Many neighborly polytopes and oriented matroids

Arnau Padrol
Universitat Politècnica de Catalunya

22 March 2012
TEOMATRO

Outline

(1) Neighborly polytopes and oriented matroids
(2) The number of polytopes
(3) Balanced oriented matroids

4 Extending balanced oriented matroids
(5) Counting
(6) Non-realizable neighborly oriented matroids

Neighborly polytopes and oriented matroids

(1) Neighborly polytopes and oriented matroids
(2) The number of polytopes
(3) Balanced oriented matroids
4. Extending balanced oriented matroids
(5) Counting
(6) Non-realizable neighborly oriented matroids

Oriented matroids as arrangements of pseudohemispheres

An arrangement of pseudohemispheres ...

Oriented matroids as arrangements of pseudohemispheres
... some of its covectors...

Oriented matroids as arrangements of pseudohemispheres

... is realizable

Face lattices

Acyclic Matroid $(+,+, \ldots,+)$ is a covector. Face 0's of a non-negative covector.

Vertex, Edge, Facet Face of dim 0, 1, d-1. Face lattice Partially ordered set of faces (\subseteq). Polytope Realizable acyclic matroid.

Face lattices

Acyclic Matroid $(+,+, \ldots,+)$ is a covector. Face 0's of a non-negative covector. Vertex, Edge, Facet Face of dim 0, 1, d-1. Face lattice Partially ordered set of faces (\subseteq). Polytope Realizable acyclic matroid.

But what is a polytope? $P \simeq Q$?

A polytope "is" the face lattice of a realizable oriented matroid
Combinatorially equivalent isomorphic face lattices.

Oriented Matroid isomorphic oriented matroid.

Labeled- same oriented matroids/face lattices.

Some natural questions

Question

How many faces can a (realizable) oriented matroid have?

Question

How many (realizable) oriented matroids are there?

Some natural questions

Question

How many faces can a (realizable) oriented matroid have?

Question

How many (realizable) oriented matroids are there?

Question

How many realizable oriented matroids with maximal number of faces are there?

Neighborly, polar-to-neighborly and cyclic

Definition (Neighborly oriented matroid)

A rank r oriented matroid is neighborly if for every $|F| \leq \frac{r-1}{2}$, $(\underbrace{0 \ldots 0}_{F}+\underbrace{+\ldots+}_{S \backslash F})$ is a cocircuit.

Definition (Neighborly arrangement)

An arrangement of pseudohemispheres on \mathbb{S}^{d} is neighborly if every $\leq \frac{d}{2}$ spheres intersect in a face.

Definition ((Polar-to-)neighborly polytope)

A d-polytope P is (polar-to-)neighborly if every $\leq \frac{d}{2}$ facets intersect in a face.

Neighborly polytopes

Cyclic polytopes are neighborly.

Definition (Cyclic polytopes $\mathcal{C}_{d}(n)$)

Moment curve $\gamma: t \mapsto\left(t, t^{2}, \ldots, t^{d}\right)$
Cyclic polytope $\mathcal{C}_{d}(n)=\operatorname{conv}\left\{\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{n}\right)\right\}$

$$
t_{1}<t_{2}<\cdots<t_{n}
$$

Theorem (Upper bound theorem [McMullen '70] [Stanley '72])

The number of i-dimensional faces of an oriented matroid of rank r with n elements is maximal for neighborly matroids.

The number of polytopes

(1) Neighborly polytopes and oriented matroids
(2) The number of polytopes
(3) Balanced oriented matroids

4 Extending balanced oriented matroids
(5) Counting
(6) Non-realizable neighborly oriented matroids

The number of neighborly polytopes

$$
\begin{gathered}
\mathrm{nb}(n, d) \\
\mathrm{I} \wedge \\
\mathrm{p}(n, d)
\end{gathered}
$$

(approximate behaviors when $n \gg d$)

The number of neighborly polytopes

(approximate behaviors when $n \gg d$)

The number of neighborly polytopes

(approximate behaviors when $n \gg d$)

The number of neighborly polytopes

(approximate behaviors when $n \gg d$)

The number of neighborly polytopes

(approximate behaviors when $n \gg d$)

The number of neighborly polytopes

[Goodman \& Pollack, Alon 1986]
(approximate behaviors when $n \gg d$)

The number of neighborly polytopes

[Goodman \& Pollack, Alon 1986]
(approximate behaviors when $n \gg d$)

The number of neighborly polytopes

[Goodman \& Pollack, Alon 1986]
(approximate behaviors when $n \gg d$)

Many neighborly polytopes

Theorem ([Shemer 1982])
Using sewing construction:

$$
\mathrm{nb}(n, d) \geq 2^{c_{d} n \log n}
$$

where $c_{d} \rightarrow \frac{1}{2}$ when $d \rightarrow \infty$.

Many neighborly polytopes

Theorem ([Shemer 1982])

Using sewing construction:

$$
\mathrm{nb}(n, d) \geq 2^{c_{d} n \log n}
$$

where $c_{d} \rightarrow \frac{1}{2}$ when $d \rightarrow \infty$.

Balanced oriented matroids

(1) Neighborly polytopes and oriented matroids
(2) The number of polytopes
(3) Balanced oriented matroids

4 Extending balanced oriented matroids
(5) Counting
(6) Non-realizable neighborly oriented matroids

Vectors

A vector (circuit) is a (minimal) covering of \mathbb{S}^{d}.

Vectors

A vector (circuit) is a (minimal) covering of \mathbb{S}^{d}.

$$
+-++-0
$$

Vectors

A vector (circuit) is a (minimal) covering of \mathbb{S}^{d}.

$$
+-0+-0
$$

Duality in oriented matroids

Balanced Matroids

A uniform oriented matroid is balanced if for every cocircuit

$$
\left|C^{+}\right|=\left|C^{-}\right| \quad(\pm 1) .
$$

Neighborly and balanced oriented matroids

Theorem ([Sturmfels'88])

\mathcal{M} is uniform and neighborly $\Leftrightarrow \mathcal{M}^{*}$ is uniform and balanced.

$$
\left.\begin{array}{c}
|F| \leq\left\lfloor\frac{r-1}{2}\right\rfloor \\
\Rightarrow \\
(\underbrace{0 \ldots 0}_{F} \underbrace{+\ldots+}_{S \backslash F}) \text { cocircuit } \mathcal{M} \\
\hat{\mathbb{L}}
\end{array}\right)
$$

Extending balanced oriented matroids

(1) Neighborly polytopes and oriented matroids
(2) The number of polytopes
(3) Balanced oriented matroids

4 Extending balanced oriented matroids
(5) Counting
(6) Non-realizable neighborly oriented matroids

Signature

The matroid $\tilde{\mathcal{M}}=\mathcal{M} \cup p$ is determined by the sign of p in the cocircuits of \mathcal{M} : the signature.

Signature

The matroid $\tilde{\mathcal{M}}=\mathcal{M} \cup p$ is determined by the sign of p in the cocircuits of \mathcal{M} : the signature.

Lexicographic extensions

p is a lexicographic extension on $\left[a_{1}^{s_{1}}, \ldots, a_{d}^{s_{d}}\right], a_{i} \in \mathcal{M}, s_{j}= \pm 1$

If for every cocircuit C

- If $C_{a_{1}} \neq 0$, then $C_{p}=s_{1} C a_{1}$;
- if $C_{a_{2}} \neq 0$, then $C_{p}=s_{2} C a_{2}$;
- ...
- if $C_{a_{d}} \neq 0$, then $C_{p}=s_{d} C a_{d}$.

Lexicographic extensions

p is a lexicographic extension on $\left[a_{1}^{s_{1}}, \ldots, a_{d}^{s_{d}}\right], a_{i} \in \mathcal{M}, s_{j}= \pm 1$

If for every cocircuit C

- If $C_{a_{1}} \neq 0$, then $C_{p}=s_{1} C a_{1}$;
- if $C_{a_{2}} \neq 0$, then $C_{p}=s_{2} C a_{2}$;
- ...
- if $C_{a_{d}} \neq 0$, then $C_{p}=s_{d} C a_{d}$.

Lexicographic extensions

p is a lexicographic extension on $\left[a_{1}^{s_{1}}, \ldots, a_{d}^{s_{d}}\right], a_{i} \in \mathcal{M}, s_{j}= \pm 1$

If for every cocircuit C

- If $C_{a_{1}} \neq 0$, then $C_{p}=s_{1} C a_{1}$;
- if $C_{a_{2}} \neq 0$, then $C_{p}=s_{2} C a_{2}$;
- ...
- if $C_{a_{d}} \neq 0$, then $C_{p}=s_{d} C a_{d}$.

Lexicographic extensions

p is a lexicographic extension on $\left[a_{1}^{s_{1}}, \ldots, a_{d}^{s_{d}}\right], a_{i} \in \mathcal{M}, s_{j}= \pm 1$

If for every cocircuit C

- If $C_{a_{1}} \neq 0$, then $C_{p}=s_{1} C a_{1}$;
- if $C_{a_{2}} \neq 0$, then $C_{p}=s_{2} C a_{2}$;
- ...
- if $C_{a_{d}} \neq 0$, then $C_{p}=s_{d} C a_{d}$.

Lexicographic extensions

p is a lexicographic extension on $\left[a_{1}^{s_{1}}, \ldots, a_{d}^{s_{d}}\right], a_{i} \in \mathcal{M}, s_{j}= \pm 1$

If for every cocircuit C

- If $C_{a_{1}} \neq 0$, then $C_{p}=s_{1} C a_{1}$;
- if $C_{a_{2}} \neq 0$, then $C_{p}=s_{2} C a_{2}$;
- ...
- if $C_{a_{d}} \neq 0$, then $C_{p}=s_{d} C a_{d}$.

Any lexicographic extension of a realizable matroid is realizable:

$$
p=s_{1} a_{1}+\varepsilon s_{2} a_{2}+\varepsilon^{2} s_{3} a_{3}+\cdots+\varepsilon^{d-1} s_{d} a_{d} .
$$

Gale sewing

Theorem (P. 2011)

- \mathcal{M} balanced
$\left.\begin{array}{l}\text { - } p=\left[a_{1}^{s_{1}}, a_{2}^{s_{2}}, \ldots, a_{d}^{s_{d}}\right] \\ \text { - } q=\left[p^{-}, a_{1}^{-}, \ldots, a_{d-1}^{-}\right]\end{array}\right\}$Then $\mathcal{M} \cup p \cup q$ is balanced.

"Proof": $E=\left[B^{+}, A^{+}, C^{-}\right], F=\left[E^{-}, B^{-}, A^{-}\right]$

B
C
D
E
F

"Proof": $E=\left[B^{+}, A^{+}, C^{-}\right], F=\left[E^{-}, B^{-}, A^{-}\right]$

Ooo

"Proof": $E=\left[B^{+}, A^{+}, C^{-}\right], F=\left[E^{-}, B^{-}, A^{-}\right]$

B
C
D
E
F

"Proof": $E=\left[B^{+}, A^{+}, C^{-}\right], F=\left[E^{-}, B^{-}, A^{-}\right]$

B
C
D
E
F

Counting

(1) Neighborly polytopes and oriented matroids
(2) The number of polytopes
(3) Balanced oriented matroids

4 Extending balanced oriented matroids
(5) Counting
(6) Non-realizable neighborly oriented matroids

The number of (labeled) lexicographic extensions

S balanced oriented matroid, rank $r, n=r+1+2 m$ elements

Lemma

The number of labeled lexicographic extensions of S

$$
\ell(n, r) \geq 2 \cdot \frac{n!}{(n-r+1)!}
$$

The number of (labeled) lexicographic extensions

S balanced oriented matroid, rank $r, n=r+1+2 m$ elements

Lemma

The number of labeled lexicographic extensions of S

$$
\ell(n, r) \geq 2 \cdot \frac{n!}{(n-r+1)!}
$$

Trick: count only $\left[a_{1}^{+}, a_{2}^{+}, \ldots, a_{r}^{+}\right]$.

The number of (labeled) balanced configurations

Lemma

The number of labeled balanced configurations of rank r with $n=r+1+2 m$ elements

$$
\mathrm{nb}(n, 2 m) \geq \frac{n-1}{2} \ell(n-2, r) \mathrm{nb}(n-2,2 m-2) .
$$

The number of (labeled) balanced configurations

Lemma

The number of labeled balanced configurations of rank r with $n=r+1+2 m$ elements

$$
\mathrm{nb}(n, 2 m) \geq \frac{n-1}{2} \ell(n-2, r) \mathrm{nb}(n-2,2 m-2) .
$$

Corollary

$$
\mathrm{nb}(r+1+2 m, 2 m) \geq \prod_{i=1}^{m} \frac{(r+2 i)!}{(2 i)!}
$$

The number of (labeled) neighborly polytopes

Trick: Neighborly oriented matroids are rigid: different oriented matroids have different face lattices. [Shemer'82, Sturmfels'88]

The number of (labeled) neighborly polytopes

Trick: Neighborly oriented matroids are rigid: different oriented matroids have different face lattices. [Shemer'82, Sturmfels'88]

Trick 2:
$\ln (\mathrm{nb}(r+1+2 m, 2 m)) \geq \ln \left(\prod_{i=1}^{m} \frac{(r+2 i)!}{(2 i)!}\right)=\sum_{i=1}^{m} \sum_{j=0}^{r-1} \ln (r+2 i-j)$

The number of (labeled) neighborly polytopes

Trick: Neighborly oriented matroids are rigid: different oriented matroids have different face lattices. [Shemer'82, Sturmfels'88]

Trick 2:
$\ln (\mathrm{nb}(r+1+2 m, 2 m)) \geq \ln \left(\prod_{i=1}^{m} \frac{(r+2 i)!}{(2 i)!}\right)=\sum_{i=1}^{m} \sum_{j=0}^{r-1} \ln (r+2 i-j)$
Trick 3:

The number of (labeled) neighborly polytopes

Theorem (P. 2011)

The number of labeled neighborly polytopes in dimension d with n vertices fulfills

$$
\mathrm{nb}(r+d+1, d) \geq \frac{(r+d)^{\left(\frac{r}{2}+\frac{d}{2}\right)^{2}}}{r^{\left(\frac{r}{2}\right)^{2}} d^{\left(\frac{d}{2}\right)^{2}} \mathrm{e}^{3 \frac{r}{2} \frac{d}{2}}}
$$

that is,

$$
\mathrm{nb}(n, d) \geq \frac{(n-1)^{\left(\frac{n-1}{2}\right)^{2}}}{(n-d-1)^{\left(\frac{n-d-1}{2}\right)^{2}} d^{\left(\frac{d}{2}\right)^{2}} \mathrm{e}^{\frac{3 d(n-d-1)}{4}}}
$$

The number of (labeled) neighborly polytopes

Corollary

If $n>2 d$, the number of labeled neighborly polytopes in dimension d with n vertices fulfills

$$
\mathrm{nb}(n, d) \geq\left(\frac{n-1}{\sqrt{\mathrm{e}^{3}}}\right)^{\frac{d(n-1)}{2}}
$$

Corollary

If $n<2 d$, the number of labeled neighborly polytopes in dimension d with n vertices fulfills

$$
\mathrm{nb}(n, d) \geq\left(\frac{n-1}{\sqrt{\mathrm{e}^{3}}}\right)^{\frac{(n-d-1)(n-1)}{2}} \text {. }
$$

Non-realizable neighborly oriented matroids

(1) Neighborly polytopes and oriented matroids
(2) The number of polytopes
(3) Balanced oriented matroids

4 Extending balanced oriented matroids
(5) Counting
(6) Non-realizable neighborly oriented matroids

The sewing construction revisited

Flag Strictly increasing sequence of faces

$$
T_{1} \subset T_{2} \subset \cdots \subset T_{k}
$$

Universal flag flag where each T_{j} is a universal face with $2 j$ vertices.
Universal face F is universal if the contraction P / F is neighborly.

Sewing Sewing on the flag

$$
\mathcal{T}=A_{1} \subset A_{1} \cup A_{2} \subset A_{1} \cup A_{2} \cup A_{3} \subset \ldots
$$

is the lexicographic extension

$$
[\mathcal{T}]=\left[A_{1}^{+}, A_{2}^{-}, A_{3}^{+}, \ldots\right]
$$

The extended sewing theorem

Extended sewing [P. 2011]

If

- \mathcal{M} neighborly oriented matroid
- $\mathcal{T}=\left\{T_{j}\right\}_{j=1}^{m}$ contains a universal flag
- $\tilde{\mathcal{M}}=\mathcal{M}[\mathcal{T}]$: sewing through \mathcal{T}

Then

- $\tilde{\mathcal{M}}$ neighborly and,
- $\tilde{\mathcal{T}}=\left\{\tilde{T}_{j}\right\}_{j=1}^{m}$ universal flag

Many non-realizable neighborly oriented matroids

Theorem ([Altshuler'77],[Bokowski, Garms'87])

The neighborly oriented matroid M_{425}^{10} of rank 5 with 10 elements is not realizable.

Non-realizable neighborly matroids of rank r with n elements

Many non-realizable neighborly oriented matroids

Theorem ([Altshuler'77],[Bokowski, Garms'87])

The neighborly oriented matroid M_{425}^{10} of rank 5 with 10 elements is not realizable. M_{425}^{10} has a universal flag.

Non-realizable neighborly matroids of rank r with n elements

Many non-realizable neighborly oriented matroids

Theorem ([Altshuler'77],[Bokowski, Garms'87])

The neighborly oriented matroid M_{425}^{10} of rank 5 with 10 elements is not realizable. M_{425}^{10} has a universal flag.

Non-realizable neighborly matroids of rank r with n elements

Many non-realizable neighborly oriented matroids

Theorem ([P. 2011])

There are non-realizable neighborly oriented matroids of rank r with n elements for any $r \geq 5$ and $n \geq r+5$.

Non-realizable neighborly matroids of rank r with n elements

A conclusion: primal and dual lexicographic extensions

[Motzkin 1957]
[Grünbaum 1967]

$n^{\frac{1}{4} d n} \leq \mathrm{p}(n, d) \leq n^{d^{2} n}$
[Goodman \& Pollack, Alon 1986] lexicographic extensions

That's all!

Merci Beaucoup!

