Around the vertices of projective polytopes

J. L. Ramírez Alfonsín

IMAG, Université de Montpellier, France

(joint work with N. García-Colin and L.P. Montejano)

New trends from Classical Theorems in Geometry, Combinatorics, and Topology CMO-BIRS, Oaxaca, June 5th, 2023

.

McMullen problem

J. L. Ramírez Alfonsín Around the vertices of projective polytopes

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Ð,

A B + A B +

McMullen problem : Determine the largest integer n(d) such that given any n(d) points in general position in \mathbb{R}^d there is a permissible projective transformation mapping these points onto the vertices of a convex polytope.

・ 同 ト ・ ヨ ト ・ ヨ ト …

McMullen problem : Determine the largest integer n(d) such that given any n(d) points in general position in \mathbb{R}^d there is a permissible projective transformation mapping these points onto the vertices of a convex polytope.

Theorem (Larman, 1972) n(2) = 5, n(3) = 7 and $2d + 1 \le n(d) \le (d + 1)^2$ for $d \ge 4$

・ 同 ト ・ ヨ ト ・ ヨ ト

McMullen problem : Determine the largest integer n(d) such that given any n(d) points in general position in \mathbb{R}^d there is a permissible projective transformation mapping these points onto the vertices of a convex polytope.

Theorem (Larman, 1972) n(2) = 5, n(3) = 7 and $2d + 1 \le n(d) \le (d + 1)^2$ for $d \ge 4$

Larman's conjecture n(d) = 2d + 1 for any $d \ge 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

McMullen problem : Determine the largest integer n(d) such that given any n(d) points in general position in \mathbb{R}^d there is a permissible projective transformation mapping these points onto the vertices of a convex polytope.

Theorem (Larman, 1972) n(2) = 5, n(3) = 7 and $2d + 1 \le n(d) \le (d + 1)^2$ for $d \ge 4$

Larman's conjecture n(d) = 2d + 1 for any $d \ge 2$.

Theorem (Las Vergnas, 1985) $n(d) \le d(d+1)/2$ for any $d \ge 2$.

伺 ト イヨト イヨト

æ

A collection C of signed sets of a finite set E is the set of **circuits** of an oriented matroid on E verifying *some* axioms.

通 とう ほう う ほうし

A collection C of signed sets of a finite set E is the set of **circuits** of an oriented matroid on E verifying *some* axioms.

We denoted by $-_AM$ the oriented matroid obtained from M by a reorientation of A (swapping the signs of elements in A).

• • = • • = •

A collection C of signed sets of a finite set E is the set of **circuits** of an oriented matroid on E verifying *some* axioms.

We denoted by $-_AM$ the oriented matroid obtained from M by a reorientation of A (swapping the signs of elements in A).

 $\mathcal B$ is the set of **bases** of an oriented matroid if and only if there is an application, called chirotope, $\chi: E^r \to \{+, -, 0\}$ verifying some conditions

The rank *r* of a matroid *M* is r = |B| for any $B \in \mathcal{B}$.

伺 ト イヨト イヨト

A collection C of signed sets of a finite set E is the set of **circuits** of an oriented matroid on E verifying *some* axioms.

We denoted by $-_AM$ the oriented matroid obtained from M by a reorientation of A (swapping the signs of elements in A).

 $\mathcal B$ is the set of **bases** of an oriented matroid if and only if there is an application, called chirotope, $\chi: E^r \to \{+, -, 0\}$ verifying some conditions

The rank r of a matroid M is r = |B| for any $B \in \mathcal{B}$.

An oriented matroid is uniform if $\chi(B) = +$ or - for any base B.

(日本) (日本) (日本)

An arrangement of pseudo-spheres is a finite collection of pseudo-spheres in S^{d-1} satisfying some specific conditions. We say that the arrangement is signed if for each pseudosphere it is chosen a positive and a negative side.

• • = • • = •

An arrangement of pseudo-spheres is a finite collection of pseudo-spheres in S^{d-1} satisfying some specific conditions. We say that the arrangement is signed if for each pseudosphere it is chosen a positive and a negative side. Theorem (Folkman and Lawrence, 1978) Any loop-free oriented matroid of rank d + 1 (up to isomorphism) are in one-to-one correspondence with signed arrangements of pseudo-spheres in S^d

(up to topological equivalence).

・ 同 ト ・ ヨ ト ・ ヨ ト

(E) (E)

An oriented matroid is called acyclic if $|C^+|, |C^-| \ge 1$ for any circuit C.

(A) (E) (A) (E) (A)

An oriented matroid is called acyclic if $|C^+|, |C^-| \ge 1$ for any circuit C.

• If the points are in general position then M is uniform.

An oriented matroid is called acyclic if $|C^+|, |C^-| \ge 1$ for any circuit C.

- If the points are in general position then M is uniform.
- An element e of an oriented matroid is called interior if there is a cycle C with $C^+ = \{e\}$ and $, |C^-| \ge 0$.

An oriented matroid is called acyclic if $|C^+|, |C^-| \ge 1$ for any circuit C.

- If the points are in general position then M is uniform.
- An element e of an oriented matroid is called interior if there is a cycle C with $C^+ = \{e\}$ and $, |C^-| \ge 0.$

• The set of acyclic reorientations of *M* are in bijection with the set of cells of the corresponding arrangement of pseudospheres.

向下 イヨト イヨト

Oriented matroid version Determine the largest integer g(d) such that given any **uniform affine** oriented matroid of rank r on g elements there is an **acyclic reorientation** of M having no **interior points**.

• • = • • = •

Oriented matroid version Determine the largest integer g(d) such that given any **uniform affine** oriented matroid of rank r on g elements there is an **acyclic reorientation** of M having no **interior points**.

Topological version Determine the largest integer g(d) such that given any uniform oriented matroid of rank r on n elements the corresponding arrangement of hyperplanes has a complete cell.

周 ト イヨ ト イヨ ト

Oriented matroid version Determine the largest integer g(d) such that given any **uniform affine** oriented matroid of rank r on g elements there is an **acyclic reorientation** of M having no **interior points**.

Topological version Determine the largest integer g(d) such that given any uniform oriented matroid of rank r on n elements the corresponding arrangement of hyperplanes has a complete cell. Theorem (R.A. 2001) $n(d) \le 2d + \lceil \frac{d}{2} \rceil$ for any $d \ge 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A Lawrence oriented matroid M of rank r on the totally ordered set $E = \{1, ..., n\}$, $r \le n$, is a uniform oriented matroid obtained as the union of r uniform oriented matroids $M_1, ..., M_r$ of rank 1 on (E, <).

A Lawrence oriented matroid M of rank r on the totally ordered set $E = \{1, ..., n\}, r \le n$, is a uniform oriented matroid obtained as the union of r uniform oriented matroids $M_1, ..., M_r$ of rank 1 on (E, <).

The chirotope χ corresponds to some Lawrence oriented matroid M_A if and only if there exists a matrix $A = (a_{i,j}), 1 \le i \le r$, $1 \le j \le n$ with entries from $\{+1, -1\}$ (where the *i*-th row corresponds to the chirotope of the oriented matroid M_i) such that

$$\chi(B)=\prod_{i=1}^r a_{i,j_i}$$

where *B* is an ordered *r*-tuple $j_1 \leq \ldots \leq j_r$ elements of *E*.

• • = • • = •

Matrix A arising a Lawrence oriented matroid $M = \bigcup_{i=1}^{n} M_i$.

< ∃⇒

э

Matrix A arising a Lawrence oriented matroid $M = \bigcup_{i=1}^{n} M_i$.

< ∃⇒

э

Recorientation of element 6 arising a Lawrence oriented matroid $-_6M$.

▲ 臣 ▶ | ▲ 臣 ▶ | |

3

	1	2	3	4	5	6	7
1	+	_	_	+	+	+	+
2	+	_	+	+	+	+	+
3	+	+	+	+	+	+	+
4	+	_	+	+	+	+	+

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

▶ < Ξ ▶ < Ξ ▶</p>

æ

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

臣

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

We define Top Travel [TT] and the Bottom Travel [BT] on the entries of A, both formed by horizontal and vertical movements.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

• M_A is acyclic iff TT arrives at the last column of A.

イロン 不同 とうほう 不同 とう

3

- M_A is acyclic iff TT arrives at the last column of A.
- c is interior in M_A iff TT and BT are parallel at column c.

.

臣

- M_A is acyclic iff TT arrives at the last column of A.
- c is interior in M_A iff TT and BT are parallel at column c.

 M_A is acyclic and 4, 5 and 6 are interior elements.

• 3 >

э

Chessboard

Chessboard of matrix A invariant under reorientations

Э

Chessboard of matrix A invariant under reorientations The upper bound $n(d) \le 2d + \lceil \frac{d}{2} \rceil$ for any $d \ge 2$ comes from ...

(A) (E) (A) (E) (A)

Chessboard of matrix A invariant under reorientations The upper bound $n(d) \le 2d + \lceil \frac{d}{2} \rceil$ for any $d \ge 2$ comes from ...

臣

A *d*-polytope is *k*-neighbourly if for $k \leq \lfloor \frac{d}{2} \rfloor$ fixed, every subset of at most *k* vertices of the vertex set of the polytope is a face of the polytope.

• • = • • = •

A *d*-polytope is *k*-neighbourly if for $k \leq \lfloor \frac{d}{2} \rfloor$ fixed, every subset of at most *k* vertices of the vertex set of the polytope is a face of the polytope.

Neighbourly version What is the larges integer v(d, k) be the largest integer such that any v(d, k) points in general position in \mathbb{R}^d can be mapped by a permissible projective transformation onto points onto the vertices of a *k*-neighbourly convex polytope?

向下 イヨト イヨト

A *d*-polytope is *k*-neighbourly if for $k \leq \lfloor \frac{d}{2} \rfloor$ fixed, every subset of at most *k* vertices of the vertex set of the polytope is a face of the polytope.

Neighbourly version What is the larges integer v(d, k) be the largest integer such that any v(d, k) points in general position in \mathbb{R}^d can be mapped by a permissible projective transformation onto points onto the vertices of a *k*-neighbourly convex polytope?

Theorem (García-Colin, 2014) Let $2 \le k \le \lceil \frac{d}{2} \rceil$. Then,

$$d + \left\lfloor \frac{d}{k} \right\rfloor + 1 \le v(d,k) < 2d - k + 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let $X \subset \mathbb{R}^d$ be a set of points in general position. Let

$$h_k(X,d) = \max_{T} \left\{ f_k(\operatorname{conv}(T(X))) \right\},\,$$

maximum taken over all possible permissible projective transformations T of X and $f_k(P)$ denotes the number of k-faces of a polytope P.

- E - - E -

Let $X \subset \mathbb{R}^d$ be a set of points in general position. Let

$$h_k(X, d) = \max_{T} \{f_k(\operatorname{conv}(T(X)))\},\$$

maximum taken over all possible permissible projective transformations T of X and $f_k(P)$ denotes the number of k-faces of a polytope P.

We consider

$$H_k(n,d) = \min_{X \subset \mathbb{R}^d, |X|=n} \left\{ h_k(X,d) \right\}.$$

- E - - E -

Generalized version Let $t \ge 0$ be an integer. What is the largest integer n(t, d) such that any set of n points in general position in \mathbb{R}^d can be mapped, by a permissible projective transformation onto the vertices of a convex polytope with at most t points in its interior?

A B K A B K

Generalized version Let $t \ge 0$ be an integer. What is the largest integer n(t, d) such that any set of n points in general position in \mathbb{R}^d can be mapped, by a permissible projective transformation onto the vertices of a convex polytope with at most t points in its interior?

 $\mathit{n}(0,d) = \mathit{n}(d)$

• • = • • = •

Generalized version Let $t \ge 0$ be an integer. What is the largest integer n(t, d) such that any set of n points in general position in \mathbb{R}^d can be mapped, by a permissible projective transformation onto the vertices of a convex polytope with at most t points in its interior?

$$n(0,d)=n(d)$$

The function n(t, d) will allow us to study $H_0(n, d)$ in a more general setting since

$$H_0(n(t,d),d) = n(t,d) - t$$

• • = • • = •

Theorem (García-Colin, Montejano, R.A., 2023) Let $d, t \ge 1$ and $n \ge 2$ be integers. Then,

$$H_0(n,d) \begin{cases} = 2 & \text{if } d = 1, \ n \ge 2, \\ = 5 & \text{if } d = 2, \ n \ge 5, \\ \le 7 & \text{if } d = 3, \ n \ge 7, \\ \le n - 1 - t & \text{if } d \ge 4, \ n \ge 2d + t(d-2) + 2, t \ge 1. \end{cases}$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Theorem (García-Colin, Montejano, R.A., 2023) Let $d, t \ge 1$ and $n \ge 2$ be integers. Then,

$$H_0(n,d) \begin{cases} = 2 & \text{if } d = 1, \ n \ge 2, \\ = 5 & \text{if } d = 2, \ n \ge 5, \\ \le 7 & \text{if } d = 3, \ n \ge 7, \\ \le n - 1 - t & \text{if } d \ge 4, \ n \ge 2d + t(d-2) + 2, t \ge 1. \end{cases}$$

By the Upper Bound Theorem we have

 $H_k(n,d) \leq f_k(C_d(H_0(n,d)))$ for all $n \geq 1$ and any $k \geq 1$

where $C_d(n)$ is the *d*-dimensional cyclic polytope with *n* vertices.

・ 何 ト ・ ヨ ト ・ ヨ ト

3

Let $X = A \cup B$ be any partition of the set of points X in general position in \mathbb{R}^d . $r_X(A, B) :=$ the number of (d + 2)-element subsets $S \subset X$ such that $\operatorname{conv}(A \cap S) \cap \operatorname{conv}(B \cap S) \neq \emptyset$

通 とう ほう う ほうし

Let $X = A \cup B$ be any partition of the set of points X in general position in \mathbb{R}^d . $r_X(A, B) :=$ the number of (d + 2)-element subsets $S \subset X$ such that $\operatorname{conv}(A \cap S) \cap \operatorname{conv}(B \cap S) \neq \emptyset$

Consider the functions

 $r(X):=\max_{\{(A,B)|A\cup B=X\}}r_X(A,B) \quad \text{and} \quad r(n,d):=\min_{X\subset \mathbb{R}^d, |X|=n}r(X).$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let $X = A \cup B$ be any partition of the set of points X in general position in \mathbb{R}^d . $r_X(A, B) :=$ the number of (d + 2)-element subsets $S \subset X$ such that $\operatorname{conv}(A \cap S) \cap \operatorname{conv}(B \cap S) \neq \emptyset$ Consider the functions

$$r(X):=\max_{\{(A,B)|A\cup B=X\}}r_X(A,B) \quad \text{and} \quad r(n,d):=\min_{X\subset \mathbb{R}^d, |X|=n}r(X).$$

Theorem (García-Colin, Montejano, R.A., 2023) Let $d, n \ge 1$ be integers. Then, $r(n, d) = H_{d'-1}(n, d')$ where d' = n - d - 2.

・ 同 ト ・ ヨ ト ・ ヨ ト …

2-Randon partition

Theorem (García-Colin, Montejano, R.A., 2023) Let $n \ge 4$ be an integer. Then,

$$r(n,2) \begin{cases} = 2 & \text{if } n = 5, \\ = 5 & \text{if } n = 6, \\ = 10 & \text{if } n = 7, \\ \leq 2 \left(\frac{n-1}{2} + 2\right) & \text{if } n \ge 7, n \text{-odd}, \\ \leq \left(\frac{n}{2} + 2\right) + \left(\frac{n}{2} + 1\right) & \text{if } n \ge 8, n \text{-even}. \end{cases}$$

Moreover, if $n \ge 7$ then $r(n,2) \ge 2(2n-9)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

2-Randon partition

Theorem (García-Colin, Montejano, R.A., 2023) Let $n \ge 4$ be an integer. Then,

$$r(n,2) \begin{cases} = 2 & \text{if } n = 5, \\ = 5 & \text{if } n = 6, \\ = 10 & \text{if } n = 7, \\ \leq 2 \left(\frac{n-1}{2} + 2\right) & \text{if } n \ge 7, n \text{-odd}, \\ \leq \left(\frac{n}{2} + 2\right) + \left(\frac{n}{2} + 1\right) & \text{if } n \ge 8, n \text{-even}. \end{cases}$$

Moreover, if $n \ge 7$ then $r(n, 2) \ge 2(2n - 9)$. We also show

 $17 \leq r(9,3) \leq 27$

・ 同 ト ・ ヨ ト ・ ヨ ト

2-Randon partition

Theorem (García-Colin, Montejano, R.A., 2023) Let $n \ge 4$ be an integer. Then,

$$r(n,2) \begin{cases} = 2 & \text{if } n = 5, \\ = 5 & \text{if } n = 6, \\ = 10 & \text{if } n = 7, \\ \leq 2 \left(\frac{n-1}{2} + 2\right) & \text{if } n \ge 7, n \text{-odd}, \\ \leq \left(\frac{n}{2} + 2\right) + \left(\frac{n}{2} + 1\right) & \text{if } n \ge 8, n \text{-even}. \end{cases}$$

Moreover, if $n \ge 7$ then $r(n, 2) \ge 2(2n - 9)$. We also show

 $17 \leq r(9,3) \leq 27$

Question : r(9,3) = ?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Problem (Pach and Szegedy, 2003) : Given *n* points in general position in the plane, coloured red and blue, maximize the number of multicoloured 4-tuples with the property that the convex hull of its red elements and the convex hull of its blue elements have at least one point in common. In particular, **show that when the maximum is attained, the number of red and blue elements are roughly the same**.

(A) (E) (A) (E) (A)

Problem (Pach and Szegedy, 2003) : Given *n* points in general position in the plane, coloured red and blue, maximize the number of multicoloured 4-tuples with the property that the convex hull of its red elements and the convex hull of its blue elements have at least one point in common. In particular, **show that when the maximum is attained, the number of red and blue elements are roughly the same**.

Theorem (García-Colin, Montejano, R.A., 2023) Let $X \subset \mathbb{R}^2$ be a set of points in general position with $|X| = n \ge 8$. Then, for any partition A, B of X such that $r_X(A, B) = r(X)$, we have that $|A|, |B| \le \lfloor \frac{n}{2} \rfloor + 2$.

周 ト イヨ ト イヨ ト

Tolerence

 $\lambda(t, d) :=$ the smallest number λ such that for any set X of λ points in \mathbb{R}^d there exists a partition of $X = A \cup B$ and a subset $P \subseteq X$ of cardinality $\lambda - i$, for some $0 \le i \le t$, such that

$$\operatorname{conv}(A \setminus y) \cap \operatorname{conv}(B \setminus y) \begin{cases} \neq \emptyset & \text{if } y \in P, \\ = \emptyset & \text{if } y \in X \setminus P. \end{cases}$$

• • = • • = •

Tolerence

 $\lambda(t, d) :=$ the smallest number λ such that for any set X of λ points in \mathbb{R}^d there exists a partition of $X = A \cup B$ and a subset $P \subseteq X$ of cardinality $\lambda - i$, for some $0 \le i \le t$, such that

$$\operatorname{conv}(A \setminus y) \cap \operatorname{conv}(B \setminus y) \left\{ egin{array}{c}
eq \emptyset & ext{if } y \in P, \\
eq \emptyset & ext{if } y \in X \setminus P. \end{array}
ight.$$

Theorem (García-Colin, Montejano, R.A., 2023) Let $t \ge 0$ and $d \ge 1$ be integers. Then,

$$n(t,d) = \max_{m \in \mathbb{N}} \{m \mid \lambda(t,m-d-1) \leq m\}$$

and

$$\lambda(t,d) = \min_{m \in \mathbb{N}} \{m \mid m \le n(t,m-d-1)\}.$$

• • = • • = •

Size of cells in arrangements

Question 1 : Are there simple arrangements of n (pseudo)hyperplanes in \mathbb{P}^d in which every cell is of at most certain size?

(E) (E)

Size of cells in arrangements

Question 1 : Are there simple arrangements of n (pseudo)hyperplanes in \mathbb{P}^d in which every cell is of at most *certain* size?

Question 2 : Which arrangements of n (pseudo)hyperplanes in \mathbb{P}^d contain a cell of at least certain size?

Question 1 : Are there simple arrangements of n (pseudo)hyperplanes in \mathbb{P}^d in which every cell is of at most certain size?

Question 2 : Which arrangements of n (pseudo)hyperplanes in \mathbb{P}^d contain a cell of at least *certain size*?

Proposition (García-Colin, Montejano, R.A., 2023)

 \bullet Every simple arrangement of at least 5 pseudo-lines in \mathbb{P}^2 has a cell of size at least 5

• For any $n \ge 7$, there exists a simple arrangement of n (pseudo)planes in \mathbb{P}^3 with every cell of size at most 7.

Question 1 : Are there simple arrangements of n (pseudo)hyperplanes in \mathbb{P}^d in which every cell is of at most certain size?

Question 2 : Which arrangements of n (pseudo)hyperplanes in \mathbb{P}^d contain a cell of at least *certain size*?

Proposition (García-Colin, Montejano, R.A., 2023)

 \bullet Every simple arrangement of at least 5 pseudo-lines in \mathbb{P}^2 has a cell of size at least 5

• For any $n \ge 7$, there exists a simple arrangement of n (pseudo)planes in \mathbb{P}^3 with every cell of size at most 7.

Question 3 : Is it true that any simple arrangement of $n \ge 2d + 1$ (pseudo)hyperplanes in \mathbb{P}^d contains a cell of size at least 2d + 1? Moreover, is it true that for any $n \ge 2d + 1$, there exists a simple arrangement of n (pseudo)hyperplanes in \mathbb{P}^d with every cell of size at most 2d + 1?

・ 同 ト ・ ヨ ト ・ ヨ ト

Thanks for your attention !

臣