for i+ 1. Therefore,
we assume that we have∥∥∥(S†

p

)i+1
H
∥∥∥
p
= qi+1 ∥H∥p .

We set G = S†
pH. By the inequality in Lemma 7.10, we have∥∥∥(S†

p

)i
G
∥∥∥
p
= qi ∥G∥p and ∥G∥p = q ∥H∥p. Hence, on one hand, the

induction assumption says that we may write G = K>2i−1∨ for some
K in H2(ℓ−i) with K∨ = qK, whereas Lemma 7.10 says that we may
write H = L>∨ for some L in H2(ℓ−1) with L

∨ = qL. From (7.4), we

get G = S†
pH = L∨> = qL>, hence K>2i−1∨ = qL>, or equivalently,

K>2i−1
= qL>∨. As L∨ = qL, we can apply Lemma 7.11. Then, we

know that there exists J in H2(ℓ−i−1) with J∨ = qJ and K = qJ>∨>

and L = J>2i
. As H = L>∨, this gives H = J>2i+1∨, which should be

proved.
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In particular, applying this claim in case i = ℓ, as the ∨ operator is

−1 on H0, we get that
(
S†
p

)ℓ
has norm < qℓ on Hk−1, which implies

the Proposition in the even case.
Assume that k is odd, k = 2ℓ+1, ℓ ≥ 1. We now claim that for any

1 ≤ i ≤ ℓ, if H is in Hk−1 and
∥∥∥(S†

p

)i
H
∥∥∥
p
= qi ∥H∥p, then H = J>>2i

for some J in Hk−2i−1 with J∨ = qJ . If i = 1, this is Lemma 7.10. If
i ≤ ℓ− 1 and the claim is true for i, let us show that it is also true for
i+ 1. Again, we assume that we have∥∥∥(S†

p

)i+1
H
∥∥∥
p
= qi+1 ∥H∥p

and we set G = S†
pH, so that, by Lemma 7.10, we have

∥∥∥(S†
p

)i
G
∥∥∥
p
=

qi ∥G∥p and ∥G∥p = q ∥H∥p. By the induction assumption, there exists

K in Hk−2i−1 with K∨ = qK and K>2i
= G. By Lemma 7.10, there

exists L in Hk−3 with L∨ = qL and L>> = H. We have, by Lemma
2.6,

K>2i

= G = S†
pH = L>>∨>∨<p = qL>>>∨<p = qL>∨>><p = qL>∨>,

hence K>2i−1
= qL>∨. By Lemma 7.11, there exists J in Hk−2i−3 with

J∨ = qJ and K = qJ>∨> and L = J>2i
. We get H = J>2(i+1)

as
required.

As above, the case i = ℓ implies that
(
S†
p

)ℓ
has norm < qℓ on Hk−1.

The Proposition follows in the odd case. □

7.3. Spectrum in the admissible case. In this Subsection, we relate
the simple transfer operator with the quadratic transfer operator of
Section I.10. We use this relation to show that, when p is admissible,
the spectral radius of Sp is not too large. This fact will not be used in
the rest of the present article.

Proposition 7.12. Let k ≥ 2 and p be an admissible Γ-invariant k-
Euclidean field. Then Sp has spectral radius <

√
q in Hk−1.

See Section I.10 for the definition and equivalent characterizations
of admissible Euclidean fields.

The proof of Proposition 7.12 relies on constructions from quadratic
algebra which also appear in Appendix I.C. Recall that, if V is a finite-
dimensional real vector space, we have a natural map v 7→ v2, V →
Q(V ∗) from V to the space of symmetric bilinear forms on V ∗. It is
defined by setting v2(φ, ψ) = φ(v)ψ(v), for v in V and φ, ψ in V ∗. This
map satisfies Cauchy-Schwarz inequality:
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Lemma 7.13. Let V be a finite-dimensional real vector space. Pick
v1, . . . , vr in V and t1, . . . , tr in R. We have(

r∑
i=1

tivi

)2

≤

(
r∑

i=1

t2i

)(
r∑

i=1

v2i

)
,

meaning that the difference is a non-negative symmetric bilinear form
on V ∗.

Proof. Indeed, by the standard Cauchy-Schwartz inequality, for any φ
in V ∗, one has(

r∑
i=1

tiφ(vi)

)2

≤

(
r∑

i=1

t2i

)(
r∑

i=1

φ(vi)
2

)
.

□

Now, recall the notion of a pseudokernel from Subsection I.8.2. In
Subsection II.2.1, we have defined natural operations on pseudokernels
that are analogous to the natural operations on pseudofunctions of
Subsection 2.2. For k ≥ 1, if H is a k-pseudofunction we define a k-
pseudokernel L = H2 as follows: if k is odd (resp. even), k = 2ℓ + 1
(resp. k = 2ℓ), ℓ ≥ 0 (resp. ℓ ≥ 1), for any x ∼ y in X, the symmetric
bilinear form on V ℓ

0 (xy) (resp. V
ℓ
0 (x)) associated with Lxy is H2

xy. In

other words, for a, b in Sℓ(x) (resp. Sℓ(xy)), we have

Lxy(a, b) = (Hxy(a)−Hxy(b))
2.

Besides, note that we have

(7.5) (H>)2 = (H2)>.

This definition and Lemma 7.13 directly give

Corollary 7.14. Let k ≥ 1 and H be a k-pseudofunction. If k is
odd, we have (H∨)2 = (H2)∨. If k is even, we have (H∨)2 ≤ q(H2)∨,
meaning that the difference is a non-negative pseudokernel.

In the same way, if k ≥ 2, and p is a k-Euclidean field, let L be a
k-pseudokernel. We define a (k − 1)-pseudokernel L<p as follows: if k
is even (resp. odd), k = 2ℓ (resp. k = 2ℓ+ 1), ℓ ≥ 1, and if, for x ∼ y
in X, the symmetric bilinear form on V ℓ

0 (x) (resp. V
ℓ
0 (xy)) associated

with Lxy is rxy, then the symmetric bilinear form on V ℓ−1
0 (xy) (resp.

V ℓ
0 (x)) associated with L

<p
xy is (Iℓ−1,∗†p

xy )⋆rxy (resp. (J ℓ,∗†p
xy )⋆rxy). The

notation is the one used in Subsection I.10.6. Note that, if H is a
k-pseudofunction, we have

(7.6) (H<p)2 = (H2)<p .
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Finally, let k ≥ 2 and p be a Γ-invariant k-Euclidean field. We change
the convention of Subsection I.10.3 and we write Tp for the operator
that was denoted by T ∗

p there. We still call Tp the quadratic transfer
operator. This is an endomorphism of Lk−1. As in Corollary II.6.11,
we can rewrite Lemma I.10.15 as

Lemma 7.15. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. For
L in Lk−1, we have

TpL = L>∨<p∨.

We can now give the

Proof of Proposition 7.12. By Lemma 7.15, for L in Lk−1, we have
TpL = L>∨<p∨. By Definition 7.3 and Corollary 7.14, we get, for H in
Hk−1,

(SpH)2 = (H>∨<p∨)2 ≤ q(H2)>∨<p∨ = qTp(H
2),

where we also have used (7.5) and (7.6). Now, iterating this inequality,
we get, for any n ≥ 0, (q−n/2Sn

pH)2 ≤ T n
p (H

2). As p is admissible, by

Theorem I.10.17, Tp has spectral radius < 1, hence T n
p (H

2) −−−→
n→∞

0.

We get q−n/2Sn
pH −−−→

n→∞
0 and the result follows. □

7.4. Exceptional eigenvalues. When p is not admissible the spec-
trum of the simple transfer operator may exit the open disk with radius√
q in C, but in a controlled way.

Proposition 7.16. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
Let u ∈ C be a spectral value of Sp in Hk−1. If |u| ≥

√
q, then u is real

and simple.

Recall that saying that u is simple amounts to saying that Hk−1 =
ker(Sp − u)⊕ (Sp − u)Hk−1 or equivalently ker(Sp − u)2 = ker(Sp − u).

The proof of Proposition 7.16 relies on studying the restriction of Sp

to a certain subspace of Hk−1. The p-orthogonal complement of this
subspace will be described thanks to the following Lemmas.

Lemma 7.17. Let k ≥ −1 be odd and H be a k-pseudofunction. The
following are equivalent.
(i) There exists a (−1)-pseudofunction J with H = J>k+1

.
(ii) One has H>∨ = −H> and H∨>∨ = −H∨>.

Lemma 7.18. Let k ≥ 0 be even, H be a k-pseudofunction and ε be
in {−1, 1}. The following are equivalent.

(i) There exists a (−1)-pseudofunction J with H = J>k+1
and J∨ = εJ .

(ii) One has H>∨ = εH> and H∨>∨ = εH∨>.
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Proof. We prove the two results simultaneously.
(i)⇒(ii) If k = −1 or k = 0, this directly follows from the definitions.

Now, Lemma 2.6 implies that if this true for k, this is also true for k+2.
The conclusion follows.

(ii)⇒(i) If k = −1, there is nothing to prove. If k = 0 and H is a
0-pseudofunction such that H> = εH>∨, ε ∈ {−1, 1}, by Lemma 2.8,
there exists a (−1)-pseudofunction J with H = J>. Then, we get

J>> = H> = εH>∨ = εJ>>∨ = εJ∨>>,

hence J = εJ∨ as required.
Let us conclude by a two steps induction argument. Assume k ≥ 1

and the result holds for k − 2. Pick H in Hk and ε in {−1, 1} and
assume that we have H>∨ = εH> and H∨>∨ = εH∨>. By Lemma
2.8, as H>∨ = εH>, we can find a (k − 1)-pseudofunction K with
K∨ = εK and H = K>. In the same way, as H∨>∨ = εH∨>, we
can find a (k − 1)-pseudofunction L with L∨ = εL and H∨ = L>.
Thus, we have L> = K>∨ and, again by Lemma 2.8, we can find a
(k− 2)-pseudofunction M with M> = K and M∨> = L. The relations
K∨ = εK and L∨ = εL give M>∨ = εM> and M∨>∨ = εM∨> and the
conclusion follows by induction. □

Note that, by Lemma 7.7, the spaces of pseudofunctions that ap-
pear in Lemma 7.17 and Lemma 7.18 are stable under the action of
simple transfer operators and their adjoint operators. We will prove
Proposition 7.16 by describing the action of transfer operators on the
orthogonal complements of these subspaces.

To this aim, we introduce some notation. If k ≥ 2 and p is a Γ-
invariant k-Euclidean field, for H in Hk,+, we set

ApH = H<p> +H<p>∨ and BpH = H<p∨> +H<p∨>∨.

By construction, Ap and Bp map Hk,+ in Hk,+ We summarize the
information that we will need about these operators.

Lemma 7.19. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. The
operators Ap : Hk,+ → Hk,+ and Bp : Hk,+ → Hk,+ are self-adjoint.
For H in Hk,+, we have

p(H,ApH) ≤ (q + 1)p(H,H) if k is even,

≤ 2p(H,H) if k is odd.

Equality holds if and only if there exists G in Hk−2,+ with H = G>>.
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Proof. Assume k is even. For H, J in Hk,+, we have

p(ApH, J) = p(H<p>, J)+p(H<p>∨, J) = p(H<p , J<p)+p(H<p>, J∨)

= (q + 1)p(H<p , J<p),

which is symmetric in H and J . As the <p operator is the adjoint of
the isometric injection >, this gives p(H,ApH) ≤ (q + 1)p(H,H) and
equality holds if and only if H = F> for some F in Hk−1. As H

∨ = qH,
we then get F>∨ = qF>, hence, by Lemma 2.8, there exists G in Hk−2

with F = G> and G∨ = qG, so that H = G>>. Besides, we have

p(BpH, J) = (q + 1)p(H<p∨, J<p),

which is also symmetric in H and J .
The proof in the odd case is analogous. □

The operators Ap and Bp may be used to describe the action of S†
p

in a large subspace of Hk−1.

Lemma 7.20. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and J,K
be in Hk,+. If k is even, we have

S†
p (J

<p +K<p∨) = (BpJ + (Ap − 1)K)<p − J<p∨.

If k is odd, we have

S†
p (J

<p +K<p∨)

= (BpJ + (q(Ap − 1) + (q − 1)Bp)K)<p − (J + (q − 1)K)<p∨.

This Lemma is directly inspired by the proof of the Ihara trace for-
mula [4] (see Subsection 1.3).

Proof. This is a direct computation. If k is even, we have, by Lemma
7.5,

S†
p (J

<p +K<p∨) = J<p∨>∨<p +K<p∨∨>∨<p

= J<p∨>∨<p +K<p>∨<p

= (BpJ)
<p − J<p∨><p + (ApK)<p −K<p><p

= (BpJ)
<p − J<p∨ + (ApK)<p −K<p ,



ADDITIVE REPRESENTATIONS 83

as required. If k is odd, in the same way,

S†
p (J

<p +K<p∨) = J<p∨>∨<p +K<p∨∨>∨<p

= J<p∨>∨<p + qK<p>∨<p + (q − 1)K<p∨>∨<p

= (BpJ)
<p − J<p∨><p + q(ApK)<p − qK<p><p

+ (q − 1)(BpK)<p − (q − 1)K<p∨><p

= (BpJ)
<p − J<p∨ + q(ApK)<p − qK<p

+ (q − 1)(BpK)<p − (q − 1)K<p∨.

□

The formulae in Lemma 7.20 will give a control of eigenvalues of Sp

due to the following phenomenon.

Lemma 7.21. Let V be a Euclidean space with scalar product ⟨., .⟩. Let
A and B be self-adjoint endomorphisms of V and r, s ≥ 1 be real num-
bers with ⟨Av, v⟩ ≤ r ∥v∥2 for any v in V . Let C be the endomorphism
of V 2 given in matrix form by

C =

(
B s(A− 1) + (s− 1)B
−1 −(s− 1)

)
.

Let u be a complex eigenvalue of C. Then, if u is not real or u is not
simple, we have |u|2 ≤ s(r − 1).

Proof. As in Subsection 1.5, let VC be the complexification of V and
denote by v 7→ v the complex conjugation in VC. We write ⟨., .⟩ for
the complex symmetric bilinear form of VC whose restriction to V is
the scalar product of V . Thus, the Hermitian form (v, w) 7→ ⟨v, w⟩ is
a Hermitian scalar product on VC. For v in VC, we still write ∥v∥ =√

⟨v, v⟩.
Let u be a complex non real eigenvalue of C. Then, there exists v, w

in VC which are not both 0 such that

Bv + s(A− 1)w + (s− 1)Bw = uv(7.7)

−v − (s− 1)w = uw.(7.8)

The second equation gives v = −(u+s−1)w. In particular, w ̸= 0 and
we can assume ∥w∥ = 1. Besides, we can eliminate v from (7.7) to get

−uBw + s(A− 1)w = −u(u+ s− 1)w,

that is,

(7.9) u2w + u(s− 1−B)w + s(A− 1)w = 0.
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By taking the product with w, as ∥w∥ = 1, we get the scalar equation

(7.10) u2 + u⟨w, (s− 1−B)w⟩+ s⟨w, (A− 1)w⟩ = 0.

We claim that the coefficients of this equation are real numbers. Indeed,
for example, as the endomorphism A is real and self-adjoint, we have,

⟨w,Aw⟩ = ⟨w,Aw⟩ = ⟨w,Aw⟩ = ⟨Aw,w⟩ = ⟨w,Aw⟩,
hence ⟨w,Aw⟩ and also ⟨w,Bw⟩ are real numbers. Since by assump-
tion, u is not a real number, the roots of (7.10) are u and u and we
have

|u|2 = s⟨w, (A− 1)w⟩ ≤ s(r − 1)

as required.
Now, let u be a real eigenvalue of C that is not simple. Then, we

may find v, w, v′, w′ in V with v, w not both 0 and

C

(
v
w

)
= u

(
v
w

)
and C

(
v′

w′

)
= u

(
v′

w′

)
+

(
v
w

)
.

As above, (7.7) and (7.8) hold and we can assume that w is a unit
vector. Besides, we now get

Bv′ + s(A− 1)w′ + (s− 1)Bw′ = uv′ + v(7.11)

−v′ − (s− 1)w′ = uw′ + w.

Thus, we have

v = −(u+ s− 1)w and v′ = −(u+ s− 1)w′ − w,

so that (7.11) gives

−uBw′ −Bw + s(A− 1)w′ = −u((u+ s− 1)w′ + w)− (u+ s− 1)w,

hence

u2w′ + u(s− 1−B)w′ + s(A− 1)w′ + 2uw + (s− 1−B)w = 0.

Let w′′ be the orthogonal projection of w′ on the orthogonal comple-
ment of Rw in V . As (7.9) holds, we still have

u2w′′ + u(s− 1−B)w′′ + s(A− 1)w′′ + 2uw + (s− 1−B)w = 0.

Since ⟨w,w′′⟩ = 0, by taking the scalar product with w in this equation,
we obtain

(7.12) ⟨w, (−uB + sA)w′′⟩+ 2u+ ⟨w, (s− 1−B)w⟩ = 0.

As A and B are self-adjoint, by using (7.9), we get

⟨w, (−uB + sA)w′′⟩ = ⟨(−uB + sA)w,w′′⟩
= ⟨(s− (s− 1)u− u2)w,w′′⟩ = 0.
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Therefore, (7.12) yields

2u+ ⟨w, (s− 1−B)w⟩ = 0,

that is, u is a double root of (7.10). We get

u2 = s⟨w, (A− 1)w⟩ ≤ s(r − 1)

as required. □

To deal with certain subtle equality cases in the proof of Proposition
7.16, we will need an enhanced version of Lemma 2.8.

Lemma 7.22. Let a, b in R, k ≥ −1 and H be in Hk,+. Assume that
we have

(7.13) aH>> + bH>∨> = H>∨>∨.

Then, if k is even, we have H = 0; if k is odd, we have H = 0 or
a− b+ 1 = 0.

Proof. Assume k = −1. Then, as the ∨ operator is −1 on 0-
pseudofunctions, the equation reads as

(a− b)H>> = −H>>∨ = −H∨>> = −H>>,

the latter holding by the assumption thatH is inH−1,+. In other words
we have (a− b+ 1)H = 0 and the conclusion follows.
If k = 0, the conclusion holds trivially since H0,+ = {0}.
We will prove the general case by a two steps induction. Thus, we

assume that k ≥ 1 and that the result is true for k − 2. Let H be in
Hk,+ such that (7.13) holds. Thus, we have

(aH> + bH>∨)
>
= H>∨>∨.

By Lemma 2.8, there exists J in Hk with H>∨ = J>. Again applying
Lemma 2.8, we find K in Hk−1 with H = K>. As H is in Hk,+, a final
application of Lemma 2.8 allows to find an element L in Hk−2,+ with
H = L>>. Now, as H satisfies (7.13), Lemma 2.6 gives

aL>> + bL>∨> = L>∨>∨

and the conclusion follows from the induction assumption. □

We can now use these tools to give the

Proof of Proposition 7.16. We will actually prove the analogous result
for the adjoint operator S†

p.
Consider the linear map

∆p : H2
k,+ → Hk−1, (J,K) 7→ J<p +K<p∨.
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By elementary duality arguments, the p-orthogonal complement in
Hk−1 of the range of ∆p is the space ofH inHk−1 such thatH>+H>∨ =
0 and H∨>+H∨>∨ = 0. By Lemma 7.7, Lemma 7.17 and Lemma 7.18,
the latter space is stable under S†

p and the spectrum of S†
p in this space

is contained in {−1, 1}. Now, Lemma 7.20 says that the range of ∆p is
also stable under S†

p. We will study the spectrum of S†
p in ∆pH2

k,+ by
means of Lemma 7.21.

First, assume that k is even. Then, for J,K in Hk,+, Lemma 7.20
may be written as

(7.14) S†
p∆p

(
J
K

)
= ∆p

(
Bp Ap − 1
−1 0

)(
J
K

)
.

Thanks to Lemma 7.19, we can apply Lemma 7.21 to the space Hk,+

and the operator Cp =

(
Bp Ap − 1
−1 0

)
by taking r = q + 1 and s = 1.

This tells us that all complex eigenvalues of Cp in H2
k,+ which have

modulus >
√
q are real and simple. A fortiori, by (7.14), the same holds

for the eigenvalues of S†
p in ∆pH2

k,+. To conclude, we must investigate
the delicate case of eigenvalues with modulus exactly

√
q. This will

require us to have a closer look at the proof of Lemma 7.21.
Thus, let u in C with |u| = √

q and assume by contradiction that
u is an eigenvalue of Cp in H2

k,+ and that, if u is real (that is, if u ∈
{−√

q,
√
q}), this eigenvalue is not simple. By the proof of Lemma

7.21 (see in particular (7.9) and (7.10)), there exists K ̸= 0 in the
complexification Hk,+,C of Hk,+ with

(7.15) u2K−uBpK+(Ap−1)K = 0 and p((Ap−1)K,K) = qp(K,K).

By Lemma 7.19, the second equation implies that there exists L in
Hk−2,+,C with K = L>>. We get by definition,

ApK = L>><p> + L>><p>∨ = L>> + L>>∨ = (q + 1)L>>

and

BpK = L>><p∨> + L>><p∨>∨ = L>∨> + L>∨>∨,

so that, by (7.15), we have(
u+

q

u

)
L>> − L>∨> = L>∨>∨.

By Lemma 7.22, we get L = 0, which contradicts the assumption that
K ̸= 0. The Proposition follows in the even case.
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We now assume that k is odd. For J,K in Hk,+, Lemma 7.20 now
gives

(7.16) S†
p∆p

(
J
K

)
= ∆p

(
Bp q(Ap − 1) + (q − 1)Bp

−1 −(q − 1)

)(
J
K

)
.

By Lemma 7.19, we can apply Lemma 7.21 to the space Hk,+ and

the operator Cp =

(
Bp q(Ap − 1) + (q − 1)Bp

−1 −(q − 1)

)
by taking r = 2 and

s = q. This again tells us that all complex eigenvalues of Cp in H2
k,+

which have modulus >
√
q are real and simple. By (7.16), the same

holds for the eigenvalues of S†
p in ∆pH2

k,+. As above, we will use the
proof of Lemma 7.21 to study the case of eigenvalues with modulus
exactly

√
q.

Let u in C with |u| = √
q and assume by contradiction that u is an

eigenvalue of Cp in H2
k,+ and that, if u is real, this eigenvalue is not

simple. Still by the proof of Lemma 7.21, there exists K ̸= 0 in Hk,+,C
with
(7.17)
u2K+u(q−1−Bp)K+q(Ap−1)K = 0 and p((Ap−1)K,K) = p(K,K).

By Lemma 7.19, the second equation implies that there exists L in
Hk−2,+,C with K = L>>. This gives

ApK = L>><p> + L>><p>∨ = L>> + L>>∨ = 2L>>

and, as above,

BpK = L>><p∨> + L>><p∨>∨ = L>∨> + L>∨>∨.

Hence, (7.17) yields(
u+

q

u
+ (q − 1)

)
L>> − L>∨> = L>∨>∨.

As K ̸= 0, we have L ̸= 0, so that, by Lemma 7.22, we get

u+
q

u
+ q + 1 = 0.

The two roots of this equation are −q and −1. This contradicts the
assumption that u has modulus

√
q and the Proposition follows in the

odd case. □

7.5. Exceptional quadratic forms. The proof of Proposition 7.16
shows a particular structure of the eigenspaces of S†

p associated to
eigenvalues with modulus >

√
q. This will allow us to prove a positiv-

ity result on those spaces, which will later play a role in the statement
of the Plancherel formula for Euclidean fields.
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Proposition 7.23. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
Let u in R be an eigenvalue of S†

p with |u| > √
q. Then, the symmetric

bilinear form (H, J) 7→ p(H, J∨) is anisotropic on the eigenspace

{H ∈ Hk−1|S†
pH = uH}.

More precisely, if k is even, it is positive definite if u >
√
q and negative

definite if u <
√
q. If k is odd, it is always positive definite.

Recall that a symmetric bilinear form p on a real vector space V
is said to be anisotropic, or equivalently definite, if, for any v ̸= 0 in
V , one has p(v, v) ̸= 0. In that case, p is either positive definite or
negative definite.

Proof. Let H be in Hk−1 with S†
pH = uH. Assume k is even. Then,

by the proof of Proposition 7.16 and by Lemma 7.20, we can find J,K
in Hk,+ with

J<p +K<p∨ = H

BpJ + (Ap − 1)K = uJ

−J = uK.

We get

p(H,H∨) = p(J<p , J<p∨) + 2p(J<p , K<p) + p(K<p , K<p∨)

= (u2 + 1)p(K<p , K<p∨)− 2up(K<p , K<p)

=
u2 + 1

q + 1
p(K,BpK)− 2u

q + 1
p(K,ApK).

Note that we have BpJ = (1−u2)K−ApK, hence BpK = (u−u−1)K+
u−1ApK. We get

(q + 1)p(H,H∨) = (u− u−1)((u2 + 1)p(K,K)− p(K,ApK)).

By assumption, we have u2 > q and by Lemma 7.19, we have
p(K,ApK) ≤ (q + 1)p(K,K). The conclusion follows.

Assume now that k is odd. Again by Proposition 7.16 and Lemma
7.20, we get J,K in Hk,+ with

J<p +K<p∨ = H

BpJ + q(Ap − 1)K + (q − 1)BpK = uJ(7.18)

−J − (q − 1)K = uK(7.19)

We have J = −(u+ q − 1)K, hence

H = −(u+ q − 1)K<p +K<p∨ and H∨ = qK<p − uK<p∨.
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We get

p(H,H∨) = −q(u+q−1)p(K<p , K<p)+(u(u+q−1)+q)p(K<p , K<p∨)

− up(K<p , K<p∨∨).

As K<p∨∨ = qK<p + (q − 1)K<p∨, this gives

p(H,H∨) = −q(2u+ q − 1)p(K<p , K<p) + (u2 + q)p(K<p , K<p∨)

= −q(2u+ q − 1)

2
p(K,ApK) +

u2 + q

2
p(K,BpK).

Since (7.18) and (7.19) yield

BpK = (u+ q − 1− qu−1)K + qu−1ApK,

we finally get

2p(H,H∨) =

(u2+q)(u+q−1−qu−1)p(K,K)+((u2+q)qu−1−q(2u+q−1))p(K,ApK)

= (u+ q − 1− qu−1)((u2 + q)p(K,K)− qp(K,ApK)).

By Proposition 7.9, as u is an eigenvalue of S†
p, we must have −q <

u < −√
q or

√
q < u < q. Since u + q − 1− qu−1 = u−1(u− 1)(u + q)

this number is positive for all those values of u. Now, by Lemma 7.19,
we have p(K,ApK) ≤ 2p(K,K) and the conclusion follows. □

8. A resolvent formula for Euclidean fields

Our objective is still to give a Plancherel formula for H∞, in the
spirit of (4.1), (4.8), (5.1) and (5.4). To this aim, we will start by
establishing a resolvent formula. Let us be more precise.

Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. We have associ-
ated to p a scalar product on H∞ by the natural formula (7.1). Let R
and S be the operators acting on H∞ which are defined in Subsection
2.5. One easily shows, by using Lemma I.9.11, that the operators R
and S are bounded and self-adjoint with respect to p. As usual, we set
P = 1

q+1
(RS+SR−(q−1)S). We still denote by p∞ the scalar product

of the completion Hp
∞ of H∞ with respect to p∞. We also denote by

p∞ the natural complex symmetric bilinear form on the complexifica-
tion Hp

∞,C of this completion. Then, for H in H∞ and t in the upper

half-plane H, the complex number p∞(H, (P − t)−1H) is well-defined.
In this Section, we establish the following formulas for this number,
which only involve operations in finite-dimensional spaces.
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Proposition 8.1. Let k ≥ 2, p be a Γ-invariant k-Euclidean field, u
be in Hq and set t = 1

q+1
(u+ q

u
). Fix H in Hk,+ and J in Hk,−.

If k is even, we have

p∞(H>∞
, (P − t)−1H>∞

) =
q + 1

q

u

1− u2
p(H, (qu+ Sp)(u− Sp)

−1H)

p∞(J>∞
, (P − t)−1J>∞

) = (q + 1)
u

q2 − u2
p(J, (u+ qSp)(u− Sp)

−1J)

p∞(H+>∞
, (P − t)−1J>∞

) = −q + 1

q
p(H,Sp(u− Sp)

−1J)

p∞(J+>∞
, (P − t)−1H>∞

) = (q + 1)p(J, Sp(u− Sp)
−1H).

If k is odd, we have

p∞(H>∞
, (P − t)−1H>∞

) =
(q + 1)u

(q + u)(1− u)
p(H, (u+ Sp)(u− Sp)

−1H)

p∞(J>∞
, (P − t)−1J>∞

) =
(q + 1)u

(q − u)(1 + u)
p(J, (u+ Sp)(u− Sp)

−1J)

p∞(H+>∞
, (P − t)−1J>∞

) = −(q + 1)p(H,Sp(u− Sp)
−1J)

p∞(J+>∞
, (P − t)−1H>∞

) = (q + 1)p(J, Sp(u− Sp)
−1H).

Recall from Subsection 3.3 that Hq is the set of u in C with ℑu > 0
and |u| > √

q. In particular, the formulae make sense as Proposition
7.16 implies that Sp has no eigenvalue in Hq.

8.1. A formula for inverses. The proof of Proposition 8.1 will rely on
an explicit construction of the vector (P − t)−1H>∞

in the completion
of H∞ with respect to p. This construction will be an analogue of the
ones provided for the model operators. It will require us to show that
certain series converge in Hp

∞,C, which will be ensured by the following

Lemma 8.2. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and H be
in Hk. Then, for every i ≥ 0, we have

p(H+2i

, H+2i

) ≤ q2ip(H,H).

For brevity, we have denoted by p the scalar product obtained from
p on Hk+2i by successive orthogonal extensions.

Proof. Recall the notation of Subsections 2.3 and 2.5. In particular, by
Lemma 2.15, we have, if k is even,

H++>∞
= H>∨>∨>∞

= R(H>∨>∞
) = RS(H>∞

).
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If k is odd, we have H++>∞
= SR(H>∞

). By iterating, we get, for
i ≥ 0,

H+2i>∞
= (RS)i(H>∞

) if k is even

= (SR)i(H>∞
) if k is odd.

To conclude, recall that the operators R and S are self-adjoint in H∞
with respect to p. As S2 = 1, S is an isometry, whereas, as the eigen-
values of R are q and −1, R has norm q. Thus, both RS and SR have
norm ≤ q in H∞. The Lemma follows. □

Thus, we can ensure that the series defined in the following Lemma
converge.

Lemma 8.3. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and H be
in Hk. Fix u in C with |u| > q and set t = 1

q+1
(u + q

u
). Then, for H

in Hk,+ and J in Hk,−, the vectors (P − t)−1H>∞
and (P − t)−1J>∞

may be defined by the following absolutely converging series in Hp
∞,C.

If k is even,

(P − t)−1H>∞
=

q + 1

1− u2

∞∑
i=0

u−i(uH+2i>∞
+H+2i+1>∞

)

(P − t)−1J>∞
=

q + 1

q2 − u2

∞∑
i=0

u−i(uJ+2i>∞ − qJ+2i+1>∞
).

If k is odd,

(P − t)−1H>∞
=

q + 1

(q + u)(1− u)

∞∑
i=0

u−i(uH+2i>∞
+H+2i+1>∞

)

(P − t)−1J>∞
=

q + 1

(q − u)(1 + u)

∞∑
i=0

u−i(uJ+2i>∞ − J+2i+1>∞
).

Proof. The convergence of the series is a consequence of Lemma 8.2.
The fact that they define (P − t)−1H>∞

follows from Lemma 2.18 and
the analogous results for the model operators in Lemmas 4.9, 4.19, 5.9
and 5.18. □

8.2. Scalar product with large extensions. Now that we have con-
structed (P − t)−1H>∞

in Lemma 8.3, it remains to evaluate the quan-
tity p∞(H>∞

, (P−t)−1H>∞
). This will use the following Lemma which

relates this computation with the simple transfer operator.
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Lemma 8.4. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and H, J
be in Hk. For every i ≥ 0, we have

p(H+2i

, J>2i

) = p(Si
pH, J)

p(H+2i+1

, J+>2i

) = p(Si
pH, J) if k is even

p(H+2i+1

, J+>2i − (q − 1)J>2i+1

) = qp(Si
pH, J) if k is odd.

Proof. Let us prove the first formula. This follows from the properties
of the operations on pseudofunctions and an induction argument. In-
deed, assume the formula holds for i ≥ 0 and let us still write Sp for
the simple transfer operator of the double orthogonal extension p++.
Then, we have, by using Lemma 7.4,

p(H+2i+2

, J>2i+2

) = p(Si
p(H

>∨>∨), J>>) = p((Si
pH)>∨>∨, J>>)

= p(Si
pH, J

>>∨<p∨<p) = p(Si
pH, J

∨>><p∨<p) = p(Si
pH, J

∨>∨<p)

= p(Si
pH,S

†
pJ) = p(Si+1

p H, J).

Now we prove the other two formulas. Assume k is even. By the
first formula, we have

p(H+2i+1

, J+>2i

) = p(Si
p(H

>∨), J>∨) = p((Si
pH)>∨, J>∨)

= p(Si
pH, J

>∨∨<p) = p(Si
pH, J).

In the same way, if k is odd,

p(H+2i+1

, J+>2i − (q − 1)J>2i+1

) = p(Si
pH, (J

>∨ − (q − 1)J>)∨<p)

= qp(Si
pH, J).

□

When J is an eigenvector of the ∨ operator, we can also get a formula
for other extensions.

Corollary 8.5. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and
H, J be in Hk. For every i ≥ 0, we have,

p(H+2i+1

, J>2i+1

) =
1

q
p(Si+1

p H, J) k even, J∨ = qJ

= p(Si+1
p H, J) k odd, J∨ = J

= −p(Si+1
p H, J) J∨ = −J
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and also

p(H+2i>, J+>2i

) =
1

q
p(Si+1

p H, J) k even, J∨ = qJ

= p(Si+1
p H, J) k odd, J∨ = J

= −p(Si+1
p H, J) J∨ = −J.

Proof. By Lemma 7.4 and Lemma 8.4, we have

p(H+2i+1

, J>2i+1

) = p(Si
p(H

>∨), J>) = p((Si
pH)>∨, J>)

= p((Si
pH)>∨<p , J).

The first set of formulas easily follows.
Let us study the second set. If i = 0, we have

p(H>, J+) = p(H>, J>∨) = p(H>∨<p , J)

and the conclusion follows. If i ≥ 1, by Lemma 7.2, Lemma 7.4 and
Lemma 8.4, we have

p(H+2i>, J+>2i

) = p(H+2i

, J+>2i−1

)

= p(Si−1
p (H>∨>∨), J>∨>)

= p((Si−1
p H)>∨>∨, J>∨>)

= p((Si−1
p H)>∨>∨<p∨<p , J)

= p((Si−1
p H)>∨<p∨>∨<p , J) = p((Si

pH)>∨<p , J).

The second set of formulas follows. □

8.3. Geometric series and the resolvent formula. We can now
conclude the proof of the resolvent formula which essentially relies on
summing a geometric series.

Proof of Proposition 8.1. We assume that k is even and we compute
p∞(H>∞

, (P − t)−1H>∞
). Take u in C with |u| > q and set as usual

t = 1
q+1

(u+ q
u
). By Lemma 8.3, Lemma 8.4 and Corollary 8.5, we get

p∞(H>∞
, (P − t)−1H>∞

) =

q + 1

1− u2

∞∑
i=0

u−i

(
up(H,Si

pH) +
1

q
p(H,Si+1

p H)

)
.

By Lemma 7.8 and Proposition 7.9, Sp has spectral radius < q in
Hk. Thus, the series

∑
i≥0 u

−iSi
p converges absolutely in the space of
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endomorphisms of Hk,C. We get

∞∑
i=0

u−i

(
uSi

p +
1

q
Si+1
p

)
=

1

q
(qu+ Sp)(1− u−1Sp)

−1

=
u

q
(qu+ Sp)(u− Sp)

−1

hence,

p∞(H>∞
, (P − t)−1H>∞

) =
q + 1

q

u

1− u2
p(H, (qu+ Sp)(u− Sp)

−1H).

We have shown that the two hand-sides of the first formula in Propo-
sition 8.1 are equal for |u| > q. Now, as P is self-adjoint, the left
hand-side is a holomorphic function of t as t varies in H. Therefore,
by Lemma 3.6, it is a holomorphic function of u as u varies in Hq. By
Proposition 7.16, the right hand-side is a holomorphic function of u as
u varies in Hq. Hence, by analytic continuation, the equality holds for
every u in Hq. The computation of p∞(J>∞

, (P − t)−1J>∞
) is analo-

gous.
Still assume k is even and let us now compute the complex number

p∞(H+>∞
, (P − t)−1J>∞

). As above, we let t, u be in C with |u| > q
and q+u2 = (q+1)tu. Again by Lemma 8.3, Lemma 8.4 and Corollary
8.5, we have

p∞(H+>∞
, (P − t)−1J>∞

) =

q + 1

q2 − u2

∞∑
i=0

u−i

(
u

q
p(H,Si+1

p J)− qp(H,Si
pJ)

)
.

As p(H, J) = 0, we get

p∞(H+>∞
, (P − t)−1J>∞

) =
q + 1

q2 − u2

∞∑
i=0

u−i

(
u

q
− q

u

)
p(H,Si+1

p J)

= −q + 1

q

∞∑
i=1

u−ip(H,Si
pJ)

= −q + 1

q
p(H,Sp(u− Sp)

−1J)

and we conclude as in the first case.
The remaing cases can be dealt with similarly. □

Later on, we will deduce a Plancherel formula from Proposition 8.1.
For now, we can already say that it allows to control the spectrum of
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the operator P with respect to the scalar product associated to p on
H∞. We denote by Σp the finite set

(8.1) Σp =

{
1

q + 1

(
u+

q

u

)∣∣∣∣u ∈ R, |u| > √
q, ker(Sp − u) ̸= {0}

}
.

We call Σp the exceptional spectrum. Note that, if Γ is bipartite, we
have Σp = −Σp by Lemma 7.6.

Corollary 8.6. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
Then, the spectrum of P in the completion Hp

∞ of H∞ with respect to
p is contained in the set

Iq ∪ Σp ∪ {−1, 1}.

We will prove later in Corollary 13.2 that equality actually holds.
Recall from Subsection 3.3 that Iq stands for the critical interval Iq =

[−2
√
q

q+1
,
2
√
q

q+1
].

Proof. By Lemma 3.6, the rational function u 7→ 1
q+1

(u + q
u
) induces

a biholomorphism from the set {u ∈ C||u| > √
q} onto C ∖ Iq. Thus,

Lemma 7.8, Proposition 7.16 and Proposition 8.1 imply that for any j ≥
k and anyH inHj, the resolvent function t 7→ p∞(H>∞

, (P−t)−1H>∞
)

admits an analytic continuation to the set C∖ (Iq ∪Σp ∪ {−1, 1}). By
standard properties of self-adjoint operators, this implies the result. □

In the sequel of the article, we will build three families of nonnegative
symmetric bilinear forms on H2

k parametrized by each of the three sets
Iq, Σp and {−1, 1}. These families will allow us to write a Plancherel
formula for Euclidean fields in Section 13.

9. u-radical pseudofields and spectral quadratic forms

In this Section, we introduce new algebraic objects that will be
needed in order to construct the above mentioned families of symmetric
bilinear forms.

9.1. u-radical pseudofields. We start by introducing new subspaces
of the space of simple pseudofields. They are defined by an equation
that will later turn out to be related to the formulas in Proposition
6.5. Since this relation relies on the spectral parametrization u 7→
t = 1

q+1
(u + q

u
) of Subsection 3.3, we will need to work with complex

simple pseudofields: the space of complex simple pseudofields is the
complexification of the space of simple pseudofields.

For k ≥ 1, if k is even, k = 2ℓ, ℓ ≥ 1, a complex k-simple pseudofield
may be seen as a family (sxy)(x,y)∈X1 where, for x ∼ y in X, sxy is
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a function Sℓ(x) → C the sum of whose values is 0. If k is odd,
k = 2ℓ + 1, ℓ ≥ 0, a complex k-simple pseudofield may be seen as a
family (sxy)(x,y)∈X1 where, for x ∼ y in X, sxy is a function Sℓ(xy) → C
the sum of whose values is 0. For k = 0, a complex 0-simple pseudofield
may be seen as a function X → C.

Definition 9.1. Let k ≥ 1, u be in C∗, s be a complex k-simple
pseudofield. We say that s is u-radical if s∨<∨ = us<.

Remark 9.2. This definition is motivated by analogous notions previ-
ously introduced for quadratic pseudofields (see Definition II.3.7 and
Definition II.6.17). It will turn out later that it is related to the formula
that appears in Proposition 6.5 (see Lemma 10.3 below).

For k ≥ 1, the space of Γ-invariant u-radical complex k-simple pseud-
ofields is denoted by Su

k,C. If u is real, the space of Γ-invariant u-radical
k-simple pseudofields is denoted by Su

k .

Lemma 9.3. Let k ≥ 2, u be be in C∗ and s be a u-radical complex
k-simple pseudofield. Then s∨< is u-radical. The map s 7→ s∨< sends
Su
k,C onto Su

k−1,C.

Proof. Let s be as in the statement. By Lemma 6.9, we have

s∨<∨<∨ = us<<∨ = us∨<<,

hence s∨< is u-radical. Now, consider the linear map

s 7→ s∨<,Su
k,C → Su

k−1,C.

To show that it is surjective, we will show that the adjoint map is
injective. Let H be in Hk−1,C and assume that there exists J in Hk−1,C
with H>∨ = J∨>∨ − uJ>. Then, Lemma 2.8 says that there exists K
in Hk−2,C with J∨−H = K> and uJ = K∨>. We get H = J∨−K> =
u−1K∨>∨ − K>. Thus, we have shown that if H>∨ belongs to the
orthogonal subspace to Su

k,C in Hk,C, then H belongs to the orthogonal
subspace to Su

k−1,C in Hk−1,C, which is the desired statement. □

9.2. The u-opposition map. We describe a relation between u-
radical pseudofiels and q

u
-radical pseudofields.

Definition 9.4. Let k ≥ 0, u be in C∗ and s be complex k-simple
pseudofied. We define the u-opposite Ius of s as follows. If k is even,
we set

Ius = (q − u2)s∨ + u2(q − 1)s.

If k is odd, we set

Ius = (q − u2)s∨ + u(q − 1)s.
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Lemma 9.5. Let u in C∗, k ≥ 1 and s be a u-radical complex k-simple
pseudofield. Then Ius is q

u
-radical.

Proof. This is a straightforward computation. If k is even, we get

(Ius)
∨<∨ = (q − u2)s∨∨<∨ + u2(q − 1)s∨<∨

= q(q − u2)s<∨ + (q − 1)(q − u2)s∨<∨ + u2(q − 1)s∨<∨

= q(q − u2)s<∨ + q(q − 1)s∨<∨

=
q

u
(q − u2)s∨< + q(q − 1)us< =

q

u
(Ius)

<.

In the same way, if k is odd,

(Ius)
∨<∨ = (q − u2)s∨∨<∨ + u(q − 1)s∨<∨

= (q − u2)s<∨ + u(q − 1)s∨<∨

=
1

u
(q − u2)s∨<∨∨ + u(q − 1)s∨<∨

=
q

u
(q − u2)s∨< +

(
q − 1

u
(q − u2) + u(q − 1)

)
s∨<∨

=
q

u
(q − u2)s∨< +

q

u
(q − 1)s∨<∨

=
q

u
(q − u2)s∨< + q(q − 1)s< =

q

u
(Ius)

<.

□

When u is not one of the special values −q, −1, 1 or q, the opposition
maps Iu and I q

u
are essentially inverse to each other.

Lemma 9.6. Let u be in C∗, k ≥ 0 and s be a complex k-simple
pseudofield. We have

I q
u
Ius =

q2

u2
(q2 − u2)(1− u2) = (q + 1)2q2(1− t2) if k is even

=
q

u2
(q2 − u2)(1− u2) = (q + 1)2q(1− t2) if k is odd,

where t = 1
q+1

(u+ q
u
).
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Proof. If k is even, we have

I q
u
Ius =

(
q − q2

u2

)
((q − u2)s∨∨ + u2(q − 1)s∨)

+
q2

u2
(q − 1)((q − u2)s∨ + u2(q − 1)s)

=
q

u2
(u2 − q)(q(q − u2)s+ q(q − 1)s∨)

+
q2

u2
(q − 1)(q − u2)s∨ + q2(q − 1)2s

= − q2

u2
(q − u2)2s+ q2(q − 1)2s

and

u2(q − 1)2 − (q − u2)2 = (u(q − 1)− q + u2)(u(q − 1) + q − u2)

= (q + u)(u− 1)(q − u)(u+ 1)(9.1)

= (q2 − u2)(1− u2) =
(q + 1)2

u2
(1− t2).

The conclusion follows.
If k is odd, we get

I q
u
Ius =

(
q − q2

u2

)
((q − u2)s∨∨ + u(q − 1)s∨)

+
q

u
(q − 1)((q − u2)s∨ + u(q − 1)s)

= − q

u2
(q − u2)2s+

q

u
(u2 − q)(q − 1)s∨

+
q

u
(q − 1)(q − u2)s∨ + q(q − 1)2s

= q(q − 1)2s− q

u2
(q − u2)2s.

Again, the conclusion follows from (9.1). □

Corollary 9.7. Let u be in C ∖ {−q,−1, 0, 1, q}. For k ≥ 1, the
u-opposition map Iu induces a linear isomorphism from the space of u-
radical complex k-simple pseudofields onto the space of q

u
-radical com-

plex k-simple pseudofields.

The opposition map is also compatible with restriction of u-radical
pseudofields.
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Lemma 9.8. Let u in C∗, k ≥ 1 and s be a u-radical complex k-simple
pseudofield. If k is even, we have

(Ius)
∨< =

q

u
Iu(s

∨<).

If k is odd, we have

(Ius)
∨< =

1

u
Iu(s

∨<).

Proof. Again, this is a straightforward computation. For k even, we
get

(Ius)
∨< = (q − u2)s∨∨< + u2(q − 1)s∨<

= q(q − u2)s< + q(q − 1)s∨<

=
q

u
(q − u2)s∨<∨ + q(q − 1)s∨< =

q

u
Iu(s

∨<).

For k odd, we get

(Ius)
∨< = (q − u2)s< + u(q − 1)s∨< =

1

u
(q − u2)s∨<∨ + u(q − 1)s∨<

=
1

u
Iu(s

∨<).

□

9.3. Adjoint operations and transfer operator on pseudofields.
We will now relate the theory of u-radical pseudofields to the spectral
theory of the simple transfer operator Sp. To this aim, we introduce
adjoint operations on pseudofields in analogy with the language of Sub-
section 7.1.

Let k ≥ 1 and p be a Γ-invariant k-Euclidean field. We use p to
define as usual a natural scalar product on Sk. Let r, s be in Sk. If k is
even, k = 2ℓ, ℓ ≥ 1, let, for every x in X, p∗x be the bilinear form dual
to px on V ℓ

0 (x). We set,

p∗(r, s) =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
p∗x(rxy, sxy).

In the same way, if k is odd, k = 2ℓ + 1, ℓ ≥ 0, let, for every x ∼ y in
X, p∗xy be the bilinear form dual to pxy on V ℓ

0 (xy). We set,

p∗(r, s) =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
p∗xy(rxy, sxy).

Assume k ≥ 2. We also introduce the adjoint operator of restriction
of pseudofields. Let s be in Sk−1 and let us define s>p in Sk. We use
the notation of Subsection I.10.6 and Subsection II.6.2. If k is even,
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k = 2ℓ, ℓ ≥ 1, for x ∼ y in X, we set s
>p
xy = Iℓ−1,∗†p

xy sxy. If k is odd,

k = 2ℓ+ 1, ℓ ≥ 1, for x ∼ y in X, we set s
>p
xy = J ℓ,∗†p

xy sxy. As usual, we
get

Lemma 9.9. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. For
r in Sk and s in Sk−1, we have p−,∗(r<, s) = p∗(r, s>p).

Still assume k ≥ 2 and p is a Γ-invariant k-Euclidean field. In
Subsection 7.1, we have defined the simple transfer operator Sp acting
on the space of Γ-invariant (k − 1)-pseudofunctions by the formula

SpH = H>∨<p∨, H ∈ Hk−1.

The adjoint S†
p of Sp with respect to the Euclidean structure may be

defined by the formula

S†
pH = H∨>∨<p , H ∈ Hk−1.

Now, the adjoint of these operator with respect to the duality are linear
endomorphisms of Sk−1 which should formally be written as S∗

p and

S∗†
p = S†∗

p . To avoid the latter heavy notation we write Sp instead. In
other words, we set

Sps = s>p∨<∨, s ∈ Sk−1.

The adjoint S†
p of this operator with respect to the Euclidean structure

on Sk−1 is defined by

S†
ps = s∨>p∨<, s ∈ Sk−1.

Note that all these operators have the same spectrum and that we still
have the relation

Sp(s
∨) = (S†

ps)
∨, s ∈ Sk−1.

Using these definitions, we get a direct relationship between the spec-
trum of Sp and the theory of u-radical pseudofields.

Lemma 9.10. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. Fix
u in C∗ and s in Sk−1,C. Then, s

>p is u-radical if and only if Sps = us.

Proof. By construction, we have s>p< = s and s>p∨<∨ = Sps. □

As for pseudofunctions, we also denote by Sp and S†
p the linear en-

domorphisms of Sk,C defined by

Sps = s<∨>p∨ and S†
ps = s∨<∨>p , s ∈ Sk,C,

which can be thought of as the transfer operator and adjoint transfer
operator associated to the orthogonal extension p+ of p. We directly
get
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Lemma 9.11. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. For
any s in Hk, we have

S†
p(s

<) = (Sps)
< and Sp(s

<∨) = (Sps)
<∨.

9.4. The dual spectral bilinear form. We now introduce natural
bilinear forms on spaces of u-radical simple pseudofields which are as-
sociated to the choice of a Euclidean field. These forms will play a key
role in the statement of the Plancherel formula for Euclidean fields.

Definition 9.12. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
For u in C∗, we define the dual spectral bilinear form p∗u associated to
p on Su

k,C as the bilinear form

p∗u(r, s) = p∗(r, Iu(s))− p−,∗(r<, Iu(s)
<), r, s ∈ Su

k,C.

This bilinear form is actually symmetric.

Lemma 9.13. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. For
u in C∗, the dual spectral bilinear form p∗u is symmetric on Su

k,C.

Proof. This is again a direct computation. Let r, s be in Su
k,C. As the

∨ operator is symmetric, we have p∗(r, Iu(s)) = p∗(Iu(r), s). Now, if k
is even, we have r∨< = ur<∨ and s∨< = us<∨, hence

p−,∗(r<, Iu(s)
<) = p−,∗(r<, (q − u2)s∨< + u2(q − 1)s<)

= p−,∗(r<, u(q − u2)s<∨ + u2(q − 1)s<)

= p−,∗(u(q − u2)r<∨ + u2(q − 1)r<, s<)

= p−,∗((q − u2)r∨< + u2(q − 1)r<, s<)

= p−,∗(Iu(r)
<, s<).

If k is odd, we have

qs∨< + (q − 1)s∨<∨ = s∨<∨∨ = us<∨,

hence qs∨< = us<∨ − (q − 1)us<, which gives

Iu(s)
< = (q − u2)q−1us<∨ + u(q − 1)(1− q−1)s<.

As in the even case, we get p−,∗(r<, Iu(s)
<) = p−,∗(Iu(r)

<, s<). This
shows that pu is symmetric. □

We have a non degeneracy criterion for p∗u.

Proposition 9.14. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
For u in C∗, the bilinear form

(9.2) (r, s) 7→ p∗(r, s)− p−,∗(r<, s<) = p∗(r − r<>p , s− s<>p)
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is non degenerate on Su
k,C × S

q
u
k,C if and only if neither u nor q

u
are

eigenvalues of the simple transfer operator Sp. Therefore, if this is the
case and if in addition u /∈ {−q,−1, 1, q}, then p∗u is non degenerate.

To show non degeneracy, we shall use the following elementary

Lemma 9.15. Let V be a finite-dimensional vector space over a field
K with characteristic ̸= 2 and p be a non degenerate symmetric bilinear
form on V . Let W be a subspace of V and assume that the restriction
of p to W is non degenerate, so that the p-orthogonal projection π :
V → W is well-defined. Let U = W⊥p be the p-orthogonal complement
of W and X and Y be complementary subspaces of U in V . Then the
bilinear form (x, y) 7→ p(π(x), π(y)) is non degenerate on X × Y .

Proof of Proposition 9.14. Note that the second claim follows from the
first and Corollary 9.7. We now prove the first claim.

First, assume for example that u is an eigenvalue of Sp. Then, by

Lemma 9.10, there exists s ̸= 0 in Sk−1,C with s>p ∈ Su
k,C. For r in S

q
u
k,C,

we have, by Lemma 9.9, p∗(r, s>p) = p−,∗(r<, s), hence the bilinear form
in (9.2) is degenerate.

To prove the converse, we will apply the criterion in Lemma 9.15.
Indeed, the linear map

s 7→ s<>p ,Sk,C → Sk,C,

is the p-orthogonal projection onto the subspace S>p

k−1,C, so that the
linear map

s 7→ s− s<>p ,Sk,C → Sk,C,

is the p-orthogonal projection onto the p-orthogonal complement of
S>p

k−1,C. Thus, by Lemma 9.15, to conclude, it suffices to show that Su
k,C

and S
q
u
k,C are complentary subspaces to S>p

k−1,C in Sk,C.
Indeed, as by assumption u is not an eigenvalue of Sp, Lemma 9.10

says that S>p

k−1,C∩Su
k,C = {0}. Now, by definition, Su

k,C is the null space
of the linear map

s 7→ s∨<∨ − us<,Sk,C → Sk−1,C,

hence its codimension in Sk,C is less than the dimension of Sk−1,C. Since

it intersects S>p

k−1,C trivially, this codimension is exactly equal to the

dimension of Sk−1,C and we get Sk,C = S>p

k−1,C⊕Su
k,C as required. In the

same way, as q
u
is not an eigenvalue of Sp, we get Sk,C = S>p

k−1,C ⊕ S
q
u
k,C

and the conclusion follows by Lemma 9.15. □

The definition and the properties of the opposition operators yield
the following adjointness formulae.
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Lemma 9.16. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and u

be in C∗. Set t = 1
q+1

(u+ q
u
). If r is in Su

k,C and s is in S
q
u
k,C, we have

p∗q
u
(Iur, s) = p∗u(r, I q

u
s).

If k is even, the latter is equal to

q2(q + 1)2(1− t2)(p∗(r, s)− p−,∗(r<, s<)).

If k is odd, it is equal to

q(q + 1)2(1− t2)(p(r∗, s)− p−,∗(r<, s<)).

Proof. Indeed, by Definition 9.12, we have

p∗u(r, I q
u
s) = p∗(r, IuI q

u
s)− p−,∗(r<, (IuI q

u
s)<).

The conclusion follows from this identity and Lemma 9.6 and Lemma
9.13. □

9.5. The spectral bilinear form. We will now study the dual object
to p∗u, which will later turn out to be related to the resolvent formula
for p obtained in Proposition 8.1.

Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. Pick u in C ∖
{−q,−1, 0, 1, q} such that neither u nor q

u
are eigenvalues of Sp. Then,

by Proposition 9.14, the dual spectral bilinear form p∗u is non degenerate
on Su

k,C. Therefore, it defines by duality a symmetric bilinear form pu
on Hk,C whose null space is the range of the map

(9.3) G 7→ G∨>∨ − uG>,Hk−1,C → Hk,C.

For H, J in Hk,C, we have pu(H, J) = ⟨r, J⟩ where r is the unique
element of Su

k,C such that, for any s in Su
k,C, one has ⟨s,H⟩ = p∗u(r, s).

Definition 9.17. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
For u as above, the symmetric bilinear form pu on Hk,C is called the
spectral bilinear form associated to u.

The purpose of this Subsection is to give a formula for computing pu
on eigenspaces of the operator ∨.

Proposition 9.18. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field,
H and J be in Hk,C and u be in C∖ {−q,−1, 0, 1, q} such that neither
u nor q

u
are eigenvalues of Sp. Set t =

1
q+1

(u+ q
u
) and

H ′ = (u− Sp)
−1
( q
u
− Sp

)−1

h = (q + S2
p − (q + 1)tSp)

−1H.
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If k is even, we have

pu(H, J) =
1

q

1

q2 − u2
p((q2 − S2

p)H
′, J) H∨ = qH, J∨ = qJ

=
1

qu
p(SpH

′, J) H∨ = −H, J∨ = qJ

= −1

u
p(SpH

′, J) H∨ = qH, J∨ = −J

=
1

u2 − 1
p((1− S2

p)H
′, J) H∨ = −H, J∨ = −J.

If k is odd, we have

pu(H, J) =
p((q − Sp)(1 + Sp)H

′, J)

(q − u)(u+ 1)
H∨ = H, J∨ = J

=
1

u
p(SpH

′, J) H∨ = −H, J∨ = J

= −1

u
p(SpH

′, J) H∨ = H, J∨ = −J

=
p((q + Sp)(1− Sp)H

′, J)

(q + u)(u− 1)
H∨ = −H, J∨ = −J.

This result relies on constructions in Sk,C. Let k ≥ 2, p be a Γ-
invariant k-Euclidean field and u be in C∗ such that u and q

u
are not

eigenvalues of Sp. Pick r in Sk,C. Then, by Proposition 9.14, there

exists a unique element ru in Su
k,C such that, for any s in S

q
u
k,C, one has

p∗(r, s) = p∗(ru, s)− p−,∗(r<u , s
<).

In case r is an eigenvector of the ∨ operator, we can give a formula for
defining ru.

Lemma 9.19. Let k ≥ 2, p be a Γ-invariant k-Euclidean field, r be in
Sk,C and u be in C∗ such that neither u nor q

u
are eigenvalues of Sp.

Set

c = (u− S†
p)

−1
( q
u
− S†

p

)−1

(r<) ∈ Sk−1,C.
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Then, ru may be written as ru = r+ a∨>p + b∨>p∨ where b = (u− S†
p)c

and a ∈ Sk−1,C is defined as follows:

a =

(
q2

u
− S†

p

)
c, k even, r∨ = qr

a = q

(
S†
p −

1

u

)
c, k even, r∨ = −r

a =
(
q − 1 +

q

u
− S†

p

)
c, k odd, r∨ = r

a =
(
q − 1− q

u
+ S†

p

)
c, k odd, r∨ = −r.

Proof. We take a, b, c to be as in the statement and we set s = r +
a∨>p + b∨>p∨. We want to show that s = ru. By definition, we need to

show that s is u-radical and that s− s<>p − r is p-orthogonal to S
q
u
k,C.

First we show the latter. By construction, as a∨>p< = a∨, we have

s− s<>p − r = b∨>p∨ − r<>p − b∨>p∨<>p = b∨>p∨ − r<>p − (S†
pb)

>p .

We have b = (u− S†
p)c, hence, (

q
u
− S†

p)b = r<. This gives

s− s<>p − r = b∨>p∨ − q

u
b>p ,

hence s− s<>p − r is p-orthogonal to S
q
u
k,C.

To conclude, we must prove that s is u-radical. First we compute

(9.4) us< = ur< + ua∨ + uS†
pb = ua∨ + qb,

where we have again used the identity ( q
u
−S†

p)b = r<. The computation
of s∨<∨ will depend on the parity of k.

If k is even, we have

s∨<∨ = r∨<∨ + a∨>p∨<∨ + b∨>p∨∨<∨

= r∨<∨ + (S†
pa)

∨ + qb+ (q − 1)(S†
pb)

∨

= r∨<∨ + (S†
pa)

∨ + qb+ (q − 1)
q

u
b∨ − (q − 1)r<∨.

Together with (9.4), this gives

s∨> − us<∨ = (r∨ − (q − 1)r)< + (S†
p − u)a+ (q − 1)

q

u
b

= (r∨ − (q − 1)r)< + (S†
p − u)

(
a− (q − 1)

q

u
c
)
.
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If r∨ = qr, by using the relation r< = (u− S†
p)
(
q
u
− S†

p

)
c, we get

s∨> − us<∨ = r< + (S†
p − u)

(
a− (q − 1)

q

u
c
)

= (S†
p − u)

(
a+ S†

pc−
q2

u
c

)
,

which is 0 by assumption. In the same way, if r∨ = −r, we get

s∨> − us<∨ = −qr< + (S†
p − u)

(
a− (q − 1)

q

u
c
)

= (S†
p − u)

(
a− qS†

pc+
q

u
c
)
,

which is also 0.
If k is odd, we have

s∨<∨ = r∨<∨ + (S†
pa)

∨ + qb+ (q − 1)b∨.

Thanks to (9.4), we get

s∨<∨ − us< =
(
r∨< + (S†

p − u)a+ (q − 1)b
)∨
.

If r∨ = r, we have

r∨< + (S†
p − u)a+ (q − 1)b = (S†

p − u)
(
a− q

u
c+ S†

pc− (q − 1)c
)
= 0.

If r∨ = −r, we have

r∨< + (S†
p − u)a+ (q − 1)b = (S†

p − u)
(
a+

q

u
c− S†

pc− (q − 1)c
)
= 0.

The Lemma follows. □

We shall need a formula for computing certain values of the bilinear
forms.

Lemma 9.20. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. Let
f ∈ C(x) be a rational function with no poles at 0 and on the spectrum
of Sp. Then, for every r, s in Sk,C, we have

p−,∗(f(S†
p)(r

<), s∨<∨) = p∗(Spf(Sp)r, s).

Proof. First note that, by Lemma 7.8, f(Sp) is a well-defined endo-
morphism of Sk. Besides, as all spaces are finite dimensional, we can
assume that f is a polynomial function. Then, from Lemma 9.11, we
get f(S†

p)(r
<) = (f(Sp)r)

<, hence

p−,∗(f(S†
p)(r

<), s∨<∨) = p∗(f(Sp)r, s
∨<∨>p) = p∗(f(Sp)r, S

†
ps)

= p∗(Spf(Sp)r, s).

□
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We can now write formulae for the quantity p∗(ru, s) = p∗(r, s q
u
), for

r, s ∈ Sk,C. Unfortunately, the formulae depend on the parity of k and
the eigenvalue of the ∨ operator.

Lemma 9.21. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field, r
and s be in Sk,C and u be in C∗. Assume neither u nor q

u
are eigenvalues

of Sp. Set t =
1

q+1
(u+ q

u
) and

r′ = (u− Sp)
−1
( q
u
− Sp

)−1

r = (q + S2
p − (q + 1)tSp)

−1r.

If k is even, we have

p∗(ru, s) =
1

q
p∗((q2 − S2

p)r
′, s) r∨ = qr, s∨ = qs

=
u2 − 1

u
p∗(Spr

′, s) r∨ = −r, s∨ = qs

=
u2 − q2

u
p∗(Spr

′, s) r∨ = qr, s∨ = −s

= qp∗((1− S2
p)r

′, s) r∨ = −r, s∨ = −s.
If k is odd, we have

p∗(ru, s) = p∗((q − Sp)(1 + Sp)r
′, s) r∨ = r, s∨ = s

=
(u+ q)(u− 1)

u
p∗(Spr

′, s) r∨ = −r, s∨ = s

=
(u− q)(u+ 1)

u
p∗(Spr

′, s) r∨ = r, s∨ = −s

= p∗((q + Sp)(1− Sp)r
′, s) r∨ = −r, s∨ = −s.

Proof. We only establish the first two cases.
Assume k is even and s∨ = qs. Let a, b, c be as in Lemma 9.19, so

that we have ru = r + a∨>p + b∨>p∨. We write

(9.5) p∗(ru, s) = p∗(r, s) + p−,∗(a, s<∨) + p−,∗(b, s∨<∨)

= p∗(r, s) + p−,∗
(
1

q
a+ b, s∨<∨

)
.

If r∨ = qr, Lemma 9.19 says that

1

q
a+ b =

(
u+

q

u
− q + 1

q
S†
p

)
c =

q + 1

q
(qt− Sp)c.

By Lemma 9.20, we get

p−,∗
(
1

q
a+ b, s∨<∨

)
=
q + 1

q
p∗(Sp(qt− Sp)r

′, s).
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We use the identity in C(x),

1 +
q + 1

q

x(qt− x)

q + x2 − (q + 1)tx
=

1

q

q2 − x2

q + x2 − (q + 1)tx

to deduce from (9.5) that p∗(ru, s) =
1
q
p∗((q2 − S2

p)r
′, s).

If r∨ = −r, note that p∗(r, s) = 0, so that, from (9.5), we get

p∗(ru, s) = p−,∗
(

1
q
a+ b, s∨<∨

)
. Now, Lemma 9.19 says that 1

q
a + b =

u2−1
u
c. By Lemma 9.20, we get p∗(ru, s) =

u2−1
u
p∗(Spr

′, s) as required.
The other cases are obtained in the same way. □

To conclude, we will need another set of formulae.

Lemma 9.22. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and u
be in C∖ {−q,−1, 0, 1, q}. Pick r, s in Sk,C. Then, we have

p∗(I−1
u r, s) =

1

q2 − u2
p∗(r, s) k even, s∨ = qs

=
1

q(u2 − 1)
p∗(r, s) k even, s∨ = −s

=
1

(q − u)(u+ 1)
p∗(r, s) k odd, s∨ = s

=
1

(q + u)(u− 1)
p∗(r, s) k odd, s∨ = −s.

Proof. By Lemma 9.6, we have I−1
u r = u2

q2(q2−u2)(u2−1)
I q

u
r if k is even

and I−1
u r = u2

q(q2−u2)(u2−1)
I q

u
r if k is odd.

Assume for example k is even and s∨ = qs. From the Definition 9.4
of the opposition map I q

u
we have

p∗(I q
u
r, s) = p∗

(
r,

(
q − q2

u2

)
s∨ +

q2

u2
(q − 1)s

)
=

1

u2
p∗(r, (q2u2 − q3 + q3 − q2)s) =

q2

u2
(u2 − 1)p∗(r, s)

and the conclusion follows.
The other cases are dealt with in the same way. □

We conclude the

Proof of Proposition 9.18. Take H and J in Hk,C and let r and s be the
elements of Sk,C such that, for any G in Hk,C, one has p(H,G) = ⟨r,G⟩
and p(J,G) = ⟨s,G⟩. For a in Su

k,C, we have

⟨a,H⟩ = p∗(r, a) = p∗(r q
u
, a)− p−,∗(r<q

u
, a<) = p∗u(I

−1
u r q

u
, a),
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so that, by definition, we get pu(H, J) = p∗u(I
−1
u r q

u
, s) and the Proposi-

tion follows from Lemma 9.21 and Lemma 9.22. □

9.6. u-radical pseudofields in the bipartite case. When Γ is bi-
partite, the twist operation of Subsection 2.6 and Subsection 6.7 inter-
acts with the previous constructions. Let us write how this interaction
works.

First, by the dual version of Lemma 2.22, we directly get,

Lemma 9.23. Assume Γ is bipartite. Let k ≥ 1, u be in C∗ and s be
in Sk,C. Then s is u-radical if and only if s≀ is (−u)-radical. Besides,
we have

(Ius)
≀ = (−1)kI(−u)(s

≀).

Using these properties, straightforward computations yield

Lemma 9.24. Assume Γ is bipartite. Let k ≥ 2, p be a Γ-invariant
k-Euclidean field and u be in C∗. For r, s in Su

k,C, we have

p∗(−u)(r
≀, s≀) = (−1)kp∗u(r, s).

If u2 /∈ {1, q2} and neither u nor q
u
is an eigenvalue of Sp, for H, J in

Hk,C, we have

p(−u)(H
≀, J ≀) = (−1)kpu(H, J).

Note that the condition on u in the latter statement is symmetric in
view of Lemma 7.6.

10. t-radical pairs and full spectral quadratic forms

In this Section we continue the algebraic constructions that are nec-
essary in order to state the Plancherel formula for Euclidean fields.

10.1. t-radical pairs. We start by introducing a new subspace of S2
k

and relate it to the range of the default map of Subsection 2.3 thanks
to Proposition 6.5.

Definition 10.1. Let k ≥ 1, t be in C and s =

(
s0
s1

)
be a pair of

complex k-simple pseudofields. Then, s is said to be t-radical if one
has (

s∨<∨
0

s∨<∨
1

)
=

(
0 q
−1 (q + 1)t

)(
s<0
s<1

)
.

For k ≥ 1, the space of t-radical pairs in S2
k,C is denoted by S2,t

k,C. If

t is real, the space of t-radical pairs in S2
k is denoted by S2,t

k .



110 JEAN-FRANÇOIS QUINT

Remark 10.2. Note that the matrix

(
0 q
−1 (q + 1)t

)
already appeared

in the proof of the Ihara trace formula in Subsection 1.3.

We will relate the notion of a t-radical pair to the formulas in Proposi-
tion 6.5. To this aim, for k ≥ 0, we introduce a natural duality between

S2
k and H2

k. For s =

(
s0
s1

)
in S2

k and H =

(
H0

H1

)
in H2

k, we set

⟨s,H⟩ = ⟨s0, H0⟩+ ⟨s1, H1⟩.

Then, Proposition 6.5 translates into

Lemma 10.3. Let k ≥ 1, s be in S2
k and t be in R. Then s is t-radical

if and only if, for every G in H(N)
k−1, one has ⟨s, D̂kG(t)⟩ = 0.

Recall that Dk is the default map that was defined in Subsection 2.3.

Proof. Indeed, Proposition 6.5 gives, is k is even,

⟨s, D̂kG(t)⟩ =

〈(
s<0
s<1

)
−
(

0 q
−1 (q + 1)t

)−1(
s∨<∨
0

s∨<∨
1

)
, qG(t)

〉
and if k is odd,

⟨s, D̂kG(t)⟩ =
〈(

0 q
−1 (q + 1)t

)(
s<0
s<1

)
−
(
s∨<∨
0

s∨<∨
1

)
, qG(t)

〉
.

The Proposition follows as, by Proposition 6.4, the linear map G 7→
qG(t) sends H(N)

k−1 onto H2
k−1. □

In Lemma 10.3, we have established a relation between t-radical
pairs and the range of the polyextension map. Now, from Lemma 2.21,
Proposition 6.3 and Proposition 6.4, we should see a link between t-
radical pairs and the operators of (6.1) and (6.1). Note that the adjoint
operators of these operators may be defined by the following formulae.

For s =

(
s0
s1

)
in S2

k , if k is even, we have

S∗
t s =

(
s∨1 − (q − 1)s1

q−1s∨0

)
R∗

t s =

(
s∨0

q−1(q + 1)ts∨0 + (q − 1)s1 − s∨1

)
.
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If k is odd, we have

R∗
t s =

(
qs∨1

(q − 1)s1 + s∨0

)
S∗

t s =

(
−s∨0 + (q + 1)ts∨1 − (q − 1)s1

s∨1

)
.

Lemma 10.4. Let k ≥ 1, t be in C and s be a t-radical pair of complex
k-simple pseudofields. The pairs R∗

t s and S∗
t s are t-radical.

Proof. As mentioned above this can be seen as a consequence as Lemma
2.21, Proposition 6.3, Proposition 6.4 and Lemma 10.3. We can also
get it by a straightforward computation. We shall use the fact that the

inverse of the matrix

(
0 q
−1 (q + 1)t

)
is the matrix

(
q−1(q + 1)t −1

q−1 0

)
.

Assume k is even. We get

(S∗
t s)

∨<∨ =

(
qs<∨

1

s<∨
0 + q−1(q − 1)s∨<∨

0

)
(

0 q
−1 (q + 1)t

)
(S∗

t s)
< =

(
s∨<0

(q − 1)s<1 − s∨<1 + q−1(q + 1)ts∨<0

)
.

As s is t-radical, we have s∨<0 = qs<∨
1 and −s∨<1 +q−1(q+1)ts∨<0 = s<∨

0 .

We get (S∗
t s)

∨<∨ =

(
0 q
−1 (q + 1)t

)
(S∗

t s)
< as required. In the same

way, we have

(R∗
t s)

∨<∨ =

(
qs<∨

0 + (q − 1)s∨<∨
0

(q + 1)ts<∨
0 + q−1(q2 − 1)ts∨<∨

0 − qs<∨
1

)
and(

0 q
−1 (q + 1)t

)
(R∗

t s)
<

=

(
(q + 1)ts∨<0 + q(q − 1)s<1 − qs∨<1

−s∨<0 + q−1(q + 1)2t2s∨<0 + (q2 − 1)ts<1 − (q + 1)ts∨<1

)
=

(
qs<∨

0 + q(q − 1)s<1
−s∨<0 + (q + 1)ts<∨

0 + (q2 − 1)ts<1

)
,

where we have used again the relation −s∨<1 + q−1(q + 1)ts∨<0 =
s<∨
0 . Still by using the relation s∨<0 = qs<1 , we get (R∗

t s)
∨<∨ =(

0 q
−1 (q + 1)t

)
(R∗

t s)
<.
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Assume now k is odd, so that we write

(R∗
t s)

∨<∨ =

(
qs<∨

1

(q − 1)s∨<∨
1 + s<∨

0

)
(

0 q
−1 (q + 1)t

)
(R∗

t s)
< =

(
q(q − 1)s<1 + qs∨<0

−qs∨<1 + (q2 − 1)ts<1 + (q + 1)ts∨<0

)
.

As s∨<∨
0 = qs<1 , we get s∨<0 = s<∨

1 − (q − 1)s<1 , which gives equality
of the first lines. Besides, from s∨<∨

1 = −s<0 + (q + 1)ts<1 , we get
qs∨<1 + (q − 1)s∨<∨

1 = −s<∨
0 + (q + 1)ts<∨

1 which leads to the equality
of the second lines. It remains to compute

(S∗
t s)

∨<∨ =

(
−s<∨

0 + (q + 1)ts<∨
1 − (q − 1)s∨<∨

1

s<∨
1

)
(

0 q
−1 (q + 1)t

)
(S∗

t s)
< =

(
qs∨<1

s∨<0 + (q − 1)s<1

)
.

The relation s∨<∨
0 = qs<1 implies the equality of the second lines,

whereas the relation s∨<∨
1 = −s<0 + (q + 1)ts<1 implies the equality

of the first lines. □

10.2. t-radical pairs and u-radical pseudofields. We will now re-
late t-radical pairs to the theory of Section 9. This relies on diago-

nalizing the matrix

(
0 q
−1 (q + 1)t

)
. Note that the eigenvalues of this

matrix are the roots of the equation q2 + u = (q + 1)tu. This fact was
already used in Subsection 1.3.

To proceed to the diagonalization, we introduce a change of variables
in spaces of pairs. Let k ≥ 0 and fix u, t in C with q2 + u = (q + 1)tu

and u2 ̸= q or equivalently (q + 1)t2 ̸= 4q. For H =

(
H0

H1

)
in H2

k,C, we

set

(10.1) δuH =

(
q u
q q

u

)(
H0

H1

)
.

As u2 ̸= q, this map is invertible and we get

(10.2) δ−1
u H =

1

q − u2

(
1 −q−1u2

−u u

)(
H0

H1

)
.

The adjoint endomorphism δ∗u of δu and its inverse (δ∗u)
−1 = (δ−1

u )∗ are

defined by, for all s =

(
s0
s1

)
in S2

k,C,

δ∗us =

(
q q
u q

u

)(
s0
s1

)
and (δ∗u)

−1s =
1

q − u2

(
1 −u

−q−1u2 u

)(
s0
s1

)
.
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Lemma 10.5. Let u be in C∗, with u2 ̸= q, and set t = 1
q+1

(u + q
u
).

Then, for k ≥ 1, a pair s =

(
s0
s1

)
of complex k-simple pseudofields

is t-radical, if and only if the pseudofield s0 − us1 is u-radical and
the pseudofield s0 − q

u
s1 is q

u
-radical. The map δ∗u induces a linear

isomorphism from Su
k,C ⊕ S

q
u
k,C onto S2,t

k,C.

Proof. Let T be the matrix

(
0 q
−1 (q + 1)t

)
and U be the matrix(

q q
u q

u

)
. Then U is invertible and a direct computation shows that

U diagonalizes T , that is, we have U−1TU =

(
u 0
0 q

u

)
. The conclusion

follows. □

10.3. Diagonalization map and natural operators. Let us trans-
port the operators of Lemma 10.4 via the diagonalization map δu. For
u in C∗, by abuse of notation, we still write Iu for the endomorphism of
Hk,C that is adjoint to the u-opposition map of Definition 9.4. When
u2 ̸= q, we define two endomorphisms ρu and σu of H2

k,C which we write
in the following matrix forms.

If k is even, we set

ρu =
1

q − u2

(
−(q − 1)u2 Iu
−q−1u2I q

u
q(q − 1)

)
(10.3)

and σu =
1

q − u2

(
−(q − 1)u q−1uIu
−q−1uI q

u
u(q − 1)

)
.

Their adjoint endomorphisms are defined by

ρ∗u =
1

q − u2

(
−(q − 1)u2 −q−1u2I q

u

Iu q(q − 1)

)
(10.4)

and σ∗
u =

1

q − u2

(
−(q − 1)u −q−1uI q

u

q−1uIu u(q − 1)

)
.

If k is odd, we set

ρu =
1

q − u2

(
−(q − 1)u2 uIu

−uI q
u

q(q − 1)

)
(10.5)

and σu =
1

q − u2

(
−(q − 1)u q−1u2Iu

−I q
u

u(q − 1)

)
.
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Their adjoint endomorphisms are defined by

ρ∗u =
1

q − u2

(
−(q − 1)u2 −uI q

u

uIu q(q − 1)

)
(10.6)

and σ∗
u =

1

q − u2

(
−(q − 1)u −I q

u

q−1u2Iu u(q − 1)

)
.

By using Lemma 9.6, one can check that in both cases, one has
ρ2u = q + (q − 1)ρu and σ2

u = 1. Besides, by Lemma 9.5, both ρ∗u and

σ∗
u preserve the space Su

k,C ⊕ S
q
u
k,C.

Lemma 10.6. Let k ≥ 0, u be in C∖{−√
q, 0,

√
q} and t = 1

q+1
(u+ q

u
).

One has δuRt = ρuδu and δuSt = σuδu.

Proof. Assume k is even and take H in Hk,C. We get

δu

(
H

−uH

)
= (q − u2)

(
H
0

)
,

hence

ρuδu

(
H

−uH

)
=

(
−(q − 1)u2H
−q−1u2I q

u
H

)
=

(
−(q − 1)u2H

(q − u2)H∨ − q(q − 1)H

)
,

where we have used Definition 9.4. On the other hand, by (6.1), we
have

Rt

(
H

−uH

)
=

(
(1− u

q
(q + 1)t)H∨

uH∨ − (q − 1)uH

)
=

(
−u2

q
H∨

uH∨ − (q − 1)uH

)
and therefore

δuRt

(
H

−uH

)
=

(
−(q − 1)u2H

(q − u2)H∨ − q(q − 1)H

)
= ρuδu

(
H

−uH

)
.

By symmetry, we also get ρuδu

(
H

− q
u
H

)
= δuRt

(
H

− q
u
H

)
, hence, as

u2 ̸= q, ρuδu = δuRt. The other computations can be lead in the same
way. □

10.4. Doubling of quadratic forms. We will now use the diago-
nalization map δu to construct symmetric bilinear forms on H2

k with
respect to which the operators Rt and St are self adjoint.

Proposition 10.7. Let k ≥ 0 and t, u be in C with q+u2 = (q+1)tu.
Assume (q+1)2t2 ̸= 4q and t2 ̸= 1. Define Qt

k,C as the space of complex

symmetric bilinear forms π on H2
k,C such that the linear operators Rt

and St are symmetric with respect to π.
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If k is even, for π in Qt
k,C, set Φuπ to be the symmetric bilinear form

(H, J) 7→ 1

(q − u2)2
π

((
H

−uH

)
,

(
J

−uJ

))
on Hk,C.

If k is odd, for π in Qt
k,C, set Φuπ to be the symmetric bilinear form

(H, J) 7→ u

q

1

(q − u2)2
π

((
H

−uH

)
,

(
J

−uJ

))
on Hk,C.
Then, the map Φu is a linear isomorphism from Qt

k,C onto the space
of symmetric bilinear forms on Hk,C.

Proof. Let us prove that the map Φu is injective. Pick π in Qt
k,C and

assume that Φuπ is 0. Set χ = (δ−1
u )⋆π. Then χ is a symmetric

bilinear form on H2
k and, by Lemma 10.6, the operators ρu and σu

are symmetric with respect to χ. By (10.2) and the assumption, χ has
trivial restriction to Hk × {0}. Let us show that this implies χ = 0.

If k is even, from (10.3), we see that the endomorphism of H2
k,C with

matrix

(
0 Iu
0 q(q − 1)

)
is symmetric with respect to χ. We get, for H, J

in Hk,C, as

(
0 Iu
0 q(q − 1)

)(
H
0

)
= 0,

χ

((
H
0

)
,

(
0 Iu
0 q(q − 1)

)(
0
J

))
= 0

hence χ

((
H
0

)
,

(
0
J

))
= 0. Still by (10.3), the endomorphism(

q(q − 1) 0
I q

u
0

)
is symmetric with respect to χ, so that we get

χ

((
q(q − 1) 0
I q

u
0

)(
H
0

)
,

(
0
J

))
= 0,

hence χ

((
0

I q
u
H

)
,

(
0
J

))
= 0. Since by Lemma 9.6, I q

u
is invertible,

we get χ = 0 as required.
If k is odd, from (10.5), we see that the endomorphisms of H2

k,C with
matrices (

0 uIu
0 q(q − 1)

)
and

(
q(q − 1) 0

q
u
I q

u
0

)
are symmetric with respect to χ and we proceed as in the previous
case.
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In both cases, we have shown that the map Φu is injective. Now,
we will show that it surjective. We fix a symmetric bilinear form φ on
Hk,C and we set

φ′ =
1

q2(q + 1)2(1− t2)
I⋆uφ if k is even

=
1

q(q + 1)2(1− t2)
I⋆uφ if k is odd.

By using Lemma 9.6, this definition ensures that, for H, J in Hk,C, one
has

φ(H, IuJ) = φ′(I q
u
H, J).

We define a linear endomorphism αu on H2
k,C which is written in matrix

form as

αu =

(
1 − 1

q(q−1)
Iu

− 1
q(q−1)

I q
u

1

)
if k is even(10.7)

=

( q
u

− 1
q−1

Iu
− 1

q−1
I q

u
u

)
if k is odd.

As αu is self adjoint with respect to φ ⊕ φ′, it defines a symmetric
bilinear form χ on H2

k,C, that is, for H, J in H2
k,C,

χ(H, J) = (φ⊕ φ′)(H,αuJ) = (φ⊕ φ′)(αuH, J).

A direct computation using (10.3) and (10.5) shows that ρu and σu are
symmetric with respect to χ. We set π = δ⋆uχ, so that, by Lemma 10.6,
Rt and St are symmetric with respect to π. By construction, we have
Φuπ = φ. □

10.5. The full dual spectral bilinear form. Given k ≥ 2 and p a
Γ-invariant k-Euclidean field, in Definition 9.17, we have introduced
the spectral bilinear forms pu associated with p. By Proposition 10.7
these objects define symmetric bilinear forms on H2

k with respect to
which the operators Rt and St are symmetric. In order to describe the
null spaces of these forms, we start by constructing dual objects.

We keep using the notation (10.7) and we introduce a new operator
βu : H2

k,C → H2
k,C. For u in C∗, we set

βu =

(
1 1

q(q−1)
Iu

1
q(q−1)

I q
u

1

)
if k is even

=

(
u 1

q−1
Iu

1
q−1

I q
u

q
u

)
if k is odd.
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For u2 ̸= q, this operator is a multiple of the inverse of the operator αu

in (10.7). Indeed, by using Lemma 9.6, we get

αuβu =

(
q − u2

u(q − 1)

)2

=
(q + 1)2t2 − 4q

(q − 1)2
if k is even(10.8)

= q

(
q − u2

u(q − 1)

)2

= q
(q + 1)2t2 − 4q

(q − 1)2
if k is odd.

Besides, the adjoint operator β∗
u of βu is defined by the matrix

β∗
u =

(
1 1

q(q−1)
I q

u
1

q(q−1)
Iu 1

)
if k is even(10.9)

=

(
u 1

q−1
I q

u
1

q−1
Iu

q
u

)
if k is odd.

Definition 10.8. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and
t be in C∗ with (q+1)2t2 ̸= 4q. Choose u in C∗ with (q+1)tu = q+u2

and equip the space Su
k,C ⊕S

q
u
k,C with the bilinear form p∗u ⊕ p∗q

u
. We set

p2,∗t to be the symmetric bilinear form on S2,t
k,C such that the bilinear

form (δ∗u)
⋆p2,∗t is defined by the matrix β∗

u with respect to p∗u ⊕ p∗q
u
. We

call p2,∗t the full dual spectral bilinear form associated with p on S2,t
k,C.

In other words, for r, s in Su
k,C ⊕ S

q
u
k,C, we have

p2,∗t (δ∗ur, δ
∗
us) = (p∗u ⊕ p∗q

u
)(r, β∗

us).

Note that symmetry of the matrices defining p2,∗t follows from Lemma
9.16.

Below, we summarize the properties of this bilinear form.

Proposition 10.9. Let k ≥ 2 be even, p be a Γ-invariant k-Euclidean
field and t be in C with (q + 1)2 ̸= 4q. Then, for every r, s in S2,t

k,C, we
have

p2,∗t (r,R∗
t s) = p2,∗t (R∗

t r, s) and p
2,∗
t (r,S∗

t s) = p2,∗t (S∗
t r, s).

If t2 ̸= 1 and none of the two roots of the equation (q+1)tu = q+u2

is an eigenvalue of Sp, then the full dual spectral bilinear form p2,∗t is

non degenerate on S2,t
k,C.

If t is real, then p2,∗t is real.
If t belongs to the interior of the interval Iq, then p2,∗t is real and

positive definite on the real vector space S2,t
k .
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If V is a real vector space and p is a complex symmetric bilinear form
on the complexification VC of V , then p is said to be real if p(V, V ) ⊂ R,
that is, if p is obtained by complexification of a real symmetric bilinear
form on V .

As in Subsection 3.3, we write Iq for the interval [−2
√
q

q+1
,
2
√
q

q+1
].

To prove positivity, we shall use

Lemma 10.10. Let V and W be finite dimensional complex vector
spaces, equipped with Hermitian scalar products p and q. Let a, d be in
R and B : W → V and C : V → W be complex linear maps which are
adjoint to each other with respect to p and q. Then, on V ⊕W , the
Hermitian form defined by the matrix(

a B
C d

)
is positive if and only if a or d is positive and the endomorphism ad−
BC of V is positive.

Proof. Note that BC is a non-negative Hermitian endomorphism of V
since p(BCv, v′) = q(Cv,Cv′) for v, v′ in V .

Assume the matrix

(
a B
C d

)
defines a positive Hermitian form r on

V ×W . Then, necessarily, a and d are positive. Now, pick v ̸= 0 in V
and let us show that adp(v, v) > p(BCv, v). If p(BCv, v) = 0, there is
nothing to prove. If p(BCv, v) > 0, note that we have

r

((
v
0

)
,

(
0
Cv

))
= p(v,BCv).

Hence, by applying Cauchy-Schwarz inequality to the positive Hermit-
ian form r, we get

p(v,BCv)2 ≤ r

((
v
0

)
,

(
v
0

))
r

((
0
Cv

)
,

(
0
Cv

))
= ap(v, v)dq(Cv,Cv) = adp(v, v)p(v,BCv).

As we have assumed p(BCv, v) > 0, we get p(BCv, v) < adp(v, v) as
required.

Conversely, assume a or d is positive and the Hermitian endomor-
phism ad−BC is positive in V . Then, as BC is non-negative, necessar-
ily, both a and d are positive. Now, take v in V and w in W which are
not both 0. We must show the positivity of the following real number

s =
(
v w

)(a B
C d

)(
v
w

)
= ap(v, v) + 2q(Cv,w) + dq(w,w).
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If v = 0, then w ̸= 0 and s = dq(w,w) > 0. If w = 0, then v ̸= 0 and
s = ap(v, v) > 0. If v ̸= 0 and w ̸= 0, we have, by Cauchy-Schwarz
inequality,

s ≥ ap(v, v)− 2q(Cv,Cv)
1
2 q(w,w)

1
2 + dp(v, v).

As ad − BC is positive, we have q(Cv,Cv) = p(BCv, v) < adp(v, v)
and we get

s > ap(v, v)− 2a
1
2d

1
2p(v, v)

1
2 q(w,w)

1
2 + dp(v, v)

=
(
a

1
2p(v, v)

1
2 − d

1
2 q(w,w)

1
2

)2
≥ 0.

The conclusion follows. □

Proof of Proposition 10.9. We choose u to be one of the roots of the
equation u2 + q = (q + 1)tu. Note that the assumption (q + 1)2t2 ̸= 4q
amounts to u2 ̸= q. The adjointness properties rely on elementary

matrix computations in Su
k,C⊕S

q
u
k,C using (10.4) and (10.6) and Lemma

10.6.
Assume that t2 ̸= 1, so that u2 /∈ {1, q2} and also that neither u

nor q
u
are eigenvalues of Sp. Then, by Proposition 9.14, the bilinear

forms p∗u and p∗q
u
are non degenerate. Therefore, the symmetric bilinear

form (δ∗u)
⋆p2,∗t , which is defined by an invertible matrix with respect to

p∗u ⊕ p∗q
u
is non degenerate. By Lemma 10.5 and Definition 10.8, p2,∗t is

non degenerate.
Assume that t is real, and let us show that p2,∗t is real, which is to

say that, for r, s in S2,t
k,C, one has

(10.10) p2,∗t (r, s) = p2,∗t (r, s).

As by assumption (q + 1)2t2 ̸= 4q, either t belongs to R ∖ Iq or t
belongs to the interior of Iq. In the first case, both u and q

u
are real

numbers and all our previous constructions are real constructions, so
that p2,∗t can easily be seen to be real.

It remains to deal with the case where t belongs to the interior of the
interval Iq, which we now assume. In particular, both u and q

u
are non

real with modulus
√
q. Therefore, by Proposition 7.16, none of them

is an eigenvalue of Sp, hence by the previous, p2,∗t is non degenerate.

To show that the bilinear form p2,∗t is real, we will check the action of
complex conjugation on all previous constructions. First, we note that,

as t is real, one has u = q
u
. Therefore, we have Su

k,C = S
q
u
k,C as subspaces

of Sk,C. By the Definition 9.4 of the opposition map Iu, we have, for s
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in Su
k,C,

(10.11) Ius = I q
u
s

and, by the Definition 9.12 of the dual spectral bilinear form p∗u, we
have, for r, s in Su

k,C,

(10.12) p∗u(r, s) = p∗q
u
(r, s).

Finally, by the definition of the diagonalization map δu in (10.1), for r

in Su
k,C and s in S

q
u
k,C,

(10.13) δ∗u

(
r
s

)
= δ∗u

(
s
r

)
.

Putting together (10.11), (10.12) and (10.13), we get (10.10) from the
Definition 10.8 of p2,∗t .

It remains to prove that, still for t in the interior of Iq, the full

dual spectral bilinear form p2,∗t is positive definite on the real vector
space S2,t

k . We will show the equivalent statement that the Hermit-

ian form p̃2,∗t : (r, s) 7→ p2,∗t (r, s) is positive definite on the complex
vector space S2,t

k,C. Again, this will require us to have a closer look
at the definition of all the objects. First, as the real bilinear form
(r, s) 7→ p∗(r, s) − p−,∗(r<, s<) is non-negative on Sk, the Hermitian
form (r, s) 7→ p∗(r, s) − p−,∗(r<, s<) is non-negative on Sk,C. As by
Proposition 7.16, neither u nor q

u
is an eigenvalue of Sp, by Proposi-

tion 9.14, the Hermitian form (r, s) 7→ p∗(r, s)−p−,∗(r<, s<) is positive
definite on Su

k . We denote it by p̃∗u. To conclude, we will consider the

space Su
k,C⊕S

q
u
k,C which is equipped with the positive definite Hermitian

form p̃∗u ⊕ p̃∗q
u
. On this space, there is a natural anti-automorphism γu

which is γu : (r, s) 7→ (s, r) and (10.13) can be rewritten as

(10.14) δ∗us = δ∗uγus s ∈ Su
k,C ⊕ S

q
u
k,C.

By the Definition 9.12 of the dual spectral bilinear forms p∗u and p∗q
u
,

for r, r′ in Su
k,C and s, s′ in S

q
u
k,C, we have

(p∗u ⊕ p∗q
u
)

((
r
s

)
,

(
r′

s′

))
= (p̃∗u ⊕ p̃∗q

u
)

(
γu

(
r
s

)
,

(
I q

u
s′

Iur
′

))
.

This, together with the definition of p2,∗t and (10.14), implies that
(10.15)

p̃2,∗t

(
δ∗u

(
r
s

)
, δ∗u

(
r′

s′

))
= (p̃∗u ⊕ p̃∗q

u
)

((
r
s

)
,

(
0 I q

u

Iu 0

)
β∗
u

(
s′

r′

))
.
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To conclude, we will apply the criterion in Lemma 10.10.
If k is even, by Lemma 9.6 and (10.9), we have(

0 I q
u

Iu 0

)
β∗
u =

(
q (q+1)2

q−1
(1− t2) I q

u

Iu q (q+1)2

q−1
(1− t2)

)
.

As

q2
(q + 1)4

(q − 1)2
(1− t2)2 − I q

u
Iu

= q2
(q + 1)2

(q − 1)2
(1− t2)((1− t2)(q + 1)2 − (q − 1)2)

= q2
(q + 1)2

(q − 1)2
(1− t2)(4q − (q + 1)2t2) > 0,

by Lemma 10.10 and (10.15), the Hermitian form p̃2,∗t is positive defi-
nite.

If k is odd, by Lemma 9.6 and (10.9), we have(
0 I q

u

Iu 0

)
β∗
u =

(
q (q+1)2

q−1
(1− t2) q

u
I q

u

uIu q (q+1)2

q−1
(1− t2)

)
.

As

q2
(q + 1)4

(q − 1)2
(1− t2)2 − qI q

u
Iu

= q2
(q + 1)2

(q − 1)2
(1− t2)((1− t2)(q + 1)2 − (q − 1)2)

= q2
(q + 1)2

(q − 1)2
(1− t2)(4q − (q + 1)2t2) > 0,

again by Lemma 10.10 and (10.15), the Hermitian form p̃2,∗t is positive
definite. □

10.6. The full spectral bilinear form. Given k ≥ 2 and p a Γ-
invariant k-Euclidean field, we now introduce the dual objects to the
bilinear forms defined above.

Let t be a complex number such that t2 /∈ {1, 4q
(q+1)2

} and none of

the roots of the equation (q + 1)tu = q + u2 is an eigenvalue of Sp.

We have defined the full dual spectral bilinear form p2,∗t on the space
S2,t
k,C of Γ-invariant t-radical pairs of complex k-simple pseudofields. In

Proposition 10.9, we have shown that this bilinear form is non degen-
erate. Therefore, by duality, it defines a symmetric bilinear form p2t



122 JEAN-FRANÇOIS QUINT

on the space H2
k,C of Γ-invariant pairs of complex k-pseudofunctions

whose null space is the range of the map
(10.16)

H2
k−1,C → H2

k,C, G =

(
G0

G1

)
7→
(
G∨>∨

0

G∨>∨
1

)
−
(
0 −1
q (q + 1)t

)(
G>

0

G>
1

)
.

For H, J in H2
k,C, we have p2t (H, J) = ⟨r, J⟩ where r is the unique

element of S2,t
k,C such that, for any s in S2,t

k,C, one has ⟨s,H⟩ = p2,∗t (r, s).

Definition 10.11. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
For t as above, the symmetric bilinear form p2t on H2

k,C is called the full
spectral bilinear form associated to t.

The full spectral bilinear form p2t will appear in the Plancherel for-
mula for Euclidean fields on the continuous part of the spectrum of
Corollary 8.6, which is the critical interval Iq.

In Proposition 9.18, we have established formulae for computing the
spectral bilinear form pu, which are rather heavy to state. Fortunately,
these formulae will be sufficient to characterize p2t .

Proposition 10.12. Let k ≥ 2 and p be a Γ-invariant k-Euclidean
field. Fix t a complex number with t2 /∈ {1, 4q

(q+1)2
} and choose u to be

a root of the equation (q + 1)tu = q + u2. Assume neither u nor q
u
is

an eigenvalue of Sp. Then p
2
t enjoys the following properties.

(i) For every H, J in H2
k,C, we have,

p2t (RtH, J) = p2t (H,RtJ) and p
2
t (StH, J) = p2t (H,StJ).

(ii) For every H, J in Hk,C, we have

p2t

((
H

−uH

)
,

(
J

−uJ

))
= (q − 1)2u2pu(H, J) if k is even

= (q − 1)2upu(H, J) if k is odd.

Conversely, p2t is the unique bilinear form on H2
k,C that satisfies the

two properties above.

Proof. The uniqueness statement directly follows from Proposition
10.7.
(i) is the direct consequence of the analogous property established

for p2,∗t in Proposition 10.9.
(ii) will follow from the explicit form of the matrices βu in (10.9).

Indeed, as p2,∗t is defined by the formula

p2,∗t (δ∗ur, δ
∗
us) = (p∗u ⊕ p∗q

u
)(r, β∗

us), r, s ∈ Su
k,C ⊕ S

q
u
k,C,
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the bilinear form p2t is defined by the dual formula

p2t (δ
−1
u H, δ−1

u J) = (pu ⊕ p q
u
)(H, β−1

u J), H, J ∈ H2
k,C.

For H in Hk,C, we get, from (10.2),

δ−1
u

(
H
0

)
=

1

q − u2

(
H

−uH

)
and, from (10.7) and (10.8),

β−1
u

(
H
0

)
=

(
(q − 1)u

q − u2

)2(
H

−q−1(q − 1)−1I q
u
H

)
if k is even

=
1

q

(
(q − 1)u

q − u2

)2( q
u
H

−(q − 1)−1I q
u
H

)
if k is odd.

The conclusion follows. □

10.7. t-radical pairs in the bipartite case. As in Subsection 9.6, if
Γ is bipartite, the twist operation of Subsection 2.6 and Subsection 6.7
induces a symmetry in the previous constructions.

In analogy with Lemma 9.23, one can show

Lemma 10.13. Assume Γ is bipartite. Let k ≥ 1, t be in C and

s =

(
s0
s1

)
be in S2

k,C. Then s is t-radical if and only if

(
s≀0
−s≀1

)
is

(−t)-radical.

Then, by direct computations, we get

Lemma 10.14. Assume Γ is bipartite. Let k ≥ 2, p be a Γ-invariant
k-Euclidean field and t be in C, t2 ̸= 4q

(q+1)2
. For r, s in S2,t

k,C, we have

p2,∗(−t)

((
r≀0
−r≀1

)
,

(
s≀0
−s≀1

))
= p2,∗t (r, s).

If moreover t2 ̸= 1 and none of the roots of the equation q + u2 =
(q + 1)tu is an eigenvalue of Sp, for H, J in Hk,C, we have

p2(−t)

((
H ≀

0

−H ≀
1

)
,

(
H ≀

0

−H ≀
1

))
= p2t (H, J).

The last property could also be seen as a consequence of Lemma
9.23, Lemma 9.24 and the uniqueness part in Proposition 10.12
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11. Exceptional quadratic forms

For k ≥ 2 and p a Γ-invariant k-Euclidean field, we have introduced
the objects that will allow to write the Plancherel formula on the con-
tinuous part of the spectrum in Corollary 8.6, which is the critical
interval Iq. We now focus on the objects that will appear on the ex-
ceptional spectrum Σp defined in (8.1). Thus, we will now construct a
family of quadratic forms parametrized by Σp.

11.1. The exceptional spectral bilinear form. Let k ≥ 2 and p be
a Γ-invariant k-Euclidean field. Recall from Proposition 7.16 that, if u
is an eigenvalue of the simple transfer operator Sp such that |u| > √

q,
then u is real and simple. We then write Πu

p for the unique projection
of Hk onto ker(Sp − u) that commutes with Sp. In other words, for H
in Hk, we have SpΠ

u
pH = uΠu

pH and H − Πu
pH ∈ (Sp − u)Hk.

Definition 11.1. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and
u be a real eigenvalue of the simple transfer operator Sp with |u| > √

q.
We define the exceptional spectral bilinear form pexu associated to p and
u on Hk as the bilinear form

pexu (H, J) = p(Πu
pH, J

<p∨>), H, J ∈ Hk.

By Lemma 2.22 and Lemma 7.6, we have

Lemma 11.2. Assume Γ is bipartite. Let k ≥ 2, p be a Γ-invariant k-
Euclidean field and u be a real eigenvalue of the simple transfer operator
Sp with |u| > √

q. For H, J in Hk, we have

pex(−u)(H
≀, J ≀) = (−1)k+1pexu (H, J).

The exceptional spectral bilinear form enjoys nonnegativity proper-
ties.

Proposition 11.3. Let k ≥ 2, p be a Γ-invariant k-Euclidean field
and u be a real eigenvalue of the simple transfer operator Sp with |u| >√
q. The exceptional spectral bilinear form pexu is symmetric. It is

nonnegative if u >
√
q or k is odd; it is nonpositive if u < −√

q and
k is even. Its null space is exactly (Sp − u)Hk. In particular, this null
space contains the range of the map Hk−1 → Hk, G 7→ G∨>∨ − uG>.

Note that the adjoint operator Πu,†
p of Πu

p with respect to p is the

projection onto ker(S†
p − u) that commutes with S†

p. The symmetry of
pexu relies on

Lemma 11.4. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and u
be a real eigenvalue of the simple transfer operator Sp with |u| > √

q.
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For H in Hk, we have

Πu,†
p (H<p∨>) = (Πu

pH)<p∨>.

Proof. The definition of the operators in Subsection 7.1 gives SpH =
H<p∨>∨ and S†

pH = H∨<p∨>, hence

S†
p(H

<p∨>) = H<p∨>∨<p∨> = (SpH)<p∨>.

Therefore, if f is a polynomial function, we have f(S†
p)(H

<p∨>) =
(f(Sp)H)<p∨>. The conclusion follows as we can find a polynomial
function f with f(Sp) = Πu

p and hence f(S†
p) = Πu,†

p . □

By abuse of notation, we also denote by Πu
p and Πu,†

p the projections

of Hk−1 onto ker(Sp − u) and ker(S†
p − u) that commute respectively

with Sp and S†
p.

Lemma 11.5. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and u
be a real eigenvalue of the simple transfer operator Sp with |u| > √

q.
For H in Hk, we have

Πu,†
p (H<p) = (Πu

pH)<p

and this element is 0 if and only if H belongs to (Sp − u)Hk.

Proof. Write J = Πu
pH and H − J = SpK − uK for some K in Hk.

Still by the definitions in Subsection 7.1, we have

H<p = J<p +K<p∨>∨<p − uK<p = J<p + S†
p(K

<p)− uK<p

and, in the same way,

S†
p(J

<p) = J<p∨>∨<p = (SpJ)
<p = uJ<p .

We get Πu,†
p (H<p) = J<p = (Πu

pH)<p as required.
Assume now J<p = 0. As we have J<p∨>∨ = SpJ = uJ and u ̸= 0,

we get J = 0 and H = SpK − uK, which should be proved. □

Proof of Proposition 11.3. Let us prove the symmetry of the excep-
tional spectral bilinear form. For H, J in Hk, we have, by Lemma
11.4,

pexu (H, J) = p(Πu
pH, J

<p∨>) = p(H,Πu,†
p (J<p∨>))

= p(H, (Πu
pJ)

<p∨>) = p(H<p∨>,Πu
pJ) = pexu (J,H).

Now, for the other statements, recall from Proposition 7.23, that
the symmetric bilinear form (H, J) 7→ p(H, J∨) is positive definite on
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ker(S†
p − u) if u >

√
k or k is odd and that it is negative definite if

u < −
√
k and k is even. For H, J in Hk, we have, by Lemma 11.5,

p(Πu,†
p (H<p),Πu,†

p (J<p)∨) = p((Πu
pH)<p , (Πu

pJ)
<p∨)

= p(Πu
pH, (Π

u
pJ)

<p∨>)

= p(H,Πu,†
p ((Πu

pJ)
<p∨>))

= p(H, (Πu
pΠ

u
pJ)

<p∨>)

= p(H, (Πu
pJ)

<p∨>) = pexu (H, J),

where we have used Lemma 11.4 and the fact that Πu
pΠ

u
p = Πu

p . The
remainder of the Proposition is now a consequence of Proposition 7.23,
Lemma 11.5 and the fact that, for G in Hk−1, we have G∨>∨ − uG> =
(Sp − u)(G>). □

11.2. Values on Hk,+ and Hk,−. In the study of the spectral theory of
Euclidean fields, we will need more information on the behaviour of the
exceptional spectral bilinear forms on eigenspaces of the ∨ operator.
On these eigenspaces, we can rewrite the definition of the exceptional
spectral bilinear forms.

Corollary 11.6. Let k ≥ 2, p be a Γ-invariant k-Euclidean field, u be
a real eigenvalue of the simple transfer operator Sp with |u| > √

q, H
be in Hk,+ and J be in Hk,−. We have

pexu (H,H) =
u

q
p(Πu

pH,H) if k is even

= up(Πu
pH,H) if k is odd

pexu (J, J) = −up(Πu
pJ, J)

pexu (H, J) = −up(Πu
pH, J)

=
u

q
p(H,Πu

pJ) if k is even

= up(H,Πu
pJ) if k is odd.

Proof. By the definitions of the simple transfer operator Sp and of its
adjoint operator S†

p in Subsection 7.1, and by Definition 11.1, we get

pexu (J, J) = p(Πu
pJ, J

<p∨>) = −p(Πu
pJ, J

∨<p∨>) = −p(Πu
pJ, S

†
pJ)

= −p(SpΠ
u
pJ, J) = −up(Πu

pJ, J)

as required. The other formulae are obtained by the same technique.
□

We also can show that the exceptional spectral bilinear forms are
not 0 on the eigenspaces of the ∨ operator.
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Corollary 11.7. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and
u be a real eigenvalue of the simple transfer operator Sp with |u| > √

q.
Then, the restrictions of pexu to Hk,+ and Hk,− are not 0.

Proof. Assume by contradiction that we have pexu (H, J) = 0 for any
H, J in Hk,+. Then, by Proposition 11.3, we have

Hk,+ ⊂ (Sp − u)Hk.

As the p-orthogonal complement of Hk,+ in Hk is Hk,−, we get

ker(S†
p − u) ⊂ Hk,−.

Therefore, by assumption, we can find H ̸= 0 in Hk with S†
pH = uH

and H∨ = −H. As S†
pH = H∨<p∨>, we get H<p∨> = −uH. Since

u ̸= 0, we have H<p ̸= 0 and

H<p∨ = H<p∨><p = −uH<p .

By Proposition 7.9 and the assumption, we have
√
q < |u| < q. Thus,

(−u) does not belong to the set of eigenvalues of the ∨ operator, a
contradiction.

One proves that pexu is non zero on Hk,− in the same way. □

11.3. The full exceptional spectral bilinear form. We now ap-
ply the doubling procedure of Section 10.4 to the exceptional spectral
bilinear forms. Recall from (8.1) that, for p in Pk, Σp stands for the
exceptional spectrum.

Definition 11.8. Let k ≥ 2, p be a Γ-invariant k-Euclidean field and t
be in Σp. In other words, we have (q+1)2t2 > 4q2 and the unique real
number u such that q + u2 = (q + 1)tu and u2 > q is an eigenvalue of
the simple transfer operator Sp. We denote by p2,ext the unique bilinear
form on H2

k such that
(i) The operators Rt and St of (6.1) and (6.2) are symmetric with
respect to p2,ext .
(ii) For H, J in Hk, one has

p2,ext

((
H

−uH

)
,

(
J

−uJ

))
=
(
u− q

u

)
pexu (H, J) if k is even

=
(
1− q

u2

)
pexu (H, J) if k is odd.

We call p2,ext the full exceptional spectral bilinear form associated to
p and t.
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Note that the existence and uniqueness of p2,ext are warranted by
Proposition 10.7. Indeed, by the defintion of Σp in (8.1), we have
(q+1)2t2 > 4q and, by Proposition 7.9, we have u2 < q2, hence t2 < 1.

From Lemma 11.2 and Definition 11.8, we directy get

Lemma 11.9. Assume Γ is bipartite. Let k ≥ 2, p be a Γ-invariant
k-Euclidean field and t be in Σp. For H, J in H2

k, we have

pex(−t)

((
H ≀

0

−H ≀
1

)
,

(
J ≀
0

−J ≀
1

))
= pext (H, J).

The full exceptional spectral bilinear is non-negative.

Proposition 11.10. Let k ≥ 2, p be a Γ-invariant k-Euclidean field
and t be in Σp. Then, the full exceptional spectral bilinear form p2,ext is
nonnegative.

Proof. Let u be the root of the equation q+u2 = (q+1)tu with |u| > √
q.

The proof of the Proposition follows from a careful rereading of the
proof of Proposition 10.7. Indeed, following this proof, we set, for H, J
in Hk,

pexq
u
(H, J) =

1

q2(q + 1)2(1− t2)
pexu (IuH, IuJ) if k is even

=
1

q(q + 1)2(1− t2)
pexu (IuH, IuJ) if k is odd.

Since Proposition 7.9 implies t2 < 1, the symmetric bilinear form pexq
u

on Hk enjoys the same sign properties as pexu . Now, from the proof of
Proposition 10.7, we see that, if k is even, the bilinear form (δ−1

u )⋆p2,ext

is defined by the matrix u−1(u2 − q)−1αu of (10.7) with respect to
pexu ⊕ pexq

u
; if k is odd, it is defined by the matrix q−1u−1(u2 − q)−1αu.

Note that the diagonal coefficients of αu are 1 if k is even, and have
the same sign as u is k is odd. The conclusion follows from Lemma 9.6,
the non-negativity criterion in Lemma 10.10 and Proposition 11.3. □

12. Special quadratic forms

Given k ≥ 2 and a Γ-invariant k-Euclidean field p, for t in C, we have
constructed in Section 10 the full spectral bilinear form p2t which will be
used to write the Plancherel formula on the continuous part Iq of the
spectrum in Corollary 8.6. Then, in Section 11, we have constructed
the full exceptional spectral bilinear form p2,ext to write this formula at
the points t in Σp. It remains to study the behaviour of the formula
at the special points 1 and −1 of the spectrum: this is the purpose of
this Section.
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The constructions below rely on a direct analogy we the study of
skew quadratic fields and skew dual kernels in Section II.6 and Section
II.7.

12.1. Skew fields. We introduce a final algebraic object that is related
to the behaviour of the theory of u-radical simple pseudofields at the
degenerated values u ∈ {−q,−1, 1, q}. Its definition comes from a
straightforward analogy with Subsection II.6.1.

Definition 12.1. Let k ≥ 1.
A k-skew field is a k-simple pseudofield s such that s∨ = −s and

s<∨ = −s<.
If k is even, a reverse k-skew field is a k-simple pseudofield s such

that s∨ = −s and s<∨ = s<.
If k is odd, a reverse k-skew field is a k-simple pseudofield s such

that s∨ = s and s<∨ = −s<.

The space of Γ-invariant k-skew fields is denoted by G1
k . The space

of Γ-invariant reverse k-skew fields is denoted by G(−1)
k .

From the dual version of Lemma 2.22, we get

Lemma 12.2. Assume Γ is bipartite. Let k ≥ 1 and s be a k-simple
pseudofield. Then s is a k-skew field if and only if s≀ is a reverse k-skew
field.

Let us now relate these new objects to the formerly introduced ones.
First, note that skew fields are 1-radical. Indeed, the definitions directly
give.

Lemma 12.3. Let k ≥ 1 and s be a k-simple pseudofield.
If s is a k-skew field, then s is 1-radical.
If s is a reverse k-skew field, then s is (−1)-radical.

Skew fields can be built from q-radical simple pseudofields.

Lemma 12.4. Let k ≥ 1 and s be a k-simple pseudofield.
Assume k is even. If s is q-radical, then qs− s∨ is a k-skew field. If

s is (−q)-radical, then qs− s∨ is a reverse k-skew field.
Assume k is odd. If s is q-radical, then s− s∨ is a k-skew field. If s

is (−q)-radical, then s+ s∨ is a reverse k-skew field.

Proof. First, we assume that k is even. As s∨∨ = qs+(q−1)s∨, we have
(qs − s∨)∨ = s∨ − qs. Besides, if s is q-radical, we have s∨<∨ = qs<.
We get

(qs− s∨)<∨ = qs<∨ − s∨<∨ = s∨< − qs< = −(qs− s∨)<,
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that is, qs− s∨ is a k-skew field. If s is (−q)-radical, the same compu-
tation shows that qs− s∨ is a reverse k-skew field.

Now assume that k is odd. If s is q-radical, we have s∨<∨ = qs<. As
s∨<∨∨ = qs∨< + (q − 1)s∨<∨, this gives s<∨ = s∨< + (q − 1)s<. We get

(s− s∨)<∨ = s<∨ − s∨<∨ = s∨< + (q − 1)s< − qs< = −(s− s∨)<,

that is, s − s∨ is a k-skew field. Again, if s is (−q)-radical, the same
computation shows that s+ s∨ is a reverse k-skew field. □

Direct restriction preserves skew fields.

Lemma 12.5. Let k ≥ 2 and s be a k-simple pseudofield. If s is a
k-skew field, then s< is a (k − 1)-skew field. If s is a reverse k-skew
field, then s< is a reverse (k − 1)-skew field. Direct restriction maps

G1
k onto G1

k−1 and G(−1)
k onto G(−1)

k−1 .

Proof. The fact that direct restriction preserves the space of k-skew
fields and the one of reverse k-skew fields follows directly from the
definitions and from Lemma 6.9.

For example, we show that the direct restriction maps G1
k onto G1

k−1.
As usual, we will prove that the adjoint map is injective. Thus, let
H be in Hk−1 and assume that H> is orthogonal to G1

k , that is, there
exists J in Hk,+ and K in Hk−1,+ with H> = J+K>. If k is even (resp.
odd), we get (H−K)>∨ = q(H−K)> (resp. (H−K)>∨ = (H−K)>),
hence, by Lemma 2.8, there exists L in Hk−2 with L∨ = qL (resp.
L∨ = L) and H = K + L>. Therefore, H is orthogonal to G1

k−1 as
should be proved. The proof for reverse skew fields is analogous. □

Remark 12.6. By reasoning as in Proposition II.6.16, one could show
that the projective limit of the projective system (G1

k)k≥1 (resp.

(G(−1)
k )k≥1 may be seen as the space of harmonic Γ-equivariant skew-

symmetric (resp. symmetric) maps from X1 to the space D0(∂X) of
distributions θ on ∂X with θ(1) = 0.

Remark 12.7. In view of the analogy between the language of skew
fields and the one of skew quadratic fields in Section II.6, it would be
tempting to introduce the notions of a field and of a reverse field, by
mimicking the language of Section I.4. Thus, if k ≥ 1 is even, we could
define a k-field (resp. a reverse k-field) as a k-simple pseudofield s
with s∨ = qs and s<∨ = s< (resp. s<∨ = −s<). If k is odd, a k-field
(resp. a reverse k-field) would be a k-simple pseudofield s with s∨ = s
(resp. s∨ = −s) and s<∨ = qs<. But, by Lemma 6.10, for k ≥ 2, direct
restriction would induce a linear isomorphism from the space of k-fields
(resp. reverse k-fields) onto the space of (k − 1)-fields (resp. reverse
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(k − 1)-fields). Then, in view of the identification between 1-simple
pseudofields and functions on X1, the space of 1-fields (resp. reverse
1-fields), would just be the space of harmonic skew-symmetric (resp.
symmetric) functions on X1. Note that the Γ-invariant functions of
this kind play a role in the proof of the Ihara trace formula in Theorem
1.4.

12.2. The special dual spectral bilinear forms. Given a Euclidean
field, in analogy with the quadratic case (see Subsection II.7.5), we
build scalar products on the spaces of skew fields and reverse skew
fields.

Definition 12.8. (k even) Let k ≥ 2 be even and p be a Γ-invariant
k-Euclidean field. For r, s in G1

k , we set

psp,∗1 (r, s) =
q

q + 1
p∗(r, s)− 1

2
p−,∗(r<, s<).

For r, s in G(−1)
k , we also set

psp,∗(−1)(r, s) =
q

q + 1
p∗(r, s)− 1

2
p−,∗(r<, s<).

We call psp,∗1 and psp,∗(−1) the special dual spectral symmetric bilinear

forms associated to p.

Definition 12.9. (k odd) Let k ≥ 2 be odd and p be a Γ-invariant
k-Euclidean field. For r, s in G1

k , we set

psp,∗1 (r, s) =
1

2
p∗(r, s)− 1

q + 1
p−,∗(r<, s<).

For r, s in G(−1)
k , we also set

psp,∗(−1)(r, s) =
1

2
p∗(r, s)− 1

q + 1
p−,∗(r<, s<).

We call psp,∗1 and psp,∗(−1) the special dual spectral symmetric bilinear

forms associated to p.

These forms define scalar products.

Lemma 12.10. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
The special dual symmetric bilinear forms psp,∗1 and psp,∗(−1) are positive

definite on G1
k and G(−1)

k .

Proof. This directly follows from the fact that, as q > 1, we have
q

q+1
> 1

2
> 1

q+1
. □

In case Γ is bipartite, these forms are identified by the twist operator.
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Lemma 12.11. Assume Γ is bipartite. Let k ≥ 2 and p be a Γ-
invariant k-Euclidean field. For r, s in G1

k, we have

psp,∗(−1)(r
≀, s≀) = psp,∗1 (r, s).

12.3. The special spectral bilinear forms. We now use duality to
build quadratic forms on spaces of pseudofunctions.

Let k ≥ 2 and p be a Γ-invariant k-Euclidean field. Lemma 12.10
tells us that the special dual symmetric bilinear forms psp,∗1 and psp,∗(−1)

are non degenerate on G1
k and G(−1)

k . Therefore, by duality, they define
symmetric bilinear forms psp1 and psp(−1) on Hk. For H, J in Hk, we have

psp1 (H, J) = ⟨r, J⟩ and psp(−1)(H, J) = ⟨s, J⟩ where r (resp. s) is the

unique element of G1
k (resp. G(−1)

k ) such that ⟨a,H⟩ = psp,∗1 (r, a) (resp.

⟨a,H⟩ = psp,∗(−1)(s, a)) for any a in G1
k (resp. G(−1)

k ).

Definition 12.12. The symmetric bilinear forms psp1 and psp(−1) are

called the special symmetric bilinear forms associated to p.

We summarize the properties of psp1 and psp(−1). Recall from Proposi-

tion 7.9 that the operators (q − Sp) and (q + Sp) are invertible.

Proposition 12.13. Let k ≥ 2 and p be a Γ-invariant k-Euclidean
field. The special bilinear forms psp1 and psp(−1) are non-negative on Hk.

The null space of psp1 is Hk,+ +H>
k−1,+. If k is even, the null space

of psp(−1) is Hk,+ +H>
k−1,−. If k is odd, the null space of psp(−1) is Hk,− +

H>
k−1,+.
If k is even, for H, J in Hk,−, one has

psp1 (H, J) = (q + 1)p((1 + Sp)(q − Sp)
−1H, J)

psp(−1)(H, J) = (q + 1)p((1− Sp)(q + Sp)
−1H, J).

If k is odd, for H, J in Hk,−, one has

psp1 (H, J) = 2p((q + Sp)(q − Sp)
−1H, J)

and, for H, J in Hk,+, one has

psp(−1)(H, J) = 2p((q − Sp)(q + Sp)
−1H, J).

We will prove this statement in the same way as we proved Proposi-
tion 9.18 of which it can be seen as a degenerated version.

By Lemma 12.10, the dual special bilinear form psp,∗1 is non degener-
ate on G1

k . Therefore, for any r in Sk,−, there exists r1 in G1
k such that,

for any s in G1
k , one has

p∗(r, s) = psp,∗1 (r1, s).



ADDITIVE REPRESENTATIONS 133

In the same way, the dual special bilinear form psp,∗(−1) is non degenerate

on G(−1)
k . If k is even (resp. odd), for any r in Sk,− (resp. Sk,+), there

exists r(−1) in G(−1)
k such that, for any s in G(−1)

k , one has

p∗(r, s) = psp,∗(−1)(r(−1), s).

Below, we give a formula to compute r1 and r(−1). This is an analogue
of Lemma 9.19.

Lemma 12.14. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
If k is even, for r in Sk,−, we have

r1 =
q + 1

q
r − qa>p + a>p∨ and r(−1) =

q + 1

q
r + qb>p − b>p∨

where

a =
q + 1

q
(q − Sp)

−1(r<∨) and b =
q + 1

q
(q + Sp)

−1(r<∨).

If k is odd, for r in Sk,−, we have

r1 = 2r − a>p + a>p∨ where a = 2(q − Sp)
−1(r<∨).

For r in Sk,+, we have

r(−1) = 2r − b>p − b>p∨ where b = 2(q + Sp)
−1(r<∨).

Proof. We assume that k is even and we check the formula for r1.
Therefore, we set

a =
q + 1

q
(q − Sp)

−1(r<∨) and s =
q + 1

q
r − qa>p + a>p∨.

First we claim that s is a k-skew field. Indeed, on one hand, as
r∨ = −r, we have

s+ s∨ = −qa>p + a>p∨ − qa>p∨ + a>p∨∨ = 0.

On the other hand, we have

s< + s<∨ =
q + 1

q
r< − qa+ a>p∨< +

q + 1

q
r<∨ − qa∨ + a>p∨<∨

=
q + 1

q
r< − qa+ (Spa)

∨ +
q + 1

q
r<∨ − qa∨ + Spa.

By definition, a satisfies the equation

(12.1) Spa+
q + 1

q
r<∨ = qa,

hence s< + s<∨ = 0.
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Now, to conclude, we must show that c = q
q+1

s − 1
2
s<>p − r is p∗-

orthogonal to G1
k . Let us compute this k-simple pseudofield. We get

c = r − q2

q + 1
a>p +

q

q + 1
a>p∨ − q + 1

2q
r<>p +

q

2
a>p − 1

2
(Spa)

∨>p − r

=
q

q + 1
a>p∨ − q + 1

2q
r<>p − q(q − 1)

2(q + 1)
a>p − 1

2
(Spa)

∨>p .

Using (12.1) yields

c =
q

q + 1
a>p∨− q

2
a∨>p− q(q − 1)

2(q + 1)
a>p =

q

q + 1
(a>p∨+a>p)− q

2
(a∨+a)>p ,

hence c is indeed p∗-orthogonal to G1
k as required and therefore r1 = s.

The formula for r−1 is obtained in the same way.
Assume now k is odd and let us again check the formula for r1. Thus,

we set
a = 2(q − Sp)

−1(r<∨) and s = 2r − a>p + a>p∨.

Again, we claim that s is a k-skew field. Indeed, as r∨ = −r, we have
s∨ = −s. Besides,

s< + s<∨ = 2r< − a+ a>p∨< + 2r<∨ − a∨ + a>p∨<∨.

As Spa = a>p∨<∨, the definition of a yields

(12.2) a>p∨<∨ + 2r<∨ = qa and a>p∨< + 2r< = a∨ − (q − 1)a.

We get
s< + s<∨ = a∨ − (q − 1)a− a+ qa− a∨ = 0

as required.
As in the even case, to conclude, we need to show that the k-simple

pseudofield c defined by c = 1
2
s − 1

q+1
s<>p − r is p∗-orthogonal to G1

k .

Indeed, the definitions of the objects give

c = r − 1

2
a>p +

1

2
a>p∨ − 2

q + 1
r<>p +

1

q + 1
a>p − 1

q + 1
a>p∨<>p − r

=
1

2
a>p∨ − 2

q + 1
r<>p − q − 1

2(q + 1)
a>p − 1

q + 1
a>p∨<>p .

Thanks to (12.2), we have

c =
1

2
a>p∨ − 1

q + 1
(a∨ − (q − 1)a)>p − q − 1

2(q + 1)
a>p

=
1

2
a>p∨ − 1

q + 1
a∨>p +

q − 1

2(q + 1)
a>p

=
1

2
(a>p∨ + a>p)− 1

q + 1
(a∨ + a)>p .
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Thus, c is p∗-orthogonal to G1
k and hence r1 = s. The same method

yields the formula for r−1. □

Proof of Proposition 12.13. By construction, the null space of psp1 is
the orthogonal subspace of G1

k in Hk and the null space of psp(−1) is the

orthogonal subspace of G(−1)
k in Hk. The description of these spaces in

the Proposition directly follows from the definition of skew fields and
reverse skew fields.

We now check the formulae. Assume that k is even and take r, s in
Sk,−. We keep the notation of Lemma 12.14. As s∨ = −s, we get

p∗(r1, s) = (q + 1)p∗
(
1

q
r + a>p∨, s

)
.

By Lemma 9.11 and Lemma 12.14, we have

a>p∨ =
q + 1

q
((q − Sp)

−1r)<∨>p∨ =
q + 1

q
Sp(q − Sp)

−1r.

Now, we have

1 + (q + 1)Sp(q − Sp)
−1 = q(1 + Sp)(q − Sp)

−1,

hence
p∗(r1, s) = (q + 1)p∗((1 + Sp)(q − Sp)

−1r, s)

and the first formula follows. The other three are obtained in the same
way. □

As usual, we have a symmetry property in the bipartite case. From
Lemma 12.11, we get

Lemma 12.15. Assume Γ is bipartite and let k ≥ 2 and p be a Γ-
invariant k-Euclidean field. For H, J in Hk, we have

psp(−1)(H
≀, J ≀) = psp1 (H, J).

12.4. The full special spectral bilinear forms. We now use the
special bilinear forms to build bilinear forms on H2

k in the spirit of the
doubling technique of Proposition 10.7.

Definition 12.16. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.

For H =

(
H0

H1

)
and J =

(
J0
J1

)
in H2

k, we set

p2,sp1 (H, J) = psp1 (qH0 +H1, qJ0 + J1)

and p2,sp(−1)(H, J) = psp(−1)(qH0 −H1, qJ0 − J1).

The bilinear forms p2,sp1 and p2,sp(−1) are called the full special spectral

bilinear forms associated to p.
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We summarize the properties of the full special spectral bilinear
forms.

Proposition 12.17. Let k ≥ 2 and p be a Γ-invariant k-Euclidean
field. The full special spectral bilinear forms p2,sp1 and p2,sp(−1) are non-

negative on H2
k. The null space of p2,sp1 is the space

H2
k,+ + (H>

k−1,+)
2 +

{(
H

−qH

)∣∣∣∣H ∈ Hk

}
.

If k is even, the null space of p2,sp(−1) is the space

H2
k,+ + (H>

k−1,−)
2 +

{(
H
qH

)∣∣∣∣H ∈ Hk

}
.

If k is odd, the null space of p2,sp(−1) is the space

H2
k,− + (H>

k−1,+)
2 +

{(
H
qH

)∣∣∣∣H ∈ Hk

}
.

In both cases, the operators R1 and S1 are symmetric with respect
to p2,sp1 and the operators R(−1) and S(−1) are symmetric with respect

to p2,sp(−1).

Proof. The non-negativity properties and the description of the null
spaces directly follows from Proposition 12.13 and Definition 12.16.

Assume k is even and let us show that the operators R1 and S1 are

symmetric with respect to p2,sp1 . Recall from (6.1) that, for H =

(
H0

H1

)
in H2

k, we have S1H =

(
q−1H∨

1

H∨
0 − (q − 1)H0

)
. Therefore, for H =

(
H0

H1

)
and J =

(
J0
J1

)
in H2

k,

p2,sp1 (S1H, J) = psp1 (H∨
1 +H∨

0 − (q − 1)H0, qJ0 + J1).

By Proposition 12.13 H0 +H∨
0 and H1 +H∨

1 belong to the null space
of psp1 . Thus, we get

p2,sp1 (S1H, J) = −psp1 (qH0 +H1, qJ0 + J1).

By symmetry, we obtain p2,sp1 (S1H, J) = p2,sp1 (H,S1J) as required. In

the same way, still by (6.1), we have R1H =

(
H∨

0 + q−1(q + 1)H∨
1

(q − 1)H1 −H∨
1

)
,
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hence

p2,sp1 (R1H, J) = psp1 (qH∨
0 + qH∨

1 + (q − 1)H1, qJ0 + J1)

= −psp1 (qH0 +H1, qJ0 + J1).

Again, we get p2,sp1 (R1H, J) = p2,sp1 (H,R1J).
The other cases may be obtained by the same method. □

In the bipartite case, Definition 12.16 and Lemma 12.15 yield

Lemma 12.18. Assume Γ is bipartite and let k ≥ 2 and p be a Γ-
invariant k-Euclidean field. For H, J in H2

k, we have

p2,sp(−1)

((
H ≀

0

−H ≀
1

)
,

(
J ≀
0

−J ≀
1

))
= psp1 (H, J).

13. A Plancherel formula for Euclidean fields

In this final Section, we state and prove the Plancherel formula for
a Γ-invariant Euclidean field p. We use this formula to compute the
spectrum of the natural geometric operator of Subsection 1.1, acting
on the space of Γ-invariant maps X → Hp.

13.1. The formula and its spectral consequences. Given k ≥ 2
and a Γ-invariant k-Euclidean field p, we use the previously introduced
notions to write the following Plancherel formula for the non nega-
tive symmetric bilinear form E⋆

kp obtained by pulling back the natural

scalar product on H∞ by the polyextension map Ek : H(N)
k → H∞.

Theorem 13.1. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.

For any H, J in H(N)
k , we have

(13.1)

p∞(EkH,EkJ) =
q + 1

2π(q − 1)

∫
Iq
p2t (Ĥ(t), Ĵ(t))

√
4q − (q + 1)2t2dt

+ (q − 1)
∑
t∈Σp

p2,ext (Ĥ(t), Ĵ(t)) +
q − 1

2(q + 1)
p2,sp1 (Ĥ(1), Ĵ(1))

+
q − 1

2(q + 1)
p2,sp(−1)(Ĥ(−1), Ĵ(−1)).

The polyextension map Ek was defined in Subsection 2.3. The spec-

tral transform H 7→ Ĥ,H(N)
k → H2

k[t] was constructed in Proposition
6.3. For t in C with (q + 1)2t2 ̸= 4q, the full spectral bilinear form p2t
on H2

k was introduced in Definition 10.8. The exceptional spectrum Σp

was introduced in (8.1) and, for t in Σp, we defined the full exceptional
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spectral bilinear form p2,ext on H2
k in Definition 11.8. Finally, for t = 1

or t = −1, we defined the full special spectral bilinear form p2,spt on H2
k

in Definition 12.16.
Note that, if Γ is bipartite, the symmetry properties in the spec-

tral part of the formula which come from Lemma 10.14, Lemma 11.9
and Lemma 12.18 are compatible with the equivariance property of
the polyextension map established in Lemma 2.23 and the one of the
spectral transform established in Lemma 6.18.

In analogy with the case of the model operators that we studied
in Section 4 and Section 5, the proof of the formula in Theorem 13.1
will rely on the identification of the boundary values in the resolvent
formula of Proposition 8.1.

Before beginning the proof, we use the formula to compute spectra
of natural operators. First, we can complete Corollary 8.6.

Corollary 13.2. Let k ≥ 2 and p be a Γ-invariant k-Euclidean field.
Then, the spectrum of P in the completion Hp

∞ of H∞ with respect to
p is the set

Iq ∪ Σp ∪ {−1, 1}.

Proof. Note that, by Lemma 7.8, we have Σp+ = Σp. Hence, we can
replace p by a large orthogonal extension. In particular, by Corollary
2.7, we can assume that we have Hk,+ ̸= {0} and Hk,− ̸= {0}.
By Lemma 2.18, for H inH(N)

k , we have PEkH = EkPH. By Lemma

6.1 and Proposition 6.3, for t in R, we have P̂H(t) = tĤ(t). By
Proposition 10.12, for t in the interior of Iq, the full spectral bilinear
form p2t is positive definite. By Proposition 11.3, for t in Σp, the full

exceptional spectral bilinear form p2,ext is non zero. By Proposition
12.17, the full special spectral bilinear forms p2,sp1 and p2,sp(−1) are also non

zero. Therefore, by Theorem 13.1, the spectrum of P in the closure of

EkH(N)
k in Hp

∞ is Iq ∪Σp∪{−1, 1}. The conclusion follows by applying
this property to all orthogonal extensions of p. □

We can also use the Plancherel formula to prove our first statement.

Proof of Corollary 1.3. This is obtained as in Corollary 4.10 where we
retrieved the computation of the spectral measures of the operator Q
acting on ℓ2(X).
Indeed, as in the proof of Corollary 4.10, we consider the natural

operator L : F(X,Hp)Γ → F(X1, H
p)Γ = Hp

∞ defined by, for x ∼ y
in X and f in F(X,Hp)Γ, Lf(x, y) = f(x). We still have PL = LQ
and a direct computation using Lemma I.9.11 shows that p(Lf, Lf) =
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(q + 1)p(f, f). Therefore, by Corollary 13.2, the spectrum ΣX of Q in
F(X,Hp)Γ is contained in Iq ∪ Σp ∪ {−1, 1}.

Conversely, by Proposition 10.12, for t in the interior of Iq, the full
spectral bilinear form p2t is positive definite, hence we have Iq ⊂ ΣX .
Besides, note that, by construction, for every f in F(X,Hp)Γ, we have
RLf = qLf . As by Proposition 12.17, the full special spectral bilinear
forms p2,sp1 and p2,sp(−1) are 0 on H2

j,+ for all even j ≥ k, the special points

(−1) and 1 do not belong to ΣX . Finally, with no loss of generality,
we can assume that k is even. For t in Σp, let u be the root of the
equation q + u2 = (q + 1)tu with

√
q < |u| < q. By Corollary 11.7,

we know that the exceptional spectral bilinear form pexu is non zero on
Hk,+. This implies that Σq is contained in ΣX . The result follows. □

We now go back to proving Theorem 13.1.

13.2. Particular values of spectral quadratic forms. The resol-
vent formulae in Proposition 8.1 are obtained only for certain particular
vectors. To deduce from these particular cases the general Plancherel
formula in Theorem 13.1, we will need the following uniqueness crite-
rion. Recall that the operators Rt and St were introduced in (6.1) and
(6.2).

Proposition 13.3. Let k ≥ −1, u be in C∗ and set t = 1
q+1

(u + q
u
).

Let ϖ be a symmetric bilinear form on H2
k,C such that the operators Rt

and St are symmetric with respect to ϖ.
Then, if k is even, ϖ is entirely determined by the bilinear forms

(H, J) 7→ ϖ

((
H
0

)
,

(
J
0

))
on Hk,+,C ×Hk,+,C and Hk,−,C ×Hk,−,C as well as the bilinear form

(H, J) 7→ ϖ

((
H
0

)
,

(
0
J

))
on Hk,+,C ×Hk,−,C.

If k is odd, ϖ is entirely determined by the bilinear forms

(H, J) 7→ ϖ

((
0
H

)
,

(
0
J

))
on Hk,+,C ×Hk,+,C and Hk,−,C ×Hk,−,C as well as the bilinear form

(H, J) 7→ ϖ

((
0
H

)
,

(
−J

(q − 1)J

))
on Hk,+,C ×Hk,−,C.
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In particular, we can compute the values of the bilinear forms that
appear in our other uniqueness criterion, that is, Proposition 10.7.

Corollary 13.4. Let k ≥ −1, u be in C∗ and set t = 1
q+1

(u + q
u
). Let

ϖ be a symmetric bilinear form on H2
k,C such that the operators Rt

and St are symmetric with respect to ϖ. Take H in Hk,+,C and J in
Hk,−,C.
If k is even, we have

ϖ

((
H

−uH

)
,

(
H

−uH

))
=
q − 1

q + 1
(u2 − 1)ϖ

((
H
0

)
,

(
H
0

))
ϖ

((
J

−uJ

)
,

(
J

−uJ

))
=

1

q2
q − 1

q + 1
(q2 − u2)ϖ

((
J
0

)
,

(
J
0

))
ϖ

((
H

−uH

)
,

(
J

−uJ

))
= (q − 1)uϖ

((
H
0

)
,

(
0
J

))
.

If k is odd, we have

ϖ

((
H

−uH

)
,

(
H

−uH

))
=
q − 1

2u
(q + u)(u− 1)ϖ

((
0
H

)
,

(
0
H

))
ϖ

((
J

−uJ

)
,

(
J

−uJ

))
=
q − 1

2u
(q − u)(u+ 1)ϖ

((
0
J

)
,

(
0
J

))
ϖ

((
H

−uH

)
,

(
J

−uJ

))
= (q − 1)ϖ

((
0
H

)
,

(
−J

(q − 1)J

))
.

The proofs rely on a case by case description of invariant bilinear
forms.

Lemma 13.5. Fix t, u in C with q + u2 = (q + 1)tu. In each of the
following six systems of matrix equations, the space of solutions is a
complex line.

The space of solutions of the system(
q 0

(q + 1)t −1

)
A = A

(
q (q + 1)t
0 −1

)
(13.2) (

0 1
1 0

)
A = A

(
0 1
1 0

)
is the space CA0 where A0 =

(
1 t
t 1

)
and we have

(
1 −u

)
A0

(
1
−u

)
=
q − 1

q + 1
(u2 − 1).
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The space of solutions of the system(
−1 0

−q−1(q + 1)t q

)
B = B

(
−1 −q−1(q + 1)t
0 q

)
(13.3) (

0 −q
−q−1 0

)
B = B

(
0 −q−1

−q 0

)
is the space CB0 where B0 =

(
q2 qt
qt 1

)
and we have

(
1 −u

)
B0

(
1
−u

)
=
q − 1

q + 1
(q2 − u2).

The space of solutions of the system(
q 0

(q + 1)t −1

)
C = C

(
−1 −q−1(q + 1)t
0 q

)
(13.4) (

0 1
1 0

)
C = C

(
0 −q−1

−q 0

)
is the space CC0 where C0 =

(
0 1
−q 0

)
and we have

(
1 −u

)
C0

(
1
−u

)
= (q − 1)u.

The space of solutions of the system(
0 q
1 q − 1

)
D = D

(
0 1
q q − 1

)
(13.5)(

−1 (q + 1)t− (q − 1)
0 1

)
D = D

(
−1 0

(q + 1)t− (q − 1) 1

)
is the space CD0 where D0 =

(
q2 + 1− (q2 − 1)t (q + 1)t− (q − 1)
(q + 1)t− (q − 1) 2

)
and we have (

1 −u
)
D0

(
1
−u

)
=
q − 1

u
(q + u)(u− 1).

The space of solutions of the system(
0 −q
−1 q − 1

)
E = E

(
0 −1
−q q − 1

)
(13.6)(

1 −(q + 1)t− (q − 1)
0 −1

)
E = E

(
1 0

−(q + 1)t− (q − 1) −1

)
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is the space CE0 where E0 =

(
q2 + 1 + (q2 − 1)t (q + 1)t+ (q − 1)
(q + 1)t+ (q − 1) 2

)
and we have (

1 −u
)
E0

(
1
−u

)
=
q − 1

u
(q − u)(u+ 1).

The space of solutions of the system(
0 q
1 q − 1

)
F = F

(
0 −1
−q q − 1

)
(13.7)(

−1 (q + 1)t− (q − 1)
0 1

)
F = F

(
1 0

−(q + 1)t− (q − 1) −1

)
is the space CF0 where F0 =

(
q − 1 1
−1 0

)
and we have

(
1 −u

)
F0

(
1
−u

)
= q − 1.

Proof of Proposition 13.3. The proof is a direct consequence of the
explicit formulae in Lemma 13.5. For example, assume k is even.
Then, by (6.1), the action of Rt on H2

k,+,C is given by the matrix(
q 0

(q + 1)t −1

)
whereas the action of St is given by the matrix(

0 1
1 0

)
. Therefore, as the space of solution to the system (13.2)

in Lemma 13.5 has dimension 1 and is generated by the matrix A0

whose top left coefficient is non zero, the restriction of ϖ to the space
H2

k,+,C ×H2
k,+,C is completely determined by the bilinear form

(H, J) 7→ ϖ

((
H
0

)
,

(
J
0

))
on Hk,+,C ×Hk,+,C. In the same way we use (13.3) and (13.4) to prove
that the restrictions of ϖ to the spaces H2

k,−,C × H2
k,−,C and H2

k,+,C ×
H2

k,−,C are determined respectively by the bilinear forms

(H, J) 7→ ϖ

((
H
0

)
,

(
J
0

))
on Hk,−,C ×Hk,−,C and

(H, J) 7→ ϖ

((
H
0

)
,

(
0
J

))
on Hk,+,C ×Hk,−,C.
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We proceed similarly in the odd case by using (13.4), (13.5) and
(13.6). □

Proof of Corollary 13.4. As above, if k is even, it follows from (13.2)
in Lemma 13.5 that the restriction of ϖ to the space H2

k,+,C is given by
a formula of the form

ϖ

((
H0

H1

)
,

(
J0
J1

))
= χ(H0, J0) + χ(H1, J1) + tχ(H0, J1) + tχ(H1, J0),

for H0, H1, J0, J1 in Hk,+,C, where χ is a symmetric bilinear form on

Hk,+,C. The formula for ϖ

((
H

−uH

)
,

(
H

−uH

))
follows. The other

cases are dealt with in the same way. □

13.3. Imaginary parts of rational functions. As for the Plancherel
formulas associated to the model operators (4.1), (4.8), (5.1) and (5.4),
the proof of the Plancherel formula for Euclidean fields will rely on
the identification of the boundary values of certain harmonic functions
on H. These harmonic functions are the imaginary parts of the resol-
vent functions which appear in Proposition 8.1. We will need purely
algebraic formulae in order to compute these imaginary parts.

Lemma 13.6. Let A be a real algebra and a be an element of A. Let
t be in Iq and u be in C∗ with q + u2 = (q + 1)tu, so that |u| = √

q.
Assume that u−a is invertible in the complexification AC of A. Define
elements of AC by setting

b++ =
u

1− u2
(qu+ a)(u− a)−1

b+− =
u

q2 − u2
(u+ qa)(u− a)−1

b−+ =
u

(q + u)(1− u)
(u+ a)(u− a)−1

b−− =
u

(q − u)(1 + u)
(u+ a)(u− a)−1

c = a(u− a)−1.
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Then, the imaginary parts of these elements are given by

ℑb++ =
1

q + 1

ℑu
1− t2

(q2 − a2)(q − (q + 1)ta+ a2)−1

ℑb+− =
1

q + 1

ℑu
1− t2

(1− a2)(q − (q + 1)ta+ a2)−1

ℑb−+ =
2

(q + 1)2
ℑu

1− t2
(1 + a)(q − a)(q − (q + 1)ta+ a2)−1

ℑb−− =
2

(q + 1)2
ℑu

1− t2
(1− a)(q + a)(q − (q + 1)ta+ a2)−1

ℑc = −ℑ(u)a(q − (q + 1)ta+ a2)−1.

Proof. Note that the formulae make sense. Indeed, as a is real and
u− a is invertible, so is q

u
− a = u− a. Therefore, q− (q + 1)ta+ a2 =

(u− a)( q
u
− a) is invertible.

Let us compute the imaginary part of b++. We set n++ = u(qu+ a)
and d++ = (1− u2)(u− a), so that b++ = n++d

−1
++, hence

ℑb++ = ℑ(n++d++)(d++d++)
−1.

By taking in account that |u| = √
q, we get

n++d++ = u(qu+ a)(1− u2)(u− a) = (qu2 + ua− q3 − qua)(u− a)

= q2u+ qa− q3u− qu2a− qu2a− ua2 + q3a+ qua2,

which gives ℑ(n++d++) = (q + 1)ℑ(u)(q2 − a2). Besides, we have

d++d++ = (1− u)(1− u)(1 + u)(1 + u)(u− a)(u− a)

= (q + 1)2(1− t2)(q − (q + 1)ta+ a2).

The conclusion follows. The other formulae are obtained in the same
way. □

13.4. Isolated singularities of harmonic functions. To deal with
the discrete part of the Plancherel formula in Theorem 13.1, we will
need to recall standard properties of non-negative harmonic functions
which can be found in [1, Chapter 7]. We use the notation of Subsection
3.3 for Poisson transforms.

Lemma 13.7. Let µ be a positive Borel measure on R and a < b be

in R. Assume that
∫
R

dµ(t)
1+t2

< ∞ so that the Poisson transform of µ is
well-defined. Then, we have∫ b

a

Pµ(x+ iy)dx −−→
y→0

1

2
µ({a}) + µ((a, b)) +

1

2
µ({b}).
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Proof. This is a straightforward computation. By the definition of the
Poisson transform and Fubini Theorem, for y > 0, we have∫ b

a

Pµ(x+ iy)dx =
1

π

∫ b

a

∫
R

ydµ(t)

(x− t)2 + y2
dx

=
1

π

∫
R

∫ b

a

ydx

(x− t)2 + y2
dµ(t).

We will apply the Dominated Convergence Theorem to determine the
limit of the above integral as y → 0. To show the domination, we note
that, for t ≤ a− 1 and a ≤ x ≤ b, we have (t− x)2 ≥ (t− a)2 ≥ 1. We
get, for y > 0,

(t− a)2 + 1 ≤ 2(t− x)2 + 2y2,

hence
y

(x− t)2 + y2
≤ 2y

(t− a)2 + 1

and

(13.8)

∣∣∣∣∫ b

a

ydx

(x− t)2 + y2

∣∣∣∣ ≤ 2(b− a)y

(t− a)2 + 1
.

Similarly, for t ≥ b+ 1 and y > 0,

(13.9)

∣∣∣∣∫ b

a

ydx

(x− t)2 + y2

∣∣∣∣ ≤ 2(b− a)y

(t− b)2 + 1
.

Besides, for any t in R and y > 0, we have∫ b

a

ydx

(x− t)2 + y2
= arctan

b− t

y
− arctan

a− t

y
.

The latter quantity satisfies

(13.10)

∣∣∣∣arctan b− t

y
− arctan

a− t

y

∣∣∣∣ ≤ π

and

arctan
b− t

y
− arctan

a− t

y
−−→
y→0

0 if t < a or t > b

arctan
b− t

y
− arctan

a− t

y
−−→
y→0

π if a < t < b(13.11)

arctan
b− t

y
− arctan

a− t

y
−−→
y→0

π

2
if t = a or t = b.

The bounds in (13.8), (13.9) and (13.10), together with the assump-

tion that
∫
R

dµ(t)
1+t2

< ∞, allow us to apply the Dominated Convergence
Theorem to the convergence in (13.11). The conclusion follows. □
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We shall use this property to remove isolated singularities of har-
monic functions.

Corollary 13.8. Let µ be a positive Borel measure on R with
∫
R

dµ(t)
1+t2

<
∞. Fix s in R and assume that there exists a harmonic function F on
H such that, for any z in H,

Pµ(z) = 1

π
ℑ
(

1

s− z

)
+ F (z)

and that F (x+ iy) −−→
y→0

0 uniformly for x in a neighborhood of s in R.
Then, there exists a positive Borel measure ν on R whose support does
not contain s such that µ = δs + ν and one has F = Pν.

Proof. Note that we have

(13.12) ℑ
(

1

s− (x+ iy)

)
−−→
y→0

0

uniformly for x in a compact subset of R that does not contain s. There-
fore, by the assumption and by Lemma 13.7, there exists a neighbor-
hood N of s in R such that, for any closed interval I ⊂ N with s /∈ I,
one has µ(I) = 0. Hence, we can write µ = αδs + ν where α ≥ 0 and
ν is a positive Radon measure whose support does not contain t.

As
∫
R

dµ(t)
1+t2

<∞, we still have
∫
R

dν(t)
1+t2

<∞. Saying that the support
of ν does not contain s amounts to saying that there exists ε > 0 such
that, for ν-almost any t in R, one has |s− t| ≥ ε. For y > 0, this gives

ℑ
(

1

s− (t+ iy)

)
=

y

(s− t)2 + y2
≤ 2y

(s− t)2 + ε2
,

hence, by (13.12) and the Dominated Convergence Theorem,

Pν(s+ iy) −−→
y→0

0.

For z ∈ H, we have

α− 1

π
ℑ
(

1

s− z

)
= F (z)− Pν(z).

By applying this identity to z = s+ iy and letting y go to 0, we get

α− 1

y
−−→
y→0

0,

hence α = 1. The conclusion follows. □

By applying elementary properties of holomorphic functions, we get
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Corollary 13.9. Let µ be a positive Borel measure on R with
∫
R

dµ(t)
1+t2

<
∞. Fix s in R and assume that there exists an open neighborhood U of
s in C and a holomorphic function F on U ∖ {s}, with a simple pole
at s, such that

F (U ∩ R) ⊂ R and Pµ(z) = 1

π
ℑF (z), z ∈ U ∩H.

Then, we have µ = ν − aδs where a is the residue of F at s and ν is a
positive Borel measure on R whose support does not contain s.

The reader should beware the sign of a in the formula µ = ν − aδs.
In particular, the assumption imply a ≤ 0.

13.5. Residue computations. When applying Corollary 13.9, we
will need to compute the residues of certain meromorphic functions.
They will always be given by the following elementary

Lemma 13.10. Let V be a finite-dimensional complex vector space
and T be an endomorphism of V . Let s be a simple eigenvalue of T
and Π be the projection on ker(T − s) with null space (T − s)V . Let
F ∈ C[z, t] be a polynomial function. Then, the meromorphic operator
valued function on C

G : z 7→ F (z, T )(z − T )−1

has at most a simple pole at s, with residue F (s, s)Π.

Proof. Write Ξ = 1 − Π. As TΠ = sΠ, we get, for any z in C that is
not an eigenvalue of T ,

G(z) = F (z, T )(z − T )−1Π+ F (z, T )(z − T )−1Ξ

=
F (z, s)

z − s
Π+ F (z, T )(z − T )−1Ξ.

On one hand, by assumption, s is not an eigenvalue of T in ΞV =
(T − s)V . Thus, the meromorphic function z 7→ F (z, T )(z − T )−1Ξ
is holomorphic at s. On the other hand, the meromorphic function

z 7→ F (z,s)
z−s

Π has at most a simple pole at s, with residue F (s, s)Π. The
conclusion follows. □

We will also need to use the change of coordinates of Subsection 3.3
in residue computations. This is possible thanks to an easy formula of
complex analysis.

Lemma 13.11. Let U and V be open subsets of C and φ : U → V
be a biholomorphism. Let w be in V and F be a holomorphic function
on V ∖ {w} with a simple pole at w, with residue a. Set z = φ−1(w).
Then, F ◦ φ has a simple pole at z, with residue φ′(z)−1a.



148 JEAN-FRANÇOIS QUINT

13.6. Proof of the Plancherel formula when
√
q and −√

q are
not eigenvalues of Sp. When

√
q or −√

q is an eigenvalue of the
simple transfer operator Sp, the resolvent formulae in Proposition 8.1
have no continuous extension in the neighborhood of the boundary
points of the critical interval Iq in C and the proof of Theorem 13.1 is
slightly more complicated. Therefore, we start by assuming that this
is not the case.

Proof of Theorem 13.1 when
√
q and −√

q are not eigenvalues of Sp.
Recall that the definition of the scalar product on H∞ in (7.1), as well
as Lemma I.9.11, imply that the operators R and S defined on H∞
in Subsection 2.5 are self-adjoint with respect to this scalar product
p∞. Therefore, by Lemma 2.18, the natural operators R and S of

Definition 2.16 and Definition 2.17, which act on H(N)
k , are symmetric

with respect to the pull-back of p∞ under the polyextension map, that

is, for H, J in H(N)
k , we have

p∞(EkRH,EkJ) = p∞(REkH,EkJ)

= p∞(EkH,REkJ) = p∞(EkH,EkRJ)

and, in the same way, p∞(EkSH, J) = p∞(EkH,EkSJ).
We use the spectral transform constructed in Proposition 6.3 to iden-

tify H(N)
k with the space H2

k[t] of polynomial functions R → H2
k. By

Lemma 6.1, for t in R, the operators of (6.1) and (6.2) satisfy

(13.13) RtSt +StRt − (q − 1)St = (q + 1)t.

Therefore, by using Lemma 3.4 as in the proof of Corollary 3.5, we get
that there exists a Radon measure µ on R with support in [−1, 1] and
an integrable Borel map t 7→ ϖt,R → Q+(H2

k) from R to the space of
non-negative symmetric bilinear forms on H2

k such that
(i) for µ-almost any t in R, the operators Rt and St of (6.1) and (6.2)
are symmetric with respect to ϖt.

(ii) for any H, J in H(N)
k , one has

(13.14) p∞(EkH,EkJ) =

∫
R
ϖt(Ĥ(t), Ĵ(t))dµ(t).

As we did for the model operators in Section 4 and Section 5, we
will now use the resolvent formulae of Proposition 8.1 to compute these
spectral invariants. More precisely, we will relate the bilinear forms ϖt

to the families of bilinear forms constructed in Sections 9, 10, 11 and
12.

Indeed, the properties of the spectral transform in Proposition 6.3,

together with (13.13) and Lemma 3.7, imply that, for H in H(N)
k , the
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function

z 7→ 1

π
ℑp∞((P − z)−1EkH,EkH)

on H is the Poisson transform of the measure ϖt(Ĥ(t), Ĥ(t))dµ(t) on
R.

Let us have a closer look at the expression for the resolvent given in
Proposition 8.1. First, we consider the right hand-side of these formulae
as meromorphic functions of u in C with |u| > √

q. By Proposition
7.16, all the eigenvalues of Sp in the set {u ∈ C| |u| > √

q} are real and
simple. By Proposition 7.9, all these eigenvalues have absolute value
< q. Therefore, the right hand-side of the resolvent formulae define
meromorphic functions of u, |u| > √

q, with at most simple poles in
the finite set

{u ∈ R| |u| > √
q, ker(Sp − u) ̸= {0}} ∪ {−q, q}

and these functions are real on the real line. Now, consider the same
formulae as meromorphic functions of t. Recall from Lemma 3.6 that
the function u 7→ t = 1

q+1
(u + q

u
) induces a biholomorphism from the

set {u ∈ C| |u| > √
q} onto the set C∖Iq and that this biholomorphism

maps the real set {u ∈ R| |u| > √
q} onto R∖ Iq. Hence, the formulae

in Proposition 8.1 define meromorphic functions of t in C∖ Iq with at
most simple poles in the set Σp ∪ {−1, 1}, where Σp is defined in (8.1),
and these functions are real on R∖ Iq.

Assume temporarily that k is even. By Proposition 6.3, for H in
Hk, the sequences H10 and H11 admit respectively as spectral trans-

forms the constant functions with value

(
q−1H∨

0

)
and

(
0
H

)
. Besides,

the Definition 2.11 of the polyextension map gives Ek(H10) = H>∞

and Ek(H11) = H+>∞
. Thus, from the discussion above on the con-

sequences of the formulae of Proposition 8.1, for H in Hk,+ and J in
Hk,−, the Poisson transforms of the positive measures

ϖt

((
H
0

)
,

(
H
0

))
dµ(t) and ϖt

((
J
0

)
,

(
J
0

))
dµ(t),

as well as the Poisson transform of the signed measure

ϖt

((
H
0

)
,

(
0
J

))
dµ(t),

are the imaginary parts of meromorphic functions of t in C ∖ Iq with
at most simple poles in the set Σp∪{−1, 1}, and which take real values
on R ∖ Iq. By Proposition 13.3, Lemma 13.7 and Corollary 13.9, this
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tells us that, after maybe changing the normalization, we can assume
that there exists a Radon measure ν with support in Iq such that

µ = ν +
∑
t∈Σp

δt + δ1 + δ−1.

If k is odd, the analogous arguments imply the same conclusion.
In both cases, it remains to compute the values of ϖt, for t in Σp ∪

{−1, 1}, and of the bilinear forms valued measure ϖtdν(t).
We first compute the values on Σp. As in (13.1), we will show that

they are related to the full exceptional spectral bilinear forms of Section
11. By the reasoning above and by Corollary 13.9, it suffices to compute
the residues of the meromorphic functions of Proposition 8.1 at their
poles in the set Σp∪{−1, 1}. For example, assume that k is even. Take
H in Hk,+. Again, Definition 2.11, Proposition 6.3 and Proposition 8.1
tell us that the Poisson transform of the positive measure

ϖt

((
H
0

)
,

(
H
0

))
dµ(t)

is the imaginary part of the function on H,

(13.15) t 7→ 1

π

q + 1

q

u

1− u2
p(H, (qu+ Sp)(u− Sp)

−1H),

where ℑu > 0 and q + u2 = (q + 1)tu. Note that the right hand-side
of the above is a meromorphic function of u, |u| > √

q, with at most
simple poles on the spectral values of Sp. Fix s in Σp and let v be the
spectral value of Sp with q+v

2 = (q+1)sv and v >
√
q. By Proposition

7.16 and Lemma 13.10, the residue of the right hand-side of (13.15) at
v is

1

π

q + 1

q

v

1− v2
p(H, (qv + Sp)Π

v
pH) =

1

π

(q + 1)2

q

v2

1− v2
p(H,Πv

pH),

where, as in Subsection 11.1, Πv
p stands for the projection of Hk onto

ker(Sp − v) with null space (Sp − v)Hk. The derivative of the function

u 7→ t = 1
q+1

(u + q
u
) is the function u 7→ t = 1

q+1
u2−q
u2 . Therefore, by

Lemma 13.11, the residue at s of the right hand-side of (13.15), viewed
as a function of t, is

1

q + 1

v2 − q

v2
1

π

(q + 1)2

q

v2

1− v2
p(H,Πv

pH) =
1

π

q + 1

q

v2 − q

1− v2
p(H,Πv

pH).

By Corollary 13.9, we get

(13.16) ϖs

((
H
0

)
,

(
H
0

))
=
q + 1

q

v2 − q

v2 − 1
p(H,Πv

pH).
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Take now J in Hk,−. Still by Definition 2.11, Proposition 6.3 and
Proposition 8.1, the Poisson transform of the positive measure

ϖt

((
J
0

)
,

(
J
0

))
dµ(t)

is the imaginary part of the function on H,

(13.17) t 7→ 1

π
q2(q + 1)

u

q2 − u2
p(J, (u+ qSp)(u− Sp)

−1J).

By Proposition 7.9, Proposition 7.16 and Lemma 13.10, the residue at
v of the above, viewed as a function of u, is

1

π
q2(q + 1)2

v2

q2 − v2
p(J,Πv

pJ),

so that by Corollary 13.9 and Lemma 13.11,

(13.18) ϖs

((
J
0

)
,

(
J
0

))
= q2(q + 1)

q − v2

q2 − v2
p(J,Πv

pJ).

Finally, again by Definition 2.11, Proposition 6.3 and Proposition 8.1,
the Poisson transform of the signed measure

ϖt

((
H
0

)
,

(
0
J

))
dµ(t)

is the imaginary part of the function on H,

(13.19) t 7→ q + 1

π
p(J, Sp(u− Sp)

−1H).

By Proposition 7.16 and Lemma 13.10, the residue at v of the above,
viewed as a function of u, is

q + 1

π
vp(J,Πv

pH),

so that by Corollary 13.9 and Lemma 13.11,

(13.20) ϖs

((
H
0

)
,

(
0
J

))
=
q − v2

v
p(J,Πv

pH).

Recall that, by construction, the operators Rs and Ss are symmetric
with respect to the symmetric bilinear form ϖs on H2

k. Therefore,
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Corollary 13.4, together with (13.16), (13.18) and (13.20), gives

ϖs

((
H

−vH

)
,

(
H

−vH

))
=
q − 1

q
(v2 − q)p(H,Πv

pH)

ϖs

((
J

−vJ

)
,

(
J

−vJ

))
= (q − 1)(q − v2)p(J,Πv

pJ)

ϖs

((
H

−vH

)
,

(
J

−vJ

))
= (q − 1)(q − v2)p(J,Πv

pH).

By comparing the latter with the formulae in Corollary 11.6, we get,
from Definition 11.8, ϖs = (q − 1)p2,exs as in the statement of the
Plancherel formula (13.1). The case where k is odd can be obtained by
analogous computations.

Now, we compute the values of ϖ1 and ϖ−1 which will be related to
the full special spectral bilinear forms of Section 12. To simplify, we
assume that k is even and we compute ϖ1. We still let H be in Hk,+

and J be in Hk,−. By Proposition 7.9, the left hand-side of (13.15) and
(13.19) is holomorphic at u = q. Thus, by Definition 2.11, Proposition
6.3, Proposition 8.1 and Lemma 13.7, we get

(13.21) ϖ1

((
H
0

)
,

(
H
0

))
= ϖ1

((
H
0

)
,

(
0
J

))
= 0.

Besides, the residue at q of the right hand-side of (13.17), viewed as a
function of u, is

− 1

2π
q3(q + 1)p(J, (Sp + 1)(q − Sp)

−1J).

By the same arguments as above, we get

(13.22) ϖ1

((
J
0

)
,

(
J
0

))
=

1

2
q2(q − 1)p(J, (Sp + 1)(q − Sp)

−1J).

By comparing (13.21) and (13.22) with the formulae in Proposition
12.13 and the Definition 12.16 of the full special spectral quadratic
forms, and lastly, by using the uniqueness result in Proposition 13.3,
we get ϖ1 =

q−1
2(q+1)

p2,ex1 as required in (13.1). In the same way, one can

show that ϖ(−1) =
q−1

2(q+1)
p2,ex(−1). The case where k is odd can be dealt

with analogously.
So far, we have determined the behaviour of the Plancherel formula

(13.1) on the finite set Σp ∪ {−1, 1}. To conclude, we will investigate
its behaviour on the critical interval Iq. As above, we assume for
example that k is even and we pick H in Hk,+ and J in Hk,−. As
usual, for t in H, write u for the unique solution of the equation q+u2 =
(q + 1)tu with ℑu > 0. Recall that we assume for the moment that
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neither
√
q nor −√

q is a spectral value of the simple transfer operator
Sp. Therefore, Lemma 3.6, Proposition 7.16 and our former residue
computations ensure that the function

(13.23) t 7→ q + 1

q

u

1− u2
p(H, (qu+ Sp)(u− Sp)

−1H)

− (q − 1)
∑
s∈Σq

1

s− t
p2,exs

((
H
0

)
,

(
H
0

))
is holomorphic on H and admits a holomorphic continuation in the
neighborhood of H. Besides this function goes to 0 as t goes to ∞, so
that it is bounded on H. As the imaginary part of this holomorphic
function is the Poisson transform of the positive measure

πϖt

((
H
0

)
,

(
H
0

))
dν(t),

by [1, Theorem 7.5], this measure is absolutely continuous with respect
to the Lebesgue measure and its density function is given by the imagi-
nary part of the continuous extension of the right hand-side of (13.23).
Since all the residue terms in this right hand-side are real, by the imag-
inary part computations in Lemma 13.6, this density function is the
function

t 7→ 1

2q

1

1− t2
p(H, (q2 − S2

p)(q− (q+ 1)tSp + S2
p)

−1H)
√

4q − (q + 1)2t2

on the interval Iq. Reasoning in the same way and using the meromor-
phic function in (13.17), one shows that the positive measure

πϖt

((
J
0

)
,

(
J
0

))
dν(t),

is absolutely continuous with respect to the Lebesgue measure with
density function

t 7→ q2

2

1

1− t2
p(J, (1− S2

p)(q − (q + 1)tSp + S2
p)

−1J)
√

4q − (q + 1)2t2

on Iq. Finally, the same arguments imply, by using the the meromor-
phic function in (13.19), that the signed measure

πϖt

((
H
0

)
,

(
0
J

))
dν(t),

is absolutely continuous with respect to the Lebesgue measure with
density function

t 7→ −q + 1

2
p(J, Sp(q − (q + 1)tSp + S2

p)
−1H)

√
4q − (q + 1)2t2
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on Iq. By Proposition 13.3, up to a change of normalization, we can

assume that ν is the measure
√
4q − (q + 1)2t2dt on the interval Iq and

that the bilinear forms ϖt, t ∈ Iq, satisfy the relations:

ϖt

((
H
0

)
,

(
H
0

))
=

1

2πq

1

1− t2
p(H, (q2 − S2

p)Ht)

ϖt

((
J
0

)
,

(
J
0

))
=
q2

2π

1

1− t2
p(J, (1− S2

p)Jt)(13.24)

ϖt

((
H
0

)
,

(
0
J

))
= −q + 1

2π
p(J, SpHt),

where we have set

Ht = (q − (q + 1)tSp + S2
p)

−1H and Jt = (q − (q + 1)tSp + S2
p)

−1J.

Let us show that these formulae allow to relate these bilinear forms to
the full spectral bilinear forms of Section 10. Take t to be an interior
point of Iq and choose a root u of the equation q + u2 = (q + 1)tu. As
by construction, the operators Rt and St are symmetric with respect
to ϖt, we get from (13.24), by Corollary 13.4,

ϖt

((
H

−uH

)
,

(
H

−uH

))
=
q2 − 1

2πq

u2

q2 − u2
p(H, (q2 − S2

p)Ht)

ϖt

((
J

−uJ

)
,

(
J

−uJ

))
=
q2 − 1

2π

u2

u2 − 1
p(J, (1− S2

p)Jt)(13.25)

ϖt

((
H

−uH

)
,

(
J

−uJ

))
= −q

2 − 1

2π
up(J, SpHt),

where we used the relation

(q2 − u2)(u2 − 1) = (q + 1)2u2(1− t2).

By comparing (13.25) with the formulae for the spectral bilinear form
pu in Proposition 9.18, the uniqueness result in Proposition 10.12 gives
ϖt =

1
2π

q+1
q−1

p2t as required. The same computations work in case k is

odd. □

13.7. Proof of the Plancherel formula in the general case. If√
q or −√

q is a spectral value of the simple transfer operator Sp, we
must modify the end of the argument of the preceding proof. Indeed,
holomorphic functions as the one in (13.23) do not admit an analytic
continuation to a neighborhood of H since they have a singularity at
at least one of the endpoints of the interval Iq. However, it will turn
out that these singularities are compensated by the vanishing at these
endpoints of the coefficient

√
4q − (q + 1)2t2 in (13.1).
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To show this precisely, we start by describing some model harmonic
functions.

Lemma 13.12. For z in H, let w be the unique element of H with
1
2
(w + w−1) = z and set F (z) = ℑ(1 − w)−1. Then the harmonic

function F is the Poisson transform of the function f : t 7→ 1
2

√
1+t
1−t

on

[−1, 1], that is, for z = x+ iy in H, we have

(13.26) F (z) =
1

2π

∫ 1

−1

√
1 + t

1− t

ydt

(x− t)2 + y2
.

Proof. As F is a non-negative harmonic function, by [1, Theorem 7.24],

there exists a positive Borel measure µ on R with
∫
R

dµ(t)
1+t2

< ∞ and
c ≥ 0 such that, for z = x + iy in H, one has F (z) = Pµ(z) + cy.
As F (z) −−−→

z→∞
0, one has c = 0. Besides, one has F (x + iy) −−→

y→0
0

uniformly for x in a compact set of R∖ [−1, 1], so that, by Lemma 13.7,
the measure µ has support in [−1, 1]. A direct computation gives, that,
uniformly for t in a compact set of [−1, 1), one has

F (t+ iy) −−→
y→0

1

2

√
1 + t

1− t
.

Therefore, by Lemma 13.7, there exists d ≥ 0 such that µ =
1
2

√
1+t
1−t

1|t|≤1dt + dδ1. Let G be the Poisson transform of the measure

1
2

√
1+t
1−t

1|t|≤1dt, so that G is given by the right hand-side of (13.26).

Then, G is a non-negative harmonic function and, for z in H, we have

(13.27) F (z) = G(z) +
d

π
ℑ
(

1

1− z

)
.

We claim that d = 0, which implies the Lemma.
Indeed, fix s > 0 and set w = 1 + s(1 + i) and z = 1

2
(w + w−1). On

one hand, we have

(13.28) F (z) = ℑ
(

1

1− w

)
=

1

2s
.

On the other hand, we have

2(1−z) = 1−s(1+ i)− 1

1 + s(1 + i)
= − s2(1 + i)2

1 + s(1 + i)
= − 2is2

1 + s(1 + i)
,

hence

(13.29) ℑ
(

1

1− z

)
=

1 + s

s2
.
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Now, as G ≥ 0, (13.27), (13.28) and (13.29) give

1

2s
≥ d

π

1 + s

s2
.

Letting s go to 0 gives d = 0 as required. □

From this computation, we deduce a statement that will be directly
applicable to the proof of Theorem 13.1.

Corollary 13.13. Let ν be a finite positive Borel measure on Iq. Let
F be the holomorphic function on Hq with F (u) −−−→

u→∞
0 such that, for

any u in Hq, one has

Pν(t) = ℑF (u),
where t = 1

q+1
(u+ q

u
). Assume that F admits a meromorphic extension

to a neighborhood of Hq with at most simple poles with real residues at√
q and −√

q. Then the measure ν is absolutely continuous with respect
to the Lebesgue measure, with density function

t 7→ ℑF (u) = ℑF
(
q + 1

2
t+

i

2

√
4q − (q + 1)2t2

)
on Iq.

Proof. By assumption, there exist real numbers a and b and a holo-
morphic function G on a neighborhood of Hq such that, for any u in
Hq, one has

F (u) = G(u) +
a

u−√
q
+

b

u+
√
q
.

As G admits a continuous extension to the boundary and G(u) −−−→
u→∞

0,

by [1, Theorem 7.5], the function t 7→ ℑG(u) on H is the Poisson
transform of its restriction to R, whereas, after a change of variable,
Lemma 13.13 implies that the functions

t 7→ ℑ
(

1

u−√
q

)
and t 7→ ℑ

(
1

u+
√
q

)
are the Poisson transforms of their restrictions to the interior of Iq.
The conclusion follows. □

Proof of Theorem 13.1 in the general case. The proof can be lead ex-
actly as in the case where

√
q and

√
−q are not eigenvalues of Sp.

Indeed, Proposition 7.16 implies that
√
q and

√
−q are at most simple

roots of the minimal polynomial of Sp and hence that we can apply
Corollary 13.13 to functions such as the one in (13.23). □
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