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Diagrams

Some diagrams

The crossing number of a link L, denoted by cr(L), is the minimum
number of crossings among all the diagrams of L.
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Necklace representation

A necklace representation of a link L is a collection of
non-overlapping chains of balls such that theirs threads form a
polygonal link ambient isotopic to L.

Necklace representations of the Trefoil and the Borromean link.
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Necklace representation

40 spheres
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J. L. Raḿırez Alfonśın On the ball number of links



Necklace representation

12 spheres

Question What is the minimum number of spheres among all
necklace representations of a given link ?
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Ball number

The ball number of a link L, denoted by ball(L), as the minimum
number of balls (not necessarily of the same size) needed to
construct a necklace representation of L.

• ball( ) = 3

• ball( ) =?
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Ball number

The ball number of a link L, denoted by ball(L), as the minimum
number of balls (not necessarily of the same size) needed to
construct a necklace representation of L.

• ball( ) = 3

• ball( ) = 8 (Maehara, 1999)

• 9 ≤ ball( ) ≤ 12 (Maehara, 1999 and Oshiro, 2007)

Conjecture (Maehara, 2007) ball( ) = 12
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J. L. Raḿırez Alfonśın On the ball number of links



Ball number

The ball number of a link L, denoted by ball(L), as the minimum
number of balls (not necessarily of the same size) needed to
construct a necklace representation of L.

• ball( ) = 3

• ball( ) = 8 (Maehara, 1999)

• 9 ≤ ball( ) ≤ 12 (Maehara, 1999 and Oshiro, 2007)

Conjecture (Maehara, 2007) ball( ) = 12
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Ball number

Theorem (Rasskin + R.A., 2021) For any non-trivial and
non-splittable link L we have

ball(L) ≤ 5cr(L)

J. L. Raḿırez Alfonśın On the ball number of links



Ball number

Theorem (Rasskin + R.A., 2021) For any non-trivial and
non-splittable link L we have

ball(L) ≤ 5cr(L)
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Some Lorenzian theory

The Lorentzian space ILd+1,1, of dimension d + 2, is the vector
space of dimension d + 2 equipped with Lorentzian product

〈x , y〉 = x1y1 + · · ·+ xd+1yd+1 − xd+2yd+2, x , y ∈ ILd+1,1

of signature (d + 1, 1).

• There is a bijection between spheres and points of ÎRd and
vectors of ILd+1,1 with Lorentzian norm 1 and 0, respectively.
• The inversive coordinates of a sphere (resp. point) are the
Cartesian coordinates of the corresponding vector in ILd+1,1

〈vb, vb′〉


> 1 if b and b′ are nested
= 1 if b and b′ are internally tangent
= 0 if b and b′ are orthogonal
= −1 if b and b′ are externally tangent
< −1 if b and b′ are disjoint
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J. L. Raḿırez Alfonśın On the ball number of links



Some Lorenzian theory

The Lorentzian space ILd+1,1, of dimension d + 2, is the vector
space of dimension d + 2 equipped with Lorentzian product

〈x , y〉 = x1y1 + · · ·+ xd+1yd+1 − xd+2yd+2, x , y ∈ ILd+1,1

of signature (d + 1, 1).

• There is a bijection between spheres and points of ÎRd and
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J. L. Raḿırez Alfonśın On the ball number of links



Some Lorenzian theory

The Lorentzian space ILd+1,1, of dimension d + 2, is the vector
space of dimension d + 2 equipped with Lorentzian product

〈x , y〉 = x1y1 + · · ·+ xd+1yd+1 − xd+2yd+2, x , y ∈ ILd+1,1

of signature (d + 1, 1).

• There is a bijection between spheres and points of ÎRd and
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KAT Circle packing theorem

G is disk packable if there is a disk packing in the plane whose contact

graph is isomorphic to G

Theorem (Koebe-Andreev-Thurston) A graph G is disk packable if and

only if G is a simple planar graph. Moreover, if G is a triangulation of S2

then G is Möbius rigid.
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Outline of our approach

Input : link diagram DL of a link L with n crossings

• By combining DL with its associated medial graph we construct
a simple planar graph G containing a subgraph isotopic to L with
3n crossings.

• By the KAT theorem we obtain a disk packing D whose
tangency graph is G .

• By inflating the disk packing D, we construct a ball packing B
with same tangency graph G (and thus with 3n balls).

• We obtain a necklace representation of L by properly adding two
balls to B at each of the 3n crossings.

Remark : Lorentz geometry (and other building blocks) is used to
verify that the construction works well.
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Algorithm

Our approach is constructive yielding to an algorithm to realize
explicitly the desired necklace representation

Conjecture (Rasskin + R.A., 2021) ball(L) ≤ 4cr(L) for any link L.
Moreover, the equality holds if L is alternating.
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Apollonius’ theorem

Theorem (Apollonius de Perge) Given three pairwise tangent
circles there always exists two circles that are tangent to the three.
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g g -1p
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Apollonian gasket

- Take 4 pairwise tangente circles
- Add new circles tangent to 3 out of the 4 circles, obtaining a new
configuration
- Carry on this procedure indefinitely ...
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Motivation

Apollonian packings are attractive to study :

Granular systems Fluid emulsion Foam bubbles

Applications : hyperbolic geometry, fractals, geometric groups,

Number theory Knot theory

J. L. Raḿırez Alfonśın On the ball number of links



Motivation

Apollonian packings are attractive to study :

Granular systems Fluid emulsion Foam bubbles

Applications : hyperbolic geometry, fractals, geometric groups,

Number theory Knot theory
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Inversion with respect to a circle

The inverse of a point Q with respect to a circle with center O
and radius r is the point Q ′ lying on the segment [O,Q] such that
d(O,Q) · d(O,Q ′) = r2.

O

Q

Q'
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Packings by using inversions

From the Tetrahedron
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Packings by using inversions

From the Octahedron
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Packings by using inversions

From the Octahedron

Gaskets from the Tetrahedron, the Octahedron and the Cube
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J. L. Raḿırez Alfonśın On the ball number of links



Ball arrangements

Let P be a (d + 1)-polytope sphere-exterior (vertices outside the
sphere)

The projected ball arrangement B(P) of P, is the collection of
d-balls whose light sources are the vertices of P.

If P is a (d + 1)-polytope is edge-scribible (i.e., all the edges of P
are tangent to Sd) then B(P) is a d-ball packing, denoted by BP

and called polytopal packing.
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Polytopal sphere packings

• Not all the sphere packings are polytopal packings

• All polytopal packing admits a dual packing B∗P given by the
vertices of the polar polytope P∗.

An edge-scribible icosahedron and its polar (dodecahedron).
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Stereographic projections
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3-ball polytopal packings

Hypercube (cube in dimension 4)
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Orthoplicial representation

Theorem (Rasskin + R.A., 2023) Every link admits a necklace
representation in BO4 .
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J. L. Raḿırez Alfonśın On the ball number of links



Tetrahedral and cubic representations

Theorem (Rasskin + R.A., 2023) Every link admits a necklace
representation in BT 4 and BC4 .
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Apollonian representations

Theorem (Rasskin + R.A., 2023) Every link admits a necklace
representation in BO4 , BT 4 and BC4 .
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Apollonian sections

Proposition Every orthoplicial packing BO4 contains a tetrahedral,
an octahedral and a cubic sections

Orthoplicial packing BO4
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Proposition Every orthoplicial packing BO4 contains a tetrahedral,
an octahedral and a cubic sections

Section of the orthoplicial packing BO4

J. L. Raḿırez Alfonśın On the ball number of links



Apollonian sections

Proposition Every packing BO4 contains a tetrahedral, an
octahedral and a cubic sections

Section of the orthoplicial packing BO4
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J. L. Raḿırez Alfonśın On the ball number of links



Apollonian sections

Proposition Every packing BO4 contains a tetrahedral, an
octahedral and a cubic sections
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2-tangles

A 2-tangle Elementary 2-tangle

Sum of tangles t and t ′

t −t F (t) H+(t) H−(t)

Operations with tangles
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J. L. Raḿırez Alfonśın On the ball number of links



2-tangles

A 2-tangle Elementary 2-tangle

Sum of tangles t and t ′

t −t F (t) H+(t) H−(t)

Operations with tangles
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Rational tangles

Let a1, . . . , an be integers ai 6= 0. Let t(a1, . . . , an) the rational
tangle given by Conway’s algorithm :

t(a1, . . . , an) = Ha1F · · ·HanF (t∞)

t(2,−2,−3)
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Rational links

Tangle closures : Denominator and Numerator

The slope of a rational tangle t(a1, . . . , an) is the rational number
p/q obtained by the continued fraction expansion

[a1, . . . , an] := a1 +
1

. . . + 1
an

=
p

q
.

Theorem (Conway 1970) Two rational tangles are equivalent if
and only if they have the same slope.
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Tangles : cubic diagrams

Orthoplicial packing BO4 Cubic section BC 3
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Tangles : cubic diagrams

Associated graph to BC 3
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Tangles : cubic diagrams

Imitating tangle operations in the graph of BC 3
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Tangles : cubic diagram

Theorem (Rasskin + R.A., 2023) Any rational link admits an
orthocubic representation (cubic diagram) and therefore there is a
necklace representation contained in a section of BO4 .

Theorem (Rasskin + R.A., 2023) Let L be an algebraic link
obtained by the closure of the algebraic tangle tp1/q1

+ · · ·+ tpm/qm
where all the pi/qi have same sign. Then, ball(L) ≤ 4cr(L).
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No tightness for non-alternating links

Pretzel links P(q1, . . . , qn) are the tangles t1/q1
+ · · ·+ t1/qm .

We have that P(3,−2, 3) (corresponding to the non-alternating
knot 819) admits an orthocubic necklace representation with
28 = 7

2cr(819) < 4cr(819) = 32 spheres.
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Orthocubic point

The orthocubic point np/q of tangle tp/q is the tangency point of
the two circles corresponding to the last edge in its orthocubic
representation.

Theorem (Rasskin + R.A., 2023) np/q is the intersection of the
line going through the origin and slope ±(p/q)−2.
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Diophantine equation

Corollary (Rasskin + R.A., 2023) The diophantine equation
x4 + y4 + z4 = 2t2 has infinitely many primitive solutions.

Proof (idea) : Calculate the inversive coordinates of the orthocubic
point of every rational tangle

i(ηp/q) =


p2

q2

(p − q)2
√

2(p2 − pq + q2)


By computing

〈i(ηp/q), i(ηp/q)〉 = 0⇔ p︸︷︷︸
a

4+ q︸︷︷︸
b

4+(p − q)︸ ︷︷ ︸
c

4 = 2(p2 − pq + q2)︸ ︷︷ ︸
d

2

we produce the solution a4 + b4 + c4 = 2d2
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Figure eight knot
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Torus knot
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