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Juriquilla, February 28th, 2025
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A challenging problem

Question : have you ever tried to untangle a rope, headphone
cables, necklace or any other strand ?

The longer a strand, the more likely it is to tangle.
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Knot theory

A knot is a non-self-intersecting simple closed curve in the
3-dimensional space.
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Knot theory : diagrams
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Unknotting problem

Unknotting problem : given a knot diagram K , is there an
� efficient � algorithm to decide if K is trivial ?
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Trivial knot

Unknotting problem : given a knot diagram K , is there an
� efficient � algorithm to decide if K is trivial ?
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Application : DNA (Deoxyribonucleic Acid)

A fundamental application of this problem can be found in the
study of DNA

when an enzyme acts on the initial form of DNA, it gives new
forms of DNA. We would like to know if they are still unraveled.
Difficulty : DNA is very tangled inside the cell (equivalent to
approximately 200 km of fishing line inside a football).
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J. L. Raḿırez Alfonśın Knots through combinatorics



First step ...

Is the trefoil trivial ?

Theorem (Papakyrikopoulos, 1957) Un knot K is
trivial if and only if the fundamental group of the
complementary space of K is abelian.
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3-coloring

(R. Fox) A knot diagram K is 3-colorable if one can color each arc
of the diagram with red, blue and green, such that

- at least 2 colors are used,

- at each crossing we have either 3 different colors or only one
color.
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3-coloring is an invariant

Theorem If a diagram of a knot K is 3-colorable then any diagram
of K is also 3-colorable.

3-colorable non 3-colorable
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Colorability (mod p)

A knot diagram K is colorable (mod p) if each arc of the diagram
can be labeled with an integer in {1, . . . , p − 1} such that

- at least 2 labels are distincts,

- at each crossing the relation 2x − y − z = 0 (mod p) is verified
where x is the label on the over crossing and y and z the other
two labels.
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Colorability (mod p) : algebraic approach

Associate a variable xi . At each crossing a relation between the
variables defined 2xi − xj − xk = 0 (mod p)

The corresponding system of equations that needs to be solved is a
matrix M with rows corresponding to the equations and columns
the variables

1

2

4

53

x x

x

xx

1

3

2

54 M =


2 −1 −1 0 0
−1 0 2 −1 0
−1 0 0 2 −1

0 −1 0 −1 2
0 2 −1 0 −1


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Determinant

Let M ′ be the matrix obtained from M by deleting one row and
one column.

Theorem A knot is colorable (mod p) if and only if p|d where
d = | det(M ′)|.
The determinant of a knot det(K ) is equals to | det(M ′)|
- det(K ) is an invariant of K
- det(K ) = | 4K (−1)| where 4K (t) is the Alexander polynomial
- det(K ) = |JK (−1)| where JK (t) is the Jones polynomial

J. L. Raḿırez Alfonśın Knots through combinatorics



Determinant

Let M ′ be the matrix obtained from M by deleting one row and
one column.
Theorem A knot is colorable (mod p) if and only if p|d where
d = | det(M ′)|.

The determinant of a knot det(K ) is equals to | det(M ′)|
- det(K ) is an invariant of K
- det(K ) = | 4K (−1)| where 4K (t) is the Alexander polynomial
- det(K ) = |JK (−1)| where JK (t) is the Jones polynomial
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J. L. Raḿırez Alfonśın Knots through combinatorics



Tait graphs

Trefoil
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Spanning trees

Let G be an edge-signed planar graph and let LG the link arising
from G . Let T a spanning tree of G .

We define
sign(T ) =

∏
e∈E(T )

χ(e)

where χ(e) denotes the sign of edge e.
T is positive (resp. negative) if sign(T ) = + (resp. sign(T ) = −)

Theorem (Champanerkar, Kofman 2009 and Gros, Pastor-Diaz,
R.A. 2024)

det(LG ) = |#{positive spanning trees inG}−#{negative negative trees inG}|

Remark : If LG is alternating then

det(LG ) = # of spanning trees of G
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Fourier-Hadamard transforms

Let f : Fn
2 → F2 be a Boolean function.

Let supp(f ) = {x ∈ Fn
2 | f (x) 6= 0} be its support.

The Fourier-Hadamard transform of f is defined as

f̂ (u) =
∑
x∈Fn

2

f (x)(−1)x ·u =
∑

x∈supp(f )

(−1)x ·u

with x · u = x1u1 ⊕ · · · ⊕ xnun where ⊕ denotes the sum modulo 2

f can be represented by elements in the quotient ring
R[x1, . . . , xn]/(x2

1 − x1, . . . , x
2
n − xn), called Numerical Normal

Form (NNF). It can be written as

f (x) =
∑
y∈Fn

2

λyxy

where xy =
n∏

i=1
xyii .
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Fourier-Hadamard transforms and determinant

G = (V ,E ) connected planar graph with n = |E |.
Let TG be the set of spanning trees of G .

For F ⊂ E , let vF = (v1, . . . , vn) be the characteristic vector of F .
Let fG the boolean function with supp(fG ) = {vT ∈ Fn

2 | T ∈ TG}.

We define FHG (x1, . . . , xn), to be the NNF of the
Fourier-Hadamard transform of fG , that is,

FHG (x1, . . . , xn) = f̂G (x1, . . . , xn).
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J. L. Raḿırez Alfonśın Knots through combinatorics



Formula for the determinant

Theorem (Gros, Pastor-Diaz, R.A. 2024) Let (G , χE ) be an
edge-signed connected planar graph and let LG be the link arising
from G . Then,

det(LG ) =
∣∣FHG (v)

∣∣
where v = (v1, . . . , vn) with vi = 1−χE (i)

2

Question Let k ≥ 0 be an integer and let G = (E ,V ) be a planar
connected graph. Is there an edge-signature χE such that
det(L) = k where L is the link arising from (G , χE ) ?

Our method yields to a straightforward procedure to answer this
question.
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Example

+ +

+ +

-

-

++

∣∣FHG (1, 1, 0, 0, 0, 0, 0, 0)
∣∣ = 15 = det(821) (difference between the

24 negative-spanning trees and 9 positive-spanning trees.
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Oriented matroids

Let E a finite set. An oriented matroid is a family C of signed
subsets of E verifying certain axioms (the family C is called the
circuits of the oriented matroid).

There is a natural way to obtain an oriented matroid from a
configuration of points in IRd

If C ∈ C then conv(pos. elements C ) ∩ conv(neg. elements C ) 6= ∅
Example : d = 3.

1 3

2

54
1

2

3

4

5

(+,+,+,+,!)(+,+,+,!,!)

These are called Radon partitions
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J. L. Raḿırez Alfonśın Knots through combinatorics



Spatial graphs

A spatial representation of a graph G is an embedding of G in IR3

where the vertices of G are points and edges are represented by
simple Jordan curves.

Spatial representation of K5
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Linear spatial representations

A spatial representation is linear if the curves are line segments

Let m(L) be the smallest integer such that any spatial linear
representation of Kn with n ≥ m(L) contains cycles isotopic to L
The stick number of a link L is the smallest number of sticks
needed to realize L

T(5,2)
Figure-eightTrefoil

Hopf link 41
221

2

T F8
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Some values of m(L)

Theorem m(22
1) = 6
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Some values of m(L)

Theorem m(22
1) = 6

Theorem (R.A. 1998, 2000, 2009)
m(TorT ∗) = 7, m(42

1) > 7, m(F8) > 8, m(T (5, 2)) > 8
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Las Vergnas’ question

Let X = (x0, . . . , xn−1) be a n-uple of points in IR3 in general
position. Let KX be the polygonal knot defined by the segments
[xi , xi+1] (addition (mod n))

Question (M. Las Vergnas) Is it true that KX only depends on the
oriented matroid induced by x0, . . . , xn−1 ?

In other words

Question Let X and Y be two sets of n points. Is it true that if
there is a bijection ϕ : X → Y preserving Radon partitions then
KX is isotopic to KY ?
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J. L. Raḿırez Alfonśın Knots through combinatorics



Las Vergnas’ question

Let X = (x0, . . . , xn−1) be a n-uple of points in IR3 in general
position. Let KX be the polygonal knot defined by the segments
[xi , xi+1] (addition (mod n))

Question (M. Las Vergnas) Is it true that KX only depends on the
oriented matroid induced by x0, . . . , xn−1 ?

In other words

Question Let X and Y be two sets of n points. Is it true that if
there is a bijection ϕ : X → Y preserving Radon partitions then
KX is isotopic to KY ?
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Strong geometry

p

Two configurations of points having the same oriented matroid

We introduce a new oriented matroid M∧(X ) arising from the set
of lines spanned by X .
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Strong geometry

Let X be a n-uple of points in the space.

We define strong geometry associated to X , denoted by
SGeom(X ), as the structure composed by M(X ) and M∧(X ).

Strong geometries encode nicely the combinatorics of the cells of
the arrangement of the spanned lines.

Theorem (Gros, R.A. 2025) KX can be completely determined by
SGeom(X ).

Proof. Combining the information of SGeom(X ) and Gauss
diagrams.
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Achirality

Trefoil and its mirror

A knot K is achiral if there is an automorphism of R3 (or S3)
sending K to its mirror K ∗ and preserving the orientation.

Equivalently, K is achiral if there is an automorphism of R3 (or S3)
preserving K and reversing the orientation.

Remark : the Trefoil is not achiral while the Figure-eight is achiral.
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Maps

G planar, G ∗ dual, med(G ) medial, I (G ) incident

G G*and med(G)G and I(G)

A map of graph G is the image of an embedding of G into S2.
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Maps

Any embedding of G into S2 partition the 2-sphere into simply
connected regions of S2 \ G called the faces of the embedding
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J. L. Raḿırez Alfonśın Knots through combinatorics



Maps : G and G ∗

An embedding of G and its dual G ∗ in S2.
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Antipodally self-dual maps

A map G is antipodally self-dual if G and G ∗ can be antipodally
embedded in S2.

Maps of K4 and K ∗4
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Antipodally self-dual maps

A map G is antipodally self-dual if G and G ∗ can be antipodally
embedded in S2.

Maps of K4 and K ∗4
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Antipodally symmetric maps

A map G is antipodally symmetric if it admits an antipodally
embedding in S2.

Theorem (Montejano, R.A., Rasskin, 2022) If G is antipodally
self-dual then med(G ) is antipodally symmetric.

Question : Which graphs are antipodally self-dual ?
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Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) G is antipodally
self-dual if and only if I (G )� admits an involutive labeling without
fixed vertex.

G G* I(G) med(G)
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Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) G is antipodally
self-dual if and only if I (G )� admits an involutive labeling without
fixed vertex.

G G*

antipodally embedding

I(G) med(G)

I(G) involutive labeling
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J. L. Raḿırez Alfonśın Knots through combinatorics



Maps and diagrams
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Borromean rings
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Maps and diagrams
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Hopf link
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Achiriality

Theorem (Montejano, R.A., Rasskin, 2022) Let (G ,SE ) be
antipodally self-dual edge-signed map (med(G ) is antipodally
symmetric, realized by a map α). If either

(a) α is color-preserving and sign-reversing ; or

(b) α is color-reversing and sign-preserving,

then the link L obtained from (G ,SE ) is achiral.
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Self-dual pairing

Aut(G ) : automorphism group of G (isomorphisms of G into G )

Dual(G ) : set of duality-isomorphisms of G into G ∗

If G is self-dual then there is a bijection
φ : (V ,E ,F )→ (F ∗,E ∗,V ∗)

Following φ the correspondance ∗ gives a permutation on
(V ∪ E ∪ F ) (preserve incidences and reverse dimension of
elements). All such permutation generate a group

Cor(G ) = Aut(G ) ∪ Dual(G )

where Aut(G ) is a subgroup of Cor(G ) of index 2.
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Isometries

Theorem Any planar graph G can be drawn on the S2 such that
any σ ∈ Aut(G ) act as an isometry of the sphere.

Moreover, if G is self-dual then there maps G and G ∗ so that
Cor(G ) is realized as a group of spherical isometries.

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. If either
• there exists σ ∈ Dual(G ) such that the isometry σ̃ is
oriented-preserving or
• there exists σ ∈ Aut(G ) such that the isometr σ̃ is not
oriented-preserving
then the link L(G ,S) is achiral for every signature S
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Antipodally self-dual : necessary conditions

A cycle C of G is symmetric if there is σ ∈ Aut(G ) such that
σ(C ) = C and σ(int(C )) = ext(C ).

Theorem (Montejano, R.A., Rasskin, 2022) Let G be antipodally
self-dual map. Then, I (G ) always admits at least one symmetric
cycle. Moreover, all symmetric cycles in I (G ) are of length 2n with
n ≥ 1 odd.

K

I(K  )4

4
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J. L. Raḿırez Alfonśın Knots through combinatorics



Some achiral knots

4 6
8

8 8 8

1 3

3

9 12 18

(figure-eight)
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Isometries

Theorem (B. Servatius, H. Servatius, 1995) The self-dual pairings
are classified in 24 classes :
[2, q] . [q], [2, q]+ . [q]+, [2+, 2q] . [2q], [2, q+] . [q]+, [2+, 2q+] .
[2q]+, [2] . [1], [2] . [2]+, [4] . [2], [2]+ . [1]+, [4]+ . [2]+, [2, 2] .
[2, 2]+, [2, 4] . [2+, 4], [2, 2] . [2, 2+], [2, 4] . [2, 2], [2, 4]+ .
[2, 2]+, [2+, 4] . [2, 2]+, [2+, 4] . [2+, 4+], [2, 4+] . [2+, 4+], [2, 2+] .
[2+, 2+], [2, 4+] . [2, 2+], [2, 2+] . [1], [3, 4] . [3, 3], [3, 4]+ . [3, 3]+

and [3+, 4] . [3, 3]+

J. L. Raḿırez Alfonśın Knots through combinatorics



Achiriality

Theorem (Montejano, R.A., Rasskin, 2022) Let (G ,SE ) be an
edge-signed self-dual map. If the self-dual pairing of the map G is
other than [2, q+] . [q]+, [2+, 2q+] . [2q]+, [2] . [2]+, [2, 2] .
[2, 2]+, [2+, 4] . [2, 2]+, [3+, 4] . [3, 3]+ then L(G , SE ) is achiral for
every signature SE .
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