Around the vertices of projective polytopes

J. L. Ramírez Alfonsín

IMAG, Université de Montpellier, France
(joint work with N. García-Colin and L.P. Montejano)

New trends from Classical Theorems in Geometry, Combinatorics, and Topology
CMO-BIRS, Oaxaca, June 5th, 2023

McMullen problem

McMullen problem

A projective transformation $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is such that $P(x)=\frac{A x+b}{\langle c, x\rangle+\delta}$ where A is a linear transformation of $\mathbb{R}^{d}, b, c \in \mathbb{R}^{d}$ and $\delta \in \mathbb{R}$ such that at least one of $c \neq 0$ or $\delta \neq 0$. P is said permissible for a set X iff for all $x \in X,\langle c, x\rangle+\delta \neq 0$.

McMullen problem

A projective transformation $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is such that $P(x)=\frac{A x+b}{\langle c, x\rangle+\delta}$ where A is a linear transformation of $\mathbb{R}^{d}, b, c \in \mathbb{R}^{d}$ and $\delta \in \mathbb{R}$ such that at least one of $c \neq 0$ or $\delta \neq 0$. P is said permissible for a set X iff for all $x \in X,\langle c, x\rangle+\delta \neq 0$.

McMullen problem : Determine the largest integer $n(d)$ such that given any $n(d)$ points in general position in \mathbb{R}^{d} there is a permissible projective transformation mapping these points onto the vertices of a convex polytope.

McMullen problem

A projective transformation $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is such that $P(x)=\frac{A x+b}{\langle c, x\rangle+\delta}$ where A is a linear transformation of $\mathbb{R}^{d}, b, c \in \mathbb{R}^{d}$ and $\delta \in \mathbb{R}$ such that at least one of $c \neq 0$ or $\delta \neq 0$. P is said permissible for a set X iff for all $x \in X,\langle c, x\rangle+\delta \neq 0$.

McMullen problem : Determine the largest integer $n(d)$ such that given any $n(d)$ points in general position in \mathbb{R}^{d} there is a permissible projective transformation mapping these points onto the vertices of a convex polytope.
Theorem (Larman, 1972) $n(2)=5, n(3)=7$ and $2 d+1 \leq n(d) \leq(d+1)^{2}$ for $d \geq 4$

McMullen problem

A projective transformation $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is such that $P(x)=\frac{A x+b}{\langle c, x\rangle+\delta}$ where A is a linear transformation of $\mathbb{R}^{d}, b, c \in \mathbb{R}^{d}$ and $\delta \in \mathbb{R}$ such that at least one of $c \neq 0$ or $\delta \neq 0$. P is said permissible for a set X iff for all $x \in X,\langle c, x\rangle+\delta \neq 0$.
McMullen problem : Determine the largest integer $n(d)$ such that given any $n(d)$ points in general position in \mathbb{R}^{d} there is a permissible projective transformation mapping these points onto the vertices of a convex polytope.
Theorem (Larman, 1972) $n(2)=5, n(3)=7$ and
$2 d+1 \leq n(d) \leq(d+1)^{2}$ for $d \geq 4$
Larman's conjecture $n(d)=2 d+1$ for any $d \geq 2$.

McMullen problem

A projective transformation $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is such that $P(x)=\frac{A x+b}{\langle c, x\rangle+\delta}$ where A is a linear transformation of $\mathbb{R}^{d}, b, c \in \mathbb{R}^{d}$ and $\delta \in \mathbb{R}$ such that at least one of $c \neq 0$ or $\delta \neq 0$. P is said permissible for a set X iff for all $x \in X,\langle c, x\rangle+\delta \neq 0$.

McMullen problem : Determine the largest integer $n(d)$ such that given any $n(d)$ points in general position in \mathbb{R}^{d} there is a permissible projective transformation mapping these points onto the vertices of a convex polytope.
Theorem (Larman, 1972) $n(2)=5, n(3)=7$ and $2 d+1 \leq n(d) \leq(d+1)^{2}$ for $d \geq 4$
Larman's conjecture $n(d)=2 d+1$ for any $d \geq 2$.
Theorem (Las Vergnas,1985) $n(d) \leq d(d+1) / 2$ for any $d \geq 2$.

Oriented matroid theory

A signed set $X=\left(X^{+}, X^{-}\right)$is a set with positive elements X^{+}and negatives elements X^{-}.

Oriented matroid theory

A signed set $X=\left(X^{+}, X^{-}\right)$is a set with positive elements X^{+}and negatives elements X^{-}.
A collection \mathcal{C} of signed sets of a finite set E is the set of circuits of an oriented matroid on E verifying some axioms.

Oriented matroid theory

A signed set $X=\left(X^{+}, X^{-}\right)$is a set with positive elements X^{+}and negatives elements X^{-}.
A collection \mathcal{C} of signed sets of a finite set E is the set of circuits of an oriented matroid on E verifying some axioms.
We denoted by $-{ }_{A} M$ the oriented matroid obtained from M by a reorientation of A (swapping the signs of elements in A).

Oriented matroid theory

A signed set $X=\left(X^{+}, X^{-}\right)$is a set with positive elements X^{+}and negatives elements X^{-}.
A collection \mathcal{C} of signed sets of a finite set E is the set of circuits of an oriented matroid on E verifying some axioms.
We denoted by $-{ }_{A} M$ the oriented matroid obtained from M by a reorientation of A (swapping the signs of elements in A).
\mathcal{B} is the set of bases of an oriented matroid if and only if there is an application, called chirotope, $\chi: E^{r} \rightarrow\{+,-, 0\}$ verifying some conditions
The rank r of a matroid M is $r=|B|$ for any $B \in \mathcal{B}$.

Oriented matroid theory

A signed set $X=\left(X^{+}, X^{-}\right)$is a set with positive elements X^{+}and negatives elements X^{-}.
A collection \mathcal{C} of signed sets of a finite set E is the set of circuits of an oriented matroid on E verifying some axioms.
We denoted by $-{ }_{A} M$ the oriented matroid obtained from M by a reorientation of A (swapping the signs of elements in A).
\mathcal{B} is the set of bases of an oriented matroid if and only if there is an application, called chirotope, $\chi: E^{r} \rightarrow\{+,-, 0\}$ verifying some conditions
The rank r of a matroid M is $r=|B|$ for any $B \in \mathcal{B}$.
An oriented matroid is uniform if $\chi(B)=+$ or - for any base B.

Topological representation

An arrangement of pseudo-spheres is a finite collection of pseudo-spheres in S^{d-1} satisfying some specific conditions. We say that the arrangement is signed if for each pseudosphere it is chosen a positive and a negative side.

Topological representation

An arrangement of pseudo-spheres is a finite collection of pseudo-spheres in S^{d-1} satisfying some specific conditions.
We say that the arrangement is signed if for each pseudosphere it is chosen a positive and a negative side.
Theorem (Folkman and Lawrence, 1978) Any loop-free oriented matroid of rank $d+1$ (up to isomorphism) are in one-to-one correspondence with signed arrangements of pseudo-spheres in S^{d} (up to topological equivalence).

Notions and Facts

- Any configuration of points in \mathbb{R}^{d} induce an oriented matroid in the affine space of rank $r=d+1$ where the signed set of circuits are the coefficients of minimal affine dependencies.

Notions and Facts

- Any configuration of points in \mathbb{R}^{d} induce an oriented matroid in the affine space of rank $r=d+1$ where the signed set of circuits are the coefficients of minimal affine dependencies. An oriented matroid is called acyclic if $\left|C^{+}\right|,\left|C^{-}\right| \geq 1$ for any circuit C.

Notions and Facts

- Any configuration of points in \mathbb{R}^{d} induce an oriented matroid in the affine space of rank $r=d+1$ where the signed set of circuits are the coefficients of minimal affine dependencies.
An oriented matroid is called acyclic if $\left|C^{+}\right|,\left|C^{-}\right| \geq 1$ for any circuit C.
- If the points are in general position then M is uniform.

Notions and Facts

- Any configuration of points in \mathbb{R}^{d} induce an oriented matroid in the affine space of rank $r=d+1$ where the signed set of circuits are the coefficients of minimal affine dependencies.
An oriented matroid is called acyclic if $\left|C^{+}\right|,\left|C^{-}\right| \geq 1$ for any circuit C.
- If the points are in general position then M is uniform.
- An element e of an oriented matroid is called interior if there is a cycle C with $C^{+}=\{e\}$ and,$\left|C^{-}\right| \geq 0$.

Notions and Facts

- Any configuration of points in \mathbb{R}^{d} induce an oriented matroid in the affine space of rank $r=d+1$ where the signed set of circuits are the coefficients of minimal affine dependencies.
An oriented matroid is called acyclic if $\left|C^{+}\right|,\left|C^{-}\right| \geq 1$ for any circuit C.
- If the points are in general position then M is uniform.
- An element e of an oriented matroid is called interior if there is a cycle C with $C^{+}=\{e\}$ and,$\left|C^{-}\right| \geq 0$.
- The set of acyclic reorientations of M are in bijection with the set of cells of the corresponding arrangement of pseudospheres.

McMullen problem - oriented matroid version

Theorem (Cordovil and Silva, 1985) Let X be a set of points and M its associated affine oriented matroid. Then, the set of acyclic orientations of M are in bijection with the set of projective transformations of X.

McMullen problem - oriented matroid version

Theorem (Cordovil and Silva, 1985) Let X be a set of points and M its associated affine oriented matroid. Then, the set of acyclic orientations of M are in bijection with the set of projective transformations of X.
Oriented matroid version Determine the largest integer $g(d)$ such that given any uniform affine oriented matroid of rank r on g elements there is an acyclic reorientation of M having no interior points.

McMullen problem - oriented matroid version

Theorem (Cordovil and Silva, 1985) Let X be a set of points and M its associated affine oriented matroid. Then, the set of acyclic orientations of M are in bijection with the set of projective transformations of X.
Oriented matroid version Determine the largest integer $g(d)$ such that given any uniform affine oriented matroid of rank r on g elements there is an acyclic reorientation of M having no interior points.
Topological version Determine the largest integer $g(d)$ such that given any uniform oriented matroid of rank r on n elements the corresponding arrangement of hyperplanes has a complete cell.

McMullen problem - oriented matroid version

Theorem (Cordovil and Silva, 1985) Let X be a set of points and M its associated affine oriented matroid. Then, the set of acyclic orientations of M are in bijection with the set of projective transformations of X.
Oriented matroid version Determine the largest integer $g(d)$ such that given any uniform affine oriented matroid of rank r on g elements there is an acyclic reorientation of M having no interior points.
Topological version Determine the largest integer $g(d)$ such that given any uniform oriented matroid of rank r on n elements the corresponding arrangement of hyperplanes has a complete cell.
Theorem (R.A. 2001) $n(d) \leq 2 d+\left\lceil\frac{d}{2}\right\rceil$ for any $d \geq 2$.

Lawrence oriented matroid

A Lawrence oriented matroid M of rank r on the totally ordered set $E=\{1, \ldots, n\}, r \leq n$, is a uniform oriented matroid obtained as the union of r uniform oriented matroids M_{1}, \ldots, M_{r} of rank 1 on $(E,<)$.

Lawrence oriented matroid

A Lawrence oriented matroid M of rank r on the totally ordered set $E=\{1, \ldots, n\}, r \leq n$, is a uniform oriented matroid obtained as the union of r uniform oriented matroids M_{1}, \ldots, M_{r} of rank 1 on $(E,<)$.
The chirotope χ corresponds to some Lawrence oriented matroid M_{A} if and only if there exists a matrix $A=\left(a_{i, j}\right), 1 \leq i \leq r$, $1 \leq j \leq n$ with entries from $\{+1,-1\}$ (where the i-th row corresponds to the chirotope of the oriented matroid M_{i}) such that

$$
\chi(B)=\prod_{i=1}^{r} a_{i, j_{i}}
$$

where B is an ordered r-tuple $j_{1} \leq \ldots \leq j_{r}$ elements of E.

elements								
1		12	3	4	5	6	7	$\longleftarrow \chi\left(M_{1}\right)$
1	+	-	-	+	+	+	+	
2	+	-	+	+	+	+	+	$\longleftarrow \chi\left(M_{2}\right)$
3	$+$	+	$+$	+	+	+	+	
4	$+$	-	$+$	$+$	+	+	+	

Matrix A arising a Lawrence oriented matroid $M=\bigcup_{i=1}^{n} M_{i}$.

Matrix A arising a Lawrence oriented matroid $M=\bigcup_{i=1}^{n} M_{i}$.

Reoorientation of element 6 arising a Lawrence oriented matroid ${ }_{-} \mathrm{M}$.

	1	2	3	4	5	6	7
1	+	-	-	+	+	$+$	+
2	+	-	$+$	+	$+$	+	+
3	+	$+$	+	+	$+$	$+$	+
4	+	-	+	+	$+$	$+$	$+$

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

TT ends at last column

TT and BT parallel at column c

- M_{A} is acyclic iff $T T$ arrives at the last column of A.

TT ends at last column

TT and BT parallel at column c

- M_{A} is acyclic iff $T T$ arrives at the last column of A.
- c is interior in M_{A} iff $T T$ and $B T$ are parallel at column c.

!

TT ends at last column

TT and BT parallel at column c

- M_{A} is acyclic iff $T T$ arrives at the last column of A.
- c is interior in M_{A} iff $T T$ and $B T$ are parallel at column c.

	1	2	3	4	5	6	7
1		\rightarrow	-	+	+	+	+
2	+	\pm	+	+	+	$+$	$+$
3	\pm	$\stackrel{+}{+}$	$+$	$+$	+	$+$	+
4	+		+	+	+	$+$	+

M_{A} is acyclic and 4,5 and 6 are interior elements.

Chessboard

+	-	-	+	+	+	-
+	-	+	+	-	+	+
+	+	+	+	+	+	+
+	-	+	+	+	+	+

Chessboard of matrix A invariant under reorientations

Chessboard

+	-	-	+	+	+	-
+	-	+	+	-	+	+
+	+	+	+	+	+	+
+	-	+	+	+	+	+

Chessboard of matrix A invariant under reorientations The upper bound $n(d) \leq 2 d+\left\lceil\frac{d}{2}\right\rceil$ for any $d \geq 2$ comes from ...

Chessboard

+	-	-	+	+	+	-
+	-	+	+	-	+	+
+	+	+	+	+	+	+
+	-	+	+	+	+	+

Chessboard of matrix A invariant under reorientations The upper bound $n(d) \leq 2 d+\left\lceil\frac{d}{2}\right\rceil$ for any $d \geq 2$ comes from ...

McMullen problem - Neighbourly version

A d-polytope is k-neighbourly if for $k \leq\left\lceil\frac{d}{2}\right\rceil$ fixed, every subset of at most k vertices of the vertex set of the polytope is a face of the polytope.

McMullen problem - Neighbourly version

A d-polytope is k-neighbourly if for $k \leq\left\lceil\frac{d}{2}\right\rceil$ fixed, every subset of at most k vertices of the vertex set of the polytope is a face of the polytope.
Neighbourly version What is the larges integer $v(d, k)$ be the largest integer such that any $v(d, k)$ points in general position in \mathbb{R}^{d} can be mapped by a permissible projective transformation onto points onto the vertices of a k-neighbourly convex polytope?

McMullen problem - Neighbourly version

A d-polytope is k-neighbourly if for $k \leq\left\lceil\frac{d}{2}\right\rceil$ fixed, every subset of at most k vertices of the vertex set of the polytope is a face of the polytope.
Neighbourly version What is the larges integer $v(d, k)$ be the largest integer such that any $v(d, k)$ points in general position in \mathbb{R}^{d} can be mapped by a permissible projective transformation onto points onto the vertices of a k-neighbourly convex polytope?
Theorem (García-Colin, 2014) Let $2 \leq k \leq\left\lceil\frac{d}{2}\right\rceil$. Then,

$$
d+\left\lfloor\frac{d}{k}\right\rfloor+1 \leq v(d, k)<2 d-k+1 .
$$

Projective k-faces

Let $X \subset \mathbb{R}^{d}$ be a set of points in general position. Let

$$
h_{k}(X, d)=\max _{T}\left\{f_{k}(\operatorname{conv}(T(X)))\right\},
$$

maximum taken over all possible permissible projective transformations T of X and $f_{k}(P)$ denotes the number of k-faces of a polytope P.

Projective k-faces

Let $X \subset \mathbb{R}^{d}$ be a set of points in general position. Let

$$
h_{k}(X, d)=\max _{T}\left\{f_{k}(\operatorname{conv}(T(X)))\right\}
$$

maximum taken over all possible permissible projective transformations T of X and $f_{k}(P)$ denotes the number of k-faces of a polytope P.
We consider

$$
H_{k}(n, d)=\min _{X \subset \mathbb{R}^{d},|X|=n}\left\{h_{k}(X, d)\right\}
$$

Generalizing McMullen

Generalized version Let $t \geq 0$ be an integer. What is the largest integer $n(t, d)$ such that any set of n points in general position in \mathbb{R}^{d} can be mapped, by a permissible projective transformation onto the vertices of a convex polytope with at most t points in its interior?

Generalizing McMullen

Generalized version Let $t \geq 0$ be an integer. What is the largest integer $n(t, d)$ such that any set of n points in general position in \mathbb{R}^{d} can be mapped, by a permissible projective transformation onto the vertices of a convex polytope with at most t points in its interior?

$$
n(0, d)=n(d)
$$

Generalizing McMullen

Generalized version Let $t \geq 0$ be an integer. What is the largest integer $n(t, d)$ such that any set of n points in general position in \mathbb{R}^{d} can be mapped, by a permissible projective transformation onto the vertices of a convex polytope with at most t points in its interior?

$$
n(0, d)=n(d)
$$

The function $n(t, d)$ will allow us to study $H_{0}(n, d)$ in a more general setting since

$$
H_{0}(n(t, d), d)=n(t, d)-t
$$

Upper bounds

Theorem (García-Colin, Montejano, R.A., 2023) Let $d, t \geq 1$ and $n \geq 2$ be integers. Then,

$$
H_{0}(n, d) \begin{cases}=2 & \text { if } d=1, n \geq 2 \\ =5 & \text { if } d=2, n \geq 5 \\ \leq 7 & \text { if } d=3, n \geq 7 \\ \leq n-1-t & \text { if } d \geq 4, n \geq 2 d+t(d-2)+2, t \geq 1\end{cases}
$$

Upper bounds

Theorem (García-Colin, Montejano, R.A., 2023) Let $d, t \geq 1$ and $n \geq 2$ be integers. Then,
$H_{0}(n, d) \begin{cases}=2 & \text { if } d=1, n \geq 2, \\ =5 & \text { if } d=2, n \geq 5, \\ \leq 7 & \text { if } d=3, n \geq 7, \\ \leq n-1-t & \text { if } d \geq 4, n \geq 2 d+t(d-2)+2, t \geq 1 .\end{cases}$
By the Upper Bound Theorem we have

$$
H_{k}(n, d) \leq f_{k}\left(C_{d}\left(H_{0}(n, d)\right)\right) \text { for all } n \geq 1 \text { and any } k \geq 1
$$

where $C_{d}(n)$ is the d-dimensional cyclic polytope with n vertices.

Minimal Randon partition

Let $X=A \cup B$ be any partition of the set of points X in general position in \mathbb{R}^{d}.
$r_{X}(A, B):=$ the number of $(d+2)$-element subsets $S \subset X$ such that $\operatorname{conv}(A \cap S) \cap \operatorname{conv}(B \cap S) \neq \emptyset$

Minimal Randon partition

Let $X=A \cup B$ be any partition of the set of points X in general position in \mathbb{R}^{d}.
$r_{X}(A, B):=$ the number of $(d+2)$-element subsets $S \subset X$ such that $\operatorname{conv}(A \cap S) \cap \operatorname{conv}(B \cap S) \neq \emptyset$
Consider the functions

$$
r(X):=\max _{\{(A, B) \mid A \cup B=X\}} r X(A, B) \quad \text { and } \quad r(n, d):=\min _{X \subset \mathbb{R}^{d},|X|=n} r(X) .
$$

Minimal Randon partition

Let $X=A \cup B$ be any partition of the set of points X in general position in \mathbb{R}^{d}.
$r_{X}(A, B):=$ the number of $(d+2)$-element subsets $S \subset X$ such that $\operatorname{conv}(A \cap S) \cap \operatorname{conv}(B \cap S) \neq \emptyset$
Consider the functions

$$
r(X):=\max _{\{(A, B) \mid A \cup B=X\}} r X(A, B) \quad \text { and } \quad r(n, d):=\min _{X \subset \mathbb{R}^{d},|X|=n} r(X) .
$$

Theorem (García-Colin, Montejano, R.A., 2023) Let $d, n \geq 1$ be integers. Then, $r(n, d)=H_{d^{\prime}-1}\left(n, d^{\prime}\right)$ where $d^{\prime}=n-d-2$.

2-Randon partition

Theorem (García-Colin, Montejano, R.A., 2023) Let $n \geq 4$ be an integer. Then,

$$
r(n, 2) \begin{cases}=2 & \text { if } n=5 \\ =5 & \text { if } n=6 \\ =10 & \text { if } n=7, \\ \leq 2\left(\frac{n-1}{2}+2\right. \\ \leq\left(\frac{n-1}{2}-2\right) & \text { if } n \geq 7, n \text {-odd } \\ \left.\frac{n}{2}+2\right)+\binom{\frac{n}{2}+1}{\frac{n}{2}-3} & \text { if } n \geq 8, n \text {-even. }\end{cases}
$$

Moreover, if $n \geq 7$ then $r(n, 2) \geq 2(2 n-9)$.

2-Randon partition

Theorem (García-Colin, Montejano, R.A., 2023) Let $n \geq 4$ be an integer. Then,

$$
r(n, 2) \begin{cases}=2 & \text { if } n=5 \\ =5 & \text { if } n=6 \\ =10 & \text { if } n=7 \\ \leq 2\left(\frac{n-1}{2}+2\right. \\ \leq\left(\frac{n-1}{2}-2\right) & \text { if } n \geq 7, n \text {-odd } \\ \left.\frac{n}{2}+2\right)+\binom{\frac{n}{2}+1}{\frac{n}{2}-3} & \text { if } n \geq 8, n \text {-even. }\end{cases}
$$

Moreover, if $n \geq 7$ then $r(n, 2) \geq 2(2 n-9)$.
We also show

$$
17 \leq r(9,3) \leq 27
$$

2-Randon partition

Theorem (García-Colin, Montejano, R.A., 2023) Let $n \geq 4$ be an integer. Then,

$$
r(n, 2) \begin{cases}=2 & \text { if } n=5, \\ =5 & \text { if } n=6 \\ =10 & \text { if } n=7, \\ \leq 2\left(\frac{n-1}{2}+2\right. \\ \leq\left(\frac{n-1}{2}-2\right) & \text { if } n \geq 7, n \text {-odd } \\ \left.\frac{n}{2}+2\right)+\binom{\frac{n}{2}+1}{\frac{n}{2}-3} & \text { if } n \geq 8, n \text {-even. }\end{cases}
$$

Moreover, if $n \geq 7$ then $r(n, 2) \geq 2(2 n-9)$.
We also show

$$
17 \leq r(9,3) \leq 27
$$

Question : $r(9,3)=$?

Colored points in the plane

Problem (Pach and Szegedy, 2003) : Given n points in general position in the plane, coloured red and blue, maximize the number of multicoloured 4-tuples with the property that the convex hull of its red elements and the convex hull of its blue elements have at least one point in common. In particular, show that when the maximum is attained, the number of red and blue elements are roughly the same.

Colored points in the plane

Problem (Pach and Szegedy, 2003) : Given n points in general position in the plane, coloured red and blue, maximize the number of multicoloured 4-tuples with the property that the convex hull of its red elements and the convex hull of its blue elements have at least one point in common. In particular, show that when the maximum is attained, the number of red and blue elements are roughly the same.
Theorem (García-Colin, Montejano, R.A., 2023) Let $X \subset \mathbb{R}^{2}$ be a set of points in general position with $|X|=n \geq 8$. Then, for any partition A, B of X such that $r_{X}(A, B)=r(X)$, we have that $|A|,|B| \leq\left\lfloor\frac{n}{2}\right\rfloor+2$.

Tolerence

$\lambda(t, d):=$ the smallest number λ such that for any set X of λ points in \mathbb{R}^{d} there exists a partition of $X=A \cup B$ and a subset $P \subseteq X$ of cardinality $\lambda-i$, for some $0 \leq i \leq t$, such that

$$
\operatorname{conv}(A \backslash y) \cap \operatorname{conv}(B \backslash y) \begin{cases}\neq \emptyset & \text { if } y \in P \\ =\emptyset & \text { if } y \in X \backslash P\end{cases}
$$

Tolerence

$\lambda(t, d):=$ the smallest number λ such that for any set X of λ points in \mathbb{R}^{d} there exists a partition of $X=A \cup B$ and a subset $P \subseteq X$ of cardinality $\lambda-i$, for some $0 \leq i \leq t$, such that

$$
\operatorname{conv}(A \backslash y) \cap \operatorname{conv}(B \backslash y) \begin{cases}\neq \emptyset & \text { if } y \in P \\ =\emptyset & \text { if } y \in X \backslash P\end{cases}
$$

Theorem (García-Colin, Montejano, R.A., 2023) Let $t \geq 0$ and $d \geq 1$ be integers. Then,

$$
n(t, d)=\max _{m \in \mathbb{N}}\{m \mid \lambda(t, m-d-1) \leq m\}
$$

and

$$
\lambda(t, d)=\min _{m \in \mathbb{N}}\{m \mid m \leq n(t, m-d-1)\}
$$

Size of cells in arrangements

Question 1: Are there simple arrangements of n
(pseudo)hyperplanes in \mathbb{P}^{d} in which every cell is of at most certain size?

Size of cells in arrangements

Question 1: Are there simple arrangements of n
(pseudo)hyperplanes in \mathbb{P}^{d} in which every cell is of at most certain size?
Question 2 : Which arrangements of n (pseudo)hyperplanes in \mathbb{P}^{d} contain a cell of at least certain size?

Size of cells in arrangements

Question 1: Are there simple arrangements of n
(pseudo)hyperplanes in \mathbb{P}^{d} in which every cell is of at most certain size?
Question 2 : Which arrangements of n (pseudo)hyperplanes in \mathbb{P}^{d} contain a cell of at least certain size?
Proposition (García-Colin, Montejano, R.A., 2023)

- Every simple arrangement of at least 5 pseudo-lines in \mathbb{P}^{2} has a cell of size at least 5
- For any $n \geq 7$, there exists a simple arrangement of n (pseudo)planes in \mathbb{P}^{3} with every cell of size at most 7 .

Size of cells in arrangements

Question 1 : Are there simple arrangements of n
(pseudo)hyperplanes in \mathbb{P}^{d} in which every cell is of at most certain size?
Question 2 : Which arrangements of n (pseudo)hyperplanes in \mathbb{P}^{d} contain a cell of at least certain size?
Proposition (García-Colin, Montejano, R.A., 2023)

- Every simple arrangement of at least 5 pseudo-lines in \mathbb{P}^{2} has a cell of size at least 5
- For any $n \geq 7$, there exists a simple arrangement of n (pseudo) planes in \mathbb{P}^{3} with every cell of size at most 7 .
Question 3: Is it true that any simple arrangement of $n \geq 2 d+1$ (pseudo)hyperplanes in \mathbb{P}^{d} contains a cell of size at least $2 d+1$? Moreover, is it true that for any $n \geq 2 d+1$, there exists a simple arrangement of n (pseudo)hyperplanes in \mathbb{P}^{d} with every cell of size at most $2 d+1$?

Thanks for your attention!

