On the ball number of links

J. L. Ramírez Alfonsín

IMAG, Université de Montpellier, France
(joint work with I. Rasskin)

Knots, Surfaces, and 3-manifolds
CMO-BIRS, Oaxaca, June 12th, 2023

Diagrams

Some diagrams

Diagrams

Some diagrams

The crossing number of a link L, denoted by $\operatorname{cr}(L)$, is the minimum number of crossings among all the diagrams of L.

Necklace representation

A necklace representation of a link L is a collection of non-overlapping chains of balls such that theirs threads form a polygonal link ambient isotopic to L.

Necklace representation

A necklace representation of a link L is a collection of non-overlapping chains of balls such that theirs threads form a polygonal link ambient isotopic to L.

Necklace representations of the Trefoil and the Borromean link.

Necklace representation

40 spheres

Necklace representation

24 spheres

Necklace representation

12 spheres

Necklace representation

12 spheres

Question What is the minimum number of spheres among all necklace representations of a given link?

Ball number

The ball number of a link L, denoted by ball (L), as the minimum number of balls (not necessarily of the same size) needed to construct a necklace representation of L.

Ball number

The ball number of a link L, denoted by ball (L), as the minimum number of balls (not necessarily of the same size) needed to construct a necklace representation of L.

- ball $(\bigcirc)=3$

Ball number

The ball number of a link L, denoted by ball (L), as the minimum number of balls (not necessarily of the same size) needed to construct a necklace representation of L.

- ball $(\bigcirc)=3$
- ball $(\infty)=$?

Ball number

The ball number of a link L, denoted by ball (L), as the minimum number of balls (not necessarily of the same size) needed to construct a necklace representation of L.

- ball $(\bigcirc)=3$
- ball(∞) $=8 \quad$ (Maehara, 1999)

Ball number

The ball number of a link L, denoted by ball (L), as the minimum number of balls (not necessarily of the same size) needed to construct a necklace representation of L.

- ball $(\bigcirc)=3$
- ball($(\infty)=8 \quad$ (Maehara, 1999)
- $9 \leq \operatorname{ball}(\otimes) \leq 12 \quad$ (Maehara, 1999 and Oshiro, 2007)

Ball number

The ball number of a link L, denoted by ball (L), as the minimum number of balls (not necessarily of the same size) needed to construct a necklace representation of L.

- ball $(\bigcirc)=3$
- ball($(\infty)=8 \quad$ (Maehara, 1999)
- $9 \leq \operatorname{ball}(\otimes) \leq 12 \quad$ (Maehara, 1999 and Oshiro, 2007)

Conjecture (Maehara, 2007) ball($(8)=12$

Ball number

Theorem (Rasskin + R.A., 2021) For any non-trivial and non-splittable link L we have

$$
\text { ball }(L) \leq 5 c r(L)
$$

Ball number

Theorem (Rasskin + R.A., 2021) For any non-trivial and non-splittable link L we have

$$
\text { ball }(L) \leq 5 \operatorname{cr}(L)
$$

Some Lorenzian theory

The Lorentzian space $\mathbb{L}^{d+1,1}$, of dimension $d+2$, is the vector space of dimension $d+2$ equipped with Lorentzian product

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\cdots+x_{d+1} y_{d+1}-x_{d+2} y_{d+2}, \quad \boldsymbol{x}, \boldsymbol{y} \in \mathbb{L}^{d+1,1}
$$

of signature $(d+1,1)$.

Some Lorenzian theory

The Lorentzian space $\mathbb{L}^{d+1,1}$, of dimension $d+2$, is the vector space of dimension $d+2$ equipped with Lorentzian product

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\cdots+x_{d+1} y_{d+1}-x_{d+2} y_{d+2}, \quad \boldsymbol{x}, \boldsymbol{y} \in \mathbb{L}^{d+1,1}
$$

of signature $(d+1,1)$.

- There is a bijection between spheres and points of $\widehat{\mathbb{R}^{d}}$ and vectors of $\mathbb{L}^{d+1,1}$ with Lorentzian norm 1 and 0 , respectively.

Some Lorenzian theory

The Lorentzian space $\mathbb{L}^{d+1,1}$, of dimension $d+2$, is the vector space of dimension $d+2$ equipped with Lorentzian product

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\cdots+x_{d+1} y_{d+1}-x_{d+2} y_{d+2}, \quad \boldsymbol{x}, \boldsymbol{y} \in \mathbb{L}^{d+1,1}
$$

of signature $(d+1,1)$.

- There is a bijection between spheres and points of $\widehat{\mathbb{R}^{d}}$ and vectors of $\mathbb{L}^{d+1,1}$ with Lorentzian norm 1 and 0 , respectively.
- The inversive coordinates of a sphere (resp. point) are the Cartesian coordinates of the corresponding vector in $\mathbb{L}^{d+1,1}$

Some Lorenzian theory

The Lorentzian space $\mathbb{L}^{d+1,1}$, of dimension $d+2$, is the vector space of dimension $d+2$ equipped with Lorentzian product

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\cdots+x_{d+1} y_{d+1}-x_{d+2} y_{d+2}, \quad \boldsymbol{x}, \boldsymbol{y} \in \mathbb{L}^{d+1,1}
$$

of signature $(d+1,1)$.

- There is a bijection between spheres and points of $\widehat{\mathbb{R}^{d}}$ and vectors of $\mathbb{L}^{d+1,1}$ with Lorentzian norm 1 and 0 , respectively.
- The inversive coordinates of a sphere (resp. point) are the Cartesian coordinates of the corresponding vector in $\mathbb{L}^{d+1,1}$

$$
\left\langle v_{b}, v_{b^{\prime}}\right\rangle \quad \begin{cases}>1 & \text { if } b \text { and } b^{\prime} \text { are nested } \\ =1 & \text { if } b \text { and } b^{\prime} \text { are internally tangent } \\ =0 & \text { if } b \text { and } b^{\prime} \text { are orthogonal } \\ =-1 & \text { if } b \text { and } b^{\prime} \text { are externally tangent } \\ <-1 & \text { if } b \text { and } b^{\prime} \text { are disjoint }\end{cases}
$$

KAT Circle packing theorem

G is disk packable if there is a disk packing in the plane whose contact graph is isomorphic to G

KAT Circle packing theorem

G is disk packable if there is a disk packing in the plane whose contact graph is isomorphic to G

KAT Circle packing theorem

G is disk packable if there is a disk packing in the plane whose contact graph is isomorphic to G

Theorem (Koebe-Andreev-Thurston) A graph G is disk packable if and only if G is a simple planar graph. Moreover, if G is a triangulation of \mathbb{S}^{2} then G is Möbius rigid.

KAT Circle packing theorem

G is disk packable if there is a disk packing in the plane whose contact graph is isomorphic to G

Theorem (Koebe-Andreev-Thurston) A graph G is disk packable if and only if G is a simple planar graph. Moreover, if G is a triangulation of \mathbb{S}^{2} then G is Möbius rigid.

Outline of our approach

Input: link diagram D_{L} of a link L with n crossings

Outline of our approach

Input: link diagram D_{L} of a link L with n crossings

- By combining D_{L} with its associated medial graph we construct a simple planar graph G containing a subgraph isotopic to L with $3 n$ crossings.

Outline of our approach

Input: link diagram D_{L} of a link L with n crossings

- By combining D_{L} with its associated medial graph we construct a simple planar graph G containing a subgraph isotopic to L with $3 n$ crossings.
- By the KAT theorem we obtain a disk packing D whose tangency graph is G.

Outline of our approach

Input: link diagram D_{L} of a link L with n crossings

- By combining D_{L} with its associated medial graph we construct a simple planar graph G containing a subgraph isotopic to L with $3 n$ crossings.
- By the KAT theorem we obtain a disk packing D whose tangency graph is G.
- By inflating the disk packing D, we construct a ball packing B with same tangency graph G (and thus with $3 n$ balls).

Outline of our approach

Input: link diagram D_{L} of a link L with n crossings

- By combining D_{L} with its associated medial graph we construct a simple planar graph G containing a subgraph isotopic to L with $3 n$ crossings.
- By the KAT theorem we obtain a disk packing D whose tangency graph is G.
- By inflating the disk packing D, we construct a ball packing B with same tangency graph G (and thus with $3 n$ balls).
- We obtain a necklace representation of L by properly adding two balls to B at each of the $3 n$ crossings.

Outline of our approach

Input: link diagram D_{L} of a link L with n crossings

- By combining D_{L} with its associated medial graph we construct a simple planar graph G containing a subgraph isotopic to L with $3 n$ crossings.
- By the KAT theorem we obtain a disk packing D whose tangency graph is G.
- By inflating the disk packing D, we construct a ball packing B with same tangency graph G (and thus with $3 n$ balls).
- We obtain a necklace representation of L by properly adding two balls to B at each of the $3 n$ crossings.

Remark: Lorentz geometry (and other building blocks) is used to verify that the construction works well.

Algorithm

Our approach is constructive yielding to an algorithm to realize explicitly the desired necklace representation

Algorithm

Our approach is constructive yielding to an algorithm to realize explicitly the desired necklace representation

Algorithm

Our approach is constructive yielding to an algorithm to realize explicitly the desired necklace representation

Conjecture (Rasskin + R.A., 2021) ball $(L) \leq 4 c r(L)$ for any link L. Moreover, the equality holds if L is alternating.

Apollonius' theorem

Theorem (Apollonius de Perge) Given three pairwise tangent circles there always exists two circles that are tangent to the three.

Apollonius' theorem

Theorem (Apollonius de Perge) Given three pairwise tangent circles there always exists two circles that are tangent to the three.

Apollonius' theorem

Theorem (Apollonius de Perge) Given three pairwise tangent circles there always exists two circles that are tangent to the three.

Apollonius' theorem

Theorem (Apollonius de Perge) Given three pairwise tangent circles there always exists two circles that are tangent to the three.

Proof (idea) :

J. L. Ramírez Alfonsín

Apollonian gasket

- Take 4 pairwise tangente circles
- Add new circles tangent to 3 out of the 4 circles, obtaining a new configuration
- Carry on this procedure indefinitely ...

Apollonian gasket

- Take 4 pairwise tangente circles
- Add new circles tangent to 3 out of the 4 circles, obtaining a new configuration
- Carry on this procedure indefinitely ...

Apollonian gasket

- Take 4 pairwise tangente circles
- Add new circles tangent to 3 out of the 4 circles, obtaining a new configuration
- Carry on this procedure indefinitely ...

Apollonian gasket

- Take 4 pairwise tangente circles
- Add new circles tangent to 3 out of the 4 circles, obtaining a new configuration
- Carry on this procedure indefinitely ...

Motivation

Apollonian packings are attractive to study :

Granular systems

Fluid emulsion

Foam bubbles

Motivation

Apollonian packings are attractive to study :

Granular systems

Fluid emulsion

Foam bubbles

Applications : hyperbolic geometry, fractals, geometric groups,

Motivation

Apollonian packings are attractive to study :

Granular systems

Fluid emulsion

Foam bubbles

Applications: hyperbolic geometry, fractals, geometric groups,

Number theory

Knot theory

Inversion with respect to a circle

The inverse of a point Q with respect to a circle with center O and radius r is the point Q^{\prime} lying on the segment $[O, Q]$ such that $d(O, Q) \cdot d\left(O, Q^{\prime}\right)=r^{2}$.

Inversion with respect to a circle

The inverse of a point Q with respect to a circle with center O and radius r is the point Q^{\prime} lying on the segment $[O, Q]$ such that $d(O, Q) \cdot d\left(O, Q^{\prime}\right)=r^{2}$.

Packings by using inversions

From the Tetrahedron

Packings by using inversions

From the Octahedron

Packings by using inversions

From the Octahedron

Packings by using inversions

From the Octahedron

Gaskets from the Tetrahedron, the Octahedron and the Cube

Ball arrangements

Let P be a $(d+1)$-polytope sphere-exterior (vertices outside the sphere)

Ball arrangements

Let P be a $(d+1)$-polytope sphere-exterior (vertices outside the sphere)
The projected ball arrangement $B(P)$ of P, is the collection of d-balls whose light sources are the vertices of P.

Ball arrangements

Let P be a $(d+1)$-polytope sphere-exterior (vertices outside the sphere)
The projected ball arrangement $B(P)$ of P, is the collection of d-balls whose light sources are the vertices of P.

If P is a $(d+1)$-polytope is edge-scribible (i.e., all the edges of P are tangent to \mathbb{S}^{d}) then $B(P)$ is a d-ball packing, denoted by B_{P} and called polytopal packing.

Polytopal sphere packings

- Not all the sphere packings are polytopal packings

Polytopal sphere packings

- Not all the sphere packings are polytopal packings
- All polytopal packing admits a dual packing B_{P}^{*} given by the vertices of the polar polytope P^{*}.

Polytopal sphere packings

- Not all the sphere packings are polytopal packings
- All polytopal packing admits a dual packing B_{P}^{*} given by the vertices of the polar polytope P^{*}.
An edge-scribible icosahedron and its polar (dodecahedron).

Stereographic projections

3-ball polytopal packings

Hypercube (cube in dimension 4)

3-ball polytopal packings

Hypercube (cube in dimension 4)

3-ball polytopal packings

Hypercube (cube in dimension 4)

Orthoplicial representation

Theorem (Rasskin + R.A., 2023) Every link admits a necklace representation in $B_{O^{4}}$.

Orthoplicial representation

Theorem (Rasskin + R.A., 2023) Every link admits a necklace representation in $B_{O^{4}}$.

Orthoplicial representation

Orthoplicial representation

J. L. Ramírez Alfonsín

On the ball number of links

Tetrahedral and cubic representations

Theorem (Rasskin + R.A., 2023) Every link admits a necklace representation in $B_{T^{4}}$ and $B_{C^{4}}$.

Tetrahedral and cubic representations

Theorem (Rasskin + R.A., 2023) Every link admits a necklace representation in $B_{T^{4}}$ and $B_{C^{4}}$.

Apollonian representations

Theorem (Rasskin + R.A., 2023) Every link admits a necklace representation in $B_{O^{4}}, B_{T^{4}}$ and $B_{C^{4}}$.

Apollonian sections

Proposition Every orthoplicial packing $B_{O^{4}}$ contains a tetrahedral, an octahedral and a cubic sections

Orthoplicial packing $B_{O^{4}}$

Apollonian sections

Proposition Every orthoplicial packing $B_{O^{4}}$ contains a tetrahedral, an octahedral and a cubic sections

Section of the orthoplicial packing $B_{O^{4}}$

Apollonian sections

Proposition Every packing $B_{O^{4}}$ contains a tetrahedral, an octahedral and a cubic sections

Section of the orthoplicial packing $B_{O^{4}}$

Apollonian sections

Proposition Every packing $B_{O^{4}}$ contains a tetrahedral, an octahedral and a cubic sections

Apollonian sections

Proposition Every packing $B_{O^{4}}$ contains a tetrahedral, an octahedral and a cubic sections

Apollonian sections

Proposition Every packing $B_{O^{4}}$ contains a tetrahedral, an octahedral and a cubic sections

2-tangles

A 2-tangle

Elementary 2-tangle

2-tangles

A 2-tangle

Elementary 2-tangle

Sum of tangles t and t^{\prime}

2-tangles

A 2-tangle

Elementary 2-tangle

Sum of tangles t and t^{\prime}

t

$-t$

$F(t)$

$H^{+}(t)$

$H^{-}(t)$

Operations with tangles

Rational tangles

Let a_{1}, \ldots, a_{n} be integers $a_{i} \neq 0$. Let $t\left(a_{1}, \ldots, a_{n}\right)$ the rational tangle given by Conway's algorithm :

$$
t\left(a_{1}, \ldots, a_{n}\right)=H^{a_{1}} F \cdots H^{a_{n}} F\left(t_{\infty}\right)
$$

Rational tangles

Let a_{1}, \ldots, a_{n} be integers $a_{i} \neq 0$. Let $t\left(a_{1}, \ldots, a_{n}\right)$ the rational tangle given by Conway's algorithm :

$$
t\left(a_{1}, \ldots, a_{n}\right)=H^{a_{1}} F \cdots H^{a_{n}} F\left(t_{\infty}\right)
$$

Rational links

Tangle closures : Denominator and Numerator

Rational links

Tangle closures: Denominator and Numerator
The slope of a rational tangle $t\left(a_{1}, \ldots, a_{n}\right)$ is the rational number p / q obtained by the continued fraction expansion

$$
\left[a_{1}, \ldots, a_{n}\right]:=a_{1}+\frac{1}{\ddots+\frac{1}{a_{n}}}=\frac{p}{q} .
$$

Rational links

Tangle closures: Denominator and Numerator
The slope of a rational tangle $t\left(a_{1}, \ldots, a_{n}\right)$ is the rational number p / q obtained by the continued fraction expansion

$$
\left[a_{1}, \ldots, a_{n}\right]:=a_{1}+\frac{1}{\ddots+\frac{1}{a_{n}}}=\frac{p}{q} .
$$

Theorem (Conway 1970) Two rational tangles are equivalent if and only if they have the same slope.

Tangles : cubic diagrams

Orthoplicial packing $B_{O^{4}}$

Cubic section $B_{C^{3}}$

Tangles : cubic diagrams

Associated graph to $B_{C^{3}}$

Tangles : cubic diagrams

Associated graph to $B_{C^{3}}$

Imitating tangle operations in the graph of $B_{C^{3}}$

Theorem (Rasskin + R.A., 2023) Any rational link admits an orthocubic representation (cubic diagram) and therefore there is a necklace representation contained in a section of $B_{O^{4}}$.

Tangles: cubic diagram

Theorem (Rasskin + R.A., 2023) Any rational link admits an orthocubic representation (cubic diagram) and therefore there is a necklace representation contained in a section of $B_{O^{4}}$.

Tangles: cubic diagram

Theorem (Rasskin + R.A., 2023) Any rational link admits an orthocubic representation (cubic diagram) and therefore there is a necklace representation contained in a section of $B_{O^{4}}$.

Theorem (Rasskin + R.A., 2023) Let L be an algebraic link obtained by the closure of the algebraic tangle $t_{p_{1} / q_{1}}+\cdots+t_{p_{m} / q_{m}}$ where all the p_{i} / q_{i} have same sign. Then, ball $(L) \leq 4 \operatorname{cr}(L)$.

No tightness for non-alternating links

Pretzel links $P\left(q_{1}, \ldots, q_{n}\right)$ are the tangles $t_{1 / q_{1}}+\cdots+t_{1 / q_{m}}$.

No tightness for non-alternating links

Pretzel links $P\left(q_{1}, \ldots, q_{n}\right)$ are the tangles $t_{1 / q_{1}}+\cdots+t_{1 / q_{m}}$.
We have that $P(3,-2,3)$ (corresponding to the non-alternating knot 8_{19}) admits an orthocubic necklace representation with $28=\frac{7}{2} \operatorname{cr}\left(8_{19}\right)<4 \operatorname{cr}\left(8_{19}\right)=32$ spheres.

No tightness for non-alternating links

Pretzel links $P\left(q_{1}, \ldots, q_{n}\right)$ are the tangles $t_{1 / q_{1}}+\cdots+t_{1 / q_{m}}$. We have that $P(3,-2,3)$ (corresponding to the non-alternating knot 8_{19}) admits an orthocubic necklace representation with $28=\frac{7}{2} \operatorname{cr}\left(8_{19}\right)<4 \operatorname{cr}\left(8_{19}\right)=32$ spheres.

Orthocubic point

The orthocubic point $n_{p / q}$ of tangle $t_{p / q}$ is the tangency point of the two circles corresponding to the last edge in its orthocubic representation.

Orthocubic point

The orthocubic point $n_{p / q}$ of tangle $t_{p / q}$ is the tangency point of the two circles corresponding to the last edge in its orthocubic representation.
Theorem (Rasskin + R.A., 2023) $n_{p / q}$ is the intersection of the line going through the origin and slope $\pm(p / q)^{-2}$.

Orthocubic point

The orthocubic point $n_{p / q}$ of tangle $t_{p / q}$ is the tangency point of the two circles corresponding to the last edge in its orthocubic representation.
Theorem (Rasskin + R.A., 2023) $n_{p / q}$ is the intersection of the line going through the origin and slope $\pm(p / q)^{-2}$.

J. L. Ramírez Alfonsín

Diophantine equation

Corollary (Rasskin + R.A., 2023) The diophantine equation $x^{4}+y^{4}+z^{4}=2 t^{2}$ has infinitely many primitive solutions.

Diophantine equation

Corollary (Rasskin + R.A., 2023) The diophantine equation $x^{4}+y^{4}+z^{4}=2 t^{2}$ has infinitely many primitive solutions.

Proof (idea) : Calculate the inversive coordinates of the orthocubic point of every rational tangle

$$
\mathrm{i}\left(\eta_{p / q}\right)=\left(\begin{array}{c}
p^{2} \\
q^{2} \\
(p-q)^{2} \\
\sqrt{2}\left(p^{2}-p q+q^{2}\right)
\end{array}\right)
$$

Diophantine equation

Corollary (Rasskin + R.A., 2023) The diophantine equation $x^{4}+y^{4}+z^{4}=2 t^{2}$ has infinitely many primitive solutions.

Proof (idea) : Calculate the inversive coordinates of the orthocubic point of every rational tangle

$$
\mathrm{i}\left(\eta_{p / q}\right)=\left(\begin{array}{c}
p^{2} \\
q^{2} \\
(p-q)^{2} \\
\sqrt{2}\left(p^{2}-p q+q^{2}\right)
\end{array}\right)
$$

By computing
$\left\langle i\left(\eta_{p / q}\right), i\left(\eta_{p / q}\right)\right\rangle=0 \Leftrightarrow \underbrace{p^{4}}_{a}+\underbrace{q^{4}}_{b}+\underbrace{(p-q)^{4}}_{c}=2 \underbrace{\left(p^{2}-p q+q^{2}\right)^{2}}_{d}$
we produce the solution $a^{4}+b^{4}+c^{4}=2 d^{2}$
$5^{4}+2^{4}+3^{4}=2 \times 19^{2}$

Torus knot

$$
5^{4}+1^{4}+4^{4}=2 \times 21^{2}
$$

20 spheres $=4 \operatorname{cr}\left(5_{1}\right)$

Knot $5_{1} \leftrightarrow \frac{\mathbf{5}}{\mathbf{1}}$

