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ABSTRACT. We continue the systematic study of unitary represen-
tations of tree lattices from [7], [8] and [9] whose goal is to describe
the spectral theory of such representations.

The spectral transform of [9], which is a concrete version of
the spectral theorem, allows to define a map from the set of all
such representations to spaces of measures on [—1,1] with values
in the set of non-negative bilinear forms on some finite dimensional
vector spaces. In this paper, we describe the subspace spanned by
the range of this map up to a finite dimensional space.
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1. INTRODUCTION

1.1. Objective of the article. Let ¢ > 2 be an integer and X be a
homogeneous tree of degree ¢+ 1. We equip X with a proper action of
a discrete group I' such that the quotient set I'\ X is finite. We write
0X for the boundary of X. This is a totally discontinuous compact
topological space and the natural action of I' on 90X is minimal. We
write D(0X) for the space of locally constant real valued functions on
0X and D(0X) for the quotient space of D(0X) by the line of constant
functions.

Our purpose in this paper, which is the sequel of [7], [8] and [9], is
to study I-invariant non-negative symmetric bilinear forms on D(9.X).
The space of all such bilinear forms is a convex cone Q,(D(0X))' C
Q(D(0X))F, where the latter stands for the space of all I-invariant
symmetric bilinear forms on D(9X).

The completion of D(X) with respect to such a non-negative bi-
linear form is a unitary representation of I'. Conversely, any unitary
representation of I' which admits a cyclic and harmonic first cohomol-
ogy class may be obtained in such a way. This point of view is explained
in the independent Appendix A (see in particular Remark A.9). Thus,
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studying I-invariant non-negative symmetric bilinear forms on D(9X)
amounts to studying a wide class of unitary representations of I'.

For these representations, in particular for the extremal ones, we
aim at a better understanding of the spectral problem stated in [9,
Subsection 1.1]. In other words, we want to describe the spectral theory
of (the completion of) the operator @) defined on the space of all I'-
equivariant maps f : X — D(0X) by

q+1Zf r e X.

Y~z

As in [9], for technical reasons, it will turn out to be more convenient
to work instead in the space of all I'-equivariant maps f : X; — D(0X)
where X is the set of oriented edges of X. Following the terminology of
9], we will call such maps I'-invariant co-pseudofunctions and denote
the space of all I'-invariant co-pseudofunctions by H... For H in H
and (z,y) in X;, we write H,, € D(0X) for the value of H at (z,y).

The space Ho comes with two natural operators R and S given by

(RH)py =Y H,. and (SH),y = Hyy, H € Hoo, (2,y) € X1

zZ~T

27y

From the relations R? = ¢ + (¢ — 1)R and S? = 1, one deduces that
the operator
1
P = q+1(RS+SR (g—1)9)
is central in the algebra A spanned by R and S.

Denote by Q(H. )™ the space of all symmetric bilinear forms on H,
for which the operators R and S are symmetric. If p is in Q(D(0X))T,
we associate to p an element of Q(H. )™, which we still denote by p,
by setting, for H, J in H,

p(H,J) = Z ;p(ny’ Jiy)

(z,y)eT\ X1 |FI M Fy‘

(this construction is already used in [9]). This defines an injective linear
map

(1.1) Q(D(0X))" — Q(Hw)™,

and an element of Q(D(0X))' is non-negative if and only if the asso-
ciated bilinear form on H., is non-negative. The spectral transform
of [9] (whose main properties will be recalled below), together with
the standard spectral theorem, give a full description of non-negative
elements in Q(Hq)75.
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The linear map in (1.1) is not surjective and hence this description
can not be carried back directly to Q(D(0X))". The purpose of this
article is to bound the default of injectivity in (1.1) in the following
way.

In [9, Section 2], the space H is written as a union Hoo = (U~ Ha
of finite-dimensional spaces, where for k¥ > —1, H;, is the space of I'-
invariant k-pseudofunctions. By restriction of (1.1), for k¥ > —1, we
get a natural map

(1.2) Q(D(0X))" — Q(AH,)™*

where AH,, is the (infinite-dimensional) subspace of ‘H, spanned by the
images of H; under the elements of the algebra A and Q(AH;,)™? is the
space of all symmetric bilinear forms on A#H, for which the operators
R and S are symmetric. The main result of this article yields

Corollary 1.1. For k > 0, the image of Q(D(0X))' in Q(AH, )™
has finite codimension.

1.2. Strategy of the proof. We will deduce Corollary 1.1 above from
a dual injectivity statement.

Indeed, as in [7, Subsection 2.1], denote by .# the space of paramet-
rized geodesic lines of X and by T': ./ — . and ¢ : .¥ — % the time
shift and the time reversal. Recall from [8, Subsection 5.3] that the
space Q(D(0X))' may be identified with the space D*(T'\.#)"T of dis-
tributions on I'\.# that are invariant by both ¢ and T'. In other words,
this space may be seen as the dual space of the space of cohomology
classes of smooth ¢-invariant functions on I'\.7.

Our strategy for proving Corollary 1.1 will be to write the linear
map in (1.1) as the adjoint of a map with values into the space of
cohomology classes of smooth ¢-invariant functions on I'\.. To this
aim, we need to construct a space whose dual space may be identified
with Q(AH)™°. This will use the spectral transform of [6].

Indeed, with the aim of diagonalizing the operator P, in [9, Section
6], we have constructed the spectral transform. For k& > 0, this map
induces a linear isomorphism between the space AH;, C Ho and the
quotient space of the space H3[t] of all polynomial functions with values
in H; by the space of functions of the form

o0~ (0 7 60

where G(t) is in HZ_,[t] (see [9, Subsection 2.2] for the V and > no-
tation). The spectral transform intertwines the action of R and S in
Ho with the action of certain polynomial matrix operators R; and &,
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on H2[t]. In particular, it intertwines the action of P and that of the
multiplication by ¢, that is, it diagonalizes the action of P.

These properties allow to identify Q(AH;)®* with the dual space of
a certain explicit quotient of the space ®?H2[t] of polynomial functions
with values in the tensor square ®?*H3 of Hz.

Therefore, to prove Corollary 1.1, we will construct a linear map
®*Hi[t] — D(T\). Actually, by using an elementary reduction,
we will only have to consider a certain linear map €, : ®*Hy[t] —
D(I'\.), which we will call the ultraweight map, since it shares some
relations with the weight map of [7, Section 8]. Thanks to explicit
formulas for the ultraweight map, we will be able to describe, up to a
finite-dimensional subspace, the set of polynomial tensors H in ®?Hy[t]
such that Q(H) is a coboundary with respect to the dynamics 7' on
['\.#. This is our main result, which in turn will lead to Corollary 1.1.

1.3. Structure of the article. References to [7], [8] and [9] are indi-
cated with I, II and III.

In Section 2, we introduce Holder continuous functions and the coho-
mology equivalence relation among them on I'\.. We show a version
of the Livsic Theorem. This is mostly a translation from the language
of subshifts of finite type (see [6, Chapter 1]). The space I'\. plays
the role of a two-sided shift, whereas the space I'\.; plays the one
of a one-sided shift. We introduce a transfer operator on functions on
['\.7,. We use its spectral properties to write a decomposition of ev-
ery Holder continuous function on I'\.# as the sum of a coboundary, a
constant and a function depending only on the future (that is defined
on I'\.#}) that is killed by the transfer operator.

In Section 3, we study certain classes of functions on I'\.# which
are defined by sums. We call these sums endpoints series. By using
the decomposition of functions from Section 2 and a mixing property
of the action of T', we describe the space of endpoints series which are
coboundaries. Later, this criterion will be applied to endpoints series
associated to the ultraweight map.

In Section 4, we write a Plancherel formula for functions on X;. This
formula is essentially equivalent to the one for functions on X that is
established in [3]. We will later need this version on X; when studying
the ultraweight map.

In Section 5, we introduce the fundamental bilinear map. This con-
struction is dual to the identification between the spaces Q(D(9X))F
and D*(T'\.#)“T in Subsection I1.5.3. The fundamental bilinear map
® sends Hoo X Hoo to D(I\.¥). If p is in Q(D(0X))' and @ is the
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associated distribution in D*(T'\.7)T, for H,.J in H.,, we have
(1.3) p(H,J) = (0, 2(H, J)),

where we use the same letter to denote p and the associated bilinear
form on H... We also introduce spectral fundamental bilinear maps
which send H., X Ho to the space of Holder continuous functions on
['\.#. Thanks to the Plancherel formula of Section 4, we decompose
the fundamental bilinear map by means of the spectral bilinear maps.
We use this decomposition to describe the spectral theory of the rep-
resentation of I" associated with a (¢, 7)-invariant probability measure
by the correspondance in I1.5.3.

In Section 6, we use the explicit definition of the spectral bilinear
maps to write them as the sum of a coboundary and an endpoints
series as in Section 3. For £ > 1, 5 > 0, the j-th coefficient of this
endpoints series (when restricted to Hy X Hi C Heo X Hoo) is defined
by a bilinear map

Kik  He X He = Vi,
where, for h > 0, V}, is the space of all I'-invariant functions on

We build a linear map wy : Hyp — Vi such that, if j > k— 1, for H,J
in Hy, kjx(H,J) is cohomologous to the function on Xy,

(1.4)  (z,y) = —wp(H)(zzg)wr () (yyr) — wi(JS) (@ )wr(H) (yyr),

where 7, and y, are the elements of [zy] at distance k from z and y.
The map wy, is called the weight map of k-pseudofunction. The study
of the weight map will play an important role in our next results.

In Section 7 we give some elementary properties of the weight map
wg. This weight map of pseudofunctions shares some analogies with
the weight map W} of k-dual kernels of Section 1.8, but the weight
map Wj maps Ky onto the space of cohomology classes of symmetric
[-invariant functions on Xy, whereas the range of the weight map wy
is far away from being all of V. Nevertheless, we show that for k£ > 1,
a I-invariant k-pseudofunction H may be written as GV~ — G~V for
some G in Hy_y if and only if the T'-invariant function wy(H) on Xy
is a coboundary. We extend this result to sequences by showing that,
for (H;);>1 a finitely supported sequence in Hy, there exists a finitely
supported sequence (v;);>o in Vj_1 such that, for (a,b) in X} and j > 1,

(1.5) wj(a,b) = v;(a,by) —vj_1(a,b),
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if and only if there exists a finitely supported sequence (G;) >0 in Hy_1
such that, for 7 > 1, one has

(1.6) Hy =G -G/ if k is even
=G)” -G if k is odd.

This result will not be used directly, but its proof serves as a model for
an analogue result for functions on spaces X x X, Proposition 9.3.
The latter statement will be our main tool for transfering the general
cohomology criterion for endpoints series of Section 3 to the language
of pseudofunctions by means of the endpoints formulas of Section 6.
The proof of the technical Proposition 9.3 will occupy the next two
sections.

In Section 8, we introduce some algebraic formalism which will be
used to solve certain algebraic equations on spaces of tensors.

In Section 9, we state and prove Proposition 9.3 by using the pre-
viously introduced formalism. This result focuses on the map ®%wy, :
®*Hj, — ®*V. Given a finitely supported sequence (H;);>1 in ®@*Hy,
it says that, whenever the images by ®2wy of the H; satisfy analogues
of (1.5) for functions of two variables, then the H; may be defined from
sequences in Hy ® Hi_1 and Hy_1 @ Hj, through analogues of (1.6).

In Section 10, we introduce the ultraweight map €2, which is a linear
map from ®@*Hy[t] to the space of Holder continuous functions on T'\..
Its definition uses the Plancherel formula of Section 4 and the spectral
maps of Section 5, which allows to relate it to the fundamental bilinear
maps (and hence to the duality formula (1.3)). Although the ultra-
weight is a priori defined as a Holder continuous function, this relation
shows that it is cohomologous to a smooth function. We state Propo-
sition 10.14 which is a description, up to a finite-dimensional space,
of the space of those H in ®*Hy[t] such that Q(H) is a coboundary.
To prepare the proof, we use the formulas from Section 6 to write the
ultraweight as the sum of an endpoints series and a coboundary.

In Section 11, we finish the proof of Proposition 10.14. Given H
in ®?H,[t] such that Qi (H) is a coboundary, we apply the criterion
of Section 3 to the above mentioned endpoints formula for the ultra-
weight. Thanks to (1.4), this tells us that the images by ®%wy of the
coefficients of high degree of H in a certain basis of ®?H,[t] satisfy
certain equations. Proposition 9.3 precisely allows to transfer these
equations to relations in ®?#;,. We use these relations to conclude.

Finally, in Section 12, we state and prove the main result of the arti-
cle, which describes, up to a finite-dimensional space, the null space of
a certain linear map from ®*H2[t] to the space of cohomology classes
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of smooth functions of I'\.#. This map is defined thanks to the ultra-
weight Q411 and to a linear map I, : Hi — Hy,1 (which is essentially
the converse of the spectral transform when restricted to constant poly-
nomials in H2[t]). By duality and the crucial formula (1.3), this yields
Corollary 1.1.

In the independent Appendix A, we explain how the space D(9X)
can be considered as a universal model for representations equipped
with a cyclic harmonic first cohomology class. We recall the basic
definitions of cohomology in degree 1 and we explain how cohomology of
[-modules can be defined by means of I'-equivariant maps on X and Xj.
We use this point of view to introduce harmonic cohomology classes and
we show that, in a unitary representation, a harmonic class is associated
with a unique harmonic cocycle. We define unitary representations
with a spectral gap and we show that, for these representations, all
cohomology classes are harmonic. All this Appendix is built up from
material borrowed from [1, 4, 5, 10].

1.4. Notation. We freely use the notation of I, IT and III.

If G is a group acting on a set A, we identify G-invariant functions
on A with functions on the quotient space G\ A.

For k > 0, we denote by X}, the set of pairs (x,y) in X with d(z,y) =
k. When there is no confusion, we often write xy instead of (z,y) to
denote an element of X;. The set X is identified with X.

For 0 < h < k and (x,y) in X}, when no confusion is possible, the
element of the segment [zy] which is at distance h from x is denoted
by Thp.

2. HOLDER CONTINUOUS COHOMOLOGY CLASSES

The space . of parametrized geodesic lines in X comes with the
action of the geodesic shift map T'. So far, we have only considered the
cohomology relation among smooth functions on I'\.% (see for example
Subsection 1.2.3, Subsection 1.3.3, Subsection I.11.1, Subsection I1.5.2).
We will now need to develop the language of cohomology classes for
Holder continuous functions, as in hyperbolic dynamics (see [6, Chapter

1]).

2.1. Holder continuous functions and cohomology. We introduce
the language of Holder continuous function and the cohomology equiv-
alence relation.

Recall from Subsection 2.1 that an element o of . is a sequence
(0:)icz, where, for any i in Z, we have 0,41 ~ o0; and 0;.1 # ;1.
Given 0 < a < 1, we shall say that a function f : . — R is a-Hdélder
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continuous if there exists C' > 0 such that, for every ¢ and ¢’ in .7,
and every h > 0, we have

(2.1) (Vi [l <h oi=0)=|f(c) = f(o)] < Ca”.

If there exists v in (0, 1) such that f is a-Holder continuous, we simply
say that f is Holder continuous.

Two I'-invariant Holder continuous functions f and g are said to be
cohomologuous if there exists a ['-invariant Hélder continuous function
h on . such that f —g = h—hoT. We shall see later in Corollary 2.7
that, when f and g are smooth, then h must be smooth. Therefore,
the cohomology relation on smooth functions is the same as the one
defined in Subsection 1.2.3. A function is called a coboundary if it is
cohomologuous to 0. We will sometimes write f = g to say that f is
cohomologous to g.

The following Livsic Theorem characterizes cohomology:

Proposition 2.1. Let f be a Hélder continuous function on I'\.7.
Then the following are equivalent:

(i) f is a coboundary.

(ii) for any o in ¥ and h > 1 with T"o € T'o, one has

h—1
> f(Tio) =0.
=0

(iii) for any T-invariant Borel probability measure yn on '\, one has

fdu=0.
I\

(iv) There exists a continuous function h on I'\. with f =h—hoT.

Proof. This is an adaptation of the classical argument from hyperbolic
dynamics (see [2, Theorem 19.2.1]).

Note that the implications (i)=(iv), (iv)=(iii) and (iii)=(ii) are
obvious. We will now show (i1)= (7).

Let f be a Holder continuous function on .# which satisfies (7). Fix
C,a as in (2.1). We will build a Hélder continuous function h on .7
with f = h — hoT. By Proposition [.2.3, there exists ¢ in . whose
orbit under T is dense in I'\.#. In particular, for any i # j € Z, we
have To # T7o. We start by defining h on T%0 by setting, for j > 0,

h(T” ZfT’ and h(T 7o ZfT”

We get f = h —hoT on T?c. To conclude, we will show that h
may be extended by continuity to all of T'\.. By standard arguments
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of topology, it suffices to prove that h satisfies a uniform continuity
property.

Therefore, we choose integers i < j and we assume that T%c and
T are closed in I'\.7. In other words, there exists £ > 1 and 7 in
I' with 04 = voi4 for all k € Z with |k| < . We defined a family
T = (T )rez of points in X by setting, for k in Z,

— A4
Ty = 7 Ojtr,

where 0 <r <j—iand k=q(j —1i)+r.

We claim that 7 is a parametrized geodesic line. Indeed, since o is a
parametrized geodesic line, for every k in Z \ (j — 9)Z, Tx—1 and 741
are different neighbours of 7. If k& = ¢(j — ) for ¢ in Z, this is still the
case: indeed, we have

— A1
Tg—1 =7 0Oj-1

—1
T = Yloi =1

gj
Tr1 = Yo =77 o4,
where we have used the fact that o; = yo; and 011 = vo41.
Let us use this construction and the assumption on f to show that
h(T'c) and h(T?c) are close to each other. Indeed, by definition, we

have
j—i-1

WT'o) = W(To) = > f(T"0).

Assume first that ¢ < j —i. Then, by construction, for any —¢ <
k< j—1+{ we have 0;., = 7. This and the assumption that f is
Holder continuous, tell us that, for 0 < k < j —¢ — 1, we have

{f(TH_kO') . f(TkT)‘ < Camin(k,j—i—k)—i—ﬁ.

Besides, as 777t = 7, by the assumption on f, we have

j—i—1

> f(TFr) =0,
k=0
We get

j—i—1 0o
. . o 2C
WT'o) = h(TVo)| < Ca' Y a™®I7h <o9Caly "ok = g
! (T"0) ( 0)}_ e 2 « < 2Ca k_oa T

If £ > j — i, as the orbit of o under T is dense in I'\., we can find
an integer g with |¢ —i| > ¢ and |g — j| > ¢ and an element v in T'
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such that, for any k with |k| < ¢, one has 0,4, = 70,4k, and hence
also 0,4 = 7'y 'o;.1. By applying the previous case, we get

2C

i 20, j ¢
|W(T'o) — h(T0)| < T and |h(T70) — h(T%0)| < o
Hence o
. , 4
MT'o) — h(T’o)| < ‘.
[W(T'0) ~ h(TI0)| < ~—a
Standard arguments of topology tell us that h admits a Holder contin-
uous extension to all of I'\.7. O

2.2. Functions on .7/,. In Section 3, we will establish a criterion for
a certain type of Holder continuous functions to be coboundaries. To
this aim, we will need to study functions only depending on the fu-
ture. We start by showing that every Holder continuous function is
cohomologuous to such a function.

As in Subsection 1.2.3, say that a function f on . is M-invariant if,
for any o and ¢’ in .7, if 0, = o}, for any h > 0, then f(o) = f(o’).
Write ., = X x0X and w : & — .4, 0 — (09,07). An M-invariant
function is a function of the form f, o @, where f, is a function on
B2

We have an analogue of a classical result of hyperbolic dynamics.

Lemma 2.2. Let f be a Héolder continuous function on I'\.. Then f
s cohomologous to an M -invariant Holder continuous function.

If f is smooth, this is Lemma 1.2.14.

Proof. If T is torsion free, this can be directly deduced from the ana-
logue statement for subshifts of finite type (see [6, Proposition 1.2]).
We prove the general case by following the same lines.

We start by choosing a section of the natural map %% — ./, as
follows. We pick a system of representatives D C X for the action of
', that is, we have X; = I'D and I'(z,y)ND = {(x,y)} for any (z,y) in
D. Then, we choose any map 1 : D — 90X such that, for (z,y) in Xj,
we have y ¢ [z¢(x,y)). We extend ¢ to all X;: for (x,y) in X; N\ D, we
set ¥(x,y) = y(y 1 (x,y)), where 7 is an arbitrary element of I' with
v(z,y) € D. The map v is not I'-equivariant in general, but it satisfies
the following properties which will be enough for our purposes:

y ¢ [v(r,y)) and (L(2,y)) C TY(z,y), (z,9) € X1

For (z,§) in ., = X x 0X, we set p(z,§) to be the parametrized
geodesic line o with og = x, 07 = ¢ and 0~ = ¢ (x,y), where y = 07 is
the neighbour of x on [z€).
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Let o be in .. The element p(og,c") has the same future as o, that
is wp(op,0") = w(a). We set

=Y f(T*0) = f(T"p(ov, o)),
k>0

The series converges as f is Holder continuous and the function h is
[-invariant. We have

Wo) —h(To) = fo) =
— fploo, o) + Y f(TFp(or, ™)) = F(T* plog, 0™)).
k>0

As the right hand side of the latter is clearly M-invariant, it only
remains to prove that h is Hoélder continuous.

Indeed, let C' and a be as in (2.1). Pick £ > 1 and ¢ and 7 in . with
o; = 7; for any |i| < ¢. Note that by construction, the same property
holds when o and 7 are replaced by p(og,0™) and p(1, 7). We write

Zf Zf 007 ) f(Tkp(T(bTJr))
k=0 k=0
+ Z f T /) 00,0 Z f Tk T p<7—07 ))7
k=m+1 k=m+1

where m is the floor integer of E. This gives

(o) — |<2020/’“

and the conclusion follows. O

k=m+1

2.3. Transfer operator. We introduce a transfer operator acting on
functions on I'\.,. The properties of this operator will allow us to
develop criteria for Holder continuous functions to be coboundaries.

Let f be a function on ., = X x 0X. By analogy with [6, Chapter
2], for (x,¢) in .7, we set

(2.2) Z f(y,€).

y~x

y¢[r£)
We call .Z the transfer operator (in the language of [6], we should say
the transfer operator associated to the constant potential logq). Note
that £1 = 1.
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We will establish some standard spectral properties of the operator
<. Later, they will help us to solve cohomological equations.

First, we introduce a family of Banach spaces. Given « in (0, 1)
and f a function on .., we say that f is a-Holder continuous if the
function fow on .7 is a-Hélder continuous. Note from (2.1), that the
function f is a-Hoélder continuous if and only if there exists C' > 0 such
that, for every h > 0, z in X and &, 7 in 0X, we have

[26) V)| = b+ 1= |f(2,€) = f(z,n)] < Ca™

The infimum of all C' satisfying the above inequality is then called the
a-Holder constant of f and is denoted by C,(f).

For o in (0,1), we let £ denote the space of all I'-invariant a-
Hoélder continuous functions on .. The space S, is a Banach space
with respect to the natural Holder norm defined by, for any f in 2",

1fllo = sup [f] + Calf).

As mentioned above, we have .21 = 1. If I" is not bipartite (see
Subsection I11.2.1), we set %Z = " /R1 to be the quotient of J2."
by the line of constant functions.

If I" is bipartite, let v be a function on X that is constant on neigh-
bours and w be the opposite of v, that is, for any x ~ y in X, we have
v(xz) = w(y). Set f, to be the function (z,£) — v(x) on .#,. Then, we
have Zf, = f.. We let %Z denote the quotient space of . by the
2-plane of functions of the form f, where v is as above.

The transfer operator .Z has a spectral gap in %Z

Proposition 2.3. Let « be in (0,1). The operator £ has spectral

radius < 1 in the quotient space %: In particular, any function f in
AT may be written as f = g — ZLg + ¢ for some constant function c
and some g in F". The constant c is uniquely defined by f and g is
unique up to the addition of a constant function.

In the course of the proof, we will need elementary facts from abstract
functional analysis.

Lemma 2.4. Let V be a Banach space and T : V — V be a bounded
linear operator.

(i) Assume W is a finite dimensional subspace of V' with TW C W,
Then the spectrum of T in V is the union of the spectrum of T in W
and the spectrum of T in V/W.

(ii) Let v # 0 be a vector of V' with Tv = v. Assume 1 is not a spectral
value of T in V/Rv. Then (1 — T)V is a closed subspace of V and
V=Rod(1-T)V.
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Proof. (i) For A\ € C, assume A is not a spectral value of 7" in V. Then,
A is not an eigenvalue of T in V', hence not in W. As W is finite
dimensional, the restriction of A — T to W is invertible, which means
that (A — T)~! preserves W. Then, it induces an endomorphism in
V/W, which is the inverse of the one induced by A — T', so that A — T’
is invertible in V/W.

Conversely, assume A is neither a spectral value of 7" in W nor in
V/W. As V is finite-dimensional, it admits a closed complementary
subspace X and the decomposition V =W @ X is an isomorphism of

Banach spaces. In this decomposition, 7' may be written as a matrix
T = 13 g), where A is an endomorphism of W, B is a bounded
linear map X — W and C' is a bounded endomorphism of X. By
assumption, both A — A and A — C are invertible. Then, A\ — T is
invertible with inverse in matrix form
i (A=A (A= A)BO - 0)
(A=T) —( 0 (A —C)! '

(i1) As above, we write V = Ru® X, where X is a closed hyperplane.
The endomorphism 7" may be written as

Ttv+z)=(t+p)v+ Sz, teR, zelX,

where S is a bounded endomoprhism of X and ¢ is a continuous linear
functional on X. By assumption, 1 is not a spectral value of S. We set
Y = @o (S —1)7" so that ¢ is also a continuous linear functional of
X. For xz in X, we have

T(W(x)v+z) = (Y(z) + ¢(x))v + Sz = (Sx) + S,

hence the space Y = {¢(z)v + x|z € X} is stable under T'. One easily
checks that Y is closed, that V = Rv @Y and that (T —1)V =Y. O

Proof of Proposition 2.3. We let V' C J.t be the space of functions on
['\.#; which are of the form (z, £) — v(x, x1), where z; is the neighbour
of z on [xz€) and v is a I-invariant function on X;. Then V is stable
under .Z and, by Corollary I1.5.6, the operator . has spectral radius
< 1 on the image of V' in %::

To conclude, we will show that £ has spectral radius < o in £, /V.
To this aim, we change slightly the definition of the Holder constant of
a function: for f in S, we set

Glfy= s oS €)= )
(x,6,7)EX XDX XX
h>1
[[z&)N[zn)|>h+1
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that is, we consider the above supremum only when the intersection
[z€) N [xn) contains at least two points. One easily checks that the
seminorm C} induces a norm on 2., /V which is equivalent to the
quotient norm of the Holder norm. Now, a direct computation shows
that, for f in 2", one has

Co(Z[f) < aCy(f),

hence .Z has spectral radius < « in S, /V.
It follows from the first part of Lemma 2.4 that .Z has spectral radius

<1lin %: The rest of the statement is a consequence of the second
part of Lemma 2.4. O

2.4. Decomposition of Holder continuous functions. Thanks to
the spectral properties of the transfer operator £, we get a way of
decomposing a Holder continuous function.

Corollary 2.5. Let f be a Holder continuous function on I'\.#. Then
f may be written as

g=h—hoT+gow+c,

where ¢ is a constant function, h is a Holder continuous function on
['\.“, g is a Hélder continuous function on T\ and Lg = 0. The
constant ¢ and the function g are uniquely determined by f; the function
h is uniquely determined up to the addition of a constant function.

Proof. First, we prove the existence of the decomposition. By Lemma
2.2, we can find a Hélder continuous function h; on I'\.# and a Holder
continuous function f; on I'\.”; with

f:hl—h10T+flOw.

By Proposition 2.3, there exists a Holder continuous function hy on
I'\.7; and a constant ¢ such that

gflzghz—hg—FC.

Write Ty : .7, — ., for the natural transformation, that is, for (z,¢)
in &, Ty(z,§) = (x1,€), where x; is the neighbour of z on [z£). We
have w1 = T, w and, for any function ¢ on ., , Z(poT,) = . Thus,
if weset g=f1 —hy+hooT, —c, we get £Lg=0 and

f=gow+ (hi+hyow)—(hi+hyow)oT +c¢

and the existence of the decomposition follows.
As for the uniqueness, let ¢ be a constant, h be a Holder continuous
function on I'\.” and g be a Hélder continuous function on I'\.#; with
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Zg =0. Assume that we have
gow—+h—hoT+c=0.

First, we claim that h is M-invariant, that is h = h; o @w for some
function hy on I'\.#;. Indeed, let ¢ and 7 be in . with w(o) = w(7).
Then, as hoT — h = gow + ¢, we have

h(c) — h(r) = h(To) — h(T'T).
By iterating this identity, we get, for £ > 0,
h(c) — h(t) = h(T*0) — h(T*7).

As h is continuous on the compact set I'\.# and the parametrized
geodesic lines T%o and T*7 get closer and closer to each other as k —
oo, we get h(o) = h(7), hence h = hy o w for some Holder continuous
function hy on I'\.7,.

Now, we have g+ h; — hy oT, + ¢ = 0. By applying the operator £
to this identity, we get

ghl—h1+020.

By Proposition 2.3, h; is a constant function. In particular, we have
hi =hyoT, hence g+ c=0. As £g = 0, this gives ¢ = 0, hence also
g = 0, which should be proved. 0

2.5. Solving the cohomological equation in subspaces. Later,
we shall use the proof of Corollary 2.5 through the following ad hoc
formulation.

Corollary 2.6. Let V' be a Banach space, A : V. — V be a bounded
operator and u be a non zero vector of V. Assume Au=wu and 1 — A
is invertible in the quotient space E/Ru. Fix 0 < a < 1 and suppose
we are given a bounded linear map © : E — A" with OA = ZL0O
and Ou = 1. Let v be in E and assume that the Holder continuous
function ©(v) o w is a coboundary on I'\.7, that is, there exists a
Hélder continuous function h on '\ with ©(v)ow = h—hoT.
Then, we must have
h=0(Aw)ow

for some w in V.

Proof. Set f = ©(v) o w so that we have fow = h —hoT. As in the
proof of Corollary 2.5, this tells us that h = hy o w for some Hélder
continuous function h; on I'\.#;. We have f = h; — hy o T, hence,
still as in the proof of Corollary 2.5,

Zf:,%hl—hl
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Now, Lemma 2.4 and the assumption imply that there exists a real
number ¢ and a w in V with v = Aw — w + cu. We have Av =
A%w — Aw + cu, hence, by applying © to this identity, we get

ZLf =20 Aw) — O(Aw) + c.
From the uniqueness statement in Proposition 2.3, we get
hy — O(Aw) € R1 = O(Ru),
and the conclusion follows. O

Thanks to this technical result, we can prove that smooth functions
are cohomologous when viewed as Holder continuous functions, if and
only if they are cohomologous in the sense of Subsection 1.2.3 (see also
Lemma 1.3.12). For k£ > 1, we let V}, stand for the space of I'-invariant
functions on Xj.

Corollary 2.7. Let f be a smooth function on I'\.#. Assume that
there ezists a Holder continuous function h on '\ with f = h—hoT.
Then, h is smooth.

More precisely, given k > 1 and w in Vi, the smooth function o
w(ogok) on 7 is a coboundary if and only if there exists v in Vi_1 such
that, for any xy in Xy, one has

w(zy) = v(zy) — v(z1y),
where x1 and y; are the neigbours of x and y on [xy].

In the sequel, as in I, for & > 1, we shall say that two elements w
and w’ in V}, are cohomologous if there exists v in V,_; such that, for
any xy in Xy, one has

w(zy) — w'(zy) = v(zy) — v(1y).
Proof. Note that the second part of the statement follows from the first
and Lemma 1.2.14. Thus, we only need to prove the second part. We
will obtain it by using Corollary 2.6.

For k > 1, define a map ©,, from V}, to the space of smooth functions
on I'\.7, by setting, for w in Vj and (,&) in .7,

@kw<x7 5) = w(:c, mk)v
where zj, is the unique element of [z€) with d(x, zx) = k. By compact-
ness, the space of smooth functions on I'\.7 is J,~; Or(Vi).
We define an endomorphism Ay of Vj, by setting, for w in V, and
(QT, y) n le

Apw(z,y) = 1 Z w(z, 1),

zZ~T

z#x1
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where 27 and y; are the neighbours of z and y in [xy]. Note that we
have g@k = GkAk

Let Iy : Vi — Vi41 be the injection given by, for w in Vj, and (zx,y)
in Xpq1,

[kw(xv y) - w($7 yl)?

where as above, y; is the neighbour of y in [xy]. We have Agy11; = [ Ay
and O, 11, = O. Besides, we have Ay 1V C I V. Thus, for k > 2,
the spectrum of Ay in V}, is the union of {0} and the spectrum of A; in
V1. By using Corollary 11.5.6, we get that 1 — Ay is invertible in V}/R1
for any k£ > 1. Hence, the assumption of Corollary 2.6 is satisfied.

Assume k£ > 2 and let w be in V,, such that the function ©,w is a
coboundary when viewed as a Holder continuous function I'\.. By

Corollary 2.6, the solutions h of the equation Opw = h — h o T belong
to the space

O\ Vi C Ol 1 Vo1 = 031 Vi1,

The conclusion follows.

It remains to deal with the case where k£ = 1. Then, let still w be
in V4. If the smooth function ¢ — w(opo1) on . is a coboundary, the
above in case k = 2 tells us that there exists v in V; such that, for any
xy in X; and any neighbour z # z of y, one has

w(zy) = v(zy) — v(yz2).

In particular, for y in X, let z, 2z’ be two neighbours of y. As ¢ > 2,
the vertex y admits a neighbour x that is neither z nor 2/, and we get

v(yz) = v(zy) —wlzy) = v(y?),
hence, there exists u in Vg such that
v(yz) =u(y), yze X.
For xzy in X, we get
w(ry) = u(x) —u(y)
as required. O

Remark 2.8. Let f be a Holder continuous function on I'\.# and 6 be
a T-invariant distribution. Assume that f is cohomologous to some
smooth function g. Then, it follows from Corollary 2.7 above that

(0, g) is independent on the choice of g. In the sequel, we shall write
this number as (0, f).
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3. THE COHOMOLOGICAL EQUATION FOR ENDPOINTS SERIES

We will use the cohomology theory of Holder continuous functions to
give a criterion for certain functions defined by series to be cobound-
aries.

3.1. Endpoints series. We define a particular construction of smooth
functions on T'\.. This type of functions will later appear naturally
in the spectral theory of the action of I' on D(9X).

In the sequel, we will be concerned with the following finite-dimen-
sional spaces. For k > 0, we let as above V}, be the space of all functions
on I'\ X. We shall also think to Vj, as the space of all functions on X}
which are I'-invariant. In the same way, for h,k > 1, we let W}, be
the space of all functions on (I"'\X},) x (I'\X}y). Equivalently, we shall
also see W, 1, as the space of functions on X}, x X which are invariant
under the product action of I' x I'. When h = k, we will write W}, for
Wi k.

For ¢ > h,k > 1, we define the space #}, 1, as follows: an element w
of Wi k4.0 1s a family (w;);>, where w, belongs to V; and (w;);>¢41 is a
finitely supported sequence in W, ;.

Still for £ > h,k > 1, let us construct a linear map Op ;¢ : #h o —
D(I'\.7}). For w = (w;)j>¢ in #}, 0, we define the associated endpoints
series Ok ow as the function such that, for (x,&) in ., one has
(3.1) Onkew(x, &) = we(xoxs) + Z w;i(ToXh, Tj—kT;),

j=t+1

where (z;);>0 is the parametrization of the geodesic ray [x§).

3.2. Accessible pairs. We will give a criterion for an endpoints series
to be a coboundary in the sense of Section 2. To state this criterion,
we need to introduce new subsets of (I'\.X}) x (I'\Xy), h,k > 1.

Definition 3.1. Let j > h,k > 1. A pair (I'ab,I'zy) in (I'\X,) X
(I'\X%) is said to be j-accessible if there exists pg in X, such that
ppr € Tab and qxp € Tzy, where p, and ¢ are the elements of [pqg|

wich lie at distance h from p and k from ¢q. The set of j-accessible
pairs in (I'\X}) x (I'\X}) is denoted by ((I'\X}) x (I'\Xk));.

In other words, the pair (I'ab,T'zy) is j-accessible if there exits a
path of length j from ['ab to I'zy.
When j is large, we can describe the set ((I'\X},) x (I'\X%));.

Lemma 3.2. Assume I" is not bipartite. Then, there exists an integer
n such that, for every h,k > 1, and every j > h+ k +n, every pair in
(T\X}3) x (T\X}) is j-accessible.
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Assume I is bipartite. Then, there exists an integer n such that, for
every hyk > 1, and every j > h+ k +n, a pair (ab, xy) in (I'\X,) X
(I\X%) is j-accessible if and only if the integral number d(b,x) has the
same parity as j —h — k.

Proof. This is a consequence of the equidistribution statement in Corol-
lary I1.5.6. We keep the notation of this result. Note that we have p = ¢
and that u and " may be chosen to be the constant function 1. For
ab in Xy, let v,, denote the I'-invariant function defined by

Uab(xy) = Z 1ab:'y(xy)~
~yel
By Lemma I1.3.25, we have

(Vap, 1) = Z ;Uab(xy) =1.

zyel\ X, Iy Fy|
If I is not bipartite, by Corollary I1.5.6, for ab in X, we have
1
—anvab > 1 .
oo ZmyEF\Xl [TzNly|

Therefore, there exists n such that, for every m > n and every ab and
xy in Xy, we can find a geodesic path b_1 = a,bg = b,by,...,b,, in
X and 7 in I' with b,,_; = vx and b,, = yy. In particular, the pair
(ab, xy) is j-accessible in (I'\X7) x (I'\X;) for every j > n+ 1.

Still when T is not bipartite, if (ab, zy) is in (I'\ X},) x (T'\ X},) for some
h,k > 1, we claim that (ab, zy) is j-accessible for every j > h+k+n—1.
Indeed, for such a j, we have 1 = j—h—k+1 > n, hence, by the previous
case, there exists pg in X; 1 and v in I with pp; = b1b and ¢1q = y(z21),
where as usual, by, x1, p; and ¢ are the neighbours of b, x, p and ¢ on
[ab], [zy], [pq] and [pq]. Then, we have d(a,vy) = j and b, vz € [a(vy)],
so that the pair (ab, zy) is j-accessible in (I'\ X}) x (I'\ X).

The proof in the non bipartite case follows the same lines by keeping
in mind that the action of I' preserves the classes of the even distance
equivalence relation on X. 0

By using the notion of an accessible pair, we can formulate the main
result of this Section. This is a criterion for an endpoints series to be
a coboundary.

Proposition 3.3. Let £ > h, k > 2 and w = (w;);>¢ be in Wiy . Then
the following are equivalent.

(i) The endpoints series O w is a coboundary, when wiewed as a
smooth function on T'\.7.
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(ii) There exists t in Vy_y and finitely supported sequences (u;)j>¢ in
Whi—1 and (vj)js¢ in Wy_1x such that, for every ab in X,

we(ab) = t(aby) — t(a1b) + we(aay, bp_1b) + ve(aap_1, bib)
and, for every j > (+1 and every j-accessible pair (ab, xy) in (T'\ X}) X
(X%,
wj(ab, xy) = u;(ab, x1y) + v;(aby, xy) — w;_1(ab, vy;) — vj_1(a1b, zy).
In the statement above, for a,bin X and i < d(a, b), we have denoted

by a; the point of the segment [ab] that lies as distance ¢ from a.

First part of the proof. We prove the easy case of the Proposition, that
is, (i1)=(i). Let u and v be as as in the statement. Fix ¢ in .. By
definition, for every j > ¢ + 1, the pair (oo, 0j_10;) is j-accessible in
(I\X5) x (I'"\X}). Therefore, by (3.1) and the assumption, we have

Onew(o) = t(ogoe—1) — t(o10¢) + w000, Or—k1100)
+ ve(ogon_1,00_10¢) + Z w; (000, 0j—k410;) + vj(000h_1, 0j_10;)
j>0+1
— uj—1<0-00-h7 aj—kaj—l) — Uj_1<0'10'h, O'j_kO'j).
By using the cancellation of the telescoping series, we get
Onrw(o) = t(ogop—1) — t(o104)
+ Z 0 (000h-1,0-£0;) — V;(010h, Oj41-k0j11) = h(o) — h(To),
j=t
where
h(o) = t(o0os-1) + Y v;(000n-1,05k0;)-
=t
The result follows. ]

The proof of the converse statement will last until the end of the
Section.

3.3. Vanishing endpoints series. We begin by determining the null
space of the endpoints series operator.

Lemma 3.4. Let ¢ > h,k > 1 and w be in Wi, . Assume the end-
points series function Oy w vanishes on I'\.7. Then, there erists a
finitely supported sequence u = (u;);>¢ in Wy p_1 such that, for every
ab in Xy,

wy(ab) = ug(aay, by_1b)
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vb
ya

FIGURE 1. Proof of Lemma 3.4

and, for every j > (+1 and every j-accessible pair (ab, xy) in (T'\X}) X
w;(ab, vy) = u;(ab, r1y) — w;—1(ab, xy,).

Note that the converse is true, in view of the first part of the proof
of Proposition 3.3.

Proof. The idea of the proof is that u may be defined by integrating
w along certain paths. The fact that the integral does not depend on
the path is warranted by the vanishing of the function ©;,; w. Let us
write this precisely.

For j > h+ k — 1, write (X}, x Xj_1); for the set of pairs (ab, zy)
such that d(a,y) = 7 and b and z belong to [ay]. If j > ¢, we define a
function u; on (X, x Xj_1); by setting

J
uj(ab, vy) = we(pope) + Z wi(ab, pi—ipi), (ab,zy) € (X X Xi-1);,
i=+1
where a = po,p1,...,p; = y is the geodesic parametrization of the
segment [ay| (in particular, we have p, = b and p;_j+1 = ).

The function u; is invariant under the diagonal action of I' on (X}, x
Xi-1)j. We claim that the vanishing assumption on Oy w implies
that u; satisfies the following additional invariance property: for every
(ab, zy) in (X), x Xy_1); and every v in I, if (y(ab), zy) also belongs
to (Xh X kal)ja then

uj(ab, xy) = u;j(y(ab), zy)
(see Figure 1).

Indeed, for such ab, xy and ~, let a = po,p1,...,p; = y be the
geodesic parametrization of the segment [ay] and choose a £ in 90X
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such that [y&) N[ay] = [y€) N [(ya)y] = 0. Finally, let zg = z,z4,... be
the geodesic parametrization of the geodesic ray [z£). We get

Onew(a,§) =

J o)
wy(pope) + Z w;(ab, pi—kp;) + Z wi(ab, T;—j 1%i—jik-1)
=041 i=j+1
= u;(ab, vy) + Z wi(ab, Ti—j1Ti—j1k-1)
i=j+1
and in the same way,
Onkow(ya, §) = u;(v(ab), zy) + Y wi(y(ab), zij1xijin)-
i=j+1
As O w = 0 and the functions w;, ¢ > ¢, are invariant under the
product action of I' x I' on X}, x X, we obtain
uj(y(ab), zy) = — Z wi(ab, T;—j 17— jrk—1) = uj(ab, Ty)
i=j+1
as required.

Note that by definition, the image of (X} x Xj_1); in (I'\X}) X
(I\X)—1) is the set ((I'\X}) x (I'\Xx-1)); of j-accessible pairs. The
previous tells us that we can consider u; as a function on ((I'\.X}) x
(I'\X%-1));. We extend it as a function defined everywhere on (I"'\ X},) x
(I'\X%—_1) by setting w;(ab, zy) = 0 for any (ab, zy) in the complement
of (IN\X4) x (M\Xj,-1)); in (I\X}) x (I'\X)-1). Note that as above,
for (ab,zy) in ((I'\X3) x (I'\Xk-1));, we have

Uj(ab, xy) = - Z wz‘(ab, $i—j—1$¢—j+k—1)7
i=j+1
where (z;);>0 is the parametrization of a geodesic ray [z€) with [z€) N
lay] = [ry]. Therefore, since the sequence (w;);>¢41 is finitely sup-
ported, the sequence (u;);>, is also finitely supported.
Finally, on one hand, for ab in X,, we have

we(ab) = ug(aap, by_1b).

On the other hand, if j > ¢+ 1 and (ab, xy) is a j-accessible pair in
(I\X5) x (I'\X%), we can find v in I' such that d(a,vy) = j and b and
vz belong to [a(yy)]. Then, we have

(ab,y(z1y)) € (Xy x Xy—1); and (ab,y(zy1)) € (Xp X Xy—1)j-1-
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We get

wj(ab, xy) = wj(ab, y(xy)) = u;(ab, y(x1y)) — uj—1(ab, y(zxy1))
- Uj(@b, xly) - uj—1<ab7 $yl)
as required. O

3.4. A symbolic transfer operator. To prove Proposition 3.3, we
will apply Corollary 3.4 to the endpoints operator ©, ;. To this aim,
we will introduce a new operator Ajj, acting on sequences spaces
Whke, € > h,k > 2, which will be semiconjugate to the transfer oper-
ator .Z via Oy, 0.

Let ¢ > h,k > 1 and w = (w;);>¢ be a sequence where wy is a
function on I'\ Xy, and, for j > ¢+ 1, w; is a function on (I'\X}) x
(I'\X%). We define a new sequence Ay jw by setting, for ab in Xy,

(32)  (Aupew)e(ab) = = 3 (welchr) + wees (can 1, b))

4 =2
cFay
and, for j > ¢+ 1 and (ab, zy) in Xh X Xy,
(3.3) (Ap g ow);(ab, xy) Z wji1(chy, xy)

c~a

c;éal
The definition of the transfer operator .Z in (2.2) and the one if the
endpoints operator Oy, in (3.1) directly give
Lemma 3.5. Let { > h,k > 1. For any w in #h e, we have
g@h,k,zw = @h,k,ZAh,k,Zw-

In order to apply Corollary 3.4, we will prove
Lemma 3.6. Let ¢ > h,k > 1. Let u be the element of Wy, e such that
uj =0 for j > €+ 1 and that ue(ab) =1 for ab in X,. Then, we have
Apgou=u and Ap o — 1 is invertible in #p i o/Ru.
Proof. For i >0, let #}, , be the space of sequences w in #4, x4, with
w; = 0 for any j > £ +i+ 1, so that # e = Uizo e By (3:2)
and (3.3), the space %SM is stable under Ay and, for i > 1, we have
Ah7k7/,f7k7€ C Vﬂ,ﬁlg The latter implies in particular that Ay, — 1 is
invertible in the quotient space #j, .o/ #) ). ;-

Now, still by (3.2), we may identify %}, , with V; and the restriction
of Ap k¢ with the operator L defined by, for w in V; and ab in X,

Lw(ab) = ! Z w(chy).

q c~aq

c#ay
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From the proof of Corollary 2.7, we know that L — 1 is invertible in
Vy/R1. Thus, Apke — 1 is invertible in %?Q/Ru. Therefore, Ap e — 1
is invertible in #}, j.r.o/Ru as required. ]

3.5. Solving the cohomological equation. Thanks to the study
of the symbolic transfer operator, we can apply Corollary 2.6 and
transport the cohomological equation back to an equation in sequences
spaces.

Second part of the proof of Proposition 3.3. We now prove the difficult
case of the Proposition, that is, (i1)= (7). Thus, we assume that we are
given w in %, k¢ such that the endpoint series ©,  sw is a coboundary,
when viewed as a smooth function on I'\.7.

By Lemma 3.5 and Lemma 3.6, we can apply Corollary 2.6. This
tells us that the solutions h of the equation

(34) @h7k7gw =h—hoT

belong to Ok ¢(An ke Wh kb,

As we have assumed h > 2, in view of the range of the operator
Ap o in Wi koo as described from (3.2) and (3.3), we can assume that
there exists a function ¢t on '\ X,_; and a finitely supported sequence
v = (vj)j>¢ of functions on (I'\X}_1) x (I'\X}) such that, for any o in

Y

h(o) = t(ogoe_1) + Z v (000h—1,0;_k0}).
j=>t
Thus, from (3.4), we get
Opow(o) = t(ogoe—1) — t(o100)

+ Z 0 (000h-1,0j-10;) — Vi(010h, Oj—k+1041)
g2t

= t(000¢-1) — t(o10¢) + ve(00OH-1, 00—1O¢)

+ Z Uj(O'()O'hfl,O'j,kO'j) — Uj,1<0'10'h,0'j,k0'j)
Jj2l+1

= Op o' (0),
where v’ = (w;)jzg is the element of #, j s defined by
wy(ab) = t(aby) — t(aib) + ve(aan_1,bib), abe X,
and, for j > 0+ 1,
wi(ab, xy) = vj(aby, xy) — vj_1(ab,zy), abe€ Xy, xy € X

The result now follows from Lemma 3.4. O
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4. THE PLANCHEREL FORMULA ON X;

The purpose of this Section is to establish a Plancherel formula for
functions on X;. For functions on X, such a formula is obtained in [3].
Our formula is closely related to the latter.

4.1. Polynomial functions of the spectral parameter. We start
by introducing remarkable polynomial functions which will play a role
all along the article. We use the notation of Subsection II1.3.3 for
objects related to spectral analysis, so that below, t = q%l(u + 1) will
be the spectral parameter.

Let ¢ be in C and write (¢ + 1)t = u + L for some u in C*. For
(q + 1)%t* # 4q (that is, u® # q), we set

Ao(t) =1,

A5t = + (4) j> 1
wo— ()

B(t) = w _(z) J=0

The reason for the choice of the value Ay will become clear later.
These functions play a role in the spectral formulas of [3]. They are
actually regular.

Lemma 4.1. For j > 0, the functions A; and B; are polynomial func-
tions. Fort in C and j > 1, the following relations hold:

(¢ +1)tB;(t) = Bj1a(t) + ¢B;1(t) and By (t) = A; (1) + qB;a (1),

Proof. Let t,u be in C with (q+ 1)tu = u? +q. For (¢+ 1)%t* # 4q, we
have By(t) =0 and B;(t) = 1. Take j > 1. We have

(¢ + 1)iBy(t) = (Zf é) (uj N >J)
() - 0))

u
= Bji

SEES]

In particular, an easy induction argument shows that B; is a polynomial
for any 7 > 0.
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b
oo o & c=1
_._.—._._b d J Z e=1
a b Yy f— 1
b a z Y

FIGURE 2. Construction of ¢

Besides, still for j > 1, we have

, j -1 _ (q)i—1
A;(t) +qBj-a(t) = v + (%)J + quu—(z)

1 . . j—1 J+1 ) j—1
S GO RS RO
u— U U U

As Bjyy and B;_; are polynomials, so is A;. O

4.2. Geometric functions on X; x X;. We will use the above poly-
nomial functions to define bilinear forms on the space D(X;) of finitely
supported functions on X;. This definition will also require us to use
some notation to describe the respective positions of two edges.

First, we introduce a notion of the distance between two elements of
X;. For ab and zy in X, we set

d(ab, xy) = max(d(a, z), d(b, z), d(a,y),d(b,y)) — 1.
This number is non-negative and satisfies the relations
d(ab, zy) = d(xy, ab) = §(ba, zy).

One can check that § actually defines a distance on the set of non
oriented edges, that is, the quotient of X; by the involution ab — ba.
We shall not use this fact.

We also introduce a function € that checks whether two edges have
compatible orientations or not. For ab in X;, we set €(ab,ab) = 1,
g(ab,ba) = —1 and, for xy in X; with 0(ab, zy) > 1,

e(ab,zy) =1 if b,z € [ay] or a,y € [bx],
e(ab,zy) = —1 if b,y € [ax] or a,z € [by]
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(see Figure 2). We have the relations
e(ab, zy) = e(xy, ab) = —e(ba, zy).

4.3. Spectral bilinear forms on D(X;). We now begin the construc-
tion of the elements of the Plancherel formula.
For t in C, we define a function x; on X; x X; as follows. For ab in
X1, we set
xt(ab,ab) = 1 and y;(ab, ba) = 0.

For ab and zy in X; with j = d(ab, zy) > 1, we set

1 .
Xt<ab7 l’y) - ﬁAJQ) if &?(ab, xy) =1
q—1 :
Xt(abv l”y) = 2q] Bj(t> if s(ab, Zlfy) = -1

Later, we shall need the following easy bound:

Lemma 4.2. Let ab and xy be in X1 and t,u be in C with (¢+ 1)tu =
q +u?. We have

—d(ab,zy)
X¢(ab, zy) < (6(ab, zy) + 1) max (|u|_5(ab’$y) : ‘g’ ! ) .
U
Proof. Indeed, for j > 1, we have
y . q\ 7 .
g 7A; ()] = |u™ + (—) < 2max ( |u|™7,
u

For j > 0, we have

¢ B () = ¢ |3 u" (%)j—l—h

g

)
)

By abuse of notation, we still write x; for the symmetric bilinear
form on D(X;) defined by

xil(f,9) = > xilab,xy)f(ab)g(xy), f,g€D(X).

ab,zye Xy

q

< I max <|u|_j,
q u

O

This bilinear form will be used to describe the continuous part of the
spectrum in the Plancherel formula. We first relate it to natural oper-
ations on functions on Xj.

For f a function on X; and zy in X, we write

(4.1) Rf(zy) =Y _ f(xz) and Sf(zy) = f(yx).

27y
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We have R? = ¢+ (¢ — 1)R and S? = 1, so that we also set
1
P=——(RS+SR—-(¢q—1)95),
— (4= 1)8)
as in Subsection II1.3.1. Then, P commutes with both R and S. A

direct computation shows

Lemma 4.3. Let f,g be in D(X;). Fort in C, we have

xe(Rf,9) = xi(f, Rg),
xi(Sf,9) = x(f,59)
and x«(Pf,9) = txi(f,9)-
4.4. Special spectral bilinear forms on D(X;). To describe the
discrete part of the spectrum in the Plancherel formula, we introduce
two bilinear forms that are related to the special representations of the

group of automorphisms of X (see [3]).
For ab, xy in X, we set

Xip(a,b7 ﬂ;’y) = 5((16, xy)q—(s(ab,xy)’
X?El) (ab, .I‘y) = (_q)—é(ab,my)'

Again, for f, g in D(X;), we write
XP(f9) = Y xP(ab,zy) f(ab)g(wy),

ab,zye Xy

and X (f,9) = Y Xy (ab,zy) f(ab)g(wy).

ab,zye Xy

We get
Lemma 4.4. Let f,g be in D(X;). We have

X1 (Rf,g9) = —x3(f.9), XCy (RS 9) ==X, 9),
X1 (5f.9) = =x3"(f. 9), Xy (S 9) =Xy 9),
XU (Pfg)=x1(f,9) and x”,)(Pf.9) = =x"1)(f, 9)-
4.5. Statement of the formula. Denote by (.,.), the standard scalar

product on D(X;), that is,

<f7 g>2 = Z f(ab)g(ab)7 fa.g € D(Xl)

abe Xy

The Plancherel formula reads as
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Proposition 4.5. For any t in Z,, the symmetric bilinear form x; is

non-negative on D(X;). So are the symmetric bilinear forms x{* and
sp

Xy
Let f, g be in D(X;). We have
(4.2) (f.9)2=
2 —1
q? . Xt(f>g)d:uq(t)+2(qq—_i_1) (f> ) hX( 1) (fa )

As in Subsection III.3.3, we wrote Z, = [ zﬁ, zﬁ} and we let 11,

be the Borel probability measure on Z, which is absolutely continuous

v/ 4q—(q+1)%t2

with respect to Lebesgue measure, with density ¢ — % =
Note that, by Lemma 4.1, for f, g in D(X}), the function t — x(f, g)
is polynomial, so that the integral in (4.2) makes sense.

4.6. Functional relations. The proof of Proposition 4.5 essentially
relies on the computation of the integrals of the functions A; and By,
J > 0, with respect to the measure 11, We will actually establish other
related facts about them that we will need later in the article.

We begin by defining a third family of polynomial functions. We set

(43) CO =1 and Cj = Bj+1 - Bj—17 j > 1.

Lemma 4.6. For any j > 0, C; has degree j and the familly (C;);>o
is an orthogonal basis of Rt ] wzth respect to the scalar product of the
Lebesgue space L?(u,). For any j > 1, we have

/I Cj(t)*dpg(t) = (g + )¢’

This directly follows from the study of the spherical transform of X
in [3]. Below, we give a direct proof in our language.

Proof. We have By = 0 and B; = 1. This, together with the formula
(¢ + 1)tB;(t) = Bjy(t) +¢Bj_1(t), 7 > 1, t € R, from Lemma 4.1
shows that B;;; has degree j for any j > 0. This implies that C; also
has degree j. In particular (C});>¢ is a basis of the vector space R[t].

To check that this basis is actually orthogonal and to compute the
fz (t)2du,(t), 7 > 1, we will use the Plancherel formula for the model
operators established in Proposition 111.4.2.

We adopt temporarily the notation of Subsection I11.4.1 and we claim
that, for 7 > 0, the spectral transforms of the sequences 1,; and 15,41
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in R™ are defined by
o — [ Bina(t) [ —Bi®)
(44) 123 (t) = (—BJ (t) and ]_2]+1 (t) = Bj+1 (t) y t e R.

This, we show by induction on j. For j = 0, by Proposition I11.4.2, we
have le(t) = ((1)) and, as 1; = S, 1o,

~ 01 1 0

b= (10) ()= ()
Now, if j > 1 and (4.4) holds for j — 1, as 1; = R, 15; ;, Proposition
I11.4.2 gives

1,(t) = (g (g irll)t) (—g%;t)) _ ((q+ 1)tB_j(£2(;>qBj_l(t))

- (%)

where the latter identity follows from Lemma 4.1. Also, as 1911 =

Siily;, we get 1/2;1(15) = ((1) (1)) l/\gj(t) and hence (4.4) holds for j.
Therefore, it holds for any j.

Set xg = 1p and z; = 19 + 15,1, j > 1. From (4.3) and (4.4), we

get, for any j > 0,
F(t) = (CJ'O(“) . teR

Besides, for the scalar product of Subsection I11.3.4, the family (z;);>0
is orthogonal and we have

(zo,0)4 = L and (zj,2;) = (¢ + )¢, j>1

The conclusion now follows from the Plancherel formula of Proposition
[11.5.2 and the definition of the matrix a (), t € R, in Subsection
II1.3.1. O

We can express the families (A;);>0 and (B;);>o in the orthogonal
basis (CJ)]zo
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Corollary 4.7. For any j > 0, we have
A=Ci—(q=1) ) Gy

0<h<j
Bj: Z Oh'

j—heven
0<h<y
j—hodd

Proof. The formula for (B;);>o directly follows from the definition of
(Cj);j>0. The formula for (A;);>o is obtained from the latter and the
relation A; = Bj1 — ¢B;_; in Lemma 4.1. O

This implies the following integral computation that will be used in
the proof of Proposition 4.5.

Corollary 4.8. Let 7 > 2 be even. We have
/ A;dpg =—(q¢—1) and / B;dp, = 0.
Zy 14

Let 3 > 1 be odd. We have

/ Ajdpg =0 and / Bjidp, = 1.
7, T

q

We can now give the

Proof of Proposition 4.5. We will check that, for every ab, xy in X3, we
have

2 q—1
4.5) —— b dyeg (T P(ab
45) i | xelab o) + 5 a
q—1 sp _
+ mx(_1)<ab, l’y) = lab:xy.

Indeed, assume first ab = xy. Then, by construction, for any ¢ in R,
we have x;(ab, ab) = 1 and also x\"(ab, ab) = 1 = x{* |, (ab, ab). We get
equality in (4.5).

Assume ab = yx. We have x;(ab,ba) = 0 for any ¢ in R whereas
X1 (ab,ab) = 1 and x{* ) (ab, ab) = —1. Again, (4.5) holds.

We now check the cases where j = §(ab, zy) > 1.

If e(ab, zy) = 1, we have y;(ab, vy) = 3¢9 A;(t), hence, by Corollary
48,

| lab () = ~Ja (g = 1)(=17 + 1),

q
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The definitions of xi” and X?Iil) give

Xip(ab’ xy) - q_j and X?‘il)(ab, xy) = (_q)jv

hence the left hand-side of (4.5) vanishes.
Finally, if e(ab, zy) = —1, we have x;(ab,zy) = 3(q — 1)g 77 B;(t),
hence, by Corollary 4.8,

1 ) )
| xabg)dint) = 377 - 01 - (-17),
Iq
By definition,

XiP(ab, xy) = —¢ 77 and x* (ab, zy) = (—q)’,

and (4.5) is valid.

Therefore, we have shown that (4.5) holds for any value of ab and
xy, that is, equivalently, (4.2) holds for any functions f, g in D(X;). It
only remains to prove that the bilinear forms x3°, X?EI) and xy, t € Z,,
are non-negative. Fix f in D(X;). Let ¢ be in RJt], a polynomial
function. By (4.2), Lemma 4.3 and Lemma 4.4, we have

q% i P(t)"xe(f, F)dpq(t) + 2(qq111>g0(1)2xip(f7 f)
—1 2. Sp
- 2(qq + 1)‘P(_1) Xy (s f) = {e(P) f,9(P)f)2 = 0.

Elementary real analysis arguments show that we have x{(f, f) >
0, X?il)(f, f) > 0 and x.(f, f) > 0 for p,almost any ¢ in Z,. The
conclusion follows as x;(f, f) depends continuously on t. O

5. FUNDAMENTAL BILINEAR MAPS

In Subsection I1.5.3, we have established a natural correspondance
between I-invariant bilinear forms on D(0X) and (¢, T)-invariant dis-
tributions on the space I'\.#, where . is the space of parametrized
geodesic lines of X, T is the time shift and ¢« the natural involution.

We will now construct a dual object that is a bilinear map from
the space H,, of I'-invariant oo-pseudofunctions towards the space of
smooth functions on I'\.”.  We will then use the Plancherel formula
for X7, Proposition 4.5, to split this bilinear maps into spectral com-
ponents.
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0o

FIGURE 3. The set XY

5.1. Global fundamental bilinear map. We define the global fun-
damental bilinear map Ho, X Hoo — D(I'\¥), where H, is the space
of I'-invariant oo-pseudofunctions introduced in Subsection I11.2.3.

Let 0 = (on)nez be a parametrized geodesic line (see Subsection
[.2.1). We shall always denote by o™ and o~ the endpoints of ¢ in 0X.
More precisely, we will write o™ to be the endpoint of the geodesic ray
(on)n>0 and o~ to be the endpoint of the geodesic ray (o_5)n>0. We also
write (o) for the set {o,|h € Z}, where we forget the parametrization.
Thus, we have (o) = (67 0™).

We let X7 be the subset of X; defined by

X7 = {zy € Xu[[z,00] N (o) = {00} }

(see Figure 3). The main interest of this set is that it allows to define
partitions of X; associated to the orbit of ¢ under the time shift 7T'.
Indeed, we have

Lemma 5.1. Let o be a parametrized geodesic line. We have

Xl _ |—| X]?‘\ho"
heZ
that is, any xy in X belongs to exactly one of the sets XlTh", h e Z.
Proof. Indeed, writing o = (0y,)pez, we let b be the unique element of
Z with
d = mind ).
(x,0n) min (x,04)

O

Let H be an oo-pseudofunction as in Subsection II1.2.3, that is, H
is a map zy — H,, from X; to the space D(0X). Thus, if zy is in
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X1, Hyy is a smooth function on X which is defined up to an additive
constant. In particular, for any &, n in 0.X, the number

Any(§777) = ny(f) - H:cy(n)

is well defined. If H is a k-pseudofunction for some k£ > —1, we write
AH,,(&n) for A(H>™)(£,n) (see Subsection I11.2.3 for the notation).

Now, note that, as I" has finitely many orbits in X5, we have H,, =
Ues_1 M7~ . In particular, if H is a I-invariant oo-pseudofunction,
there exists ¢ > 0 such that, for any & # 7 in X, we have AH,,(£,7) =
0 for any zy in X; with d(z,(&n)) > ¢. This justifies the following
definition.

Definition 5.2. We define the global fundamental bilinear map
S Hoo X Hoo — D(T\Y)

as follows. For any H,.J in H., and any o in ., we set

d(H, J)@):% > AHu (0,07 ) ATy (0", 07).

zye Xy

Note that, for H, J as above, the function ®(H, J) is t-invariant.

The fundamental bilinear map has to be thought of as a map towards
the space of cohomology classes of smooth functions on I'\.#, where
cohomology classes were defined in Subsection 1.2.3 and Subsection 2.1
(both definitions being compatible by Corollary 2.7). In this sense,
the next lemma says that the natural operators of the space of co-
pseudofunctions are symmetric with respect to ®.

Lemma 5.3. Let H, J be in Hoo. Then, we have ®(RH, J) = ®(H, RJ)
and the smooth functions ®(SH,J) and ®(H,SJ) are cohomologuous.
So are the smooth functions ®(PH,J) and ®(H, PJ)

See Subsection III.2.5 for the definition of R and S. As usual, we
write P = ﬁ%(RS +SR—(q—1)5).

Proof. In view of the definition of P, it suffices to prove the statements
for R and S. Fix o in .. The fact that an edge xy of X; belongs
to X7 only depends on x. This directly implies that ®(RH, J)(0) =
®(H,RJ)(0). Besides, we have

X7 ~Ayzxlzy € X7} = {0001, 000-1},
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which implies
20(SH, J) (o) —2®(H,SJ)(0) = AHy,0y (07,07 ) Adyye, (07,07)
+AHy o0(0t,07)Adyyo_(0F,07)
— AH, 0, (0F,07) ATy 0y (07, 07)
— AH,po (07, 07)AT,_oo(0T,07)
=V(H,J)(To) =V (H,J)(o),

where

V(H,J)(0)=AH,p (0,07 )ATy_60(cF,07)
—AH, o (07,07)Adyyo_ (0t 07).

The Lemma follows. ]

5.2. Invariant distributions. We will now relate the fundamental
bilinear map ® to the constructions of Subsection 11.5.3. Let p be a
[-invariant symmetric bilinear form on D(9X). As in Section I1L.7, we
still write p for the symmetric bilinear form on H,, defined by, for any
(H,J) in Heo,

p(H,J) = Z ;p(nyﬂ]wy)'

I,NTy
(z,y)eT\ X1

We use the same notation for the associated bilinear forms on Hy,
k> —1.

Proposition 5.4. Let p be a I'-invariant symmetric bilinear form on
D(0X) and 0 be the associated (1, T)-invariant distribution on T'\.7.
For any (H,J) in Hoo, we have

p(H,J) =(0,P(H,J)).

The proof is a consequence of the discussion in Subsection I1.5.3 and
of the following purely combinatorial

Lemma 5.5. Let G be a discrete group, A be a discrete set and U be a
totally discontinuous locally compact topological space. Assume we are
given actions of G on A and U with the following properties: the action
of G on A has finite stabilizers and finitely many orbits; the action of
G on U is proper and cocompact. N

Pick a distribution 0 on G\U and denote by 0 the associated G-
invariant distribution on U. Let ¢ : A x U — R be a G-invariant
function which is locally constant in the following uniform way: for
every u in U, there exists a neighborhood V' of w in U such that p(a, .)
is constant on V. for every a in A. Assume for every a in A, ¢(a,.) has
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compact support in U and, for every uw in U, ¢(.,u) has finite support
in A. Then, the function u — ) ., p(a,u) is locally constant on U

and we have
‘éa‘ <§,gp(a, )> = <9,ng(a, )> )

acA

2

a€G\A

Proof. Recall from Subsection I1.5.3 that 0 and 6 are related as follows:
if ¥ is in D(U) and ¢(u) = > ;¥(gu) for u in U, then we have

(0, 0) = (0,4

Fix a system of representatives S for the action of G on A, that is,
S C Aissuch that A = GS and GaN S = {a} for every a in S. By
definition, we have

az lGi< ")) = Z|c;|< >=<5,;|G—uso<a,.>>.

For w in U, set ¥(u) = > cq m(p(a,u). The assumption on ¢

implies that ¢ is in D(U). As S is a system of representatives for the
action of G on A, for u in U, we have

ZZ o(ga,u) = Z(p(a,u).

geG aES acA

The Lemma follows. ]

Proof of Proposition 5.4. Still as in Subsection I1.5.3, we associate to
0 a I-invariant and (¢, T)-invariant distribution 6 on .#. In the same
way, as the quotient of .’ by the time shift 7" may be identified with
0%X, we associate to 0 a distribution O92x on 0°X. Note that 0 and
02 x are I'-invariant and symmetric.

Let H,J be in H,, and xy be in X;. By Lemma I1.5.9, we have

1
P(Hay, Joy) = 5002x((€,0) = Ay (€ n)ATwy (€, ).
By Lemma 5.1, we get
1~
P(Hyy, Juy) = 20 (0 = AHyy(0",07) ATy (0", 07 ) Layexy) -
Thus, we obtain
p(H,J) =

1 1 - -
5 Y A Aot e )AL aexy).
zyelM\ X1
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The Proposition follows by applying Lemma 5.5 to the action of I' on
A= X, and U = . and to the function

v: Xy xS =R, (vy,0) — Any(JJr,af)Any(JJr,a*)lxyexf.
O

5.3. Spectral fundamental bilinear maps. We will use the Plan-
cherel formula for X, Proposition 4.5, to decompose the global funda-
mental bilinear map ® into spectral components. We start by intro-
ducing those components.

The spectral components will depend from a complex parameter ¢.
We will only define these components as t ranges in the domain delim-
ited by a certain ellipse in C. We define £, C C as the set of those ¢ in
C such that

2
q+1
Rt)>+ ( ——St ) <1
( )+(q—1 )
Note that & NR = (—1,1). Elementary computations show

Lemma 5.6. Let t be in C. Then t belongs to &, if and only if the
solutions of the equation (q+ 1)tu = q + u? satisfy 1 < |u] < q.

Proof. For u in C*, write u = pe'® for some p > 0 and 6 in R. Then,
we have

1 P+ pP—3
t:—<u—|—g>:—pcos€+ £ sin 6.
qg+1 u qg+1 g+1

Thus, if p = /g, when u ranges in the circle {|u| = ,/g}, t ranges in
the interval Z; if p # /g and v ranges in the circle {|u| = p}, t ranges

in the ellipse
1 ’ 1 ’
5 ge) + (L ot) =1
Pt pP—

The conclusion follows. O

Corollary 5.7. Let H be in H and K be a compact subset of £,. We
have

sup > [xi(ab, zy) AHu, (€, 1)] < oo,
ey, avexa
teK
Proof. By Lemma 5.6, we can find S > 0 such that, for any ¢ in K and
v in C with (¢ + 1)tu = ¢+ u?, we have 1 + 3 < |Ju| < ¢— 3. We
fix such t,u. As Ho = Uez1 H;;o, we can assume that H belongs to
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5, for some ¢ > 1. Let (&,n) be in 9°X. For zy in X;, we have
AH,,(&,n) =0 as soon as d(z, ({n)) > ¢. Note that we have

sup [{zy € X1|0(ab, zy) = j,d(z, (&n)) < £} < oo

720
Besides, as H is I'-invariant, we have

sup |AH., (& n)| < oo.
(Emed?x
ryeXy

By Lemma 4.2, we get, for some C' > 0, for any (£,7n) in 8*°X and ab

in le
—j)

. i g
S Dlab Aty (€.n)] < €3G + Dl 7|2
As 1+ < |u| < g— B, the latter sum is uniformly bounded as t ranges

TyeX1 >0
in K. O

The convergence of these sums justifies the following

Definition 5.8. Let ¢ be in &,. For any H,J in H., and any o in .,
we set

1
o,(H, J)(o) = 3 Z xi(ab, xy) AHyp (0,07 ) Ady, (ot 07).
abe Xy
a:yeeXll

We call ®; the spectral fundamental bilinear map associated to t.

Note that, for ¢ and H,.J as above, the function ®;(H,J) is ¢~
invariant.

The spectral fundamental bilinear map creates Holder continuous
functions. For 0 < a < 1, we let 77, denote the space of a-Hélder
continuous functions on I'\.#, equipped with the natural norm

[/l = sup |f] + sup o "|flo) = f(T)], fé€

0, 7€.S
V|i|<h  oi=7
Lemma 5.9. Let H, J be in Ho. For anyt in &, ©,(H,J) is a Holder
continuous function. More precisely, given an open subset ) of C,
whose closure in C is contained in &, there exists 0 < oo < 1 such that
O,(H, J) belongs to 7, for any t in Q2 and the map t — O (H, J), Q) —
F, 1S analytic.

Proof. Let Q) be as in the statement. Then, by Lemma 5.6, we can find
a < 1 such that, for any ¢ in Q and u in C with (¢ + 1)ty = q + u?,
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we have |u|_1 < a and ’%’ < a. The statement then follows by using

Lemma 4.2 as in the proof of Corollary 5.7. U

As for the global fundamental bilinear map, we shall think to the
spectral fundamental bilinear maps as maps towards the space of co-
homology classes of Holder continuous functions. We get, by analogy
with Lemma 4.3 and Lemma 5.3,

Lemma 5.10. Let H,J be in Ho and t be in &,. Then we have
®(RH,J)=®,(H,RJ)
and the Holder continuous functions
®,(H,J) — 0u(J, H),
O(SH,J)— ®(H,SJT)
and ®,(PH,J) —t®:(H, J)

are coboundaries.
To avoid lenghty dominations in converging sums, we shall use

Lemma 5.11. Let f be a Hélder continuous function on I'\.#. Assume
that there exists a family (hy,)nez of continuous functions on T'\.¥ such
that

sup Z |hn(0)] < 00 and sup Z |hn(T"0)| < 00

e ne’ ceS nez
and such that f =%, hy, oT™ — h,. Then, [ is a coboundary.

Proof. This is a consequence of Livsic Theorem, Proposition 2.1. In-
deed, let p be a T-invariant Borel probability measure on I'\.. By
the Dominated Convergence Theorem, the series ZnEZ hy,o1T"™ — h,
converges in LY(T'\.%, u). As fr\y(hn oT™ — h,)du = 0 for every n
in Z, we get fr\ o fdu = 0. The conclusion follows from Proposition
2.1. O

Proof of Lemma 5.10. The fact that &,(RH,J) = ®,(H,RJ) is ob-
tained as in the proof of Lemma 5.3, by using the corresponding prop-
erty of x; from Lemma 4.3.

Let us prove that ®,(H, J) —®;(J, H) is a coboundary. From Lemma
5.1, we get, for ¢ in .7,

1
®,(H, J)(U)ZEZ > xilab,xy)AHu(oF, 07 ) Ay (0F, 07).
heZ abeX?
ryEth"
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By using the symmetry of y;, we get
O,(H, J)(0) — (], H)(0) = Y _Eu(H, J)(T"0) — Zou(H, J)(0),
her.

where, for h in 7Z,

- 1 - -
En(H, J)(0) =3 Z xe(ab, xy) AHyp (o, 07 ) Ady, (0t 07).

—h
abeXT e
Tye Xy

Due to Corollary 5.7, we have

sup Z |Z:n(H, J)(0)| < 0o and sup Z |Zen(H, J)(T"0)| < .
oS heZ oS hel

Therefore, by Lemma 5.11, ®,(H, J) — ®4(J, H) is a coboundary.
We now study ®,(SH, J) — ®,(H,SJ). By using the relation

Xt(ba; xy) = Xt(ab, ?ﬂ)?

for ab, zy in Xy, and by reasoning as in the proof of Lemma 5.3, we
obtain, for ¢ in .,

q)t(SH, J) — (I)t(H, SJ) = \Ift(H, J)(U) — \Ift(H, J)(TO‘),
with
\I]t(Hv J)(U) = % Z (AH07100<0-+7O-_)Xt(0-—10-07xy>

ryeXy
_AHUOU—l (0-+7 O-i)Xt(O-OU—la ‘Ty))) Any(O'+, 0'7).

By reasoning as in the proof of Lemma 5.9, one can show that the func-
tion W;(H, J) is Holder continuous on I'\.#. The conclusion follows.
Finally, notice from Lemma 4.3 that we have ®;(.J, PH) = t®(H, J).
As the above implies that ®,(PH,J) is cohomologous to ®,(J, PH),
the last statement follows. O

5.4. Special spectral fundamental bilinear maps. We still aim at
using the Plancherel formula of X; from Proposition 4.5 in order to
decompose the global fundamental bilinear map ®. Thus, we need to
introduce special components.

Recall the definition of ¢ in Subsection 4.2. The convergence in the
formulae defining these special components is warranted by

Lemma 5.12. Let H be in Ho. We have

sup Z g 0| AL, (€,1)] < oo.

2
R, aveXa
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The proof is the same as the one of Corollary 5.7.

Definition 5.13. For any H, J in H, in Hs, and any o in ., we set

P (H, J)( Z X1 (ab, xy) AHy (0,07 ) Ady, (ot 07)

abGX"
acyEXl

P ( Z X ab L 2Y)AHyp (0", 07 ) ATy (0t 07)

(-1
abGX”
ﬂnyX1

We call &7 and <I>Sp ) the special spectral fundamental bilinear maps.

Again, for H,J as above, the functions ®*(#,J) and ", (H, J)
are (-invariant.
These bilinear maps send Ho to J75-1.

Lemma 5.14. Let H,J be in Ho. Then, the functions ®F(H,J) and

O (H,J) are q '-Holder continuous on T'\.%.

Proof. This directly follows from the definition of x}” and X?}il) in Sub-

section 4.4 and from the fact that, for H in H, xy in X; and (§,7)
in ?X, AH,,(&,n) is 0 when zy is far enough from the geodesic line

(&n). m
In the same way as for Lemma 5.10, we show
Lemma 5.15. Let H,J be in Hy. Then we have
®P(RH,J) = —®(H,J) and @?ﬁl)(RH, J) = —@?‘il)(H, J)

and the Holder continuous functions

OP(H,J) — OP(J, H), OF | (H,J)— 0P (] H),
OP(SH, J) + OP(H, ), O (SH, J) — qsipl)(H J),
*P(PH,J) — ®F(H, J), <I>?’1)(PH J) +@F(H, J),

are coboundaries.

5.5. The Plancherel formula for fundamental bilinear maps.
From the Plancherel formula in X7, we can decompose the global fun-
damental bilinear map.
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Proposition 5.16. Let H,J be in H. For o in .7, we have

B I)o) = — [ Ot D))

—1 .
v 17 P (H, ) (o) +

q— 1 sp
CESY P\ (H, J)(0).

2(g+1)

Proof. For ab in X; and (§,n) € 9*X, Corollary 5.7 and Lemma 5.12,
together with the Dominated Convergence Theorem give, by the same
computation as in the proof of Proposition 4.5,

Adap(§5m) / > xielab, xy) Ay, (€,m)dpq(t)

Zq ryeX1
q -1
Z X3P (ab, zy) A, (€, )
a?yEXl
qg—1
—_— A
SRRy xyze;( X1y (ab, 2y) Ay (€,7).

The conclusion then follows from the definition of the fundamental
bilinear maps. O

Our goal is to use Proposition 5.16 to get a better understanding of
the spectral theory of completions of D(9.X) with respect to I-invariant
non-negative symmetric bilinear forms. We can already manage the
case of representations associated to Radon measures. Recall from
Proposition I1.5.14 that if v is a finite (¢, 7')-invariant Borel measure
on I'\.7, the associated I-invariant symmetric bilinear form on D(9.X)
is non-negative.

Corollary 5.17. Let v be a finite (¢, T)-invariant Borel measure on
['\. and p be the associated I'-invariant symmetric bilinear form on
D(0X). Then, in the completion of He, with respect to p, the spectrum
of the operator P is T,U{—1,1}. The associated spectral measures are
absolutely continuous with respect to the Lebesque measure on Z,.

Proof. Let H,J be in H,,. By Proposition 5.4, we have

p(H, J) = /F y ®(H, J)dv.
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By Lemma 5.9, we can apply Fubini Theorem in the Plancherel formula
of Proposition 5.16; this gives

p(H, q+1/z/r &,(H, J)dvdp, (1)
q_

5 qg—1 s
+—/ @pHde+—/ & (H,J)dv.
2(q+1) Jr» ( ) 2(¢+1) Jr» = 1)( )

As v is T-invariant, by Lemma 5.10 and Lemma 5.15, for any polyno-
mial function ¢ in R[t], we get

2

pletP ) = g [ oty [ i navan

q_l S
—i——g&l/ OP(H, J)dv
2(¢+1) M s v (H, )

q— 1 5
+ ———F¢(—1 o (H, J)dv.
TR )
The conclusion follows by standard properties of spectral analysis of
self-adjoint operators. 0

6. ENDPOINTS SERIES AND FUNDAMENTAL BILINEAR MAPS

In order to be able to study the spectral fundamental maps, we will
now show that, up to a coboundary, they can be written as an endpoints
series as in Subsection 3.1.

6.1. Weight of pseudofunctions. In this Subsection, for £ > 0, we
associate to every k-pseudofunction a function on Xj. This construc-
tion will later allow us to rewrite the definition of the spectral funda-
mental maps.

Definition 6.1. Let £ > 0 be an integer and H be a k-pseudofunction.
We define the weight wy(H), which is a function on Xy, as follows. Let
ab be in X; and ag = a,ay,...,ar = b be the geodesic parametrization
of the segment [ab]. For ¢ in X, ¢ # b we write c_ for the neighbour of
¢ on [bc].

If k=0 and H is the 0-pseudofunction associated to the function u
on X, we set wo(H) = u.

If kiseven, k =20, > 1, we set

wi(H)(ab) = AH,,q,,, (b, a) + Z Z AH,. (b,a).

[azurz }ﬁ[ab] {aeti}
d(c,ap4i)=1t
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Ifkisodd, k =20+ 1, ¢ > 0, we set

l
wi(H)(ab) = AH,,a,,, ( Z > AH,, (b, ay_1).

ceX
[az+iC]ﬂ[ab]={ae+i}
d(c,a“_i):i
Later, in Section 6, we will study the weight map wj. For the moment
we show how it appears naturally when handling fundamental bilinear
maps.

6.2. Initial bilinear maps. Here, we introduce a notation in order
to reformulate the definition of the fundamental bilinear maps and we
relate this notation with the weight defined above.

For o in ., we set

= {z € X|[z,00] " {0) = {o0}},

so that X7 = {zy € Xj|zr € X}.

Recall from Subsection 3.1 that, for £ > 1, we let V) stand for the
space of I'-invariant functions on Xj.

Assume k is even, k = 2¢, ¢ > 1. If H is a k-pseudofunction, for
o in % and ab in X{ with d(a,00) = r, the quantity AH,™ (6, 07)
is zero if r > (. If r < ¢, this quantity only depends on the segment
[0_(¢—r), 0¢—r]. Therefore, for j > 0, there exists a symmetric bilinear
map

Kjk : Hi X Hip — V}'-&-k

such that, for any H,J in H; and o in ., one has
> AHL (07,07 )AILT (07,07) = kow(H, J)(0_s, 0)

abe Xy

if j =0 and
Z AH, (ot ,07)AJ; (0%, 07)

a,xe€X
d(a 2)=j

+Z > (AH (0 0 )AL (0 07 )+AHS, (07,07 ) AT (0F 07)

h=1 a€eX?
zexTho
d(a,z)=j

= rjx(H,J)(0-¢,0540)

if 7 > 1 (where as usual, for a, x as above, a; and z; are the neighbours
of a and z on [ax]).
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Assume now k is odd, k = 2041, £ > 0. To deal with the symmetries
associated with edges instead of vertices we introduce a new family of
subsets of X;. For o in ., we set

Xlg’ti = Xlg U {0'10'0} AN {0’00'_1}.
If H is a k-pseudofunction, for ¢ in . and ab in Xf’ﬁ, ab ¢ {ogo1, 0100},
the quantity AH_,™ (6, 07) is zero if = min(d(a, (c)), d(b, (o)) > L.
If r < ¢, this quantity only depends on the segment [o_(o_,, 00—,].

Besides, the quantity AH 0001(0'+,0'_) only depends on the segment
[0_s, 0g+1]. Therefore, for j > 0, there exists a symmetric bilinear map

Kjk : Hk X Hk — V}+k
such that, for any H,J in H; and o in ., one has
> AHG (0%, 07)ATG (0F, 07) = 2k04(H, J) (01, 0041)

abEXcrﬁ

if j =0 and

Z AHZ (0" 0)AJ> (oF,07)

abaye Xy *
d(abzy)=j
b,y€lax]

+Z > (AHL (0,00 )AJ (0, 0T )+AH, (0 07 )AT, (07, 07))
h=1"apex?*

h
;ryGXlT ot

§(ab,zy)=j
by€laz]

= 26;5(H, J)(0-¢,0j1041)
if 7 > 1.
When j > k — 1, we have a better formula for these bilinear maps

which will help us to write the fundamental bilinear maps as endpoints
series.

Lemma 6.2. Let k > 1, 7 > k —1 and H,J be in Hy. Then the
function k;,(H,J) is cohomologous to the function

Xjr = Ry = —wp(H) (vag)wi () (yyx) — wr(J) (@zr)wr (H) (YY),
where xj, and yy are the elements of [xy| at distance k from x and y.

Proof. Assume k is even, k = 2¢, { > 1. Take o in .. As men-
tioned above, for a in X with d(a, (o)) > ¢ and b ~ a, we have
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AHZ™(o%,07) = 0. Therefore, for h > 0, a in X7 and z in X", if
d(a,z) = j and AHZ (0,07 )AJZ (0F,07) # 0, we have

h>j—200—1)=j—k+2>1.

More precisely, we have

Kin(H, J)(0-00j40) =
Z Z AHaal (UZ—Ta 0-7(@77“)>ij:01 (Uj+€—r—257 O-j—r—ﬁ)

0<r,s<t—-1 a€ST(o9)NX°
xGSs(aj_T_S)ﬂXT37T75“

+ Achcl <O-j+€—7"—257 Uj—r—E)AJaal <O-Z—r7 O',(g,r)).

For r, s as above, the smooth function

o — Z AHam (O-K—ra g—(ﬁ—r))AJaxm (O-j+€—r—257 O-j—’/‘—Z)

a€S"(o0)NX°
xESS(Uj,T,S)ﬂXTjiTis”

is cohomologous to

o — Z A]—Iaal (UQZa UZT>AJxx1 (O-j+2ﬁ—257 Uj)-

£
acS" (opqr)NXT *ro

jL£—¢
2€S%(0j 40— )NXT T %0

The conclusion follows by using Definition 6.1.

Assume k is odd, k =20+ 1, £ > 0. Now, for ab in X; and ¢ in .,
we have AH,,(0,07) = 0 as soon as min(d(a, (¢)),d(b, (c))) > ¢. For
J > k—1, we will split the sum defining «; ;(H, J)(0_¢0j4¢+1) according
to whether a = o or not and whether x = 0,1 or not. Thus, we write

ki(H,T) = 655 (H, J) + 655 (H, J) + 55, (H, J) + 653, (H ),

where, first,

kg (H, J)(0_0054041) = AH oo, (0011, 0-0) Ay, 10, (01041, Tj—t)
+ AH,

04107 (O-jJrZJrl? O’j*Z>AJO'[)O'1 (O-ZJrla 0-75)7

which is cohomologous to the function

0= AHUZUZ—H (01€7 O-O)AJO'j+Z+1Uj+Z (Uj+k’ Oj)

+ AHUj+Z+10'j+Z (Uj+k7 UJ)AJUNEH (0k7 00);
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second,
Ko (H, T) (00 4e41) =
Z Z AHaoal (O-E—l—ly O-—Z)AJ$m, (O-j+€+2—287 O-j—Z)

1<s</4 xess(gj+1is)mXTj+1fsa
+ AHJ:J:, (Uj+€+2—257 Uj—€>AJ0001 (O-Z-‘,-la 0—5)7
which is cohomologous to the function
o E E AHU@U@+1 (O-ka O-O)AJJZCC7 (Uj+k+1—257 Uj)
mXTijlJﬁlfsa

+ AHQ:Q:, (Uj+k+1—257 Uj)AJUgUg+1 (O-k) JO);

1ssslaess (o) e1-)

third,
R}S@(Ha I)O—40j1011) =

E § AI{aa_ (UffrJrla O—ferrfl)AJUjJrl,TUj,T (0j+€+177"7 O_jfffr)
1<r<laeS7(oo)NX°

+ AHUJ'+1,TU]-,T (Jj+ﬂ+l—r7 O—j—f—r)AJaa_ (OZ—T—I—la O——K—H“—l)a

which is cohomologous to the function

o Z Z A111[(1(1_ (Uka O’QT*l)AJO'j+g+1O'j+g (Uj+k7 Uj)

1<r<l 4egr (Ug+r)ﬁXTe+r‘7

+ AHUj+[+1Uj+[ <0j+k7 Uj)AJaa_ (0k7 027“71);

fourth

ki (H, ) (000 j1e11) =

Z Z AHaaf (O-Z—T—i—h O-—f—ﬁ-r—l)Aszf (O-j+€+2—r—257 O-j—f—r)
1<r,s<¢ a€S" (oo)NX°

xGSS(o'jJrl,r,S)ﬁXTjJrliTng
+ AH$I7 (Uj+é+2—r—257 O-j—Z—T)AJaaf (O-Z—T—i—h 0—€+r—1)7

which is cohomologous to

o= Z Z AHaaf (O'k;,o'Qr_l)Asz7 (0j+k+1—28a0j)

¥4
1<r,s</4 aEST(oprr)ﬁXT +r,
: j+£441—
Z‘GSé(O'j+,g+1_s)nXTj+ + fo

+ AHazzf (Uj+k+1—257 O-j)AJaa, (0k7 02r—1)-
Using Definition 6.1 yields the conclusion. 0
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6.3. Endpoints series formulas for the spectral fundamental
bilinear maps. In this section, we use the previous constructions to
give an alternative formula for defining the spectral fundamental maps
by means of an endpoints series as in Subsection 3.1.

We will need new families of polynomial functions besides the (4;) ;>0
and the (B;);>o from Subsection 4.1 and the (C});>o from Subsection
4.6. For 7 > 0, we set

Dj=4A-(q-1)B;=C;—(a—1) ) Gy

0<h<y
Ej=Aj+(g-1)B;=C—(q=1) Y (=1)"7"Cy
0<h<y
Fj=qAj—(q—1)Bin=Cj—(*=1) > G,
O%h<g
j—h even

where the equalities follow from Corollary 4.7.
As in Subsection II1.2.1, for k > —1, we write Hy = Hy+ ® Hy — the
decomposition into eigenspaces of the V operator.

Proposition 6.3. Let k > 2 and t be in &,.
Assume k is even. Then, for any H,J in Hy 4, the Holder continu-
ous function ®, (H>°°, J>°°) 1s cohomologous to the Holder continuous

function @/ (H,J) defined by, for o in 7,

k—

®1(H.1)(0) = L (5. ) (00, + LD Z )03 (H, T) (00015)
LS 300 ) w0 ) 01405 k() 00 (H) 0147

For any H,J in Hy —, the Holder continuous function ®, (H>°°, J>°°)
s cohomologous to the Hoélder continuous function @;k(H, J) defined
by, for o in &7,

k—2
q)t kz(H, J)( ) = qi;]l l€07k(H, J)(O'o, O'k)—%ql Z q_ij(twfj,k(H, J)<000j+k)
*%1 2 a7 E O H) oo0w)n () (@3410)+on()(@0mr)wn (H) (734105)).

Assume k is odd. Then, for any H,J in Hy 4, the Holder continu-
ous function ®, (H>°°, J>°°) 1s cohomologous to the Holder continuous
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function q):fk(H, J) defined by, for o in &7,

k—2

O (H, J)(0) =Y g7 Ej(t)r;k(H, J) (000 1x)

J=0

= > a0 (wr(H)(000k)wi () (0405)+wi () (000)wr(H) (0 1405)).

For any H,J in Hy, -, the Holder continuous function ®, (H>™,J>7)
1s cohomologous to the Holder continuous function (ID;k(H, J) defined
by, for o in .7,

P, (H, J)(0) = rox(H, J)(o00%) Zq ID;(t)kjx(H, J) (000 1k)

+ ) a7 D) (wk(H)(000k)wi () (04405) +wr () (000 )wr(H) (054505))-

j=k—1

The proof is a consequence of the formulas below. These allow to
compute the spectral bilinear forms of Subsection 4.3 in eigenspaces
of the operators R and S by means of our new families of polynomial
functions.

Lemma 6.4. Fizt in R.
For a,z in X and j = d(a, ), we have

q+1)? .
th(ab,xy)z( 5 ) j=0
b~a
y~z

qg+1 .

Fora in X anb b,c ~ a, b # ¢, we have

+1
xt(ab, ab) — x;(ab, ac) = q2—q

For a,x in X with j =d(a,z) > 1 and b~ a, y ~ x with b,y ¢ |az],

+1
xt(ab, xy) — xi(aay, xy) — xi(ab, xx1) + xi(aay, xay) = —%Fj(t)
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For ab,xy in X1 and j = 6(ab, vy), we have

xe(ab, xy) — xi(ab, yr) = (ab, ry) j=0
1 .

= @Dj(t)é(al% zy) J=>1

xi(ab, zy) + x¢(ab, yr) =1 J=0
1 .

The proofs directly follow from the definition of y; in Subsection 4.3.

Proof of Proposition 6.3 in case k is even. For tin &;, H, J in Ho, and
o in ., we set

(6.1) (I)Q(H,J)(a)zl > xilabxy)AHy(0F, 07)Adyy (0, 07)

ab,xye Xy

1
+§Z Z xi(ab, xy)(AHu(oF, 07 ) Adyy (o, 07)
h>1 abeX{
a:yeXlTh"

+ AH (07,07 )Adw(ct,07)).

As in Corollary 5.9, one shows that ®}(H,J) is a Holder continuous
function. In view of Definition 5.8, by Corollary 5.7 and Lemma 5.11,
®,(H, J) and ®,(H, J) are cohomologous.

Assume RH = gH and RJ = qJ. As, for x ~ y in X, the elements
H,, and J,, of D(0X) only depend on z, we will write H, and .J, for
them below. In particular, from Lemma 6.4, we get

1 2
¥(H, 7)) = L VALt o)
acX?
q +1 Cd a,x ( ) — —
+T Z (fd(TAH( )AJ$(O'+7O')
aFreX
1 C a,x — —
Q+ Z Z Z(ax) (AH, (0%, 07)AJ (0T, 07)
h>1 acX?
:EEXTh"

+ AH,(c",07)AJ,(0c7,07)).
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Recall that £ > 2 is an even integer, k = 2¢, ¢ > 1. Take H,J in
Hy 4. From the formula above, we write

oo oo 1
QYH”, T )(U—eae)=q+

rkok(H, J)(0)
a(q : 1) S IC ()R H. T) (0-00510).

j=1

+

The first case now follows from Lemma 6.2.

We now address the second case. We will follow the same lines as
above. We start by noticing that, by Lemma 6.4, if H,J are in H
with RH = —H and RJ = —J, for a,z in X with j = d(a,z) > 1 and
&,min 0X, we have

> xilab, zy) AHu(€,m) Ay (€, )

b~a
y~x

1
_ gq;l 5 () AHuay (€,1)A Ty (€,7).

When a = x, we get

37 i(ab, a0)AHasl€ DA Tu6om) = L3 S0 AHu(€ ) ATl )

b,c~a b~a

Thus, when RH = —H and RJ = —J, we may rewrite (6.1) as

/ + 1 _ _
O\(H,J) (o) = q4— 3" AHylo",07)AJw(ot,07)

q abe Xy

q+1 Faaz)(t)
N 4 Z qdia7 A]—Lwl (0 o )AJa:wl (0 g )
aFxeX°

F
Q+1Z Z d AHaal(a 0 ) ATy, (0t 07)

h>1 aeX?
mGXTh"

+ AHyp (07,07 )Adue, (0F,07)).
For H,J in Hy, _, we get

O (H>™, J” )(0):q4q kox(H, K)(0_¢, 00)
+ 1
~ T U E W ) 10)

j=0

Again, the conclusion follows from Lemma 6.2. U
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Proof of Proposition 6.3 in case k is odd. The odd case will be dealt
with in an analogue way. Given H,J in H.,, we define a new Hélder
continuous function that is cohomologous to ®,(H, J). For o in .7, we
set

(6.2) @Q’(H,J)(a)_% S xilab, ) AH (0,07 A,y (0", 07)

ab,acyEXf”j

1 _ _
+ 52 Z xe(ab, zy) (AHuy(ot, 07 )Adyy (0™, 07)
h21 abeX"u

acyEXT ot

+ AH,, (67,07 )Ady(c™,07)).

By (6.1), ®}(H,J) and ®}(H, J) are cohomologous.
Assume SH = H and SJ = J. In view of Lemma 6.4, we have

1 1 — —
/(H,J)(0) = 5 > AHuy(0",07)Ady(ot,07)
abe X7

1 Eé(abz () _
+§ Z qé(abe AHuy(0",07)Adyy(07,07)
ab,:z:ye)(f’ri
d(abxy)>1
b,y€lac]

E a X —
+- Z D Estana (1) AHab(a 0 )ATyy (0t 07)

ab \ZY)
h>1 abEXU o

xyEXT o,f

b,y€Elac]

+ Any(aJr, O'_)AJab<0'+, o).

Recall that £ > 1 is an odd integer, k = 2¢ + 1, ¢ > 0. For H,J in
Hy 4, we get

Y (H>™,J77) Zq jE t)rjk(H, J)(0-10j1e41)-

j=>0

Lemma 6.2 yields the first case of the Proposition.
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For the second case, given H, J in H,, with SH = —H and SJ = —J,
we use Lemma 6.4 and (6.2) to write, for ¢ in .,

" 1 — _
®Y(H,J) (o) =3 > AHuw(o",07)AJy(ot,07)
abe X 7!

1 Dé ab,x () _
~3 Z %AH@(U 0 )AJy (o, 07)

ab,ryEXf’n
§(ab,xy)>1
b,y€lac]

Dé ab,zy) _
__Z Z (ab?::y (AHab(U o >Any(U+,U )

h>1 abeX” o

ryGXT ok
b,y€lac]

+ AH (07,07 )Adw(ct,07)).
For H,J in H;, _, we obtain

SY(H"™, T )(0) = kox(H, J)(0-0041)
—Zq ID; )k (H, J)(0—00j1041)-

7>1

Still by Lemma 6.2, the last case of the Proposition follows. O

6.4. An endpoints series formula for the special spectral funda-
mental maps. In the case of the special spectral fundamental maps,
following the same strategy as above yields

Proposition 6.5. Let k > 1.
Assume k is even. Then, for any H,J in Hy 4, the Holder contin-
uous functions <I>Sp )(H>°° J>) and ®F (H>™,J>™) are cobound-
aries. For any H, J in Hy,—, the Holder continuous functions <I>( 1 (H>°°, J>°°)
and (H>°° J> ) are cohomologous to the Holder continuous func-

tions (I>( w(H,J) and O (H, J) defined by, for o in 7,

+1
q2q Ho,k(H, J)(0070k)_(

o (H, J)(o) =

(1), (_Q)ij/fj,k(Ha J)(000j+k)

> (=) (wi(H)(000k)wi () (04505 +wi(J) 000k )i (H) (054107))

j=k—-1
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and

9 k—
+1
q2q HOk(H J)(Um k

% (H,J)(0) =

*J
/i]k H J 0003+k>

(g+1)°

+2q

| ¢ (wr(H ) (000k)wi () (0j4505)+wi () (000k)wr(H) (054105)).

Assume k is odd. Then, for any H,J in Hy ., the Holder continu-
ous function ®F (H>°o, J>°O) s a coboundary; the Holder continuous
function <I>Sp 3 (H>°° J>°O) 1s cohomologous to the Holder continuous

function Q)?H (H,J) defined by, for o in 7,

(I)?p1+) w(H, J)(0) = 2r01(H, J)(00, Uk)+4z::(_Q)_j“j,k(H7 J) (000 4)
—4 Z (—q) ™ (wi(H) (0003)wk (1) (04105) Fwi(T) (0003 wr (H) (0410)).

For any H, J in My, the Holder continuous function &, (H>™,J>7)
is a coboundary; the Holder continuous function ®7° (H>°°, J>°°) iS5 co-

homologous to the Hélder continuous function @i‘?,;_(H, J) defined by,
for o in .7,

k—2
P (H, J)(0) = 2k0x(H, J) (00, 0%) — 42 ¢ kn(H, J) (000 1k)
+4 > g7 (wn(H) (000k)wr () (04805) +wr () (000k)wr(H) (0 1505))-

j=k—1
The proof is analogue to that of Proposition 6.5, by replacing Lemma
6.4 with

Lemma 6.6. For a,z in X and j = d(a,x), we have

le (ab, zy) —O—ZX (ab, zy).

b~a b~a
Y~z y~z

For a in X anb b,c ~ a, b # ¢, we have

1
7y (ab,ac) = e

Xip(abv CLb) - Xslp(a’b7 CLC) = X?El) (CLb, CLb) - X( q
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For a,z in X with j = d(a,z) > 1 and b ~ a, y ~ x with b,y ¢ [ax],
we have
(¢+1)°

X ab, ) = X (aan, ) = X (ab ) X3 (aan,200) = =55

X py(ab, zy) — X (P (aar, zy) — X2y (ab, xzr) + X7 (aar, 221) =
For ab, xy in Xy, we have

X1 (ab, yz) = —x3"(ab, vy)
X?El) (ab7 y!L‘) = Xip((lb, my)

7. THE WEIGHT OF PSEUDOFUNCTIONS

In the sequel of the article, we will study the consequences of Propo-
sition 3.3, which describes under which conditions an endpoints series
is a coboundary, when applied to the endpoints series which appear in
Proposition 6.3 and Proposition 6.5. To this aim, we will need a better
understanding of the weight map of pseudofunctions.

7.1. Weight and natural operations. First, we relate the weight

construction to the natural operations on pseudofunctions of Subsec-
tion II1.2.2.

Lemma 7.1. Let k > 0, H be a k-pseudofunction, ab be in Xy and
a; and by be the neighbours of a and b on [ab]. If k is even, we have

Wit1(H”)(ab) = wi(H)(aby) and wy 1 (H”Y)(ab) = wi(H")(ab).
If k is odd, we have

Wir1(H”)(ab) = wi(H)(a1b) and w1 (H”Y)(ab) = wi(H")(aby).

The weight map wy was introduced in Definition 6.1.

Proof. It k=0, and H is the 0-pseudofunction associated to the func-
tion u on X (see Subsection I11.2.1), we have

wi(H”)(ab) = AHg (b, a) = u(a)(14(b) — 1,(a)) = u(a) = wo(H)(a)
and
wi(H”Y)(ab) = AH_,Y(b,a) = AH;, (b, a)
= u(D)(1a(b) — 1a(a)) = —u(b) = wo(H")(b).

Assume now k > 1 and let us write as usual ag = a,ay,...,a511 = b
for the geodesic parametrization on the segment [ab].



58 JEAN-FRANCOIS QUINT

If kis even, k = 2¢, £ > 1, we have

west (H)(ab) = AHZ,,  (b,a +Z Z AHZ (b, as_1)

I
d(c,apyi)=t

=AH agapyq b17 + Z Z A[—Icc_ (bh a2i)-

! laeselnfabl={acs}
d(c,apyi)=t

As by = agy, the last term of the sum vanishes and, as required, we get
wi+1(H”)(ab) = wr(H)(a). Besides,

wert (H7V)(ab) = AH,_, (b.a) + Z Z AHZ (b, as_1)

[au—zc]ﬂ[ab] {aeyi}
d(c,ap4i)=1

=AH 0«1{+10«£ b aq —|—Z Z AHC_C(I), a?i*l)'

[ach]ﬂ[zzb] faeyi}
d(c,apyi)=1

Now, on one hand,

AHae+1ae (b7 CL1> + Z AHae+1C(b> CL1> AHC\L/Z+1G,£+2 (b7 (11),

C~ag41
c¢{ag,api2}

whereas, on the other hand, for 2 < ¢ < /¢, by setting d = ¢_ in the
sums below, we get

Z A]{c,c(b, a2z‘—1) = Z AH()/d, (b, CLQZ‘_I).

ceX deX
[aetic]N[abl={ari} [at.id]N[ab)={as:}
d(C,ag_H'):i d(d,a[+i)=i71

We obtain indeed w1 (H>)(ab) = wp(H")(a1d).
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If kisodd, k =20+ 1, ¢ > 0, we have

4
west (H?)(ab) = AH, . (boa) +> > AHZ (b, ay;)
=1 ceX
lagtiticinlabl={artit1}
d(c,apqit1)=1

l
= AHay o (biar) +) > AH,. (b, ay)

=1 ceX
lag+iticlnlabl={asyit1}
d(c,a4+i+1):i

= wy(H)(a,b)
and in the same way,
¢
wist (H?Y)(ab) = AHY | (ba)+) > AHZY (b, as;).
=1 ceX

€
laetiricNlabl={aryit1}
d(C,ag+i+1)=’L'

First, we have

AHY . (0.a) = AHy, o, (biya) + Y AH,,, (b, a);

Ap410ap4-2
C~ap 41
c¢{ag,apia}

second, for 1 < i < ¢, we have

Z AH;:\,/ (b, az;) = Z AHg (b1, ait1);

ceX dex
laeti+1cN[abl={aetit1} [aetiv1dN]abl={apqit1}
d(c,a5+i+1)=i d(d,az+i+1):i+1
in particular, for ¢ = ¢, this vanishes as b; = ax = ag1. We get
wir1(H”Y)(ab) = wi.(HY)(aby). O

7.2. Injectivity properties of the weight. We will show that pseud-
ofunctions are determined by their weight. We start by stating a con-
verse to Lemma 7.1.

Lemma 7.2. Let k > 1 and H be a k-pseudofunction. Assume there
erists a function v on Xy_1 such that, for any ab in X, one has
wr(H)(ab) = v(aib). Then, if k is even, there exists a (k — 1)-pseudo-
function G with H = G~ and v = wi_1(G). If k is odd, there ezists a
(k — 1)-pseudofunction G with H = G=V and v = wy_1(G")

Proof. If k =1, for a ~ b in X3, we have wy(H)(ab) = AHg(b,a) =

v(b), which means that H, = v(b)1, = —v(b)1, in Vo(ab). We get
H = G~V where G is the 0-pseudofunction associated with —v and
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hence v = —wp(G) = wo(GY) (see Subsection II1.2.1 and Subsection
111.2.2).

Suppose k is even, k = 2¢, ¢ > 1. Then, saying that there exists a
(k — 1)-pseudofunction G with H = G~ is saying that, for every z ~ y
in X and every a,a’ in S*(z) such that d(a,a’) = 2 and y ¢ [ax] U [a'z],
we have AH,,(a,a’) = 0. Indeed, assume the latter holds. Then, pick
bin S*(z) with y € [bx]. By assumption, we have d(a,b) = d(a’,b) = k.
Let a; be the neighbour of a on [ax], which is also the neighbour of @’
on [a'z| since d(a,a’) = 2, and write aq, as, ..., ar = b for the geodesic
parametrization of the segment [a;b]. Then, by Definition 6.1 and the
asusmption, we have

AH,,(b,a) = v(ab) — Z Z AH,. (byas) = AH.,b,a).

[ae+z }ﬂ[ab} taeti}
d(c,ag4.5)=i

Hence AH,,(a,ad') = AH,,(b,a') — AH,,(b,a) = 0 and therefore, there
exists a (k —1)-pseudofunction G with H = G=. We have v = wy,_1(G)
by Lemma 7.1.

If kisodd, k =20+ 1, £ > 1, we proceed in the same way. We
first show that there exists a (k — 1)-pseudofunction G with H = G=V.
Indeed this amounts to saying that, for every x ~ y in X and every a, a’
in SY(zy) with d(a,a’) = 2 and = € [ay], one has AH,,(a,a’), which
is warranted by Definition 6.1 and the assumption. Then, Lemma 7.1
ensures that v = w;,_1(GY). O

From this, we can deduce that the weight determines the pseudo-
function.

Corollary 7.3. Let k > 0 and H be a k-pseudofunction. If w,(H) = 0,
then H = 0.

In general, for £ > 3, the weight map does not map H; onto the
space of I'-invariant functions on Xj.

Proof. For k = 0,1, the proof is immediate. The general case follows
by Lemma 7.2 and a straightforward induction argument. U

7.3. Weights and cohomology. Now, we describe under which con-
dition a weight function is a coboundary.

Proposition 7.4. Let k > 1 and H be in Hy. Then the following are
equivalent:

(1) The weight function w(H) is a coboundary.
(ii) There exists G in Hy—_1 such that H = G¥Y> — G~V
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This statement is closely related to Theorem 1.8.32. The equiva-
lence of the different notions of cohomology among elements of Vj is
established in Corollary 2.7.

Formally, Proposition 7.4 will not be used later in the article. Nev-
ertheless, its statement and its proof serve as a model for those of
Proposition 7.12 and Proposition 9.3 below. The latter result will play
a crucial role in applying the cohomology criterion of Proposition 3.3
to endpoints series as in Proposition 6.3 or Proposition 6.5.

First part of the proof. The direction (ii)=(i) is easy. Indeed, assume
H = GY> — G~V for some G in Hj_;. Then, by Lemma 7.1, for ab in
X} we have,

wp(H)(ab) = wi_1(GY)(a1b) — wr_1(GY)(ab) if £ is even
= wy_1(GY)(aby) — wr_1(G")(a1b) if k is odd.
The conclusion follows. ]

Here is the difficulty for proving the converse statement. Assuming
that (i) holds, we know from Corollary 2.7 that there exists a function
v on Xj_1 such that, for ab in Xy, one has wy(H)(ab) = v(aby) —v(ab).
But we don’t know whether v is the weight function of some (k — 1)-
pseudofunction. It turns out that this is the case, but this requires
some work to be proved.

We will need to introduce a new object. For k > 1, we define a
complete k-pseudofunction as a family (H,,).yex, such that, for zy in
Xy, ik kis even, k = 2¢, ¢ > 1, H,, is an element of V*(z); if k is odd,
k=20+1,0>0, H is an element of V*(zy). Thus, the definition
is the same as the one of a k-pseudofunction, except that we don’t kill
the constant functions in the spaces V¢(x) and V*(zy).

Starting from a complete k-pseudofunction, one can obtain a k-
pseudofunction by killing the constant part. In particular, if Hy is
the space of I'-invariant complete k-pseudofunctions, we have a natu-
ral map Hy — Hy.

Lemma 7.5. Let k > 1. The natural map 7le — Hy 1S surjective.

Since the stabilizers of the elements of X in I' are finite, the proof
is a direct consequence of the following classical phenomenon in group
theory:

Lemma 7.6. Let V' be a real vector space, equipped with an action of
a finite group G. Let W be a G-invariant subspace. Then the natural
map V. — V/W maps the space VE of G-invariant elements of V onto
(V/w)e.



62 JEAN-FRANCOIS QUINT

The advantage of dealing with complete pseudofunctions is that for
them, we can replace the weight by a function that is defined on smaller
segments. Indeed, for £ > 1 and H a complete k-pseudofunction, we
define the pseudoweight p(H) of H as follows. If k is even, k = 2/,
¢>1, for abin X, 1, we set

/—1
(7.1)  pr(H)(ab) = Z He_(b) — Z Z Hee_(a;) — Hy,p(a).

ceX =1 ceX
d(b,c)=¢ d(b1,c)=1
biefbd] bbag[b1d]

If kisodd, k =20+ 1,0 >0, for ab in X1, we set

(72) ()b = 3 He )= Y He (1)~ Hiula)

ceX i=1 ceX
d(b,c)=0+1 d(b1,c)=1
b1€[bd] b,ba¢[bic]

From Definition 6.1, we directly get

Lemma 7.7. Let k > 1 and H be in Hy. The pseudoweight py(H) is
cohomologous to the weight wy(H).

By abuse of language, we have denoted by wy(H) the weight of the
image of H in Hy.

We define the natural operations H — H~ and H — H" for com-
plete pseudofunctions as for pseudofunctions (see Subsection 111.2.2).

As in Subsection 1.8.7, for k > 1, we say that a ['-invariant function
w on X is split if we can find I'-invariant functions v and v on X _;
such that, for xy in X, one has

w(zy) = u(ry) + v(z1y).

We have a criterion for a complete k-pseudofunction to be obtained
through complete (k — 1)-pseudofunctions.

Lemma 7.8. Let k > 2 and H be in Hy,.
If k is odd, there exists F,G in Hy_y with H=F> + G~V
If k is even, k = 2(, { > 1, then the following are equivalent:
(i) there exists F,G in Hy_1 with H = F~ + G~V
(ii) the function xy — Hy,,(x) is split on Xoyq.
(iii) the pseudoweight py(H) is split on Xyi1.

Proof. Assume k is odd, k = 2¢+ 1, £ > 1, and recall from Proposition
1.4.6 that, for 2y in X3, we have V(zy) = JL, V*(z)+J,V*(y). Choose
a system of representatives S C X;. for the action of I' on X;. Then,
for zy in S, H,, is a (I NT,)-invariant element of V*(zy). By Lemma
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7.6, there exists (I', N [',)-invariant elements f,, in V¥(z) and g,, in
VE(y) with
Haoy = Joyfoy + Jyelye-

As fyy and gy, are I'; N I'y-invariant, there exists unique F, G in Hy_4
such that F,, = f,, and G, = gy, for zy in S. By construction, we
have H = F~ 4+ G~V.

Assume now k is even, kK = 2/, ¢ > 1 and first note that, in view of
the definition of the pseudoweight px(H) in (7.1), the function zy
pr(H)(zy) + Hy, () is split on Xpyq, so that (i7) is equivalent to (i1i).

Let us prove (i)=(ii). Suppose we may write H = F~ + G~V with
F.G in Hy_1. Then, a direct computation gives, for xy in Xy,

Hyy(a) = Fy (@) + ) G(2)

2~Y1

2y
= Fy(r)+ > Gya(31) + Gypp()

2~y

z¢{y,y2}
= Fyy(z1) + Z Gyiz(21) = Gy (21) + Gy (2)

2yl
27£Y2

(the last step only being necessary when k& = 2). As required, the
function zy — H,,,(z) is split.

Conversely, we now prove (ii)=-(1). Thus, assume we may find I'-
invariant functions v and w on X, such that, for xy in X1, one has

Hy,y(x) = v(zy) + w(z1y).
We define F' and G in 7-N[k_1 as follows: for xy in X,, we set

Fyy, (x) = Hyy, () Fyy(z) = w(zy)
Gyy, () = v(zY) Gyry(x) =0.
A direct computation then shows that H = F'> + G~V. O

Second part of the proof of Proposition 7.4. We prove (i)=(ii) by in-
duction on & > 1. Let H be in H; and assume that wi(H) is a
coboundary. By Corollary 2.7, we may find a I'-invariant function
v on Xj_1 such that, for any xy in X, one has

wi(H)(zy) = v(zyr) — v(21y).

If k=1, we let G be the 0-pseudofunction associated with the func-
tion —v on Xg = X. Then, Definition 6.1 and Lemma 7.1 imply that
we have w1 (H — GY> +G~Y) =0, hence H = G~ — G~ by Corollary
7.3.
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If k£ =2, we let GG be the 1-pseudofunction associated with the func-
tion zy — v(yx) on X;. As above, we get H = GY> — G~V.

Suppose k > 3 and the result holds for k — 1; let us show that it also
holds for k.

If £ is odd, by Lemma 7.5 and Lemma 7.8, we may find J, K in H;_;
with

(73) H: J>+K>V: (J+Kv)>—KV>+K>v :L>—Kv>—|—K>V,

where L = J+ KV. Then the first part of the proof and the assumption
ensure that the weight wy(L”) is a coboundary. By Lemma 7.1, the

weight wy_1(L) is a coboundary. Thus, by the induction assumption,
we may find M in H;_o with L = MY~ — M~>V. By (7.3), we get

H = L> - K\/> +K>\/ — M\/>> _ M>V> o KV> +K>\/
— (M>—|—K)>V— (M>_|_K)v>

(where we have used Lemma I11.2.6). The conclusion follows.

If kis even, k = 20, ¢ > 1, we will proceed in the same way, by show-
ing that the assumption of Lemma 7.8 is satisfied. Indeed, by Lemma
7.5, we may assume that H is a [-invariant complete k-pseudofunction
(which we still denote by H by abuse of language). Then, by the as-
sumption and Lemma 7.7, the pseudoweight pi(H) is a coboundary.
By Corollary 2.7, this means that we may find a ['-invariant function
v on Xy such that, for any ab in X, 1, one has

pr(H)(ab) = v(aby) — v(aib).

In particular, px(H) is split and, by Lemma 7.8, there exists J, K in
Hi_ with H = J> + K>V. We conclude as in the odd case. O

7.4. Sequences of pseudofunctions. We will now prove a statement
for sequences of weights that may be seen as a generalization of Propo-
sition 7.4. The proof will rely on some improvements of the techniques
used above. It will also serve as a model for the proof of Proposition
9.3 below, which will be a further generalization that will play a crucial
role in translating the conclusion of Proposition 3.3 in the language of
pseudofunctions.

We start with a definition that is inspired by the language of Propo-
sition 3.3.

Definition 7.9. Let £ > 1. We say that a finitely supported sequence
(wj)j>1 in Vi is cohomologically trivial if there exists a finitely sup-
ported sequence (v;);>1 in Vi_; such that, for j > 1 and ab in X}, one
has

w; (ab) = vy (ab1> — vj_l(alb).
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This notion is invariant under some shifts.

Lemma 7.10. Let h > k > 1 and (w;);j>1 be a finitely supported

sequence in Vi. For j > 1 and ab in X, set wj(ab) = wj(aa). As-

sume the sequence (w});>1 is cohomologically trivial in V. Then, the
sequence (wj);>1 s cohomologically trivial in Vj.

The proof will use the easy

Lemma 7.11. Let k > 1 and u,v be I'-invariant functions on Xy.
Assume that, for any ab in Xp,1, we have

u(aby) = v(ayb).

Then, there exists a I'-invariant function w on X._1 such that, for
every ab on Xi, one has

u(ab) = w(ab) and v(ab) = w(aby).

Proof of Lemma 7.10. 1t suffices to prove the statement when h = k+1,
the general case following by an easy induction. If h = k£ + 1, we can
find a finitely supported sequence (v;);>o in Vj such that, for j7 > 0
and ab in Xj,1, we have

wjt1(abi) — vji(abi) = —vj(aid).

By Lemma 7.11, there exists a function u; on Xj;_; such that, for ab in
Xi_1, we have

wjt1(ab) — vjp1(ab) = —u;(arb) and v,(ab) = u;(aby).
Thus, for 7 > 1, we get
wj(ab) = u;(aby) — u;—1(a1b)
as required. O
The objective of the remainder of the Section is to show

Proposition 7.12. Let k > 1 and (H;);>1 be a finitely supported se-
quence of elements of Hy. Assume that the sequence (w(H;))j>1 1S
cohomologically trivial in Vi.. Then, there exists a finitely supported
sequence (Gj)j>o of elements of Hy_1 such that, for j > 1, one has

Hy =GV -G if k is even
=G)” -G if k is odd.

Note that the converse is also true by Lemma 7.1.
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7.5. Splitting sequences. The proof of Proposition 7.12 will follow
the same lines as the one of Proposition 7.4. In particular, we will show
that the assumption implies that we can apply the criterion of Lemma
7.8 to the pseudofunctions H;, j > 1. This is achieved in the following

Lemma 7.13. Let k > 2 be an even integer, k = 2¢, { > 1, and
(Hj)j>1 be a finitely supported sequence of elements of Hy. Assume
that the sequence (w(H;))j>o is cohomologically trivial in Vi,. Then, for
every j > 1, there exists F; and G; in Hi_q with

Hy=F>+G;".

We introduce new notation for the proof. We keep the language of
Subsection 7.3. For k£ > 4 an even integer, k = 2¢, £ > 2, and H a
complete k-pseudofunction, we define a family of functions on segments
of different sizes.

For ab in X,.1, we set

pr(H)(ab) = —Hy(a).
For 1 <i</¢—2and abin X,_;; 1, we set
@) =~ 3 He (a)

eX
Ibrcjlabl={b1}
d(c,b1)=i

And lastly, for : = ¢ — 1 and ab in X5, we set

pNH)ab) = Y He ()= Y. He (a).

ceX ceX
b1 €[bc] [bic]N[ab]={b1}
d(c,b)=¢ d(e,b1)=0—1

Thus, Definition 6.1 can be rewritten as, for ab in Xy,

(7.4) crH)(ab) = 3 (H) anaesinr)

If k =2, we set py(H) = wy(H), so that (7.4) still holds.

Proof of Lemma 7.13. Note that, for & = 2, the statement directly
follows from Definition 6.1, Lemma 7.5 and Lemma 7.8. Assume k > 4
and let (v;);>0 be a finitely supported sequence in Vj_; such that, for
ab in X and j > 1, we have

w(H;)(ab) = vj(ab1) — vj-1(aib).
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By Lemma 7.5, we can assume that (H;),;>; is a finitely supported
sequence of elements of Hy. Then, by (7.4), we get

{—1

vi(aby) —vj 1 (arb) =Y pi.(H;)(aziars i)
=0

~

-1

/—1
Ph(Hij)(aiaeer) = (ph(Hirg)(aiarir) — pi(H;)(a2i004541))
=1

/-1

= > pe(Hij)(aiaer) — vj(aby) + vj_y(arb),
=0

Il
=)

%

where, for 7 > 0 and ab in Xj;_1, we have set
—1 i

—_

/) Hiyj- 1) (@hyiGhyest)-

=1 0

ﬁ”

By Lemma 7.10, there exists a finitely supported sequence (v7);>o of
[-invariant functions on X;,, such that, for any j > 1 and ab in X4,

one has
-1

> ok (i) (@iacsr) = v (aby) — v)_ (a1b).

i=0
In particular, the function p{(H;) is split on X,;; and the conclusion
follows from Lemma 7.8. U

We can now conclude by using an induction argument.

Proof of Proposition 7.12. As for Proposition 7.4, we prove this state-
ment by induction on k > 1.

Assume k = 1. For j > 0, we let G be the 0-pseudofunction as-
sociated with the function v; on Xy (see Subsection II1.2.1). Then,
Definition 6.1, Lemma 7.1 and Corollary 7.3 imply that, for 7 > 1, we
have H; = G7Y) — G~.

Assume k = 2. For j > 0, we let G be the 1-pseudofunction as-
sociated with the function zy — v;(yx) on X; (see again Subsection
I11.2.1). Then, as above, for j > 1, we get H; = G}~ — G7".

Suppose now k > 3 and the statement holds for £k — 1. If k is odd,
we know from Lemma 7.5 and Lemma 7.8 that we may find sequences
(J;);j>1 and (K;),;>1 in Hy_ such that, for j > 1, we have

H; = Jj> + KJ?V = (J; + KJVH) + K]?V K]Vfl

As (H;);j>1 is finitely supported, we may assume that (J;);>; and
(K;)j>1 also are.
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For j > 1, we set L; = J; + K}, ;. Then, by Lemma 7.1, for ab in
X}, we have

wi-1(L;)(ab1) = wi(L])(ab)

= wi(H;)(ab) — wi(K5)(ab) + wi(K;7) (ab)

= wi(Hj)(ab) — wr—1 (K} )(a1b) + wr—1 (K}, ) (aby).
Therefore, by Lemma 7.10, the sequence (wy_1(L;));>1 is cohomologi-
cally trivial in V;_;. By the induction assumption, there exists a finitely
supported sequence (M;),>o of elements of H;_» such that, for j > 1,
one has

L= Mj>V — ij_>1.

By using Lemma II1.2.6, we get

Hj = L7 + K7 = K5 = (M7 = )™ = (M7, - K)7

and we are done.

Suppose now k is even. By Lemma 7.13, there exist sequences (J;);>1
and (K;);j>1 in Hy_1, which we may assume to be fintely supported,
such that, for 7 > 1, we have

Hy=J7 + K7V = (Jly + K7+ J7 = I3
We now set L; = Jj11 + Kj\-/, so that Lemma 7.1 gives, for ab in X},
wi-1(L;)(aby) = wi(L;~")(ab)

= wi(H;)(ab) — wk(Jf)(ab) + wk(ijﬁv)(ab)

= wi(H;)(ab) — wi—1(J;)(a1b) + wi—1(Jj41)(aby).
By Lemma 7.10, the sequence (wy_1(L;));>1 is cohomologically trivial
in Vj,_1. By the induction assumption, there exists a finitely supported
sequence (M;);>o of elements of H;_o such that, for j > 1, one has

L;= ij> — Mj>_V1.

By using again Lemma II1.2.6, we obtain

Hy = LY 4 J7 = TV = (MY = J%,)7Y — (MY = J9)>

as required. O

8. SIMPLIFICATION SCHEMES

Our objective in the next two Sections is to show Proposition 9.3,
which is a generalization of Proposition 7.12 for functions of two sets
of variables. Later, it will be used to check the consequences of Propo-
sition 3.3 when it is applied to the objects appearing in the Plancherel
formula in Proposition 5.16.
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In the present Section, as a preliminary, we study certain linear equa-
tions on functions on two variables. As analogous equations will also
appear later on tensor products of spaces of pseudofunctions, we re-
group those two studies in a common abstract formalism, which we
call the language of simplication schemes.

8.1. Definition and examples. We now introduce precisely this lan-
guage and we relate it to our two examples.

Definition 8.1. A simplification scheme is a family
(V_,V,V,L,R, L ,R,)

where V_, V and V., are real vector spaces and L and R are injective
linear maps V_ — V and L, and R, are injective linear maps V' — V.
with the following property: we have L, R = R, L and, for every v and
win V, if

Liv=R,w,

there exists v in V with v = Ru and w = Lu.

We set this definition in order to encompass the following two exam-
ples.

Ezxample 8.2. For k > 0, we set V_ = Hp_1, V = H and V = Hypiq.
Then, for G in V_ and H in V, we set

LG = G> RG = G\/>
L.H=H~" R.H=H"".
This defines a simplification scheme as follows from Lemma III.2.6 and

Lemma II1.2.8. The same construction works for pseudokernels instead
of pseudofunctions, by Lemma I1.2.4 and Lemma I1.2.5.

Example 8.3. For k > 1, weset V. = Vi1, V =V, and V, = Vi4y.
Then, for f in V_ and ab in X}, we set

Lf(ab) = f(arb) and Rf(ab) = f(aby).

In the same way, for g in V, and ab in Xj,1, we set
Lg(ab) = g(a:b) and R, g(ab) = g(ab).

This defines a simplification scheme by Lemma 7.11.

We extend this definition for £ = 0 in the following way. The space
Vp is the space of I'-invariant functions on Xq = X. We let V_; be the
space of ['-invariant functions on X which are constant on neighbours:
this space is the line of constant functions if I' is not bipartite; it has
dimension 2 else. If f is in V_;, we set Lf to be f, viewed as an
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element of Vg, and Rf to be the opposite of f, that is, for a ~ b in X,
Rf(a) = f(b). If gisin Vp, for a ~ b in X, we set

Lyg(ab) = g(b) and Ryg(ab) = g(a).
Again, one easily checks that this defines a simplification scheme.

To avoid heavy notation, in this sequel, we will only write (V_, V, V)
to mean a simplification scheme and we will use the letters L and R to
design the associated linear maps for every simplification scheme. We
will also simply write L instead of L, and R instead of R..

8.2. Tensor products. In the rest of the Section, we will describe
how the simplification rule of simplification schemes behaves in tensor
products. Here, we start by introducing precisely our notation for
tensor products.

Let V and W be vector spaces. We write V @ W for the algebraic
tensor product of V with W. If V.= W, we write @2V for V@ V. If X
is another vector space and ¢ : V x W — X is a bilinear map, we still
write ¢ : V®@W — X for the linear map such that p(v@w) = ¢(v, w),
for v in V and w in W. If V' and W’ are other vector spaces and
x:V = V' and ¢ : W — W’ are linear maps, we denote by u — yu
the natural associated linear map V@ W — V' ®@ W', so that, for v in
V and w in W, one has x(v ® w)y = (xv) ® (Yw).

The following is standard:

Lemma 8.4. Let V, V' and W be vector spaces and ¢ : V. — V' be a
linear map. Then the linear map u — pu, VRW — V' QW has kernel
(ker p) @ W and range (¢V) @ W.

As in Section 3, for h, k > 1, we write V}, for the space of ['-invariant
functions on Xy and W, for the space of (I' x I')-invariant functions
on X, x Xj. We identity W), with the tensor product Vj, x Vj, in the
standard way. More precisely, for v in V,, and w in Vj, we consider
v ® w as the function on X} x X defined by

(v@w)(ab, zy) = v(ab)w(zy), ab,xy € Xj.
8.3. Tensor products of simplification schemes. In the abstract

framework of simplification schemes, we establish the following result
that will allow us to solve functional equations with two variables.

Proposition 8.5. Let (V_,V,V,) and (W_, W, W) be simplification
schemes. Take g,h in V@ W, and j,k in V., @ W. Assume we have

Lg+ Rh+ jL+kR=0.
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Then, there exista m V- Q@ W, , bin V., QW_ and c,d,e, f inV QW
such that

g=Ra+cL+dR h=—-La+elL+ fR
j=0bR— Lc— Re k=—Lb— Ld— Rf.
We will split the proof into several steps.

Lemma 8.6. Let (V_,V,V,) and (W_,W,W,) be simplification sche-
mes. Asssume f isin V_ Q@ Wy and g,h are in V ® W and we have

Lf =gL+hR.
Then, there exist a in V@ W_ and b,c in V_ @ W with

f=bL+cR
g=aR+ Lb
h=—al + Lec.

Proof. The relation Lf = gL + hR implies that gL + hR has trivial
image in (V/LV_) @ W,.. Therefore, by Definition 8.1 and Lemma 8.4,
there exists a in V ® W_ such that g — aR and h + aL both belong to
LV_® W. In other words, we can find b,c in V_ @ W with

g=aR+ Lband h = —alL + Lc.

We get
Lf =gL+hR = LbL+ LcR

and the conclusion follows. O

Lemma 8.7. Let (V_,V,V.) and (W_,W,W,) be simplification sche-
mes and f,qg,h,j be in V& W. Assume we have

LfL+ RgL+ LhR+ RjR = 0.
Then, there exist a,d in V_ Q@ W and b,c in V @ W_ such that

f=Ra+ bR g=—La+cR
h = Rd—bL j=—Ld—cL.

Proof. We write the starting equation as
(Lf+ Rg)L+ (Lh+ Rj)R = 0.
By Definition 8.1 and Lemma 8.4, there exists k in V, @ W_ such that
Lg+ Rg=kR and Lh+ Rj = —kL.
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By Lemma 8.6, we can find u,z in V_ ® W and v,w,y,2z in V @ W_
with

k= Lv 4+ Rw —k=Ly+ Rz
f=Ru+vR h=Rx+yL
g=—Lu+wR j=—Lx+zL.

By looking at the two equations above which involve k, we get
Lv+ Rw+ Ly + Rz = 0.

By Definition 8.1 and Lemma 8.4, we know that there exists [ in V_ ®
W_ with
v+y=Rland w+ z = —LI,

which yields
f=Ru—yR+ RIR h= Rx + yL
g=—Lu—2zR—LIR j=—Lx+ zL.

The result folllows with a = u + (R, b= —y, c = —z and d = x. 0

Proof of Proposition 8.5. The assumption implies that Lg + Rh has
trivial image in V. ® (W, /(LW + RW)). Therefore, by Definition 8.1
and Lemma 8.4, there exists [ in V_ ® W, such that ¢ — Rl and h + LI
both belong to V' & (LW + RW). We choose go, g1, ho, b1 in V@ W
with
g = Rl +90L + glR and h = — Ll + hoL + h1R
In the same way, we can find m in V, @ W_ and jo, j1, ko, k1 in V& W
satisfying
j=mR+ Ljo+ Rj; and k = —mL + Lky + Rk;.
The assumption now reads as
LgoL + Lg1 R+ RhoL + RhiR + LjoL + RjyL + LkoR + Rk1R = 0,
which we rewrite as
L(go + jo)L + R(ho + j1) L + L(g1 + ko) R + R(h1 + k1) R = 0.

We can therefore apply Lemma 8.7. This tells us that we may find u, x
inV_®W and v,w in V ® W_ with

go+jo=Ru+vR ho + j1 = —Lu + wR
g1+ ko= Rx —vL hi+ ki =—Lx —wL.
We get
j=mR+Ljy+ Rjs = mR—Lgy+ LRu+ LvR — Rho— RLu+ RwR
=mR — Lgy+ LvR — Rhg + RwR
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and in the same way,

k = —mL+ Lko+Rky = —mL—Lg+ LRx— LvL—Rhi—RLx— RwL
=-—mL— Lgy — LvL — Rhy — RwL.
Since g = Rl + goL + g1 R and h = — Ll + hoL + h1 R, the result follows
with

a=1 c=qo d=gq
b=m+ Lv+ Rw e=hy f=h.

O

8.4. The case of pseudofunctions. We now translate Proposition

8.5 for our concrete examples and we add the description of the bound-
ary cases. In case of pseudofunctions, as in Example 8.2, we get

Corollary 8.8. Let h,k > —1, G, H be in Hp @ Hirq and J, K be in
Hpi1 @ Hy. Assume we have

>G+V>H+J>+K>\/ZO.

Then, if h and k are both > 0, there exist A in Hp_1 @ Hiy1, B in
Hpi1 @ Hi—1 and C, D, E, F in H, ® Hy such that

G="YA+C”+ D H=-"A+E" +F
J=B"->C-"E K=-B>->D-"F

If h > 0 and k = —1, there exist A in Hp_1 ® Ho and B,C in
%h X H_l with

K—-J="B+"7°C
G=""A+B"
H=-"A+C".
If h =k = —1, there exists A in H_1 ® H_1 with
G-H=A" and K —J ="A.

Proof. In case h,k > 0, this is Proposition 8.5. In case h > 0 and
k = —1, the equation reads as

"G+ Y"H=(K—-J)

and the conclusion follows from Lemma 8.6. Finally, if h = k = —1,
we have

(G- H) = (K~ J)

and the conclusion is obvious. O
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We also include the translation of Lemma 8.6 which we shall need
later.

Corollary 8.9. Let h,k > 0. Asssume F is in Hp_ 1 @ Hir1 and G, H
are in Hyp @ Hyp and we have

"F =G+ H.

Then, there exist A in Hp @ Hi_1 and B,C in Hp_1 @ Hy with

F=DB>+C"
G=A""+"B
H=-A"+"C.

8.5. The case of functions on segments. In the case of Example
8.3, we get

Corollary 8.10. Let h,k >0, g,h be in Wy, ,11 and j, k be in Wiy i.
Assume that, for pq in Xp11 and xy in X1, we have

9(p1q, zy) + h(par, xy) + j(pq, v1y) + k(pg, xy1) = 0.

Then, if h and k are both > 1, there exist a in Wp_1 g41, b in Wiy 1
and c,d, e, f in Wy such that, for pq in X}, and xy in X1,

9(pq, vy) = a(pq:, vy) + c(pq, v1y) + d(pg, vy1)

h(pq, zy) = —a(p1q, zy) + e(pq, 1Y) + f(pq, vy1)
and, for pq in Xpi1 and xy in Xy,

j(pq, vy) = b(pq, xy1) — c(p1q, vy) — e(pqr, vy)

k(pq, ry) = —b(pq, 1y) — d(p1q, vy) — f(pq1, vy).

Ifh > 1 and k =0, there exist a in Wy_11, b in Wiy 1 and c,d, e, f
in Who such that, for pq in X; and X,

9(pq, xy) = alpqr, zy) + c(pq, y) + d(pq, r)
h(pq,zy) = —a(prq, zy) + e(pq, y) + f(pq, v)

and, for pq in Xp.1 and xy in X,

j(pg, x) = b(pg,y) — c(p1q, ¥) — e(pqr, x)
k(pg, z) = —=b(pq,z) — d(p1q,z) — f(pqr, ®).
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If h =k =0, there exist a in W_11, b in Wy _; and c,d, e, f in Wy
such that, for pq,xy in X,
9(p, vy) = alq,zy) + c(p,y) + d(p, x)
h(pg, zy) = —a(p, zy) +e(p,y) + [ (p, z)
i(pg, x) = bpg, y) — c(q, ) — e(p, x)
k(pg, ©) = —b(pq, x) — d(q,z) — f(p, x).
We also state the results in degenerated cases.

Corollary 8.11. Let k > 0, g,h be in Wiy and j be in Wiy ;.
Assume that, for pq in X1 and x in X, we have
9(p1g, %) + h(pgi, ) + j(pg, ) = 0.
Then, if k > 1, there exist a in Wi_1o and b,c in Wy, _y such that,

for pq in Xy and x in X,

9(pg, ¥) = a(pgi, ) + b(pg, x)

h(pQ7 I) = _a(p1Q7 .fl'/') + C<pQ7 37)
and, for pq in Xii1 and z in X,

j(pg,x) = =b(prg, x) — c(pqr, ©).

If k =0, there exist a in W_, o and b, ¢ in Wy _1 such that, for pq in
X1 and x in X,

g(p, ) = a(q,r) + b(pg, r)
h(pq, z) = —a(p, ) + c(pq, x)
j(pg,x) = —b(q, z) — c(p, x).

Proof. This is a direct consequence of Lemma 8.6. U

9. TENSORS PRODUCTS OF PSEUDOFUNCTIONS

In this Section, we state and prove Proposition 9.3, which will be our
main tool for translating the result of Proposition 3.3 in the language
of pseudofunctions.

9.1. Sequences of tensors. We define the double weight of tensors,
which is obtained directly from the weight construction. We introduce
a notion of cohomological triviality for sequences of elements of W}, x,
h,k > 0, that is inspired by the language of Proposition 3.3. Then, we
state an analogue of Proposition 7.12.

For k > 0 and v in Vj, we set v to be the function ab — v(ba) on
Xj. Let still wg be the weight of pseudofunctions from Definition 6.1.
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Definition 9.1. For h,k > 0, and H in H; ® H;, we define the double
weight wy, 1, (H) as the element w, Hw)' of W . In other words, for any
J in Hp, K in Hy, ab in X}, and xy in X}, one has

(] @ K)(ab, xy) = wi(J)(ab)wi(K)(yz).
When h = k, we write @, for wy, .

Definition 9.2. Let h,k > 1. We say that a finitely supported se-
quence (w;);>1 in Wy is cohomologically trivial if there exist finitely
supported sequences (u;);>o in Wi, x—1 and (v;);>o in Wj,_y ;, such that,
for any j > 1 and ab in X}, and zy in X}, one has

wj(ab, xy) = u;(ab, x1y) — w;—1(ab, xy1) + v;(aby, xy) — vj_1(a1b, zy).

The following statement is a tensor analogue of Proposition 7.12. Its
proof will last until the end of the Section.

Proposition 9.3. Let k > 1 and (H;);>1 be a finitely supported se-
quence of elements of ®*Hy. Assume that the sequence (wy(H;))j>1
1s cohomologically trivial in Wy. Then, there exist finitely supported
sequences (F;)j>o in Hi @ Hi—1 and (G;)j>0 in Hrg—1 @ Hy such that,
for 3 > 1, one has

Hy=FY —F7+"G; -G if k is even
= }FJ\/> — F]>—\i + >\/Gj — V>Gj_1 ka’ 15 odd.

Note that the converse is also true by Lemma 7.1.

9.2. Shortening the dependence. We will prove Proposition 9.3 by
following the same lines as for proving Proposition 7.12. In particular,
we will need the following analogue of Lemma 7.10:

Proposition 9.4. Let ¥ > h > 1, k' > k > 1 and (w;);>1 be a
finitely supported sequence in Wy . For j > 1, ab in Xy and xy in
X, set wi(ab, vy) = wj(aan, ypy). Assume that the sequence (wf);>1
is cohomologically trivial in Wy . Then, the sequence (w;);>1 is co-
homologically trivial in W, .

This result will follow from several applications of Corollary 8.10 and
Corollary 8.11. We summarize them in the technical

Lemma 9.5. Let h > 1, k > 0 and (u;);>0 be a finitely supported
sequence in Wy, . Assume that there exist a finitely supported sequence
(uj)j>1 i Wi and finitely supported sequences ()1, (Bj)j>1,
(7j)j>1 and (0;)j>1 in Wy_1 such that, for any j > 1, ab in X} and
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xy in Xy, one has

(9.1) uj(ab, xy) = ui(ab, xy1) + a;(arb, vy) + B;(aby, vy)
wj—1(ab, vy) = ui(ab, 21y) + v;(a1b, xy) + d;(aby, vy).
Then, there exist finitely supported sequences (@;)j>1 in Wy_1) and

(¢)j>1 in Wh_oy such that, for any j > 2, ab in X1 and zy in X1,
one has

aj(ab, x1y) — y;(ab, xy1) + Bj-1(ab, x1y) — 0;-1(ab, xy1) =
pjlab, x1y) — pj-1(ab, xy1) + ¥;(aby, 1y) — ¥j-1(arb, z1y).
Note that, when h = 1 or k = 0, there is a slight abuse of notation in

(9.1) which should be understood by means of the language of Example
8.3.

Proof. We fix h > 1 and we prove the result by induction on k& > 0.
For k =0, (9.1) says that, for any j > 1, ab in X}, and zy in X;, one
has

uj(ab, v) = uj(ab, x) + a;(arb, x) + B;(aby, x)

ujfl(ab7 .CI?) = U;(Clb, y) + P)/j((zlb, l’) + (Sj (abl, l’)
If j > 2, we get
u;—l(aba z) + aoj_1(arb, ) + B_1(aby, )
= uj(ab,y) + vj(arb, x) + d;(aby, x).

Thus, Corollary 8.11 says that we may find v; in Wy, and o and 3;
in Wj,_1,_1 such that, for ab in X;,_; and x in X, one has

aj_1(ab, x) — v;(ab, z) = v;(aby, x) + o;(ab, x)

Bj-1(ab, x) — 6;(ab,x) = —v;(a1b, x) + Bj(ab, ).

If j is large, we assume v; = 0 and o, = 8} = 0. For j > 2, ab in X} 4
and zy in Xy, we get

(92) aj(ab,y) —v;(ab,x) + Bj-1(ab,y) — ;-1 (ab,x) =
Yj+1(ab,y) + vj1(aby, y) + o, (ab, y) — v;(ab, x)
+ 0;(ab, y) — v;(ar1b,y) + Bj(ab,y) — d;_1(ab, x).
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We define a finitely supported sequence (g;);>1 in Wj,_q 1 as follows.
For 7 > 1, abin X};,_; and x in X, we set

E]'(CLZ)? LL‘) - = Z (a;-i-l(ab? 33) + B@l(ab7 x))
1>j+1
i—j even

- Z (Oé;Jrl (ab7 y) + 61/(0’67 y))?
i>j+1
i—j odd
where y is any neighbour of x. Thus, for j > 2, ab in X};,_; and zy in
X1, we get
o’ (ab,y) + B(ab,y) = €;(ab,y) — ;-1(ab, ),
hence, from (9.2),

aj(ab,y) — v;(ab, x) + Bj—1(ab, y) — 0;-1(ab,z) =
Yi+1(ab,y) — y;(ab, x) + 6;(ab, y) — d;-1(ab, )
+vj41(aby,y) — v;(arb,y) + €;(ab, y) — €;_1(ab, z)
and the conclusion follows by setting, for 7 > 1 and = in X,
p;(ab,x) = yj41(ab, x) 4 0(ab, ) + £;(ab, z), ab € X1,
Y;(ab, x) = vj41(ab, ), ab € Xp_o.

We now deal with the case where £ > 1. To avoid using the same
abuse of notation as in the statement, we separate the cases £k = 1 and
k> 2.

For k =1, (9.1) says that, for any j > 1, ab in X}, and zy in X, one
has

uj(ab, xy) = uj(ab, v) + a;(aib, xy) + B;(aby, vy)
uj—1(ab, xy) = ui(ab,y) + v;(arb, xy) 4 0;(aby, xy).
If 7 > 2, we get

w;_y(ab, x) 4 aj_1(a1b, vy) + Bj_1(aby, vy)
= u;(ab, y) + vj(a1b, xy) + 0;(aby, zy).
Thus, Corollary 8.10 says that we may find v} in Wj, _y, v; in Wy,
and o, 81,7, 07 in Wy_1 o such that, for ab in Xj,_; and zy in X, one
has
(9.3) aj_i(ab, zy) — v;(ab, xy) = v;(aby, xy) + o’ (ab,y) — ~;(ab, x)
Bi-1(ab, xy) — 6;(ab, xy) = —v;(arb, xy) + B;(ab,y) — ;(ab, )
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and, for ab in X}, and xy in X7, one has

wj(ab, x) = uj(ab, v) + o (arb, x) + Bj(ab, )

w;_y(ab, x) = uj(ab,y) + vi(arb, x) + 05 (aby, ).
If j is large, we assume v} = 0, v; = 0 and o} = 3} = v, = ) = 0.
Then, in view of the first case, we may find finitely supported sequences

((p;)jzl in Wj,_1 0 and (wg)jzl in Wj,_a such that, for any j > 2, ab in
X1 and xy in X7, one has

a(ab,y) — v;j(ab, z) + B;_,(ab,y) — &;_,(ab, x) =
@i(ab,y) — @1 (ab, x) + Yj(aby,y) — ¥ (arb,y).

Besides, for j > 2, ab in X;,_; and zy in X, we get, from (9.3),

aj(ab, x1y) — y;(ab, xy1) + Bj—1(ab, x1y) — 0;-1(ab, xy1) =
Vi+1(ab, 21y) + vjpa(abi, 21y) + oy (ab,y) — iy (ab, v1) — y5(ab, wy1)
+ 0;(ab, 21y) — vj(arb, 21y) + B;(ab,y) — d%5(ab, x1) — 6;_1(ab, xy1).
The conclusion follows by setting, for 7 > 1 and xy in X,

@;(ab, xy) = vi11(ab, zy) + 0;(ab, zy) + ¢, (ab,y), ab € X1,
¥j(ab, zy) = vjy1(ab, xy) + ¥4 (ab, y), ab € Xp.
Now, we assume that & > 2 and the result holds for £k — 1. Let

us show that it also holds for k. This is analogous to the case above.
Indeed, (9.1) says that, for any 7 > 1, ab in X}, and zy in X}, one has

uj(ab, xy) = ui(ab, xy1) + a;(arb, vy) + B;(aby, vy)
wj_1(ab, vy) = ui(ab, 21y) + v;(a1b, xy) + d;(aby, vy).

If j > 2, we get

/

w;_q(ab, xy1) + aj_1(a1b, zy) + Bj-1(abr, xy)
— u}(ab, z1y) + vj(arb, xy) + 0;(aby, xy).

Thus, Corollary 8.11 says that we may find v} in Wi, o, v; in Wj,_g4

and 04;-, },7;-,5;- in Wj,_1 k-1 such that, for ab in X;,_; and zy in Xy,

one has

(9.4)
aj_1(ab, xy) — v;(ab, vy) = v;(aby, vy) + oj(ab, x1y) — ~;(ab, xy,)
Bj-1(ab, xy) — 0;(ab, xy) = —v;(a1b, xy) + Bj(ab, x1y) — &}(ab, xy:)
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and, for ab in X, and zy in X;_1, one has
wj(ab, vy) = uj(ab, xy1) + o (a1, xy) + Bj(aby, zy)
w;_y(ab, zy) = uj(ab, v1y) + 7 (arb, vy) + §;(ab1, zy).

If j is large, we assume uj = 0, v; = 0 and o} = B} = 7} = J; =
0. Then, in view of the induction assumption, we may find finitely
supported sequences (¢});>1 in Wiy -1 and (¢5);>1 in Wi %1 such
that, for any 7 > 2, ab in X} ;1 and zy in X}, one has
a;(ab, 1Y) — 7;‘(@5’ Ty1) + B}_l(ab, 1Y) — 5;‘—1(aba Ty1) =
@;(ab, T1Y) — 90;_1(ab, Ty) + w}(&bl, 1Y) — 7#}_1(@15, 1Y)
Besides, for j > 2, abin X;,_; and zy in X 1, we get, from (9.4),

aj(ab, x1y) — vj(ab, zyr) + Bi—1(ab, x1y) — d;-1(ab, xy1) =
Vi+1(ab, x1y)+vji1(abi, v1y)+aj (a1b, vay) =74 (ab, 21y1)—7;(ab, xy1)
+0;(ab, x1y) —vj(arb, x1y) + Bj(ab, xay) — 85 (ab, v1y1) — 0;-1(ab, xy1).
The conclusion follows by setting, for j > 1 and zy in X,
@;(ab, xy) = v11(ab, zy) + §;(ab, xy) + @, (ab, x1y), ab € Xp_,
¥j(ab, vy) = vjia(ab, xy) + ¥}y, (ab, 21y), ab € Xpo.
[

Proof of Proposition 9.4. We first deal with the case where b/ = h + 1
and k' = k. Then, by Definition 9.2 and the assumption, there exists
finitely supported sequences (u;);>0 in Wit1 -1 and (v;)j>o in Wiy
such that, for any 5 > 1, ab in X;,; and zy in X}, one has

wj(aby, ry) = uj(ab, x1y) — u;—1(ab, xy1) + v;(aby, xy) — vi_1(a1b, zy).

Then, Corollary 8.10 says that we may find a; in Wy,_1 5, 55 in Why1 k-2
and v;,9;,€;,¢; in Wy —1 such that, for ab in X}, and zy in Xy,

(9.5) vj_1(ab, zy) = aj(aby, zy) + v;(ab, z1y) + 6;(ab, xy)
wj(ab, vy) — v;(ab, xy) = —a;(ab, xy) + €;(ab, x1y) + ;(ab, xy)
and, for ab in X, and zy in X;_q,
—uj(ab, zy) = Bj(ab, zy1) — vj(arb, xy) — €;(aby, zy)
u;j—1(ab, vy) = —p;(ab, x1y) — 0,(arb, xy) — (;(aby, xy).

By Lemma 9.4, the latter tells us that we may find finitely supported
sequences (¢;);j>1 in W1 and (¢;);>1 in Wjy_1 x—1 such that, for any
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J > 2, abin Xj and zy in X}, one has

(9.6) ~;(ab, z1y) + 0,(ab, xy1) + €;_1(ab, 1Y) + (j_1(ab, xyr) =
pj(ab,z1y) — @j_1(ab, xyr) + ¥j(abi, z1y) — i1 (arb, z1y).
Besides, by using (9.5), we get, for j > 1,

wj(ab, xy) = aji1(aby, vy) + 7j41(ab, 21y) + dj41(ab, zys)
— aj(arb, zy) + ¢;(ab, x1y) + ¢;(ab, xy1).
By using (9.6), this gives

wj(ab, vy) = aji1(aby, vy) — aj(aid, xy) + ;i1 (ab, x1y) — @;(ab, xy1)
+ Yj(aby, 21y) — ¥;(aib, x1y)
as required.
Now, we can obtain the case where /' = h and k' = k + 1 by sym-
metry. Indeed, in view of Definition 9.2, a sequence (w;);>1 in W, is
cohomologically trivial if and only if the sequence of functions in Wi,

(ab7 .Z'y) = wj(Q.fE, ba)a .7 > 17

is cohomologically trivial. The general case follows by an easy induc-
tion. U

9.3. Splitting sequences. We pursue the proof of Proposition 9.3 by
proving an intermediate result, which will play the role of Lemma 7.13
in the proof of Proposition 7.12.

To state it, we introduce notation. For ¢ > 0 an integer, we set
r(i) =0ifi=0,r¢ @) =1ifi=1and r(i) =2(i —1)if 1 > 1. As
in Section I11.2.2, if H is a pseudofunction we write H* for H>V. The
purpose of this Subsection is to establish the following

Lemma 9.6. Let k > 4 be an even integer, k = 2¢, { > 2. Suppose, for
any 0 < i < {41, we are given a finitely supported sequence (H; ;);>1
in Hpr1-i) @ Hew). For j =1, we set

-1
H; = Harjk +TH T Z FH T T Y H g,

=2
which is an element of @*Hy. Assume that the sequence (w(H;))>1
1s cohomologically trivial in Wy. Then, for any 0 < i < h, there exist
Jinitely supported sequences (D ;) j>1 and (Ej;)j>1 in Heer1—i-1 M)
and (Fij)j>1 and (Gij)j>1 in He@p1- ® Heg-1 such that, for j > 1,
one has

Hij="Dij+ " E; + F;+G;}.



82 JEAN-FRANCOIS QUINT

To prove this, we will aim at applying the tensor version of the
criterion of Lemma 7.8. To this purpose, we introduce the notion of a
split element of W), for h, k > 0 (see Subsection 1.8.7 and Subsection
7.3 for the notion of a split elements of Vi, & > 0). In the language of
Example 8.3, we say that an element w in W}, is split if it belongs to
LWy _1 g+ RWh_1 g +Wh g1 L+W), ,—1 R. More concretely, for example,
if h, k > 1, this means that there exists vy, v; in Wj,_1; and wp, w; in
Wi k-1 such that, for ab in X}, and xy in Xy,

u(ab, xy) = vo(aby, zy) + v1(a1b, xy) + wo(ab, xy, ) + w1 (ab, 1y).
If h =0 and k > 1, this means that there exists v in W_, ; and wg, w;
in Wy ,—1 such that, for ab in Xj, and zy in X,
u(a, xy) = v(a, zy) + wo(a, zyr) + wi(a, x1y).
To study triangular families of tensors as in Lemma 9.6, we shall use

Lemma 9.7. Let k > 1 and, for 0 < i <k, let (w;;);j>1 be a finitely
supported sequence in Wy_; ;. For j > 1 and ab,zy in X, we set

k
w;(ab, zy) = Z w; j(a0k—i, Yiy).-
=0

Assume that the sequence (w;)j>1 is cohomologically trivial in Wi,.
Then, for every j > 1 and 0 < i < k, the function w;; is split in
Wi

Proof. Let 0 < h < k+1 be the least integer such that, forall h < i < k,
for all j > 1, w;; = 0. We will show the statement by induction on h.
For h = 0, there is nothing to prove.

Assume h = 1. By assumption, the sequence of functions in W,

(a'bv xy) = Wo, 5 ((lb, y)a ] Z 17

is cohomologically trivial. By Propositon 9.4, the sequence (wyp ;);>1
is cohomologically trivial in Wy . In other words, by Definition 9.2,
there exist finitely supported sequences (u;);>0 in Wy 1 and (v;);>0 in
W10 such that, for any j > 1, ab in X; and xy in X, one has

wo,j(ab, y) = u;(ab, y) — uj_1(ab,x) + v;(aby, y) — vj-1(aib,y).
Thus wy ; is split in Wy as required.
Assume h > 2 and the result is true for h — 1. By assumption, the
sequence of functions in Wi,
h—1

(aba ='Uy) — Zwi,j(aak—ia yzy)ﬂ j Z 17
1=0
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is cohomologically trivial. By Definition 9.2 and Propositon 9.4, there
exist finitely supported sequences (u;)j>o in Wy p—o and (vj);>0 in
Wi_1 41 such that, for any j > 1, ab in X} and zy in Xj;_;, one
has

h—1
(9.7) Zwm(aak—i»yz‘y) =
i=0

u;(ab, x1y) — uj—1(ab, zyr) + v;(aby, xy) — vj_1(a1b, xy).

We temporarily consider each w; ;, 0 <4 < h—1, as a function from
X towards V;. From (9.7), we get, for ab in X,

Wh—1,5 (aak,hﬂ) — Uj (abl) + vj,l(alb) € LVh,g + RVh,Q

(where we have used the notation of Example 8.3). Thus, Lemma
7.10 and Lemma 8.4 say that there exist a finitely supported sequence
(v5)j>0 in Wy_p 1 such that for any j > 1 and ab in Xy 51, one has

wh-1,5(ab) — U;‘(abl) + U}—1(alb) € LVy_o + RVj_s.

In other words, there exist finitely supported sequences («;);>1 and
(ﬁj)jgl in sz—h—f-l,h—? such that, for j Z 1, ab in Xk—h+1 and Ty in
Xp_1, one has

wp—1,j(ab, zy) = v}(aby, vy) — vi_ (a1, vy) + a;(ab, zy1) + B;(ab, 71y)

and the function wy_1 ; is split in Wj_p11 p-1.
Besides, we set v; = a1+ ; and we rewrite the latter as, for j > 1,
abin Xy_pq and zy in Xp,_q,

why-1,5(ab, xy) = vi(aby, vy)—vj_; (a1b, 2y)+aj(ab, xy,) =1 (ab, 21y)
+;(ab, z1y).
From (9.7), we get, for 7 > 1 and ab, zy in Xy,

h—2

Z w j(aak—;, yiy) + vj(aar—ni1, Yn—2y) = w;(ab, yn—2y)
i=0

— uj-1(ab, yn-1y1) + vj(aby, yn-1y) — vi-1(a1b, yn-1y)
_ U;- (aakih’ yhfly) + U;_l(alakchrla yh*ly) - Oéj(aak*thl’ yh*lyl)
+ (]{j+1(aak—h+1a yh—Qy)7
so that the sequence in Wy, 1,
h—2

(ab, zy) — Z wij(aak—i, yiy) + vj(@@k—p+1, Yn-2y), J =1,
i=0
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is cohomologically trivial. From the induction assumption, it follows
that the functions wp_s; + v;R and w; ;, 0 < i < h — 3 are split. The
conclusion follows. O

To compute the weights of large orthogonal extensions, we shall use

Lemma 9.8. Let k > 0 and H be in Hy. Fiz h > 0 even.
If k is even, for ab in X, we have

Wik <H+h> (ab) = wy(H)(aby).

If k is odd, for ab in Xp, 11, we have

Wh+k+1 <H+h+1> ((lb) = wk(Hv)(abhH).
Proof. This is a direct consequence of Lemma 7.1. U

We now define the tensor squares of the objects introduced in Sub-
section 7.5. There, given k > 2 even, k = 2¢, ¢ > 1, and a complete
k-pseudofunction H, we have defined functions p}(H) on X, ;; for
any 0 <i</—1.

Now, for k,m > 2 even, k—% (>1,m=2n,n>10<h</(-1
and 0 <i<n-—1, welet ka "Hk®H — Wi_h+1n—it1 be the linear
map such that, for H in 7'[1@7 J in ’Hm, abin Xy .1 and xy in X,,_;1q,
one has

o (H® J)(ab, zy) = pp(H)(ab)pl, (H)(y).

From (7.4) and Definition 9.1, we get, for H in H, ®7—N[m, ab in X, and
ry in X,,,

(9.8) @im(H)(ab, zy) = Z UZ,’;(H)(G%WMH,yn+z’+192i)-

0<h<f—1
0<i<n—1

As in the proof of Lemma 7.13, this yields

Lemma 9.9. Let k,m > 2 be even, k =2(, { > 1, m =2n,n > 1. Let
(H;)j>1 be a finitely supported sequence in Hy @ H,,. For j > 1, ab in
X and zy n X,,, set

wj(ab, xy) = Z UZ:;(Hh+i+j)(ahaé+layn+1yi) — @rm(H)(ab, zy).
e

Then, the sequence (w;);j>1 s cohomologically trivial in Wi, .
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Proof. This is a direct computation. Indeed, by (9.8), for j > 1, we
have, for ab in X, and zy in X,,,

Z O-Z::n<Hh+i+j)(aha€+17 Yn+1Yi) — Wrm(H ) (ab, zy) =

0<h<l(—1
0<i<n—1

Z UZ:fn(Hh”ﬂ) (anet1, Yerayi) = O-Z,’rin(Hj) (A2n@eyhi1s Ynyiv1Y2i)-

0<h<(—1
0<i<n—1

For h, as above, we write

UZ,’jn(HthiJrj)(ahaéHa Yni1Yi) — 02,7;(Hj)(a2haﬁ+h+la Untit1Y2i) =
h—1

Z g Z,’fn(H hetitj—p) (QhtpQetpt1s Yn+1Yi) =0 Z,’fn(H htitj—p—1)(Ahip1Qesp+2, Yni1Yi)
p=0

i—1
hyi hyi
+Z O—k;n(Hi-i-j—q) (@2hQr+ht1, Yntg+1Yita) _Ok,;n(HH—j—q—l) (@2hQe4ht1, Yntgr2Yita+1)-
q=0

The conclusion follows by Definition 9.2. U

We will need an adapted version of Lemma 9.9 to deal with the
boundary terms appearing in Lemma 9.6.

Fork>2 k=20,0>1,0<i</{¢{—1,and m € {0,1}, we let
Qz,m CHy @ Hey — WZ+1—i,m and Hin,k CHo Q@ Hy — Wm7g+1_i be the

linear maps defined by, for H in Hy, J in H,,, ab in X, _,,
O (H @ J)(ab, xy) = pi(H)(ab)wn(J)(2y) = 0;,,,(J @ H)(zy, ab).

If Hisin Hy ® H,n, from (7.4), we now get, for ab in X} and zy in
X,
-1
D (H)(ab, 2y) =Y 0} (i, 2y),
i=0
which, as above, yields

Lemma 9.10. Let k > 2 be even, k = 2(, { > 1, and m be in {0,1}.

Let (Hj);>1 be a finitely supported sequence in Hy @ H,,. There exists
a finitely supported sequence (v;) ;>0 in Wi_1,, such that, for any j > 1
and ab in Xy and xy in X,,, one has

-1

N O (Hij) (@111, 2y) — @ (H)(ab, ) =
=0
v;(aby, xy) — v;_1(a1b, vy).
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Finally, we will need to complete the information given by Lemma
7.8 in case k =0, 1.

Lemma 9.11. Let H be in Hy. Then wo(H) is split in Vo if and only
if there exists G in H_1 with H = G~ .

Let H be in Hy. Then wy(H) is split in Vi if and only if there exists
F.GinH_y withH=F>+G~V.

Proof. Recall the conventions on pseudofunctions with low degree from
Subsection II1.2.1 and Subsection I11.2.2. If H in Hy, then H is the 0-
pseudofunction associated with the function wo(H) on Xy. Then saying
that H is in H~, is saying that wo(H) is constant on neighbours.

If Hisin My and H = F~+G~Y for F, G in Hg, then wy(H) is split by
Lemma 7.1. Conversely, let u, v be in Vy with wy (H)(ab) = u(a)+v(b),
ab € X;. Then, still by Lemma 7.1, we have H = > — G~V where I
and G are the 0-pseudofunctions associated with u and v. O

We can now conclude the

Proof of Lemma 9.6. By Lemma 9.8, for j > 1 and ab,zy in Xj, we
have

wi(H;)(ab, xy) = wro(Hoz)(ab, y) + wr—o1(HY;)(abs, y17)
/-1

+ Z @a(e—i),2(i—1)(Hij) (abai, Too—ip1)y) + @12 (¥ Hej)(aar, z2y)
=2

+ @ox(Hetr,5)(a, 7y).
By Lemma 7.5, we can assume that, for j > 1, we have
Hy; € 7‘le ® Ho
Hy; € Hi o @ H,
H; ;e Hioi ® ﬁk72(i71) 2<i<(-1
Hy; e Hi® '}qk_g
Hyp; € Ho® ﬁk

By the assumption, Proposition 9.4, Lemma 9.7 and Lemma 9.10, we
can find finitely supported sequences (w; ;)j>1 in Wyp1—;,, 0 <@ < 0+1,
such that, on one hand, the sequence in Wy 441,

l+1

(CLb, xy) = Z wy (abia x@—‘rl—iy)v .] 2 ]-7
=0
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is cohomologically trivial and, on the other hand, for 5 > 1, the func-
tions

eg,o(Ho,j) — Wo,j 1=0
‘92—2,1(ij) — W, 1=1
(9.9) Ug(e—z‘)g(i—l)(HLj) — Wi 2<i<(-1
Hg,k—Q(VHEJ) — Wy 5 1=/
98,k<He+1,j) — Wet,j 1=0+1

are split in Wyyq_;; for all 0 < ¢ < £+ 1. Therefore, by Lemma 9.7, for
any 0 < ¢ < ¢+ 1, the function w; ; is split in Wy1;_; ;. The conclusion
follows by Lemma 7.8, Lemma 9.11 and (9.9). O

9.4. Triangular sequences. In this final Subsection, we will use the
previous constructions to prove Proposition 9.3. We will split it into
several steps, which will eventually allow us to reduce the question to
the study of sequences of the form appearing in Lemma 9.6.

In the first step, we show

Lemma 9.12. Let k > 4 be even, k = 2(, { > 2, and (H,);j>
be a finitely supported sequence in @*Hy. Assume that the sequence
(wi(Hj))j>1 is cohomologically trivial in Wy,. Then, there exist finitely
supported sequences (F;);j>o0 in Hi @ Hi—1, (Gj)j>0 i Hip—1 @ Hy, and,
Jor0<i< (-1, (H;;)j>1 in Hr—2i @ Ho@i1) such that, for j > 1, one
has

/-1
_ Z L2 12(6—i-1) >V V> V> >V
=0

In the course of the proof, we shall need some easy properties of the
natural operations on pseudofunctions.

Lemma 9.13. Let h >0 and k > —1.
If k is odd, for any H in Hy, we have

(H>V)+2h _ (H+2h)>v and (HV>)+2h _ (H+2h)v>.
If k=0, for any H in Hy, we have
(H>v>+2h+1 _ (H+2h+1)>v and (Hv>)+2h+1 — (H+2h+1)v>_

Proof. In both cases, the first equality is obvious since by definition
Ht = H>V.

Assume first £ is odd. Then, using Lemma I11.2.6 and the fact that
HYY = H, we get

H\/>++ — H\/>>\/>\/ — H>>>\/ — H>\/>> — H>\/>\/\/> — H++\/>‘
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The conclusion follows by a straightforward induction.
Assume now k& = 0. Then, by definition, we have HY = —H. Using
again Lemma II1.2.6, we get

HV>t — >V V> g>> V> gtV
The conclusion follows by the first case. 0

Proof of Lemma 9.12. We will actually prove by induction on 0 < h <
¢—1 that there exist finitely supported sequences (F});>0 in Hj @ Hy—1,
(G)j>0in Hy—1 @ Hy, and, for 0 < i < h, (H; ;)51 in Hi—2i @ Hi—o2(n—i)
such that, for j > 1, one has

(9.10) Z P LY Y+ -G

For h = 0, there is nothing to prove. Assume 0 < h < ¢ — 2 and (9.10)
holds for h. Let us show that it also holds for h + 1.

We write k' = 2(k — h + 1) and we will apply Lemma 9.6 in ®@*Hy.
Indeed, for 7 > 1, we set

h
H, _ ZJF%H +2(h 1)
J b3
=0
Then, Lemma 7.1, (9.10) and the assumption imply that the sequence
(wk(H ))j>1 is cohomologlcally trivial in Wj. Therefore, if we now set,

h
H” +k72h+2 +k 2n+2 +h—2(h—i— 1) +11%2(171)
;= E

=0

Y

then, by Lemma 9.8, the sequence (w (HJ'));>1 is cohomologically triv-
ial in Wy,. Thus, the assumption of Lemma 9.6 is satisfied. Hence,
for 0 < i < h, we may find ﬁnitely supported sequences (Jz',j>j21
and (KZ])]>1 in Hk 2 & Hk 2(h—i)—1 and (Li,j)jzl and (Mi,j)jZI in
Hr—2i-1 ® Hy_2(h—s) such that, for j > 1, one has

_ > >V > V>
Hij=Ji+ K + 7 Lij + 77 My
_ V>V V>V > V>V V>V
=Ny '+ TR+ G = T+ T L = L,

Where Ni,j = Kl\fj + JZ'JJrl and Pi,j = VMiJ' + Li,j+1-
Note that, since h < ¢ — 2, for 0 < ¢ < h, we have

k—2—1>k—-2h—-12>3.

Therefore, by Lemma 7.8 and Lemma 8.4, we can find ﬁnitely supported
sequences (U ;);>1 and (V;)j>1 in Hi_os ® Hp—on—i)—2 and (Wi ;);>1
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and (X ;);j>1 in Hy—9i—2 @ Hi—oh—s with, for j > 1,
(9-11) Ni,j = U7,>] + ‘/;?V = Y;? + VEV - V;\;il
Pi,j — >‘/Vi7j + V>X7L,j — >Zi,j + V>Xi,j _ >VXi,j+1a
with Y;J' = Ui,j + V;?;—l—l and Zz}j = VVZ',]‘ + VXZ‘7]‘+1. For j Z 0, we set
Ai,j = _‘]i\,/j+1 — ‘/z?;?—\l/ and Bi,j = — VL,L'J+1 — V>VX1"]'+1 and we get, by
using Lemma I11.2.6, for j > 1,
H’i,j = }/‘Z;Jr —+ ++Zi,j + A1>7JV — AZ]->71 + V>Bi’j — >VB¢J,1.

Plugging this into (9.10) and using Lemma 9.13 yields, for j > 1,

h
g2k 42 L2(ht1-0) 4 2(ht1)
Hy =Y 4y T (Zi 4+ Yiy) + Zhj
=1

+C7V -C/7 + 77D —7VDj .
with, for j > 0,

i h
Cj = Z +21Ai7j+2(h72) + FJ and DJ _ Z +QZBi7j+2(h7,L) L G]
=0 —
Thus, (9.10) holds also for A + 1 and we are done. ]

By using the same method, we can go one step further, but we have to
take into account the fact that #; is in general not equal to Hg +Hg .

Corollary 9.14. Let k > 4 be even, k = 2, { > 2, and (H;);j>
be a finitely supported sequence in @*Hy. Assume that the sequence
(wi(Hj))j>1 is cohomologically trivial in Wy,. Then, there exist finitely
supported sequences (Fj);>o in Hi @ Hi—1, (G;)j>0 in Hi—1 @ Hy,
(HO,j)jZl m Hk ® Hl, (Hf,j)jzl m Hl & Hk and, fOT 1 S 1 S {— 1,
(H;j)j>1 in Hig—2; @ Ho; such that, for j > 1, one has

(9.12)

-1
- k=1 42 4k=2i k=1 >V V> V> >V
Hy=Hi; 4+ U H T T Hy+ FYY - B4+ G =7V

i=1

Proof. By Lemma 9.12, we get, for j > 1,
-1
(913) H] — Z +21Hi7j+k_2(1+1) + E7>V B FJ\Q>1 + \/>Gj . >\/Gj_17
i=0
where (F});j>o is a sequence in Hy @ Hy_1, (G});>0 is a sequence in

Hi—1 ® Hy, and, for 0 < i < € —1, (H;;)j>1 is a sequence in Hj_o; &
Haiv1)-
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We apply the same procedure as in the proof of Lemma 9.12 by using
Lemma 9.6 in ®2H;,4. We keep the same notation. The only difference
is that for j > 1 and 7 = 0, the tensor Ny ; belongs to H; ® H; and
that, for ¢ = ¢ — 1, the tensor Py_;; belongs to H; ® Hji. Therefore,
we can not apply Lemma 7.8 in order to split them as in (9.11). Thus,
the elements Y; ; and V; ; are only defined for 1 <7 < {—1 and the 7, ;
and X, ; are only defined for 0 <¢ < /¢ — 2.

We now get, for j > 1,

_ONVSV | > VSV, V>p >V
Hoj=No; " + " Zoj+ Jo; — Jojp1+ "~ Boy By,j-1
_ Yyt VeV , SV AV > VsV '
Hy ;=Y 0+ 77 Poorg+ A — Ao+ " Ly Lo+
and, for 1 << /¢ —2,
_ ++ ++ >V V> V> >V
;= Y;g + i+ Ai,j - Ai,jfl + 7 Bi; = 7" Bij

Using this in (9.13) and applying Lemma 9.13 gives, for j > 1,

-1
k—1 2i k—2i k—1
Hy= N7 4+ T (Ziy+ Vi)t + TPy
=1
+ OV = CY2 VD~ VD, .

with, for j > 0,

-1
- vpk—2 L2 L k—2(i+1)
Cj=—Jojmu + E A + Fj
=1

-2
and D; = Z +2ZB¢,j+k_2(l+l) - +lﬂ_QvLé—l,jH + Gj.
i=0
Thus, (9.12) holds as required. O

In the same way, we can get a last step. Recall that we write r(0) = 0,
r(1) =1and r(i) =2(: — 1) for i > 2.

Corollary 9.15. Let k > 4 be even, k = 2, { > 2, and (H;);j>
be a finitely supported sequence in @*Hy. Assume that the sequence
(wi(Hj))j=1 ts cohomologically trivial in Wy,. Then, there exists finitely
supported sequences (F;) ;>0 in Hiy @ Hi—1, (G})j>0 in Hr—1 @ Hyi, and,
Jor 0 <i <0+ 1, (Hij)j>1 in Hpws1-) @ Hpw) such that, for j > 1,
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one has
(9.14)
/-1
4k 42 k-1 420 1h=2(i-1) k-1 12 4k
Hj=Hy;, +" Hi;7 + § U H; +7 Hyym 47 Hepy
=2

+ Y - FE 4G -G

Proof. We start with the decomposition (9.12) given by Corollary 9.15.
Again, we apply the induction procedure of the proof of Lemma 9.12
which now relies on the use of Lemma 9.6 in ®*H;,5. We keep the
same notation, so that we first write, for 7 > 1 and 0 <7 </,

_ ATVSV | VSV D > V>V | >71  _ V>V7p o
Hi,j - Nz',j + Pm + Ji,j i,j+1 + Lm Lm+17

where
Noj, Jo; € Hi @ Ho Poj Lo € Hi—1 @ Ha
Nij, Jij € Hr—2i @ Hoim1 Pij,Lij € Hp—2i1 @ Hyy 1 <0 <01
N&jv J&j € H1® Hi PZ,j, Le,j € Ho ® Hy.

Now, the tensors Y;; and V;; may be defined for 2 < ¢ < ¢ and the
tensors Z; ; and X;; may be defined defined for 0 <7 < ¢ — 2.
If ¢ > 3, we get, for e € {0, 1},

Hej =N+ Z 54+ 02— I3 4+ V7 Bej — 7V Bej
Hy ;= Y[:fj + VP i+ Af_\/w» — A2/—>e,j—1 + 7 Lij— V"V L
and, for 2 <¢ < /(¢ — 2,
Hij =Y+ 2+ A7 — A2+ V"B —7VBij1.
If ¢ =2, we have
Hy, = Na/jv + ++ZO,j + J(fj . (\)/7]'>J>/1 + V>Bo,j . >VBO,j71
Hyj= NG+ 7 P+ 0 = U5+ 7Ly = 7 g
Hyy = Y50+ Y2V P+ ASY — AYZ 47 Ly — 7V Ly 5
In both cases, using this in (9.12) and applying Lemma 9.13 gives, for
J =1

/-1

2 - 2i —2(i—1)

Hy= Ny 4+ (Zos+ NP 43T (Ziy + Vi)
=2

k—1 2 k
+ T (Pl Y)T TP+ CTY =
+ V>Dj o >\/Djfl-
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with, for j > 0,

/—1
V; k—1 2 \Vi k—2 21 k—21 k—1
Cy=—Jifn = g Y T AT T T Ay + Fy and
=2

£—2
o +k,1 +2i +k72i +k_2\/ +2 +k—1v
Dj=Bi; +) T BT - Liaj™ — Leji + G
=1

Thus, we have established a decomposition of the form in (9.14) as
required. U

We can now conclude.

Proof of Proposition 9.3. As for Proposition 7.12, this relies on an in-
duction argument.

For k = 1,2, the statement is a direct consequence of the definition
of the objects and of Lemma 7.1.

We now prove that if £ > 4 is even, £k = 2¢, { > 2, and if the
statement holds for k£ — 2, it also holds for k. We apply Corollary 9.15.
Therefore, we may write, for j > 1,

/-1
e 42 G k-1 42 1 k—2(i—1) k-1 42 Lk
Hj=H,; +" Hi;7 + H;; +7 Het 7 Hepy
=2
>V V> V> >V
H T - B+ TG - TG

where the (F});>o are in Hy, ® Hy_1, the (G;) ;>0 are in Hy_1 @ Hj, and,
for 0 < i < 0+ 1, the (H;;);>1 are in Hy41-5) ® Hy) and all these
sequences are finitely supported.

Since the sequence (wy(H,));>1 is cohomologically trivial in Wy, by
Lemma 7.1, the assumption of Lemma 9.6 is satisfied. In particular,
the conclusion of this result for ¢ = 0 says that we may find finitely
supported sequences (FP});>1 in Hr ® H_; and (Q;);>1 and (R;);>1 in
Hi_1 @ Ho such that, for j > 1,

HO,j :P]'>+>Qj+v>Rj :Pj>+v>v5j+>@j_v>v@j+la

where S; = Qj1 + 'R;. As k > 4, by Lemma 7.8 and Lemma 8.4, we
can find finitely supported sequences (7});>1 and (U;);>1 in Hi—2 ® Ho
such that, for j > 1,

Sj — >TVj + v>Uj — >V; + V>Uj _ >\/Uj+1,
with V; = Tj 4+ YUj41. We get, for j > 1,
Hoj = P7 + 77V 4+ W, — VW,
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where, for j >0, W; = —=VQ;41 — "7VU;11. Now, for j > 0, we set
LR S
i>j+1 i>j+1
1—j even i—j odd
so that, for j > 1, we get P; = —X; — X/ |, hence

Hoj; ="V, + V"W, = YW + X7V — X7
Reasoning in the same way from the conclusion of Lemma 9.6 for
i = {+1, we obtain finitely supported sequences (A;);>1 in Ho ® Hy—2,
(Bj)j>0 in Ho @ Hp—1 and (C});>0 in H_1 ® H;, such that, for j > 1,
Hyj=A"+B>Y —B/>+"C; —>VCj1.
We set

/-1
o +k72 +k73 +2(i71) +k727ﬁ +k73 +k72
L=V T Y H M7 V7 A
=2

which is an element of ®*H;._,. By using Lemma 9.13, we can write

Hj — ++Jj++ + Kj>v o K]vfl 4 V>Lj - >VL]-,1,

with

Kj=F+ X +*Bjand L; = G; + W ++C;.
Therefore, as the sequence (wy(H;));>1 is cohomologically trivial in
Wy, by Lemma 7.1, Propositon 9.4 and Lemma 9.8, the sequence
(wwg—2(J;))j>1 is cohomologically trivial in Wj_,. By induction, we
may find finitely supported sequences (M;);>0 in Hig_o ® Hj_3 and
(Nj)jzo n Hk,;g (%9 Hk,Q such that, fOI’j Z 1,

J;j = Mj>v — ij_>1 + Y2 N; — 7V N; 4.
By using Lemma 9.13, we get

Hj — (Kj + ++Mj++)>v - (Kj—l + ++M‘71++>\/>

+ V>(Lj + ++Nj++) _ >V<Lj_1 + ++N,_1++)
and the conclusion follows.

So far, we have proved the Proposition for £ = 1 and for £ > 2 even.
It remains to prove it for £ > 3 odd. For such a k, by Lemma 7.5
and Lemma 7.8, we can find finitely supported sequences (.J;),>1 and
(KJ)le n Hk@?‘lk,1 and (L])le and (M])121 in kal ®Hk such that,
for j > 1,

Hy=J>+ K"+ L;+ "M
— N]> + >]Dj —+ K;v — ng—i—>l —+ V>Mj — >VMj+1,
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where N; = J; + KjvJrl and P; = L; + Y M. Applying again Lemma
7.8, we can find finitely supported sequences (U;);>1, (V;);>1, (W;);>1
and (Xj)j21 in ,Hk,1 & H}c,1 With, for ] Z 1,

Nj — >Uj —|—V>V3' — >Y;‘ +\/>‘/j _ >VV}'+1
Py=W7 + X7V =27 + X7V - X)7

41
where Y; = “U; + Vg and Z; = W; + X/, Weset A; =Y, + Z;,
Bj = Kj11 + 7 Xj1 and Cj = My, + V7, and we get

Hj="A;7+ B\ — B/~ +"7C;_1 —~"C;.

As the sequence (wy(H,));>1 is cohomologically trivial in W}, Lemma
7.1 and Proposition 9.4 say that the sequence (wy_1(A;));>1 is coho-
mologically trivial in Wj_;. Therefore, as the Proposition is true for
k — 1, we can find finitely supported sequences (D;);>o and (E;);>o in
in Hp—1 ® Hi—o and Hy_1 ® Hi_o such that, for j > 1,

Aj — D]>v _ D;-/>1 + V>Ej _ >ij71~

By using Lemma II1.2.6, we get
H; = (°D;” = B))”” = (°D;j1” = Bi)™Y + 7' (CE” = C))
~ (B - Ci)

and the conclusion follows. O

10. THE ULTRAWEIGHT MAP

We now come back to the study of the Plancherel formula of Proposi-
tion 5.16, which, as we have seen in the proof of Corollary 5.17, should
be thought of as a universal tool for defining the spectral theory of
non-negative I-invariant bilinear forms on D(9.X).

In the present Section, for k > —1, we will use this Plancherel for-
mula to construct a linear map €y, from the space ®>H,[t] of polyno-
mial functions with values in ®*H;,, towards the space of (cohomology
classes of ) Holder continuous functions on I'\.. We will call €, the ul-
traweight map. Later, in Section 12 we will use the ultraweight map to
describe the bilinear forms on H3[t] that are obtained from T-invariant
symmetric bilinear forms on D(GX) through the spectral transform of
Section II1.6.

10.1. Plancherel formula and the ultraweight map. We start by
defining a new object that implicitely appears in the proof of Corollary
5.17.

The following definition is inspired by Proposition 5.16 and the latter
proof.
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Definition 10.1. Let ¥ > —1 and H be in ®*H,[t], that is, H is a
polynomial function with values in ®?H;. We defined the ultraweight
Qi (H) as the Holder continuous function on I'\.# given by, for ¢ in

7,

(i) = 7 [ @ (T HO) (a0
*ert (THO) @)+ gty (THEYT) @)

The fact that the formula makes sense and defines a Holder contin-
uous function on I'\.¥ is a consequence of Lemma 5.9.

As for the fundamental bilinear maps, we will think to the ultra-
weight map as taking its values in the space of cohomology classes of
Holder continuous functions on I'\.#. In this sense, our purpose will
now be to describe the null space of the ultraweight map: for £ > 1,
we let © be the space of those H in ®*Hy[t] such that Qi(H) is a
coboundary in the space of Holder continuous functions on I'\.# (in the
sense of Subsection 2.1). We call the elements of O the k-coboundary
polynomial tensors. The purpose of the remainder of the Section is to
use the previously introduced tools to describe the space O (up to a
finite-dimensional subspace).

10.2. The twist operator. We first construct an operator that pre-
serves the ultraweight in case I' is bipartite.

If V is a vector space and A is an algebra acting on V, the algebra
A® A acts on V ® V in a natural way: for v,w in V and a,b in A,
we have (a ® b)(v ® w) = (av) ® (bw). In our situation, we fix £ > 1.
Then, the space Hy is equipped with an action of the algebra A; of
[-invariant functions on X;i. Indeed, if H is in H; and u is in Ay, we
let wH be the k-pseudofunction defined by

(uH )y = u(zy)Hyy, 2y € Xy,

The algebra A; ® A; may be identified naturally with the algebra of
(I' x I')-invariant functions on X; x X7, so that every such function
defines an endomorphism of ®%H,,.

Let 6 and ¢ be as in Subsection 4.2. We have a characterization of
bipartite actions:

Lemma 10.2. The action of I' on X 1is bipartite if and only if the
function e(—1)° on X; x X, is (I' x I')-invariant.
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Proof. Recall from Subsection II1.2.1 that saying that I' is bipartite
amounts to saying that the function (a,r) — (—1)4@®) is (' x T)-
invariant on X x X. Now, in view of the definitions, for ab and xy in X7,
we have (—1)%®?) = ¢(ab, 23)(—1)%(@*¥) The conclusion follows. [

Let the twist operation ! on pseudofunctions be defined as in Sub-
section I11.2.6. From the definitions, one directly gets

Lemma 10.3. Let h,k > 1 and H be in H, @ H. We have 'Ht =
e(-1)°H.

By abuse of notation, for any h,k > —1, we will write e(—1)°H
instead of 'H! for H in H;, @ Hp.

We can relate multiplication by £(—1)° and the natural operations.

Lemma 10.4. Assume I' is bipartite. Let h,k > —1 and H be in
Hp @ Hi. We have

as well as

T(e(~1)°H) = e(=1°("H) and (e(~1)°H)” = e(=1)°(H").

Proof. This can be obtained by a direct computation or by applying
Lemma III1.2.22 and Lemma 10.3. U

Multiplication by £(—1)° also behaves well with respect to the double
weight map of Definition 9.1.

Lemma 10.5. Assume I' is bipartite. Let k > 1, H be in @*H}, and
ab, xy be in Xp. We have

wi(e(=1)"H)(ab, zy) = (1) Ve, (H)(ab, zy).

Proof. 1t suffices to prove the claim when H is of the form J ® K for
J, K in 'Hk
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Assume k is even, k = 2¢, ¢ > 1. Then, by Definition 6.1 and
Definition 9.1, we have

wi(e(=1)° H)(ab, zy) = (=)™ Ay, (b, 0) AK ., (2,7)
+ Z Z (_]‘)d(aZ’Z)AJagag_‘_l (b7 G)AKZZ7 (ZE, sz)

1<5<4—1 zeX
[Yerj2zlN[zyl={yer;}
d(2,Ye+5)=J
+ Z Z <_1)d(c’yl)AJCC— (b> a2i)AKyew+1 (CL’, y)
1<i<f—1 ceX
lactic]n[abl={as+i}
d(c,apyi)=t
+ Z Z (_1)d(C7Z)AJcc_ (ba a2i)AKz2_ <$7y2i)-
1<i,j<f—1 c,z€X
lagtic]Nlab]={ac+:}
d(C,a[+i):i
[Yerj2N[zyl={ye+;}
d(2.Ye+5)=J

For 1 <1i,7 </ —1 and ¢, z as above, we have
d(ag,c) = 2i and d(y, z) = 27,
hence
(—1)d@s2) = (—qydlewe) = (_1)den) = (_1)daew) = (_1)da)

and the conclusion follows.
The proof is the same in the odd case. O

Assume I is bipartite. In view of Lemma 10.2, we can construct an
operator as follows. For k > 1 and H in ®?H,[t], we define the twist

H of H as the polynomial tensor defined by
H(t) = e(—1)°H(—t).
This operator preserves the ultraweight.

Lemma 10.6. Assume I is bipartite. Let k > 1 and H be in @*H,[t].
We have B
Q(H) = Qp(H).
This statement is a direct consequence of the parity properties of the
polynomial functions A; and Bj, j > 0, of Subsection 4.1.

Proof. For j > 0, the definitions of A; and B; give A;(—t) = (—1)7A;(¢)
and B;(t) = (=1)7'B;(—t), hence y_; = e(—1)°x;. Also, we have
P, = e(—1)°x}". The conclusion now follows from the definition of €,
and the fact that the measure p, on R is symmetric. 0
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10.3. Trivial coboundary polynomial tensors. We now give an a
priori list of polynomial tensors which are annihilated by the ultra-
weight map.

Definition 10.7. (k even) Let k£ > 2 be an even integer. Then, we de-
fine the space of k-trivial coboundary polynomial tensors ©9 C ®@2H|{]
as the subspace of ®*H,[t] spanned by the following polynomial ten-
sors:

H H e (Hk,+ & /Hk,—)[t]
> > H e <%k71,+ ® kal,f)[t]

as well as
(q+ Dt>H> + (q— 1)>HY> —2>H">V
He (Hi—1+ @Hi—1+ ® Him1— @ Hi—1,-)[1]
and
(q+ DLH>> + (¢ — V) H>Y> — HY>V> — [>V>V
H e (Hr ® Hio)[t]
and, if I' is bipartite,
H—H, HeQHi.
Definition 10.8. (k odd) Let k£ > 1 be an odd integer. Then, we define

the space of k-trivial coboundary polynomial tensors ©f C ®@%Hy[t] as
the subspace of ®*H[t] spanned by the following polynomial tensors:

JOQK-K®J J, K € Hy[t]
H H e (Hy+ @ Hi)[t]
~H~> He ('Hk_l,_;. & Hk_L_)[t]

as well as
(q+ 1)t>H> + (q— 1) >H>V _9>gV>V
H € (M1 @ Hior,40 © Hior,m © My 1]
and
(q + 1)tH>> + (q — 1)HV>> _ YRV VeV
H € (Hi ® Hy—2)[t]
and, if I is bipartite,
H—H, HeaHilt.
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Note that the two definitions are identical except in the fifth case.
These uncomfortable definitions are justified by the following

Lemma 10.9. Let k > 1 and H be a trivial coboundary polynomial
tensor in @*Hy[t]. Then, the Holder continuous function Qu,(H) is a
coboundary.

This is a consequence of the properties established in Lemma 5.10
and Lemma 5.15. To prove this precisely, we will need

Lemma 10.10. Let 0 < a < 1, I C R be a closed interval and
w I — H, be a continuous function such that, for any t in I, o(t)
s a coboundary. Then the Hoélder continuous function fl e(t)dt is a
coboundary.

Proof. Indeed, it follows from LivsSic Theorem, Proposition 2.1, that
the space of coboundaries is a closed subspace of 77,. O

In the context of the Plancherel formula for the fundamental bilinear
maps, we will use the previous under the following form.

Corollary 10.11. Let h > 0 and k > —1 be integers. For every H,J
in Hy, the ultraweight Q,(t"H ® J) of the polynomial tensor t"H @ J
is cohomologous to ®(P"H>",J>7).

Proof. Indeed, it follows from Lemma 5.9, Lemma 5.10 and Lemma
10.10 that the function

/ (t"®, (H>™,J77) =@, (P"H™™,J77)) due(t)

is a coboundary. Then, the claim follows from Lemma 5.15 and Propo-
sition 5.16. O

We note that this yields

Corollary 10.12. Let k > —1 and H be a polynomial tensor in Q> Hy[t].
Then the ultraweight Qi (H) is cohomologous to a smooth function on

I\

Remark 10.13. In particular, if 6 is a T-invariant distribution on I'\.%,
for H in @*H[t], we can define (#,Qx(H)) by means of the convention
of Remark 2.8.

Proof of Lemma 10.9. We will only deal with the case where k is even,
the odd case being analogous. We will check that in each of the five
first cases of Definition 10.7, the ultraweight is a coboundary, as in the
sixth case, the ultraweight is actually 0 by Lemma 10.6.

Let h > 0 be an integer.
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Let J, K be in H;. By Corollary 10.11, Q(t"J @ K — t"K ® J)
is cohomologous to ®(P"J>™ K>™) — &(P"K>" J>7), which is a
coboundary by Lemma 5.3.

In particular, if J is in Hy ; and K is in Hy, _, then, as above Q (t" J®
K) is cohomologous to ®(P"J>™ K>). As JV = ¢J and KV = —K
and P commutes to R and S, we get, by Lemma 5.3,

OP" T KT = 1<1>(PhJV>°", K>7) = 1cI>(P’LRJ>°°, K>7)

q q
= —®(RP"J>T K>") = —®(P"J>" ,RK>") = ~®(P"J>"  KV>7)
q q q
1

=——@(P"J"", K77)
q

(where we have written = for the cohomology equivalence relation).
This gives Qx(t"J ® K) = 0 as required.

In the same way, if J is in Hy_1 , and K isin Hy_; _, since Qx(t"J”®
K>) =1 (th]J @ K), we get Q(t"J> @ K>) = 0.

Let now J, K be both in Hj_; 4 or both in H;_; _. Still by Corollary
10.11, we have

Q" (g + DtJ” @ K~ + (¢ —1)J” @ K> —2J> @ K¥>V))
= (¢+ D)O(P"T I K77 + (¢ — DO(P"J>™  SK™T)
—20(P" 7> RSK>™).
As (¢+1)P = RS+ SR — (¢ —1)S, using Lemma 5.3, we obtain

Q" ((q+ D7 K> + (¢ —1)J” @ KY” —2J” @ KV>V))
= ®(P"RSJ™>, K>°) — &(P"J>>° RSK>>)
If J, K arein Hj,_q 4, we have SJ>7 = J>7 and SK~~ = K~ and the

latter is a coboundary. If they are in Hy_1_, we have SJ>~ = —J>~
and SK>” = —K>" and the same holds. Thus, in both cases, we get

Q(t"(g+ NI K> +(g—1)J" @ KY” —2J7 @ K¥7V)) =0
as required.
Finally, we take J in H; and K in Hy_». By Corollary 10.11, we
have
Qk(th((q+ 1)tJ®K>>+(q— 1>J®K>\/> _J®KV>V> _ J®K>\/>\/))
= o((g+ )P KT
+®(P"J77 (- 1)SK>" — SRK>" — RSK™>").
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As (g+1)P = RS+SR—(q—1)S, the conclusion follows from Lemma
5.3. U

Recall that, for k& > 1, we let O, C ®?Hy[t] be the set of those poly-
nomial tensors H in ®?H,[t] such that the Holder continuous function
Qp(H) on I'\.7 is a coboundary. We have just shown that we have
Of C Oy. The next statement says that the reverse inclusion is true
up to a finite-dimensional subspace.

Proposition 10.14. There exists an integer n > 0 such that, for any
k > 2, we have © C O + (@2Hy)ranlt], that is, for every H in
R *Hyilt], if Q(H) is a coboundary, we may find a trivial coboundary
tensor J in @2 such that H — J has degree < k +n in t.

The proof of this statement will rely on Proposition 3.3. It will last
until the end of the next Section.

10.4. Endpoints series formulas for the ultraweight. In order to
be able to use Proposition 3.3 to analyse the vanishing of the ultra-
weight in cohomology, we translate the formulas of Section 6 in the
language of the ultraweight.

Let V be a vector space. Recall that a tensor in ®2V is said to be
symmetric if it is invariant by the natural involution of ®2V that maps
v1 ® vy to ve ® vy for vy, ve in V. The space of symmetric tensors is
denoted by S?V C ®@?V.

We still let (C}),>0 be the family of orthogonal polynomials of Sub-
section 4.6. From Proposition 6.3 and Proposition 6.4, we get

Proposition 10.15. Let k > 1 and H be a symmetric polynomial
tensor in S*Hy[t]. For j >0, let H; be the element of S*H,, defined by

Hy = [ C(t)H (t)dpy(t).

I,

Assume k is even. Then, if H is in S*Hy y [t], the ultraweight Qy(H)
1s cohomologous to the function

k—2
1 1 (i
o = Srox(Ho) + 5 > a Uk k(H;) (00054k)

j=1

- Z ¢ Y V@ (H;) 000k, 050 11)

j=k—1
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If H is in S*Hy. _[t], the ultraweight Qi(H) is cohomologous to the
function

1
0'l—>2—q1{07k qHo+ (¢ — 1) Z H,,

h>0
h even
k:
(G+1 2
E g | H 4 (2 - 1) E Hy, | (000j41)
J=1 h>j
j—h even

+ Z q_(jH)Wk 2H —|— q —1 Z Hh O'Oa'k,O'jO'j+k).
—k—

1 h>j
j—h even

Assume k is odd. Then, if H is in S*Hy . [t], the ultraweight Qy(H)

18 cohomologous to the function

o p i 150716 ((q + 1)H0 + (q — 1) Z(—l)hHh>

h>0
g k=2
PR +1 Z s (qH T Z(_l)]_hHh> (00041)
1 h>j
— , ,
J=k-1 h>j

If H is in S*Hy._[t], the ultraweight Qi(H) is cohomologous to the
function

1
0 T Kok ((Q+ 1)Ho + (¢ — 1>2Hh>
q h>0
—|—1Zq on (qH +(—-1) ZHh> 000j+k)
C] h>j
i 1 Z q J’wk (CZH + q — ]_ ZHh> O-OO-k:aO-jO-j—',-k)'
q j=k—1 h>j

Note that, by Lemma 4.6, we have H; = 0 for j large, so that all the
sums above are finite and define smooth functions on I'\.7.
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Remark 10.16. The formulas above only concern symmetric polynomial
tensors in ®@*Hy, . B @*Hy. . Indeed, due to the form of trivial polyno-
mial tensors in Definition 10.7 and Definition 10.8, and to Lemma 10.9,
the ultraweight of skew symmetric polynomial tensors and of polyno-
mial tensors in Hy 4 @ Hy,— @ Hp,— @ Hy + is a coboundary. Therefore,
for proving Proposition 10.14, we will only need to deal with symmetric
polynomial tensors H such that HY = Y H.

The proof uses the following formula for computing the values of a
polynomial function at 1 and (—1) by means of its components in the
basis (Cj)jZO’

Lemma 10.17. Let f in R[t] be a polynomial function. For j > 0, set
fi= fzq F()C;(t)dpuy(t). Then we have

JQ) =D i and f(=1) =} (=1)'};

Proof. Since by Lemma 4.6, the (C});>0 form a basis of R[t], it suffices
to check the formulas when f is one of them.
Now, the definition of these polynomials gives Cy = 1 and, for j > 1,
A T T Sl W

Cj(1) = Bja(1) = Bj1(1) = 1 1 g 1°

— g+ ) = / Oyt g,

where the last equality follows from Lemma 4.6. Thus, the first formula
holds. The second is obtained in the same way. 0

Proof of Proposition 10.15. This is a direct computation. We start
with the endpoints formulas obtained in Proposition 6.3 and Propo-
sition 6.5, and we apply the construction of the ultraweight in Defini-
tion 10.1, the fact that integrals of coboundary are coboundaries which
was shown in Lemma 10.10, and Lemma 10.17 above which allows to
compute the values at (—1) and 1 of the polynomial tensors. O

11. BUILDING TRIVIAL COBOUNDARY TENSORS

In the present Section, we will prove Proposition 10.14. Thus, for
k > 1, we are given a polynomial tensor H in ®?H;[t] whose ultraweight
Qr(H) is a coboundary and we want to build a trivial coboundary
tensor J such that H — J has degree < k + n for some fixed n.

Our strategy is to apply Proposition 3.3 to the formulas in Propo-
sition 10.15. Then, we will use Proposition 9.3 to say more about the
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form of sequences related to the coefficients H; = fzq C;(t)H (t)dpg(t)

and relate them to the analogue sequences for trivial coboundary ten-
SOTS.

11.1. Cohomological equations and eigenvectors. First, we ana-
lyze precisely the fact that the sequences of polynomial tensors we will
need to study from Proposition 10.15 have values in @*Hy , & @*Hy, _,
k > 1 (see Remark 10.16).

Proposition 11.1. Let k > 1 and (F});>0 and (G;);j>0 be finitely sup-
ported sequences in Hy @ Hip_1 and Hip_1 ® Hy. For j > 1, we set
Hy=FY —F5+7G -G if k is even
=F"” - F+77G, = "7G if k is odd
and we assume that H; belongs to @My, S&*Hy. _, that is, "H; = HY .

Then, if k is even, there exist finitely supported sequences (Pj)j>1 in
Hk_Q X %k, (Qj)j21 m Hk X Hk_Q and (Xj)]Zl and (Y})jzl m Hk—l &
Hy—1 such that for j > 1, one has P} = VP, Qj = YQ; and

YFj = (- DE+FL = Q7 — (- 1)7X; + 7 (X, +Y))
G —(a—= DG+ Gjo1 ="P; — (¢ = DY7 +(X; +Y;)7".

If k is odd, there exist finitely supported sequences (P;);>1 in Hiy—2®
Hi, (@)j21 in Hi @ Hy—a and (Yj);>1 and (Z;)j>1 in Hey @ Hp
such that for j > 1, one has PY ="P;, Q) ="Q; and

Fi +'Fia=Q7 +7Y; =" Z
\/Gj +G‘;/_1 - >.Pj - Yj> - Z]>\/
The proof is a straightforward consequence of the results of Subsec-

tion 8.4 on the simplification of tensor equations. We split it according
to the parity of k.

Lemma 11.2. Let k > 2 be even, Fy, Fy be in Hy @ Hi—1 and Gy, G1
be in Hr—1 @ Hy. We set

H=F—F>+"G —>"G,.

Assume that we have VH = H" | that is, H belongs to @*Hy, + DR?Hy, .
Then, there exist P in Hy_o@Hr, Q in Hir @ Hi_o and X, Y in Hp_1®
Hi_1 such that PY =VP, QV ="Q and

VR (- )R+ EF =Q7 - (¢g—1)"X+ 77 (X +Y)

GY —(¢q—1)G1+"Gy="P—(¢—1)Y"+(X+Y)".
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Proof. We set

J:vFl—(q—l)Fl—FFa/

K=GY - (q—1)G,+"G.
The relation YH = HY gives

\/F1>\/ _ \/FE)/> +q>G1 + (q _ 1) \/>G1 _ \/>\/GO —
qF1> + (q - 1)F1>\/ _ F8/>\/ + \/>GY _ >\/G(\]/

which we rewrite as

VJ>_J>\/ :>KV—V>K.

By Corollary 8.8, we may find U in Hy_o @ Hi, V in Hp ® Hjp_o and
W, XY, Z in Hp_1 ® Hi_1, such that

(11.1) KY="YU4+W~ + X~ K="U-Y> -2
VJ:‘/V>_|_>W+\/>Y J:V>—>X—V>Z.
By comparing the above two expressions for J and K, we get
NMUA+W>+ XV ="U"—qz7 = (Y +(¢—1)2)7"
vV LW 4 VY = VY —q>Z—V>(X+ (¢—1)2).
By Corollary 8.9, we may find A, E, F in H;_1 ® Hr_o and B,C, D in
Hi_o ® Hi_q with
(11.2) W+qZ=A"”+"B="YD+E~
X+Y+(qg-1)Z=-A"+"C=—-"D+F~
U\/_\/U:B>_|_C¢>V
Vv_V\/ :>E+V>F.
From the above, we get in particular
(AY —E)” ="(YD - B) and (A + F)> = ~(C + D).
Thus, by Lemma 8.4, we can find L, M in H;_s ® Hi_o with

E=AY->L B="D-1L>
F=>M-A C=M>—D.
Using these relations in (11.2) gives
(11.3) W+qZ=A""+"YD-"L"

X+Y+(q-1)Z=-A"-"D+"M"~
U\/_VU:\/D>_D>V_L>>+MV>>
VV—V\/:>AV—V>A—>>L+>>VM.
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The last two relations imply that we may find P in Hy_s ® Hg, @ in
Hi ® Hi_o and R,S in Hj_o ® Hy_o such that

(11.4) pY=Vp Q' ="Q
U+D> =P+ R~ V4+"A=Q+""S
RY—-VYR=—-L+ M"Y VS — 8V =—L+ VM.

We set T = R-+S — M. Note that the last two relations give TV = VT.
To simplify the next expressions, we set

P =P+ LT>>V
q—1
Q=Q+ =T
Xi=X+A"-"65"
Yi=Y+"D—-"R".
In particular, by (11.3), we get
Xi+Vi+(q-1)Z+"T7 =0
and, by (11.1), (11.2) and (11.4),

1
J:Q>—>X1—V>Z:Q1>—>X1+—1V>(X1+Y1)
q_

1
K:>P_Y'1>_Z>\/:>P1_Y'1>_‘_q_1(X1_|_Y'1)>\/

as required. O
In the odd case, the same technique yields

Lemma 11.3. Let k > 1 be odd, Fy, Fy be in H @ Hi_1 and Go, Gy
be in Hr—1 @ Hy. We set

H = Flv> _ F0>\/ + >\/G1 _ V>GO-

Assume that we have " H = H", that is, H belongs to @*Hy, + DR*Hy, .
Then, there exist P in Hy_o @ Hpr, Q in HrQHi—o and Y, Z in Hp_1 ®
Hy_1 such that PY ="P, QV ="Q and

F1V+VF0 =Q>+7Y -7
VG1+G\/:>P—Y>—Z>\/.
Proof. The proof follows the same lines as the previous one. We set
J=F +"'Fyand K ="G, + Gy.
As above, the relation YH = HY gives
VJ> . J>\/ — >K\/ o \/>K.



ADDITIVE REPRESENTATIONS 107

By Corollary 8.8, we get U in Hy_o®@Hy, V in HyQHr_sand W, XY, Z

in Hg_1 ® Hi_1, such that

(11.5) KY="YU4+W~> + X~V K="U-Y" -2

\/J:V\/>+>W+\/>Y J:V>—>X—V>Z.

We compare the two expressions for J and K and we get
>VU—|—W> +X>\/ — >U\/ _ Z> —Y>V
V\/>+>W+V>Y:\/V> —>Z—V>X.

By Corollary 8.9, we may find A, E, F in H;_1 ® Hr_o and B,C, D in

Hi—2 @ Hy—1 with

(11.6) W+Z=A"”+"B="YD+E~

X+Y=-A"+"C=-"D+F~
UY—-YU=B"+C""
W-VVY="E+"F.

From the above, we get in particular

(AY—E)” ="(YD - B) and (A+ F)> =~ (C + D).

Thus, by Lemma 8.4, we can find L, M in H;_s ® Hi_o with
E=A"-"L B=YD-L~
F="M-A C=M"—-D.

Using these relations in (11.6) gives

(11.7) W4 Z=A"”+>VYD-~L"

X+Y=-A"-"D+"M">
U\/ _VU:\/D> _D>\/ —L>>—|—Mv>>
VIV Y =AY VA > >V

The last two relations imply that we may find P in Hy_s ® Hg, @ in
Hi ® Hi_o and R, S in Hj_o ® Hy_o such that

(11.8) pY=Vp Q' ="Q
U+D>:P+R>> V+>A:Q+>>S
RY—YR=-L+M" VS-SV =—-L+"YM.

We set T'= R+ S — M. Note that the last two relations give TV = VT
To simplify the next expressions, we set

X1=X+A"-"Sand Y, =Y +"D—-"R",
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so that we get, by (11.7)
X1+ +"T7 =0
and, by (11.5), (11.6) and (11.8),
J=Q> ->X, -V Z=(Q+>>T) +°v, - Z
K=>P-Y> 27>
as required. 0

Proof of Proposition 11.1. This directly follows from Lemma 11.2 and
11.3 that we apply for each j > 1. U

11.2. Building trivial coboundary tensors from H; ® H;_o. We
are still aiming at proving Proposition 10.14. We will now use the
particular form of the sequences appearing in Proposition 11.1 to re-
late them to the trivial coboundary polynomial tensors of Definition
10.7 and Definition 10.8. Unfortunately, this will require us to check
different cases separately. In the present Subsection, we show

Lemma 11.4. Let k > 1 and (K;);>1 and (L;);>1 be finitely supported
sequences in Hy + @Hy—o+ and Hy, - @Hy_o_. Let (F});>0 and (G;);>0
be the unique finitely supported sequences in Hy @ Hp_1 such that, for
7 >1, one has, if k is even,

(119) VF}' — (q— 1>FJ +Fj\/,1 = Kj> and VGJ' — (q— 1)GJ —|—G;/71 = Lj>
and, if k is odd,
(1110) F;V —I— \/Fj—l = K]> cmd G;/ + \/Gj—l = L]>
Then, there exist trivial coboundary polynomial tensors H in @?*Hy, o [t]
and J in @*Hy _[t] such that, for j > 1, one has, if k is even,

Fj>v - FJV—>1 = qinj

GV =G =q 7T +q (1= Y

h>j
j—h even

and, if k is odd,
F/> —F =q7Hi+q¢7(1—-¢")) (-1Y"H,
h>j

G}/> — G]>_v1 = 7ij + q 1 — q Z Jh,
h>j

where

H; = / Ci(t)H (t)dp,(t) and J; = / Cj(t)J (t)dpg(t).
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Note that the sequences (F});>o and (G;),>o are uniquely defined by
(11.9) and (11.10) due to the easy

Lemma 11.5. Let V be a vector space and 6 : V — V' be an endomor-
phism. Then, for any finitely supported sequence (x;);>1 in V', there
exists a unique finitely supported sequence (y;)j>o in V such that, for
Jj =1, one has yj—1 = x; + 0y,.

Proof. Indeed, for h > j > 0, one has necessarily

h
yi= > 07 0y,
i=j+1

Since both sequences are finitely supported, this gives

yj = i 0 ay,

i=j+1
hence the uniqueness. The existence follows from the fact that the
latter formula actually defines a finitely supported sequence. O

We shall use the following formulas which can be seen as a conse-
quence of the fact that the polynomial functions (C}),>o of Subsection
4.6 are the spherical transforms of the spheres of the tree X in the
language of [3].

Lemma 11.6. For j > 0, the polynomial function (¢ + 1)tC;(t) may
be written as

(¢ + tCo(t) = Ci(t)

(g + DtCy(t) = Ca(t) + (¢ + 1)Co(2)

(g + DiC5(t) = Cia(t) + qCja (1) j=2.
Proof. This directly follows from the definitions in Subsection 4.6. The
first relation is obvious. The third relation follows from the definition

of Cj, j > 1, and the analogue property of B;, 7 > 1 in Lemma 4.1.
Finally, for proving the second relation, we write (¢+1)t = Z+4wu, hence

Cy(t) = Bs(t) — By(t) :3—2+q+u2 —1=(q+1)**—(¢+1)

= (g + DtCi(t) — (¢ + 1)Co(t)
as required. O

We now start the proof of the main Lemma, which we split according
to the parity of k.
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Proof of Lemma 11.4 in case k is even. We first construct H. We look
for H to be of the form

H(t) = (¢ + )tP(t)”" — P(t)™"” — P(t)”""",

where P isin Hy  ®Hy—2 +[t]. Note that H is then a trivial coboundary
polynomial tensor in view of Definition 10.7. For j > 0, we set P; =
fz (t)dpy(t). By Lemma 11.6, we have

HO P>> PO>V> _ P0>\/>\/
]{1 — P>> + (q + 1>PO>> _ P1>V> _ P1>V>\/

Hj = P75 +qP75 — PPV — PrY>Y, j>2.
We set
My = Q_IP1> —q g+ )PV
M E 1P]>+1 - *jP'>\/ ]Z 17

so that, for j > 1, as Y P; = P} = qP;, we have
¢ H; = MY — M.
To conclude, it suffices to choose P in order to have M; = F; for any
j > 0. In view of the definition of the (F});>¢ in the statement, we
compute
My — (q— )My + My =q¢ *Py —q (¢ +1)Py

YMj—(q—D)M;+ My = ¢ P —¢'P7, 22

where we have used again the assumption that ¥ P; = ¢P;, j > 0. Thus,
for the conclusion of the Lemma to hold, it sufﬁces to have

q P, — qil(q +1)Py = K; and ¢’ PH —q' P =K

7 ]22

By Lemma 11.5, these equations uniquely define the ﬁnltely supported
sequence (P;);>o, hence the polynomial tensor P(t). The conclusion
follows.

We now construct J, which we will seek to be of the form

J(t) = (¢ + Q)™ +qQ(t)”"” — Q(t)”",
where @ is in Hy_ ® Hi—o_[t]. As above, J is then trivial in view
of Definition 10.7. For j > 0, we set Q; = fI (t)du,(t). By
Lemma 11.6, we have

Q>> +qQ>\/> >\/>\/
J1 "+ (g + 1) > gV — QY
J = ]—i—l + q ] 1 + qQ'>v> - Qj>v>v> .7 2 2.
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Now, we set

No=—Qr —(1+q¢ Q5" —(1—q2%) > Qi +Q7Y
h>0
h even
and, for j > 1,
Nj = —q( j>+1 + Qj>v> —q7(1—q7%) Z Qi1+ Q.
h>j
j—h even

A direct computation gives, for j > 1, as 'Q; = Q}’ = —Q,
¢ +q (=g > J=NV =N/

h>j
j—h even

We will choose @) in order to have N; = G for any j > 0. By using
again the assumption that 'Q; = —Q;, j > 0, we get
YNy = (¢ = DN + Ny = ¢7%Q5 —q (¢ +1)Q5
YN, —(q=1)N; + N/ =q77'Q7, —d' Q7 j>2.

By Lemma 11.5, the equations

Q2 —q g+ 1)Qo=Lyand ¢ 77'Qj11 — ¢ Qo = Ly, j=2
uniquely define the finitely supported sequence (Q););>0, hence the poly-
nomial tensor Q(t) and we are done. O

Proof of Lemma 11.4 in case k is odd. Now, we look for H to be of the
form

H(t) = ((¢+ 1)t +(¢—1))P(t)”” — Pt)™"" = P(t)”"",
where P is in Hiy @ Hy_o[t]. By Definition 10.8, this is a trivial
polynomial tensor. For j > 0, we set P; = fIq C;(t)P(t)duy(t). By
Lemma 11.6, we have

HO — P>> + ( 1)P>> _ PO>\/> _ PO>V>V

Hi=P;” +(q—1)P7" +(q+ )Py~ = P> =PV

Hj = P75+ (q—1)P]” +qP75 — P7Y” — P72V, j > 2.
A tedious computation shows that, by setting

My=—(1+q )P +q 'Y —q ' (1—¢ ) (-D)"(BY + BY)
h>1
and, for j > 1,
My = —q 7P +q 7 PR — g (=g 7)) Y (B + B,
h>j+1
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we get, for 7 > 1,
G H+ g (1= g7 D1 = MY M,
h>j
As above, we want to get M; = F} for any j > 0, so that we compute
My +YMy=q Py —q (g + 1)F5
MY +VM;y=q 77 Py —¢" P, j>2.

Using Lemma 11.5, we define the finitely supported sequence (P;);>o,
hence the polynomial tensor P(t), by

¢ P, —q ' (q+1)Py = K; and qijilijrl — qliijfl =K;, j=>2

and we are done.
Finally we search for a J of the form

J(t) = ((g+ Dt = (¢ = 1)QEH)™™ + Q)™ = Q)™
where Q) is in Hy, - ® Hy_o,[t]. Still by Definition 10.8, the polynomial
tensor J is then trivial. For j > 0, we set Q); = fz (t)dpq(t).
By Lemma 11.6, we have

JO >> (q ) + Q>V> >V>V
Jl (q _ 1) _|_ (q + 1) + Q>\/> . >\/>\/
Jj= Q75 — (¢ —1)Q7” +qQ75 + Q7 — inw, j>2

In this case, we set

No=(1+¢ Q5 +¢'Q7  +¢ ' (1-¢ ) Q' +Q5

h>1
and, for j > 1,
Ny =q7Q; +¢7 QI+ =g ) @Y+ Qr,
h>j+1

and we get, for j > 1,
T+ (=g )Y I = N7 = N
h>j
In order to get N; = G; for any j > 0, we compute
NN = Q5 a7+ )05
Ny +YNj1 = q7 Q7 — 47 Q7 j>2.

As above we use Lemma 11.5, to define the finitely supported sequence
(Qj);>0, hence the polynomial tensor Q( ), by

¢ %Qs—q ' (¢g+1)Qo=1Lyand ¢ 7 7'Qj41 — ¢"7Q;1 = L;, j>2.
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The result follows. 0

11.3. Building trivial coboundary tensors from ®@*H; | DR*H;_1 .
We continue preparing the proof of Proposition 10.14. Now, for k£ > 1,
still in order to reconstruct the formulas from Proposition 11.1, we will
use a second kind of trivial polynomial tensors in ®*H[t], namely the
ones coming from ®*H;,_1[t] in Definition 10.7 and Definition 10.8. We
split the statements according to the parity of k.

Lemma 11.7. Let k > 2 be even and (X;);j>1 and (Y;);>1 be finitely
supported sequences in @*Hy_1. Let (Fy)js0 and (G;)j>0 be the unique
finitely supported sequences in Hy @ Hr_1 and Hi_1 ® Hy such that,
for 3 > 1, one has,
YFj = (g = DE + FLy = —(g=1)7X;+ 7 (X; + )

G —(a— DG+ 7Gjor = —(q— DY + (X; +Y))7".
Then, there exist a trivial coboundary polynomial tensor H in @>*Hy|t]
such that, for j > 2, one has,

¢F = B3+ 776G =77G0) = (g + )("H; + Hj)
—(@* = DH; = (U =a™) Y HL—a("Hy+ H) + q*Hi,

h>j
j—h even

where Hj = [ C;(t)H (t)duy(t).

Lemma 11.8. Let k > 1 be odd and (Yj);>1 and (Z;);j>1 be finitely
supported sequences in @*Hy_1. Let (Fy)js0 and (G;)j>0 be the unique
finitely supported sequences in Hy @ Hr_1 and Hi_1 ® Hy such that,
for j > 1, one has,

Fy+7Fj="Y;—""Z

\Y% \Y% _ > >V
Then, there exist a trivial coboundary polynomial tensor H in @>*Hy|t]
such that, for j > 2, one has,

¢(F” = F +7YG =7 Gy) =
VHy+ HY +(1—q ") Y VHy+ H ="H{_ = Hyy,

h>j
j—h even

where H; = [ C;(t)H(t)dpq(t).
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The complicated structure of the formulas above comes from the need
of applying them to the sequences appearing in Proposition 10.15.

To prove Lemma 11.7 and Lemma 11.8, we will need to use the
fact that in Proposition 9.3, the sequences (F});>o and (G;);>o are not
uniquely determined by the sequence (H;);>1.

Lemma 11.9. Let k > 0 and (B;);>0 be a finitely supported sequence
2
in Q“Hy.
If k is odd, for 7 > 0, we set
Fj = >\/B]‘ - V>Bj+1 and G]‘ = B]>—|Yl - B]v>
Then, for j > 1, we have
Fj>v _ F}V_>1 + \/>Gj _ >ijfl —
and
VFj—(q—1)F; + Fjv—l =—"((¢g—-1) VBj+qBji1 — VB}/—l)
+ ("B, - B))
as well as
G —(¢—1)G; +"Gjo1 = ((¢—1)B] +qBj — "Bj_)”
+(YB;j = B)™".
If k is even, for 7 > 0, we set
Fj = \/>Bj - >VB]'+1 and G] = B]vfl - B]>V
Then, for j > 1, we have
Fjv> _ Fﬂ]>7\/1 + >VGj _ V>Gj,1 —

and
FY +"Fj1="(Bj-1—"B},,) = 7 (YB; — B))
'Gj+ G =—(Bj-1—'Bj,)” = ("B — B)™".
Proof. These are direct computations. 0

We will split the proofs of Lemma 11.7 and 11.8 according to whether
the considered sequences belong to certain eigenspaces of the natural
operators.

Proof of Lemma 11.7 when Y X; = X} and 'Y; =Y}/, j > 1. First as-
sume that X; +Y; = 0 for j > 1. By Lemma 11.5, we know that
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there exists a unique finitely supported sequence (B;);>0 in @*H_1 &
®*H 1 such that, for j > 1, one has

1 q
_ﬁ '_1+ij+ﬁBj+l :X]
Then, the conclusion directly follows from Lemma 11.9.

Now, assume that X; =Y for j > 1. We will seek for H(t) to be of
the form

H(t) = (g+ Dt A@t)” + (g —1)"At)Y> =27 A(t)">Y

where A(t) is a polynomial tensor in (®*Hy_; . & ®*Hy_1_)[t]. This
is a trivial polynomial tensor in view of Definition 10.7. For 7 > 0, we
set A; = fzq C;(t)A(t)dp,(t) so that Lemma 11.6 gives, for j > 2,

Hy = > A7 + g7 A7 + (g — 1) 7AY> — 27 AV,
For j > 2, we set
Jj=(q+ D)("H; + H}) - (¢* = 1)H;
—(1=q¢?) > VHY—q("Hy+ HY) + ¢’ Hp.

h>j
j—h even

A direct computation gives
qiij — Fj>v _ Fj\/ﬁ>1 + V>Gj _ >ij_17

where, for 5 > 0,

¢F; =
2 2 2
¢ —1 (¢g+1)(¢"+1) ¢ -1
5 Al —(g+ 1) A + 2% T Aj1 — % Y Ajn
—1D(qg+1)?
+(q )2(q ) }: gAY —VZAY +q7 Apar — ¥ Apir
q /
h>j
j—h even
and
quj =
2 2 2
¢ -1 (g+1)(¢"+1) ¢ —1
5 VA]-> —(¢g+1) VAj>V + 2% Aj>+1 — —2q Aj>+v1

L la=Dle+ 1)

AT S g Ar A o - AR

h>j
j—h even
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In particular, this gives, for j > 2,

q(¢® — 1)

CF;— (g = DF + B = T

A —qlg+1) " A

-1 +1
4 2 ZAj+ qT A

and the symmetric relation

J GV — —1G + VG, _ Q(qz — 1)A> _ AZV
(G} —(q—1)G;+ "Gj1) = ———A7; —qlg+ DA

2
2
qg —1 q+1
Thus, to conclude, it suffices to ensure that, for j > 2, one has
A g+1 q(g +1)
¢X; = Tog i T 5 A,
which is possible by Lemma 11.5. U

We manage the odd case in an analogue way

Proof of Lemma 11.8 when VY; =Y} and Y Z; = Z), j > 1. If Z; = 0
for any 5 > 1, then, by Lemma 11.5, there exists a unique finitely
supported sequence (B;);>0 in ®*Hy_1+ & ®*Hj_1— such that, for
j > 1, one has
Bj1—'Bj, =Y

and as above, the conclusion directly follows from Lemma 11.9.

We now assume Y; = 0 for any j > 1 and we will construct H(t) of
the form

H(t) = (q+ 1)t A(t)” + (¢ — 1) “A(t)™ =27 A1)
where A(t) is a polynomial tensor in (®*Hj_1 & ®@*Hy_1_)[t]. This
is a trivial polynomial tensor in view of Definition 10.8. As usual, for
j >0, weset A; = fIq C;(t)A(t)du,(t). By Lemma 11.6, we get, for
J=2,
H; = >Aj>+1 + Q>Aj>—1 +(¢—1) >Aj>v —2 >A;‘/>V-
For 57 > 2, we set
Ji="Hj+H/+(1—-q") Y VH,+H/ - H/  —H, .

h>j
j—h even

A direct computation gives
q_jjj — FWJV> . F}i\i 4 >VGj o V>Gj_1,
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where, for 5 > 0,

, 1
QJFJ':—>A]'+EV>A}/+1

-1
+92 }: —>Ah—>AZ+V>Ah+1+V>A>{+1
q h>j
j—h even

and

, 1 qg—1
¢G;=—A7 + 4 VAT 5 D) A VA AL+ VAR

h>j
j—h even

For 7 > 2, we obtain
¢ (F) +"Fi1)=—q"7Aj1 + %V>Aj+1
qj(ij + GJY—1> = _qu>_v1 + éAj>+v1-
By Lemma 11.5, we may choose the (A;);>¢ in order to get, for j > 1,

q*(jfl)Aji1 _ q*(J'Jrl)AjJrl =7,

and the conclusion follows. O

11.4. Building trivial coboundary tensors from #;_;  ®H_1,-®
Hi—1,— ©@Hg—1+. We now aim at proving Lemma 11.7 and Lemma 11.8
for sequences in Hy—1.4 @ Hp—1,—- ® Hi—1,— ® Hi—1,+. We will follow
the same method as above, which consists into simplifying the proof
by removing cases where one can apply Lemma 11.9. Unfortunately,
the formulas in the remaining cases are less easy to handle than before.
To compensate this, we show

Lemma 11.10. Let k > 1 be odd and (X;);>1 and (Y;);j>1 be finitely
supported sequences in Hy 4 @ Hi— @ Hi,— @ Hi 4. Then, there exist
finitely supported sequences (A;);>0 and (B}) ;>0 in Hi+ @My, BHi, @
Hy+ such that, for j > 1, one has

2
) —1 .
CXG+Y) =@+ DA+ 5= Y 4, +2¢ VB,

h>j
j—h even
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and

: +1 +1)?
qJ(Xj_}/}):Q%VAJ‘_l—F(q ; ) Z VA,

-
¢ Bji.

q—1 -1

Proof. We set Xg =0 =Yj. By Lemma 11.5, there exist unique finitely
supported sequences (U;);>—1 and (V;);>_1 in Hy 4 QHy, - BHi, - QHy +
such that, for 7 > 0, one has

1 qgq—1
Uiy —aqls = 2~ (X, LY,
qu quj—1 2(q+1)CI(J+ 7)
1 qg—1
Vi —adVe = 2~ (X, — Y.
qj+1 qVi-1 2<q+1>Q( j 7)
For 7 > 0, we set
2q 2
A]:q—l U =27
and
n o oalg 1)y (¢+1)° v
¢'Bj = =2 (—1 Uj—1 — Z Un-1
h>j
j—h even
¢ —1
+g+DVi+—— Y Vi
q h>j
j—h even
Straightforward computations show that the conclusion holds. U

In the even case, we have

Lemma 11.11. Let k > 0 be even and (Y;);>1 and (Z;);>1 be finitely
supported sequences in Hy y @ Hy— & Hi,— @ Hyy. Then, there exist
finitely supported sequences (A;);>0 and (Bj) ;>0 in Hy+ @My BHi, - ®
Hy.+ such that, for j > 1, one has

j q—1 - q—1
q]-‘rl}/} = TAj+1 — A;(+1 + (]_ —q 1) Z 5 Ah+1 — AZ—G—I
jfl}zl>e]ven

+¢ ' Bj — ¢ B
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and

1+1
¢ Z; = qA,

> A+ (g —1)B; —2B)).
h>j
j—h even

Proof. We set Yy =0 = Z,. By Lemma 11.5, there exist unique finitely
supported sequences (V;);>_1 and (W;),>_1 in Hy + QHy - BHi - QHy +
such that, for 7 > 0, one has

Vig — qzvjfl = quY} and Wi — Wiy = quZj-
For j > 0, we set

Aj=(a—1)V; =2V} = gWj1 = Wjp

and
j+1
¢"'B; = Z Vi
h>j
j—h even
q—1
+ —VVJH Wi+ (1 —q” Z —Wh+1 Wi
h>j
j—h even
Again, the result follows by direct computations. O

We use the above decompositions to finish the proofs Lemma 11.7
and Lemma 11.8.

Proof of Lemma 11.7 when ¥ X; = =X and 'Y; = =YY, j > 1. Wesplit
the proof according to the decomposition given by Lemma 11.10.
First, assume that there exists a finitely supported sequence (B;);>o
in Hp—14+ @ Hig—1,—- © Hp—1,— ® Hi—1,4 such that, for j > 1, one has
1 \%
X; = 10 + "B, —|— —3
q

1
dY:.=——— _B. VB, — 1
and I q—1 j-1 1t b q—1

——Bj1
Bji1.

In that case, the conclusion directly follows from Lemma 11.9.
Thus, by Lemma 11.10, we are reduced to deal with the case when
there exists a finitely supported sequence (A;); >0 in Hy—14+ @ Hi—1,— B
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Hi—1.— @ Hy—14 such that, for j > 1, one has

2
4 1
(1L11)  FOG+Y) =@+ DA+ — Y 4,

h>j
j—h even
: 1 +1)?
qJ(Xj_Yj):Qq(qfﬁvAjl+u E VAL
q h>j
j—h even

Then, we let A(t) be the polynomial tensor defined by
| cwA®a® =4, izo
Zq

As this polynomial tensor belongs to (Hy 4+ @ Hi,— @ Hi— @ Hi4)[t],
the polynomial tensor H(t) = ~A(t)” is trivial in view of Definition
10.7. For 7 > 0, we set

Jj=(q+1)("H; + H))
—(=DH;—(1—q?) > VHy—q("Hy,+ H))+¢"Hy.

h>j
j—h even

A direct computation gives
¢y =FY — B+ G = VG,

where, for 7 > 0,

j 1
P =g+ 174+ 1 =q7) Y ¢ A =5 A = 7 A

/ 2
h>j
j—h even
. ~ 1 q
PGy =(q+1)A7 + (1 —¢ 2) Z qA; — §A,fv — EAX:.
h>j
j—h even
Using (11.11) yields the conclusion. O

Proof of Lemma 11.8 when VY;Y = —qY; and ¥ Z;¥ = —qZ;, j > 1. We
now split the proof according to the decomposition given by Lemma
11.11.

We first assume there exists a finitely supported sequence (B;);>¢ in
Hi—14+ @ Hi—1,—- ©® Hp—1,— ® Hi—1,+ such that, for j > 1, one has

}/j = Bj—l — Bj+1 and Zj = (q — ].)BJ — 2B]v

Then, the conclusion directly follows from Lemma 11.9.
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By Lemma 11.11, it remains to manage the case when there exists
a finitely supported sequence (A;);>0 in Hi—1+ @ Hi—1- B Hi—1,- ®
Hy—1 4 such that, for j > 1, one has

(11.12)
j+1y:L1A. — A+ (1—=qY Z _lA —AY
q j AR j+1 q 5 “htl hil
—
j—h>e]ven

2
- qg —1
qJ+ Zj = qu + 2q E Ah.
h>j
j—h even

As above, we let A(t) be the polynomial tensor defined by
| cwA®a® =4, izo
I,

By Definition 10.8, the polynomial tensor H(t) = ~A(t)™ is trivial. For
7 >0, we set
Ji=VHj+H/+(1—-q") Y VH,+H/ - H/  —H, .

h>j
j—h even

We get
q_ij — Fj\/> _ Fj>_v1 + >ij _ V>Gj_1,

where, for 7 > 0,

. 1
qJ+1Fj — _>Aj+1+<1_q71> Z §V>Ah71 _>Ah
h>j
j—h even
. ) 1
PO =0 Y Larap
h>j
j—h even
The conclusion follows by using (11.12). O

11.5. Endpoints equations and trivial coboundary tensors. We
will now use the previous constructions to finish the proof of Proposi-
tion 10.14. We will need the following description of natural projections
in tensor spaces.

Lemma 11.12. Let k > —1 and H be in @*Hy,. Write H = J+ K+ L
with J in ®2'Hk’+, K n 'Hk7+ @ Hi,— @ 'Hk7_ @ Hi+ and L in ®2,Hk7_.
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If k is even, we have

1

_ VIV Vv v
J_(q+1)2( H"+"H+H"+H)
1
K:(q+1)2(—2vHV+(q—1)VH+(q—1)Hv+2qH)
1
L= e (YHY —q"H —qH" + ¢°H).

If k is odd, we have
1
J:Z(VHV+VH+HV+H)

1
K:§<—VHV+H>
1

L= ("H'~"H—-H'+H).

Proof. This is a direct computation. U

Proof of Proposition 10.14. Let H be in ®?Hy[t] and assume that the
ultraweight Q4 (H) is a coboundary. Let n be as in Proposition 3.3.
We will show that there exists a trivial coboundary tensor K such that
H — K has degree < k + n.

By Definition 10.7 and Definition 10.8, we may assume that H is a
symmetric tensor and that it belongs to ®@*Hy, . & ®*Hy, _, that is, we
have VH = HY. If I is bipartite, we can also assume that we have
H=H , that is, H is invariant by the twist operator of Subsection
10.2. As usual, for j > 0, we set H; = fIq C(t)H (t)dp,(t).

Suppose k is even. Then, by Lemma 11.12, the component of H
in ®*Hy. . [t] is (¢+ 1) (H + HY) and its component in ®*Hy _[t] is
(q+1)"'(¢gH — HY). For j > 0, we set

Jy=—(Hj+ H)) + (¢H; — H))+ (1—q %) > qHy— H)

h>j

j—h even
=(¢-V)H;—2H/+(1—q%) > qH,—H.
h>j
j—h even

Assume I is not bipartite. Then, by Lemma 3.2, Proposition 3.3 and
Proposition 10.15, there exist finitely supported sequences (u;);j>o in
Wi k-1 and (v;);>0 in Wy_yx such that, for every j > k +n and ab, zy
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in X, we have

(11.13) ¢ 7wi(J;)(ab, zy) =
u;(ab, v1y) + vj(aby, vy) — uj_1(ab, xyr) — vi_1(ar1b, zy).

Assume I is bipartite. As above, by Lemma 3.2, Proposition 3.3 and
Proposition 10.15, there exist finitely supported sequences u = (u;);>o
in Wi r—1 and v = (vj);>0 in Wy_14 such that, for every j > k + n,
(11.13) holds for any ab,zy in X}, such that j + d(a,x) is even (recall
that k is even). Note that in these relations, for j > 0, we only use the
values of the function u; on the set

{(ab, zy) € X} x Xp_1|j + d(a, ) is odd}.

Thus, we can assume that, for every (ab,xzy) in Xj x X;_; we have
u;(ab, vy) = 0 if j + d(a, x) is even. In the same way, we also assume
that, for every (ab, zy) in Xj_; x Xy, we have v;(ab, zy) = 0 if j+d(a, )
is even. Besides, recall that H = H, so that, for j > 0, we have by
the definition of the twist operator in Subsection 10.2, e(—1)°H; =
(=1)7H;, hence, by Lemma 10.4, e(—1)°J; = (—1)’J;. By Lemma
10.5, for every j > 0 and ab, xy in X}, such that j + d(a,z) is odd, we
get @;(J;)(ab, zy) = 0 so that (11.13) also holds for such pairs (ab, zy).
Hence, in both cases, we can assume that (11.13) is valid for any
7 > k+n and any ab, xy in X}, that is, by Definition 9.2, the sequence
(¢ 7 @k(J;)) j>k+n is cohomologically trivial in W,. By Proposition 9.3,
we can find finitely supported sequences (F});j>ki+n—1 in Hj @ Hy—1 and
(G)j>ktn—1 In Hy_1 ® Hy such that, for j > k + n, one has

q_ij == F}>v - F}\/,>1 + V>Gj — >ij_1.

Recall that we have ij:ij, j > 0. Therefore, by Proposition 11.1, we
may find finitely supported sequences (P;);j>1 in Hy—2 @ Hy, (Q;);>1
in Hk ® Hk_g and (Xj>j21 and (Y})jzl in Hk—l X %k—l such that for
j >1,one has PY = VP;, Q7 ="Q; and, for j > k +n,

YFi—(g-DF+F, =Q7 —(¢—1)7 X, + 77 (X; +Y))

G —(q—1)Gj+"CGjo1="P;— (¢ = )Y +(X; +Y;)7".
Thanks to Lemma 11.5, we can extend the definition of F; and G to all
J > 0 by using the above relations. Now, Lemma 11.4, Lemma 11.7 and

Lemma 11.12 precisely tell us that we may find a trivial coboundary
polynomial tensor K such that, for any 7 > k + n, we have

Hi—K;e€Hp+ QHp— © Hi— @ Hi 4,
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where K; fz (t)dpy(t). By Definition 10.7, the component
of H— K on (’Hk,Jr ® 7-[/.@_ @ Hi,— ® Hp4)[t] is a trivial coboundary
tensor. The conclusion follows in case k is even.

Suppose now k is odd. We just sketch the proof. For j > 0, we set

Ji=H/+0-q") Y H—H_.

h>j
j—h even

Using Lemma 3.2, Proposition 3.3 and Proposition 10.15, we get
(11.13) for all j > k+n and ab, zy in X} when I is not bipartite. When
[ is bipartite, this is only true when d(a,x) + j is odd. But as we have
assumed that H = H, Lemma 10.4 says that e(—1)0.J; = (=1)7t1J;,
j > 0. Reasoning as above, we show that we can again assume (11.13)
to hold for all j > k + n and ab, zy in Xj.

We conclude as in the even case by using Lemma 11.4, Lemma 11.8
and Lemma 11.12. O

12. SPECTRAL OBSTRUCTIONS

In Section II1.6, we have introduced the spectral transform of pseud-
ofunctions. For k > 0, the spectral transform essentially allows to
diagonalize the action of the natural operators on the subspace of H
spanned by the image of (H;)>" . This construction leads to the de-
scription of the spectral theory of orthogonal extension.

Now, as in Subsection 5.2, every I'-invariant symmetric bilinear form
of D(0X) defines in a natural way a symmetric bilinear form on H,
for which the action of the operators R and S are symmetric. By
pulling back this bilinear form under the spectral transform (and the
polyextension map of Subsection I11.2.3), we get a symmetric bilinear
form on H3[t] for which the polynomial operators of Subsection I11.6.1
are symmetric and which vanishes on the range of the map described
in Proposition I11.6.5.

In the present Section, we will use Proposition 10.14 to show that the
last two properties characterize the range of this map Q(D(9X))"
Q(H:[t]) up to a finite dimensional subspace.

12.1. The first step extension. For £ > —1, we introduce a map
H: — Hppq that will allow us to pull-back the result of Proposition
10.14 under the spectral transform.
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Definition 12.1. Let £ > —1. We define the first step extension map
I : H? — Hyyq as follows. For H = <H0) in H2, we set

H,
ItH=H)> —(¢—1)Hy + H{" if k is even
=H/”Y —(¢—1)H)> + H{ if k is odd.

We shall see below in Lemma 12.6 that the first step extension map
allows to describe the behaviour of the converse of the spectral trans-
form on constant vectors. Before showing this, we establish some basic
properties of this map.

There is a compatibility of first step extension with some other ex-
tension maps. A direct computation (using as usual Lemma II1.2.6)
yields

Lemma 12.2. Let k > 0 and H be in H:_,. We have
(Iy_1H)” = I,(H"") if k is even
= I,(H”Y) if k is odd.

Using Lemma II1.2.8 allows to determine the null space of the map
Iki

Lemma 12.3. Let k > 0 and H be in H:. Then I H = 0 if and only

GV>V
iof there exists G in Hy_1 with H = (—qG>)'

Proof. Assume k is even. Then, if [y H = 0, by Definition 12.1, we have
Hy~ —(¢—1)Hg = —Hy",
hence, by Lemma II1.2.6, there exists G in H;_; with
Hy —(q—1)Hy=G"> and H, = —G"~.

The first relation amounts to Hy = ¢ 'GY>V. Therefore, we obtain
GV>V
_ -1
H=gq —qG>
way, a straightforward computation using Lemma II1.2.6 shows that
IH = 0.
The proof is analogue in the odd case. 0

as required. Conversely, if H may be written in this

In the bipartite case, the first step extension behaves well with
respect to the operations introduced in Subsection II1.2.6. Lemma
I11.2.22 and Definition 12.1 give
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Lemma 12.4. Assume I' is bipartite. Let k > —1 and H be in 7-1,2
Then, we have

I (_fgﬁ = (—=DF(I.H)

Now, by using the first step extension map, we can relate the pull
back of the natural bilinear forms of Subsection 5.2 with the ultra-
weight.

Proposition 12.5. Let p be a I'-invariant symmetric bilinear form on
D(0X) and 0 be the associated (v, T)-invariant distribution of I'\.7.

Fork >0 and H,J in H,EN). We have

p(EkH, EkJ) == <0, Q]H_l(]kH(t) X IkJ<t))>

The polyextension map FEj was introduced in Definition I11.2.11. The
spectral transform H — H was constructed in Proposition I11.6.3. The
ultraweight €0, was introduced in Definition 10.1.

Note that, in the formula above, the ultraweight €1 (I,H () ®
I J (t)) is not a priori a smooth function. Nevertheless, by Corollary
10.12, we know that it is cohomologous to a smooth function, so that
the formula makes sense, thanks to the convention introduced in Re-
mark 2.8.

The proof relies on the next lemma which tells us that the first
extension map is essentially defined by studying the converse of the
spectral transform on constant vectors in Hz[t].

Lemma 12.6. Let k > —1 and H be in H:. Define G in H,SN) by
setting G; = 0 for i1 > 2 and

Go=Hy{ — (¢—1)H, G, = H, if k is even
Go=H, — (¢—1)H G, =H{ if k is even.
Then we have
G(t)=H and E,G = (I, H)”".

Thanks to this Lemma, we could also have recovered Lemma 12.3 as
a consequence of Proposition I11.6.5.

Proof. Note first that Definition I11.2.11 gives in both cases
EG = (Gy + GV = (I,H)>™.
Assume k is even. By Definition I11.2.16, we have
G = Goly+ G11; = Golg + S(G11y).
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Using (I11.6.1) and Proposition II1.6.3, we obtain

- (7)) - () (2)- ()

as required.
Assume k is odd. By Definition II1.2.17, we have

G - G[)]_O + G111 - GO]-O —f- R(Gllo)

Using (I11.6.2) and Proposition II1.6.3, we obtain

a0=(g,) (&)= () * (0 he)

as required. O

Il
PR
=
~—

Proof of Proposition 12.5. We fix A, B in H; and we let K and L be
the elements of H,(CN) given by Lemma 12.6 so that

(t)=A EyK = (I,A)™™
(t)=B EyL = (I,B)”".

~y D

Let a,b > 0 be integers. By Proposition I11.6.3, the spectral transforms
of P°K and P°L are given by

—

PaK(t) = t"A and PYL(t) = t*B.

By Lemma II1.2.18, Lemma 5.3, Proposition 5.4 and Corollary 10.11,
we obtain
P(EL(PK), E(P'L)) = p(P*EyK, P'E, L)
= (0, (P E,K, P°E,L))
= (0, (P ELK, EL))
= (0, (P (I, A)”", (I,B)”7))
= (0, U (1" (I A) @ (1 B))
— (0, Q1 (I, PK @ I, PPL)).

The conclusion follows when H and J are of the form P*K and P'L.
This is sufficient as, by Proposition II1.6.3, the elements of this form

span the space H,&N). O
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12.2. Tensors with trivial coboundary first step extension. We
aim at translating the result of Proposition 10.14 in the spectral rep-
resentation obtained through the spectral transform. To this aim, we
now describe the inverse image, under the first extension map, of the
space of trivial coboundary tensors of Definition 10.7 and Definition
10.8.

We first define a notational convention which complements the no-
tation of Subsection 8.2. If V' and W are vector spaces, the elements of
the tensor product V2@ W? will be written as matrices u = Z(l)g Zﬁ)
whose coefficients are elements of V' ® W. The natural bilinear map
V2 x W? = V2?2 ® W? will be defined by

Vo Wo Vo @ Wy Vg & wq
= , vo,v1 €V, wy,wy € V.
(M) ® <w1> (U1 P@wy v & w1> 0- 1 01
With this matrix convention, we can describe the action of linear

maps as follows. Assume V' and W’ are other vector spaces and y :
V2 — (V) and ¢ : W? — (W')? are linear maps. We may write them

as matrices
Xo0o Xo1 Yoo Yo
= and ¢ =
X (XlO Xll) v (@Zflo 7?11)

whose coefficients are respectiely linear maps V' — V' and W — W’.
Then, the associated linear maps u +— yu, V2@ W? — (V)2 @ W? and
u = up, V2@ W? — V2@ (W')? are given by the following matrix
multiplications: for u in V2 @ W2, we have

Xoo Xo1 Uoo  Uo1 Uoo  Uo1 oo P10
U= and uy) = .
X <X10 X11> <U10 Un) v (Ulo Ull) <¢01 ¢11>

The reader should beware that, for this computation rule to hold, the
antidiagonal coefficients of the latter matrix have to be exchanged.

Coming back to spaces of pseudofunctions, if I' is bipartite, we extend

the definition of the twist operator of Subsection 10.2 as follows. For

_ (Hoo(t) Hou(t)

k> 0and H(t) = (Hlo(t) Hu ()

define the twist H of H as the element

i o Hoo(t) —F[Ol(t)
Hi) = (—ﬁlo(t) Hy(t) ) '

) an element of @*H2[t], we will

This definition allows to get

Lemma 12.7. Assume I is bipartite. Let k > 0 and H be in @*Hi[t].
Then we have ]k(ﬁl)]k = [,HI}.
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Proof. This is a direct consequence the definition of the twist operator
in Subsection 10.2 as well as of Lemma 10.3 and Lemma 12.4. O

Now we introduce our candidates for playing the roles of trivial
coboundary tensors in @*Hz[t].

Definition 12.8. Let £ > 0. We define the space of trivial spectral
obstructions in ®*H3[t] as the subspace ¥ spanned by the polynomial
tensors

JoK-K®.J J K € Hlt
RH — HR, H € @ H;]l]
&.H — HS, H € @ H;|t]
0
HY>Y _ g (_1 " _E 1)t> H e (H; @ Hj_))[t]

and, if I' is bipartite,
H—H, H e Hl.

In this Definition, we have used the notation of Subsection III.6.1
for the operators R; and &;.

Proposition 12.9. Let k > 1 and H(t) be in ®*Hz2[t]. Then the
element I.H(t)Iy of @*Hpsa[t] belongs to ©),, if and only if H(t)
belongs to 9.

The spaces of trivial coboundary polynomial tensors O, k > 0, were
defined in Definition 10.7 and Definition 10.8.

In the proof, we will need to compute explicitely the values of the
double of the first step extension operator on the tensors that appear
in Definition 12.8. Note that, when £ is even, the operator &; of
Subsection III1.6.1 does not depend on t. In the formulas below, we
simply denote it by &. In the same way, when k is odd, the operator
R; is denoted by *A.

Lemma 12.10. Let k > 1. The action of the double first step extension
operator on the generators of the space of trivial spectral obstructions
in @*Hi[t] may be computed by using the following formulas.

If k is even, for H in @*H2, we have

I(SH — HS)I, = "(IL,HI},) — (I, HI)".
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Hoo(t) Ho(t)) . o 21 Hoo Y Hou(t
For H(t) = (Hm(t) H11(t)) in @°HL[t] and J(t) = (Hm(())v Hll((t)))’

we have

LR () — TR = ¢~ (Hoo(t)" — " Hoo(t))”
+q(q+1)t " Hyo(t)” +q(q—1) "7 Hyo(t)” —q "~ Hio(t)” —q "~ Hyo(t)"”
—q(g+1) (

t”Ho(t)” —q(qg—1) " Ho(t)”" +q>H ()Y 4+q 7V Hoy ()Y
(g + Dt Hu ()7 =7 Hu(0)?) =7 ("Hu(t) = Hu (1))
For H(t) in Hy—1[t], we have

Ho(t)"=Y 0 -1 Ho(t)~) _ VSVSV
Iy (Hl(t>v>v) — Iy (q (q+ 1)t) (Hl(t)>> = Hi(t)
— (¢ = DH(t)”” + Hy(t)™"" = (¢ + 1)tH (1),

If k is odd, for H in @*H3, we have
L(RH — HR)I, = " (I, HI) — (I.HI})".

For H(t) = (Z?gg ; Zﬁg;) in @?H2[t], we have

L(S J(t) — J()S) I, = — V7 Hoo ()Y 4+ 7V Hoo (1)
‘I‘(q_l) V>H00(t)v>_(q—1) >VH00(75)>V—|—(q—|—1)t(>vHog(t)V>V—V>VHOO(t)v>)
+ >\/H10<t>\/>\/ _ (q o 1) >\/H10<t>\/> + >H1(](t)>v _ (q 4 1)t >H10(t)v>
=TV Hp ()" + (= 1) 7 Hou (1) =" Hor (8)” + (g + 1)t ™ Hoa (£)"~
“(YHu(t) — Hu(1)Y)”
For H(t) in Hy_1[t], we have

I (Z(’Etiiii) ~ I (2 ’ 111)1&) (Z%Q _ H ()
+H(8)7YY = (¢ — DH (£ — (g + DtH (1>

Proof. These are straightforward computations. 0

In case k > 2 is even, Lemma 7.5 and Lemma 7.8 imply that the first
step extension [ maps Hj onto Hyq. This fact will make the proof
of Proposition 12.9 easier, so that we start with this case.

Proof of Proposition 12.9 when k is even. By Lemma 7.5 and Lemma
7.8, we have I} H, = Hi1. By comparing the formulas in Definition
10.8 and the ones in Lemma 12.10 (and by using Lemma 12.7 in case T’
is bipartite), we get I; Y01, = ©)_,. By Lemma 8.4 and Lemma 12.3,



ADDITIVE REPRESENTATIONS 131

the null space of the map H(t) — I H(t), Hi[t] — Hj1[t] is the space
of polynomial of the form

G\ _ (G (0 —1 G(t)”
—qG(t) )] 0 q (g+1)t 0
where G(t) is in Hy_1[t]. Therefore, in view of Definition 12.8, the null

space of the map H(t) — I H(t)Iy, *Hz2[t] — @?Hj41[t] is contained
in X29. The conclusion follows. U

In case k is odd, we will need to give a set of generators for the space
(I, @ HE[t] k) N ©F,,. This will use

Lemma 12.11. Letk > —1, H be in H;, andt be in R, t> # 1. Assume
that we have

HY>V> 4+ H>V?Y = (q+ DtH>> 4 (¢ — 1)H>Y>  if k is even
=(q+1)tH>” +(q—1)HY">  ifk is odd.

Then H = 0.
Proof. We prove the statement by induction on k.

For k = —1, as the V operator is —1 on 0-pseudofunctions (see
Subsection I11.2.2), the assumption reads as tH+ H"Y = 0, hence H = 0
since t? # 1.

Assume now k > 0 and the Lemma holds for £ — 1.
If k£ is even, Lemma II1.2.8 says that we may find J in H; with

(q+1OtH” +(¢q—1)H>Y — HY?Y = JY” and HY = J~.
Applying again Lemma II1.2.8 to the latter, we get K in Hy_; with
J=K"" and H=K".
The assumption now reads as
K>V>V L V>V = (q+ 1)tK>> + (¢ — 1)Kv>> =0,

and the conclusion follows from the induction assumption.
The proof is analogue in the odd case. U

We can now give a new version of Definition 10.7.
Lemma 12.12. Let k > 2 be an even integer. Then, the space
(To-1(®*Hf_[t]) Te-1) N O
1s spanned by the following polynomial tensors:
JOoK-K®J J Kl H [t
H  H € (His © Hi-)[t] 0 L1 (7 Hg_y [8]) I
"H”  Heée (Hi1+ @ Hie1-)[t]
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as well as

<q+1)t>H> +(q_ 1)>H\/> _2>H\/>\/
H e (Hi-14+ @ Hi—1,+ & Hi—1,- @ Hy—1,-)[t]

and

(C] + 1)tH>> + (q _ 1)H>V> _ H\/>V> _ H>V>V
H € (Iim1Hi—1) © Hio)[1]
and, if I' 1s bipartite,
H—H, H el (°H |[t]) .

Proof. The main difficulty is to show that the component of an element
of (I1_1@*H:_|[t]I;—1)NOY corresponding to the fifth case of Definition
10.7 can be assumed to belong to (I_1HZ | @ Hi_2)[t].

We first claim that, in this fifth case, in full generality, it suffices
to assume that the element H(t) belongs to (Hy 4+ ® Hi—2.4+ & Hi— ®
Hi—o,-)[t] (a fact that was already implicitely used in Subsection 11.2).
Indeed, fix H(t) in H; @ Hp—2[t] and set

J(t) = (g + DEH(E)™ + (g~ VHO™ — H(#H>Y> — H(t)™*.
When H(t) belongs to (Hi+ ® Hi—o— & Hi— @ Hi_24)[t], we have
H(t)Y + " H(t) = (¢ — 1)H(t), hence

J(t) = (q+ DtHt)>> + " H({t)”Y> — H(t)>V>V

and the latter belongs to (Hi+ ® Hi,— ® Hyp— @ Hi4)[t] so that he
first two cases of Definition 10.7 already warrant that it is a trivial
coboundary polynomial tensor. Notice in particular, that, if H(¢) is in
(,ij’—"— ® Hk_27+ NP ,Hk;’— ® Hk_z_)[t], then

J(t) = (q+ DH(t)>” + (¢ = DH()™" = "H(6)”" — H(t)”">",

so that J(t) belongs to (Hy+ ® Hy+ & Hi,— @ Hi - )[t].
In the same way, if T" is bipartite, by Lemma 10.4, for H(t) in H; ®
Hy—o[t], we have

T(t) = =(q+ DtH ()™ = (g = DH()™> + H()>"> + H(t)™>.

Thus, we can also assume that H () = —H(t) and hence J(t) = J(2).
Now, let G(t) be in ®?H2_,[t] and assume that I;, G (¢)I;_; isin ©Y.
In view of the discussion above, we can assume that the component of

I _1G(t)I;_1 corresponding to the fifth case of Definition 10.7 is of the
form

J(t) = (q+ DtH ()™ + (¢ — YH(t)™"" — H(t)">'" = H(t)™"",
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for some H in (Hyy © Hit ® Hy— @ Hy)[t], with H(t) = —H(t) if
I" is bipartite. In particular, we have ¥J = J" and J=. Now, we
notice that the space Iy_1(®?*H;_[t])[1—1 C ®*Hy[t] is invariant under
the symmetrization of tensors, the map F(t) — " F(t)" and the twist
operator if I' is bipartite (the latter by Lemma 12.7). Moreover, these
maps commute to each other. Therefore, in view of Definition 10.7, the
polynomial tensor J(¢) may be written as the sum of a skew-symmetric
polynomial tensor and an element of I;_;(®*H: [t])Ix_1. In other
words, the symmetrization of J(t) belongs to Iy 1(®>*H3 [t])[}_1. As
J(t) belongs to (Hy, ® Iy_1H3_,)[t], this tells us that J(t) itself belongs
to Iy_1(®*H;_,[t]) 1. By applying Lemma 8.4 and Lemma 12.11, we
obtain that H(t) belongs to (I 1Hi | ® Hi_2)[t].

Therefore, we have shown that the space (I_1(®*H2_,[t])Ix_1) NOY
is the intersection of I} _1(®?*H:_,[t])I;—1 with the subspace of ®?H,[t]
spanned by the polynomial tensors

JOK-K®J J, K € Hylt]
H H € (Hp+ @ Hi,-)[t]
“H~ He (Hi—14+ @ Hp—1,- )]
as well as

(q+1)t>H> +(q_ 1)>H\/> _2>H\/>\/
He MHp1+@Hi14+ O Hp1,- @ Hi1,)[t]

and

(q + 1)tH>> + (q _ 1)H>V> _ H\/>\/> _ H>V>\/
H e (Ik—lHi—l & Hk_g)[t]
and, if I' is bipartite,
H—H, Hely @M [l

The conclusion follows as Iy _; (®*H3_,[t])Ix_1 is stable under the sym-

metrization operator, the map F(t) — F(t)” and the twist operator
if I" is bipartite. O

Proof of Proposition 12.9 when k is odd. This is analogue to the proof
in case k is even, by using Lemma 12.12 instead of Definition 10.7. [

12.3. Finiteness of genuine spectral obstructions. We now use
Proposition 12.9 to translate Proposition 10.14 into a result that only
leaves in the spectral world.
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Let p be a I-invariant symmetric bilinear form on D(9X). For k > 0,
we let Py be the symmetric bilinear form on H2[t] such that, for every

H,J in H,(CN), one has
Pi(H,J) = p(EcH, BJ),

where E) is the polyextension map of Definition I11.2.11 and, as in
Subsection 5.2, we still write p for the symmetric bilinear form on H,
associated with p.

The existence and uniqueness of p, are warranted by Proposition
I11.6.3.

Now, we will associate to Py, a linear functional on ®?H:[t] by the
following construction which may be seen as an abstract form of the
spectral theorem.

By construction in Subsection 5.2 (and by using Lemma 1.9.11), for
H,J in H, we have

(12.1) p(RH,J) =p(H,RJ) and p(SH,J) = p(H,SJ)

where R and S are the natural operators on oo-pseudofunctions de-
fined in Subsection I11.2.5. This gives p(PH, J) = p(H, PJ), hence, by
Proposition I11.6.3, for H(t), J(t) in Hi[t],

(12.2) Pe(tH(t), J (1)) = Dr(H (L), £ (L)).

Let V,W be vector spaces and r,s be inderminates. The product
map

V[r] x W[s] = (V@ W)[r, s], (v(r),w(s)) — v(r) @ w(s)

defines an isomorphism between V{r]® W{s] and (V ® W)[r, s]. Under
this isomorphism, the subspace of V|[r] ® W{s] spanned by the tensors
of the form

(ro(r) @ w(s) —v(r) @ (sw(s)), o(r) € VIr], w(s) e Wls],

may be identified with the space (r — s)(V ® W)[r,s]. Thus, if ¢ :
V[r] ® Wls] — R is a bilinear form such that, for every v(r) in Vr|
and w(s) in Ws], we have

p(ro(r),w(s)) = e(v(r), sw(s)),
we may consider ¢ as a linear functional on (V ®@W)[r, s] which vanishes
on the space (r — s)(V @ W)[r, s]. Now, if U a vector space, we have a
natural map 0 : U[r, s] — U][t] defined by letting r and s take the value
t, that is

ou(t) = u(t,t), wu(r,s) € Ulr s].
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Elementary algebraic considerations show that the null space of § is
exactly the space (r — s)U][r, s]. Therefore, if ¢ is as above, we may
consider ¢ as a linear functional on (V @ W)[t].

By applying this construction to the bilinear form py, since (12.2)
holds, we will now consider pj, as a linear functional on ®*H3[t]. This
linear functional may also be computed as follows:

Lemma 12.13. Let p be a I'-invariant symmetric bilinear form on
D(0X) and 6 be the associated (v, T)-invariant distribution on T'\.7.
For k >0 and H in Hi[t], we have

Pr(H) = (0, U1 ([ H 1))

Proof. This is a direct consequence of the definition of py, and of Propo-
sition 12.5. 0

We shall now study the range of the map p — py.

Definition 12.14. Let £ > 1. We define the space of spectral ob-
structions as the subspace ¥y of all H in_®27-li[t] such that, for any
[-invariant symmetric bilinear form p on D(0X), one has p(H) = 0.

We have an alternative definition of ¥; by means of the trivial
coboundary tensors of Definition 10.7 and Definition 10.8.

Lemma 12.15. Let k > 1. The space Xy C Q*Hi[t] is the inverse
image of the space Oy 1 C @*Hpy1[t] under the map H — I, HIy. In
particular, we have ¥9 C Y.

In other words, all the polynomial tensors that appear in Definition
12.8 are killed by any linear functional p; as above.

Proof. The equivalence between the two definitions of ¥, is a direct
consequence of Proposition 2.1, Corollary 2.7 and Lemma 12.13. The
inclusion 3? C ¥, then follows by Lemma 10.9 and Proposition 12.9.

O

We can use Proposition 10.14 to give a partial converse to Lemma
12.15.

Theorem 12.16. For any k > 1, the space X has finite codimension
in Y. More precisely, there exists an integer n > 0 such that, for
any k > 1, we have Xy C X0 + (2H2)pinlt], that is, every spectral
obstruction may be written as the sum of a trivial spectral obstruction
and a polynomial tensor of degree < k + n.

As for Proposition 12.9, the proof of this statement will be easier in
the even case. In the odd case, we shall need
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Lemma 12.17. Let k > —1 and (F});>0 be a finitely supported se-
quence in Hy. Assume that, for every j > 1, we have

V> >V : ;
F/= =F7 if k is even

F7Y =F/3 if k is odd.

J
Then F; =0 for any j > 0.

Proof. As usual, we prove this statement by induction on k.

If £ = —1, the assumptions says that, for any j > 1, we have Fj +
F, = 0. The conclusion follows as the sequence (Fj);>o is finitely
supported.

Suppose now k > 0 and the result is true for £ — 1.

Assume k is even. From the assumption and Lemma I11.2.8, we know
that there exists a sequence (G;);>o in Hy—1 such that, for any j > 1,
we have
This gives GV = G7,. Besides, as (F});>o is finitely supported, so is
(G;);>0- The conclusion follows by induction.

The proof in the odd case is analogue. U

Using the latter, we can show that the solutions to certain cohomo-
logical equations lie in smaller subspaces.

Corollary 12.18. Let k > —1 be odd and (H;);>1 be a finitely sup-
ported sequence in I1,(R*H:)I,. Assume that there exist finitely sup-
ported sequences (F;)j>o in Hyi1 @ Hy and (G;)j>0 in Hi @ Hyq1 such
that, for 5 > 1, one has
Hj — F}>v - -F]v,>1 + V>Gj - >ij_1.

Then, for all 7 > 0, we have
Proof. For j > 1, we have

FPY — F2 = H; =7 G;+ 7VGio € (IHE) @ Hypr.
By Lemma 8.4 and Lemma 12.17, F; belongs to (I, H;) ® Hy, for all
j > 0. The proof of the other case is symmetric. O

Proof of Theorem 12.16. Let n be as in Proposition 10.14. Take H in
Y. By Lemma 12.15, I HI; belongs to O, and Proposition 10.14
says that there exists J in ©,; such that H — J has degree < k+n+1.

If k is even, by Lemma 7.5 and Lemma 7.8, I, maps Hj onto Hyyq
hence J belongs to I, (®*H:[t]) [}, and Proposition 12.9 implies that we
can find K in XY such that H — K has degree < k +n + 1.



ADDITIVE REPRESENTATIONS 137

If £ is odd, we claim that we can actually choose J to belong to
I, (@*HZ[t])) I.. Indeed, due to Corollary 12.18; all the constructions
in the proof of Proposition 10.14, when applied to a tensor H in
O0 1 N Ii(®*H;[t]) Ik, provide trivial coboundary tensors also living in
I, (®*Hz2[t]) I (see in particular Subsection 11.1 and Subsection 11.2).
We then conclude as in the even case by applying Proposition 12.9. [J

12.4. The spectral projective limit. In Section 1.4, we have intro-
duced the space Fj of I'-invariant k-quadratic fields, & > 2. This is
a finite-dimensional space and the reduction map p — p~ sends Fjyy1
onto Fy. The projective limit of the system (Fj)x>2 is naturally identi-
fied with the space Q(D(0X))" of I-invariant symmetric bilinear forms
on D(0X). We will now give an alternate construction of a projective
system whose limit may be identified with Q(D(0X))F. The advantage
of this new system is that it will keep track of the spectral theory of
non-negative elements in Q(D(0X))". The drawback is that it will be
constructed through infinite-dimensional spaces.

We first note that we have a natural embedding @*H:i[t]/¥) —
R Hi 1 [t]/ S
Lemma 12.19. Let k > 1 and H be in @*Hj_,[t]. Then, if k is even,
H is in Xy, if and only if V> H>Y is in Xp1. If k is odd, H is in ¥, if
and only if 7V HV> is in Yjyq.

Proof. Assume k is even. Then from Definition 10.1, Lemma 12.2 and
Lemma 12.15, we get
H e XYy < Qi1 (I HI) is a coboundary
& Qo (CIL,HIL”) is a coboundary
& Qpio(Ipy "V H”V I 1) is a coboundary
& VPH”Y € Y.
The proof in the odd case is analogue. 0

Thus, for any k > 1, we have defined an injective map @*Hz[t] /Xy —
@*Hi 1 [t]/Sks1. We denote by

i s (@M1 [t]/Brin)” = (°HE[H]/Z0)”
the dual surjective map.
Proposition 12.20. The maps
p i QD(OX)) — (°HL[)/Sh)', k=1,

define a linear isomorphism between Q(D(0X))' and the projective
limit of the projective system ((Q*Hz[t]/Sr)*, g)r>1-
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The main ingredient of the proof is the following injectivity property:

Lemma 12.21. Let p be in Q(D(0X))" and assume that the associated
symmetric bilinear form on Ho ts zero. Then p = 0.

Proof. First assume that I';, = {e} for some zy in X;. In this case,
if f,g are in D(0X), we can find I'-invariant co-pseudofunctions F, G
with F,, = f, Goy = g and F, = G = 0 for any ab in X; \ I'(zy).
Then, by definition, we have p(f, g) = p(F,G) = 0, hence p = 0.

If all edges admit non trivial stabilizers, then reasoning as above
shows that, for any zy in X, for any I'y,-invariant functions f, ¢ in
D(0X), we have p(f,g) = 0. For zy in X, we let U,, be as usual

Ury = {€ € 0X]y € [26)}.

Then, as p is I'-invariant and Uy, is I';,-invariant, for any f in D(0X),
we have

’Fwy’P(1U1y7f) = Z p(ley,’Yf) =p | 1lu,, Z ~vf | =0.

YE 2y YE 2y

Since the functions 1p,, span D(0X) when zy runs in X;, we get p = 0
as required. O

Proof of Proposition 12.20. Let U be the quotient by the cohomology
equivalence relation of the space of all Holder continuous functions on
I'\.# which are cohomologuous to a smooth ¢-invariant function. Then,
in view of Remark 2.8, we may identify Q(D(0X))" with the dual space
of U.

By Lemma 12.15, for & > 1, the map H > Q1 (IxH ;) induces an
embedding of @*H:[t]/X into U, whose range we denote by Uy. Then,
Lemma 12.2 warrants that we have U, C U, and Proposition 5.4
and Lemma 12.21 warrant that we have U = |J,~, Ux. The conclusion
follows since, by Lemma 12.13, the restriction to Uy, of the distribution
associated to some element p of Q(D(0X))' may be identified with
Dr- 0

Thanks to these constructions, Theorem 12.16 yields the

Proof of Corollary 1.1. Fix k > 0. We claim that the space Q(AH; )%
may be identified with the dual space of the space @*H:[t]/27. Indeed,
if © is some symmetric bilinear form on A#H; such that the operators
R and S are symmetric with respect to ¢, we let @ be the bilinear form

on H2[t] such that, for every H,J in ”H,SN), one has
P(H,J) = (B H, EyJ),
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where F} is the polyextension map of Definition I11.2.11. As in Subsec-
tion 12.3, the existence and uniqueness of @ are warranted by Propo-
sition III1.6.3.

By Lemma III.6.1 and Proposition II1.6.3, multiplication by ¢ is a
symmetric endomorphism of H:[t] with respect to @. Therefore, still
as in Subsection 12.3, we can consider @ as an element of the dual
space of @?Hz2[t]. Tt follows from Corollary I11.2.14, Proposition II1.6.3
and Proposition II1.6.5 as well as Definition 12.8 that the map ¢ — @
establishes a linear isomorphism between Q(AH; )% and the space of
those elements in the dual space of ®?H2[t] which vanish on the space
¥, of trivial spectral obstructions.

Besides, Proposition 12.20 shows that this map sends the image of
Q(D(0X))F in Q(AH,)®S onto the space of those elements in the dual
space of ®*H2[t] which vanish on the space ¥, D ¥ of all spectral ob-
structions. The conclusion follows as, by Theorem 12.16, the quotient
space X /%% has finite dimension. O

APPENDIX A. HARMONIC COCYCLES

The purpose of this Appendix is to explain how the study of non-
negative [-invariant symmetric bilinear forms on D(9X) can be consid-
ered as the study of wide class of unitary representations of I', namely
the ones admitting a cyclic harmonic first cohomology class.

A.1. Geometric cocycles. We start by recalling the basic definitions
of 1-cohomology. We also introduce a geometric version of these defi-
nitions. Later, we will show that both versions define the same notion
of cohomology.

Let GG be a group with a linear representation on a real vector space
V. A 1-cocycle of G in V is a map o : G — V such that, for any g1, ¢»
in GG, one has

o(9192) = o(g1) + g10(g2).

This cocycle is said to be a coboundary if there exists some v in V' such
that, for g in GG, one has

a(g) = gv—v.

The space of 1-cocycles is denoted by Z!(G,V) and the one of 1-
coboundaries by B!(G, V). The latter may be identified with the quo-
tient space V/VY of V by the space of G-invariant elements in V. Two
cocycles are said to be cohomologous if their difference is a coboundary.
The quotient space HY(G,V) = ZY(G,V)/BYG,V) is called the first
cohomology group of G in V.



140 JEAN-FRANCOIS QUINT

Now, assume G is our tree lattice I'. In this case, the group HY(T', V)
may be computed in a different way. Define a geometric cocycle of I" in
V as a ['-equivariant map o : X; — V which is skew-symmetric, that
is,

o(y,x) +o(z,y) =0, (z,y) € X1.

If p: X — V is any map, we denote by dp : X; — V the map

defined by

de(z,y) = o(y) —e(z), (z,y) € X1.
We shall say that a geometric cocycle ¢ is a geometric coboundary if
there exists a I'-equivariant map ¢ : X — V with ¢ = dp. Write
Zyeom(L, V') for the space of geometric cocycles and B, (I, V) for the
one of geometric coboundaries. Again, two geometric cocycles are said
to be cohomologous if their difference is a geometric coboundary.

A.2. Loops and integration. We aim at showing that the quotient
space Zi...(T,V)/Bl. (T, V) may be identified with the first coho-

geom geom
mology group HY(T', V). This identification will rely on an integration
procedure of cocycles that we will now introduce.

For z,;y in X, we define a path from = to y as a sequence xy =
T, X1,..., L, =y in X with z;, ~ 251, 1 < k < n. As in subsection
[.2.1, we shall say that this path is geodesic if moreover, we have x,_| #
Trr1, 1 < k < n—1. By assumption, there exists a unique geodesic

path from x to y.

Lemma A.1. Let x be in X and vo = x,x1,...,x, = = be a path from
x to itself. Then, n is even and, if n > 0 and x does not belong to the
set {x1,...,x,_1}, we have r1 = x,_1.

Proof. We show this statement by induction on n. For n = 0, there is
nothing to prove. For n = 1, there is no path of length 1 from x to
itself.

Assume n > 2 and the statement holds for any n’ < n. Let zy =
x,T1,...,L, = x be a path from z to itself. Then, by uniqueness,
the path is not geodesic, that is, there exists 1 < k < n — 1 with
Tk—1 = Tpe1. For 0 < 5 <n —2, we set

Yj = Tjy2 if 7 > k.
Then, vy, . .., Yn_o is a path from x to itself. In particular, the induction
assumption implies that n is even.
Now, assume x does not belong to the set {x1,..., 2, 1}. If n =2,

we have 1 = x,_1 as required. If n > 4, then, necessarily, we have
2 <k<n-—2,yy = and y,_3 = o,_1. As x does not belong
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to the set {y1,...,Yn—3} C {21,..., 2,1}, the induction assumption
says that we must have y;, = y,_3, hence 1 = x,_;. The conclusion
follows. O

Using this result, we can show that the sum of a skew-symmetric
map along a path only depends on the endpoints.

Corollary A.2. Let V' be a real vector space and o : X1 — V be a
skew-symmetric map. Then, for any x,y in X, the element of V

n

Z o(xp_1,Tk)

k=1
does not depend on the choice a path xo = x,21,...,x, =y from x to

Y.

In the sequel, for o : X; — V a skew-symmetric map and z,y in X,
we set

E 0—5 o(z—1, 1)
k=1

where xo = z,2q,...,x, = y is a path x to y. Note that, for z,y, z in
X, we have the chain rule

(A.1) ZU+ZOIZU.

Proof of Corollary A.2. Fix x in X. We claim that, given a path xq =
X, X1,...,%9, = from x to itself, we have Zi’il o(xp_1,zx) = 0. We
show this statement by induction on n > 0.

If n = 0, there is nothing to prove. Assume n > 1 and the statement

holds for all n’ < n. Let zyg = x,21,...,%2, = x be a path from
x to itself. If there exits 1 < j < 2n — 1 with z; = x, then the
sequences o, ...,x; and xj,...,Te, are paths from z to itself and, by

the induction assumption, we have

2n i
E o(zx_1,xx) E o(Tp—1, k) + E o(xp—1,25) = 0.
=1 k=1 k=j+1

If there exists no such j, by Lemma A.1, we have x1 = x9,_1, hence,
the sequence xq, ..., x9,_1 is a path from z; to itself. By the induction
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assumption, we get

2n 2n—1
D o(wpr,w) = oz, x1) + Y o(wr1, k) + (2201, 2)
k=1 k=2

=o(z,21)+o(x1,2) =0,

as o is skew-symmetric. The claim follows.

Now assume x,y are in X and vy = x,...,u, = y and vy =
x,...,v, =y are two paths from z to y. Since uq, ..., Uy, Vp_1,...,0
is a path from x to itself, we get

m n
Z o(up_1,ur) + Z o(vg, vg—1) = 0.
k=1 k=1

As o is skew-symmetric, this gives

m

3

U(Uk—la Uk) = U(Uk—h Uk)
k=1 k=1

as required. O

A.3. Geometric representation of cohomology. We will use the
constructions above to build an isomorphism between the quotient
space Zoom (I, V) /Bieow (I, V) and the cohomology group H'(I', V).
This is an explicit version of [10, Proposition II.13].

Note that, for ¢ in Zéeom(r, V'), we have the following equivariance
property of path summation:

Y )
(A.2) Y o=9> 0 yel, zyeX.
yT T

This together with (A.1) will be instrumental in proving

Proposition A.3. Let V' be a real vector space equipped with a linear
action of T'. Let o be in ZL,, (T, V). For x in X and v in T, set

geom

o.(7y) = Z o.

Then o, is a 1-cocycle of I" in V.

If y is another element of X, the cocycles o, and o, are cohomolo-
gous. If 0 is a geometric cocycle that is cohomologous to o, the coycles
o, and 0, are cohomologous.

The linear map Zyeom (T, V) /Bieom (T, V) — HY(T', V') associated with
this construction is an isomorphism.
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Proof. Fix ¢ in Z!
(A.1) and (A.2),

mnx Y172 7z V2T

+(1172) ZU+ > U—ZoJr%Za—ax 1) + 1102 (72).

Y1iT

(I, V). For z in X and 71,7 in I', we have, by

geom

Thus, o, is a 1-cocycle of " in V.
Besides, for z,y in X and v in T, still by (A.1) and (A.2), we have

y vy vz y y
:ZU+ZU+ZU:ZU+09(7)_72@
x y Ty @ x

hence o, — 0, is a coboundary.

Assume that o is a coboundary in deom(F, V). Then, there exists a
['-equivariant map ¢ : X — V with ¢ = dp. For x in X and 7 in I,
we get

72(7) = p(yz) = @(z) = 70(2) = p(2),
hence o, is a coboundary in Z'(T', V).

Conversely, fix x in X and suppose o, is a coboundary in Z'(T', V).
Choose v in V' with

o:(y)=yv—v ~veT.

For y in X, we set

:zy:a—i-v.

We claim that ¢ : X — V is [-equivariant. Indeed, by (A.1) and (A.2),
for v in I', we have

7z 7Y Y
DN S RO
T YT

Again by (A.1), for y ~ z in X, we have dp(y,z) = ¢(z) — p(y) =
o(y, z), hence o is a geometric coboundary.

So far, we have shown that the map o — o, defines an injective
linear map Zyo,, (T, V)/Bgeom(F, V) — HY(T, V) that does not depend
on x. To conclude, it remains to prove that this map is surjective.
Therefore, we fix 6 in Z'(T', V') and we will build ¢ in Z},,,, (', V) such
that, for x in X, 6 and o, are cohomologous.

First, we use a standard trick of finite groups theory to eliminate the
difficulties associated with stabilizers of vertices. For x in X, we set

LY o).

|Fx| yel

Ve =
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We notice that, by the cocycle property, for v in I';,

LS (10(n) = B(ym)) = —0().

Tl =

YUz — Ugp =

The latter implies the following property: if v and n are in I' and
yr = nr, we have

(A.3) 0(7) +yve = 0(n) + nvy.

Indeed, we write n = v( where ¢ belongs to I', and we get, from the
cocycle property,

0(n) + nve — () — yve = 70(¢) + ¢z — yv, = 0.

Now, we fix a system of representatives S C X for the action of I'
on X. In other words, we have X =T'S and, for z in S, SNTx = {z}.
To build o, we will first build a map ¢ : X — V which will play the
role of a primitive of o, that is, we will have 0 = dyp. More precisely,
for  in X, we choose v in I" with v !z € S and we set

() = 0(7) + yvy-1,4.

Due to (A.3), this does not depend on the choice of 7. The map
¢ : X — V is not I'-equivariant in general. But, for z in X and ~ in
I', we have, by the construction and the cocycle property of 6,

p(yr) — yp(z) = 0(7).

Therefore, if we set ¢ = dy, the map o : X; — V is ['-equivariant.
Thus, ¢ is a geometric cocycle. To conclude, we compute, for x in S
and v in I,

0:(7) = p(vz) — p(z) = 0(7) + Yvz — Vs

Therefore, o, and 6 are cohomologous as required. O

A.4. Harmonic cohomology classes. In the sequel, we use Propo-
sition A.3 to identify the spaces Z} o, (I', V) /B (I, V) and HY(T', V).
We will now introduce a notion of a harmonic cohomology class that
is inspired by Hodge theory and is essentially the same as the one in
1, 5].

Let V' be a vector space. A skew-symmetric map o : X; — V is said
to be harmonic if, for  in X, one has

Z o(z,y) =0.

y~zx
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Ezample A.4. Let V be D(0X). For z ~ y in Xy, set o(z,y) = 1y,
where, as usual,

Uy = {€ € 0X|y € [26)}.

Then, ¢ is a harmonic skew-symmetric map.
This example is universal in the following sense:

Lemma A.5. Let V be a real vector space and let o : X1 — V be a
harmonic skew-symmetric map. Then, there exists a unique linear map
p:D(0X) — V such that, for x ~y in X, one has

o(2,y) = p(lu.,).

If V is equipped with an action of I' and o is I'-equivariant (that is, o
is a harmonic geometric cocycle), then p is also I'-equivariant.

Proof. In case V' = R the existence and uniqueness of p are established
in Lemma [.3.4. The general case can be obtained in the same way. The
equivariance property for cocycles directly follows from uniqueness. [

A map ¢ : X — V will be said to be harmonic if, for x in X, one
has
1
q+1

> o) = pl).

Y~

Let V be a vector space with an action of I'.  We will say that
a cohomology class in H'(T', V) is harmonic if it admits a harmonic
representative in Zéeom(f‘, V). We can describe the obstruction for this
representative to be unique.

Lemma A.6. Let V' be a real vector space equipped with a linear action
of I'. Then, the harmonic representatives of the trivial cohomology
class in HY(T', V) are the geometric 1-cocycles of the form dy, where
v : X — V is a harmonic I'-equivariant map.

The proof is immediate.

A.5. Unitary representations. We now gather all the previous con-
structions to describe the space of harmonic cohomology classes of a
unitary representation.

If T acts on a vector space V, write Homp(D(0X), V) for the space
of all '-equivariant linear maps D(0X) — V. In Lemma A.5, we have
defined a natural isomorphism between the spaces Homp(D(9X),V)

and the space of harmonic cocycles in Zy,,,(I', V).
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Proposition A.7. Let V be a Hilbert space equipped with a unitary
action of I'. The natural map

Homp(D(0X),V) — HY(T, V)
s an isomorphism onto the space of harmonic cohomology classes.

The proof uses the following generalization of Appollonius Theorem
which gives a strong convexity property of the balls in Hilbert spaces.

Lemma A.8. Let V be a Hilbert space, vy, ...,v, be vectors in'V and
t1,...,t, be non-negative real numbers with ., t; = 1. We have
2
1 2 2
> twil| + 3 >t —vi)* = ) il
1<i<n 1<i,j<n 1<i<n

The proof is immediate.

Proof of Proposition A.7. By Lemma A.5, it only remains to prove that
every harmonic cohomology class admits a unique harmonic represen-
tative. This, we will show by using the criterion in Lemma A.6.

To this aim, we study harmonic I'-equivariant maps ¢ : X — V.
We claim that any such ¢ is constant, with values in the space V! of
[-invariant vectors of V. This will follow from the maximum principle.
Indeed, the function x — ||¢(z)|| is T-invariant on X. As I" has finitely
many orbits in X, this function reaches its maximum value, that is,
the set

E={z e X|[lp()]l = sup le(w)ll}

is not empty. For x in FE, since ¢ is harmonic, we have

1
pz) = m Z ©(y).

y~x

Note that all the ¢(y), y ~ z, have norm < ||¢(z)|]. By applying
Lemma A.8 to the vectors ¢(y), y ~ x, with constants coefficients, we
obtain that all these vectors are equal to each other and hence to ¢(z).
Therefore E = X and ¢ is constant with value some v € V. Since ¢ is
[-equivariant, the vector v is I'-invariant.

In particular, the harmonic cocycles defined in Lemma A.6 are all
0, which amounts to say that a harmonic cohomology class admits a
unique harmonic representative. 0

Remark A.9. Given a harmonic geometric cocycle o let us say that the
cohomology class of ¢ is cyclic if the range of o : X; — V spans a
dense subspace of V. This amounts to saying that the linear map p :
D(0X) — V associated with o has dense image. Then, the pull back of
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the scalar product of V under p is a I'-invariant non-negative symmetric
bilinear form on D(AX). In that sense, the study of these bilinear
forms may be understood as the study of all unitary representations of
I' which admit a cyclic harmonic cohomology class.

A.6. Spectral gap. To conclude, we will give a sufficient criterion
for all cohomology classes of a unitary representation to be harmonic.
Before stating it, we discuss the properties of unitary representations
that are far away from the trivial representations.

Let V be a Hilbert space equipped with a unitary action of I'. We
denote by F(X, V) and F (X, V)" the spaces of I'-equivariant maps
X — V and X; — V, which we equip with the natural Hilbert spaces
structures defined in Subsection III.1.1. In particular, the operator @)
on F(X,V)! defined by

Qp(r) !

:mzw(y)a QOE.F(X,V)F, $€X,

Y~x

is self-adjoint.

Recall that I is said to have almost invariant vectors in V' if, for any
e > 0 and any finite subset F' of I, there exists v in V' with ||| =1
such that one has

|lvo —v|| <e, ~v€F.

The next result may be seen as a reformulation of Kesten’s criterion
for amenability [4].

Proposition A.10. Let V' be a Hilbert space equipped with a unitary
action of I'. The following are equivalent

(i) the group T has almost invariant vectors in V.

(ii) the number 1 belongs to the spectrum of Q in F(X, V).

If these conditions are not satisfied, we shall say that the represen-
tation of I' in V' has a spectral gap.

The main difficulty of the proof of Proposition A.10 is to establish
the following technical statement which may be seen as an effective
version of the proof of Proposition A.7.

Lemma A.11. There exists a non decreasing sequence (o, )n>o of con-
tinuous non-negative functions on [0,00) such that a,(0) = 0 for any
n > 0 and with the following property. LetV be a Hilbert space equipped
with a unitary action of T, € > 0 and ¢ be in F(X, V) with ||¢| = 1
and [|Qp — || < e. Pick x in X with ||o(z)|| = sup,ex [l¢(y)||. Then,
for any y in X with d(x,y) = n, one has

le(z) — o)l < anle).
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Proof. Set C' = sup,¢x Il,|2 and, for ¢ > 0, define by induction
(A.4) ap(e) =0

ni1(8) = an(e) + 2(qC(an(e) + Ce))2 + Ce, n > 0.

The sequence is non decreasing and the functions (a,),>o are all con-
tinuous with value 0 at 0.
Now, let V', ¢ > 0 and ¢ be as in the statement. Set

M = sup [p(2)]|-
zeX

Note that the definition of the norm on F(X, V)" gives
1
L=llell*= > T ()l
zem\X ' 7
hence M < C. Besides, we have
1
Y = IQe(x) —p(@))* < &%,

e\ X |

hence, for all x in X,

(A.5) Qe (x) — p(z)]| < Ce.

Fix z in X with ||¢(x)|| = M. We will show by induction on n > 0
that, for every y in X with d(z,y) = n, one has ||p(z) — o(y)|| < a,(e).
For n = 0, there is nothing to prove. Assume the statement holds for
n > 0. Fix y in X with d(x,y) = n. By applying the formula in Lemma
A8 to the vectors ¢(z), z ~ y, we obtain

ﬁz lo(w) - o(2)lI* < M2 — Qo).

From (A.5) and the induction assumption, we get

QeI = lle()l] = Ce = M = (an(e) + Ce),

hence

(A0) g 2 llew) = () < M2 = (M = (a,(6) + C)

w,z~Y

< 2C(ap(e) + Ce).
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Fix z ~y. By Cauchy—Schwarz inequality, we have

lo(z) = Qe = =7 Z le(2) = p(w)l

’U}Ny

w#z

N =

M\»—A

ZH@D w)|*

w~y

w#z
Applying (A.6) yields
le(2) = Qe(y)ll < 2(¢C(an(e) + Ce))z,
hence, from (A.5),
le(z) = W)l < 2(aC(an(e) + C2))? + Ce.
Therefore, by (A.4) and the induction assumption, we get
lo(@) — (2)]] < ansa(e)

as required. ([l

l\)\»—l

Proof of Proposition A.10. (i)= (i) First assume that I" has almost in-
variant vectors in V. Fix a system of representatives S C X for the
action of I' and set

(A7) F={yel|3z,2' €S x~~2'}U U L.
zesS
Since the action of I' on X is proper, the set F' is finite.
Fix 0 < € < 1 and a unit vector v in V' such that ||[yv —v|| < e for

any v in F. We will use v to build ¢ in F(X,V)' with Q¢ close to ¢.

For z in S, set
1

1

Z yU.
V€l

Vy =

We have ||v, — v|| < e, hence ||v,|| > 1—e. Let ¢ be the unique element
of F(X, V) such that p(x ) = v, for z in S. By definition, we have

= Y gl

zeS

hence [J¢]| > (1 —&)c, where ¢ = (3,5 \Fx|_1)§.

We claim that, for every x in S and y ~ z, we have [|¢(y) — p(z)|| <
3e. Indeed, for such z,y, choose v in I with z = v~!y € S. Then, by
(A.7), v belongs to F' and we get

le(y) — @) = lvv: — vall < ||yve — Yol + v — ]| +]|v — va]| < 3e.



150 JEAN-FRANCOIS QUINT

Since by definition, we have

2

Z(@(y) — ¢(z))

y~z

Y

e

zeS

we obtain ||Qp — ¢|| < 3ce and hence ||Qp — ¢|| < 3s(1—¢e)7! o] As
e is arbitrary, 1 is a spectral value of Q in F(X, V).

(i)=(ii) Assume now that 1 is a spectral value of @ in F(X, V)"
We need to show that V' admits almost invariant vectors. Let (a,)n>0
be as in Lemma A.11 and fix € > 0 and a finite subset F' of I'. We still
take S C X to be a set of representatives for the action of I' and we
set

n = supd(yz, ).

€S
yEF

As the function «,, is continuous at 0, we can find n > 0 such that
a,(n) <e. As 1 is a spectral value of the self-adjoint operator @, we
can find ¢ in F(X, V)" with ||¢| = 1 and ||Qp — ¢|| < n. Choose z in
S with [[¢(z)]| = sup,cx [lo(y)]| and set v = ¢(x). Since

1= [lg] Z,y,Hw ,

yes
1
we have |[v| > ¢!, where, as above, ¢ = (ZmeS|Fx\_1)2. Besides,
Lemma A.11 yields, for v in F,
[vo — vl = [[e(yvz) — @(@)]| < an(n) <e.
The conclusion follows. O

A.7. Spectral gap and harmonic cocycles. We now show that,
when the representation has a spectral gap, all cohomology classes are
harmonic. The following is mostly a translation from [1, 5].

Proposition A.12. Let V' be a Hilbert space equipped with a unitary
action of I'. If I has a spectral gap in V', any 1-cohomology class in
HY(T, V) is harmonic. In other words, the natural map

Homp(D(0X),V) — H'(T, V)
s an isomorphism.

Proof. Note that the two statements are equivalent by Proposition A.7.
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Consider the operator d : F(X,V)I' — F(X;,V)'. For an element
¢ in F(X, V) we get, by using Lemma 1.9.11,

el = 3 % le(y) — o(@)]1

(z,y)elM\ X1 |FI M Fy

=(g+1)% )

zel\ X

1Qp(z) — w(@)]” = (¢ + 1)*[|Qw — ¢]*

1

By Proposition A.10 and the assumption, 1 is not a spectral value of Q.
Since @ is self-adjoint in F(X, V), this tells us that we may find € > 0
such that, for ¢ in F(X, V), we have ||Qp — ¢|| > € ||¢||. Therefore,
we get ||de|| > (¢ + 1)e ||| and the operator d has closed range in
F(X1,V)I'. Note that the orthogonal complement of dF(X,V)' in
F (X1, V)T is the kernel of the adjoint operator d' of d. Thus, every
element o in F(X;,V)! may be written as

(A.8) o=dp+0,
with ¢ in F(X, V), 6 in F(X;,V)F and d76 = 0.
We claim that, for 6 in ]-"(Xl, V)' and z in X, we have
d'6(z ZG y,x) —0(x,y).
y~x

Indeed, for ¢ in F(X, V), by applying again Lemma 1.9.11, we obtain
1
(dp.0) = > =—==(p(y) — ¢(x),0(x,y))

(z,y)eT\ X1 |Fx n Fy|

xGF\X Y~z

Now, let ¢ be a geometric coycle of I' in V', so that o is a skew-
symmetric element of F (X7, V). Decompose ¢ as in (A.8). As ¢ and
dy are skew-symmetric, so is 6, so that 6 is also a geometric cocycle.
In particular, for z in X, we get

0=do(x) => 0(y,x ry)=-2) 0(z,y).
y~x Yy~

Hence 6 is harmonic as required. O
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