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Universitat Politècnica de Catalunya

22 March 2012
TEOMATRO



Neighborly Many polytopes Balanced Extending Counting Non-realizable

Outline

1 Neighborly polytopes and oriented matroids

2 The number of polytopes

3 Balanced oriented matroids

4 Extending balanced oriented matroids

5 Counting

6 Non-realizable neighborly oriented matroids



Neighborly Many polytopes Balanced Extending Counting Non-realizable

Neighborly polytopes and oriented matroids

1 Neighborly polytopes and oriented matroids

2 The number of polytopes

3 Balanced oriented matroids

4 Extending balanced oriented matroids

5 Counting

6 Non-realizable neighborly oriented matroids



Neighborly Many polytopes Balanced Extending Counting Non-realizable

Oriented matroids as arrangements of pseudohemispheres

An arrangement of pseudohemispheres ...
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Oriented matroids as arrangements of pseudohemispheres

... some of its covectors...
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Oriented matroids as arrangements of pseudohemispheres

... is realizable
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Face lattices

Acyclic Matroid (+,+, . . . ,+) is a covector.

Face 0’s of a non-negative covector.

Vertex, Edge, Facet Face of dim 0, 1, d − 1.

Face lattice Partially ordered set of faces (⊆).

Polytope Realizable acyclic matroid.

∅
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But what is a polytope? P ' Q?

A polytope “is” the face lattice of a realizable oriented matroid

Combinatorially equivalent isomorphic face lattices.

=

Oriented Matroid isomorphic oriented matroid.

6=

Labeled- same oriented matroids/face lattices.

1

2
3

4 6=
1

2
3

4
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Some natural questions

Question

How many faces can a (realizable) oriented matroid have?

Question

How many (realizable) oriented matroids are there?

Question

How many realizable oriented matroids with maximal number of
faces are there?
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Neighborly, polar-to-neighborly and cyclic

Definition (Neighborly oriented matroid)

A rank r oriented matroid is neighborly if for every |F | ≤ r−1
2 ,

(0...0︸︷︷︸
F

+...+︸ ︷︷ ︸
S\F

) is a cocircuit.

Definition (Neighborly arrangement)

An arrangement of pseudohemispheres on Sd is neighborly if every
≤ d

2 spheres intersect in a face.

Definition ((Polar-to-)neighborly polytope)

A d-polytope P is (polar-to-)neighborly if every ≤ d
2 facets

intersect in a face.
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Neighborly polytopes

Cyclic polytopes are neighborly.

Definition (Cyclic polytopes Cd(n))

Moment curve γ : t 7→ (t, t2, . . . , td)

Cyclic polytope Cd(n) = conv {γ(t1), . . . , γ(tn)}
t1 < t2 < · · · < tn

Theorem (Upper bound theorem [McMullen ’70] [Stanley ’72])

The number of i -dimensional faces of an oriented matroid of
rank r with n elements is maximal for neighborly matroids.
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The number of neighborly polytopes

[Motzkin 1957] conjecture

[Grünbaum 1967] first non-cyclic examples

[Barnette 1981] facet splitting technique

[Shemer 1982] sewing construction

[P. 2011]

1 ≤ k ≤ 4n ≤ n
1
2
n ≤ n

1
2
dn ≤

nb(n, d)

≤

n
1
4
dn ≤

p(n, d)

≤ nd2n

[Goodman & Pollack, Alon 1986]

(approximate behaviors when n >> d)
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Many neighborly polytopes

Theorem ([Shemer 1982])

Using sewing construction:

nb(n, d) ≥ 2cdn log n,

where cd → 1
2 when d →∞.
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Vectors

A vector (circuit) is a (minimal) covering of Sd .
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Duality in oriented matroids

circuits of M ⇔ cocircuits of M∗
cocircuits of M ⇔ circuits of M∗

n elements n elements
rank d rank n − d

+ - + + - 0

+ - 0+  - 0
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Balanced Matroids

A uniform oriented matroid is balanced if for every cocircuit

|C+| = |C−| (±1).
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Neighborly and balanced oriented matroids

Theorem ([Sturmfels’88])

M is uniform and neighborly ⇔ M∗ is uniform and balanced.


|F | ≤

⌊
r−1
2

⌋
⇒

(0...0︸︷︷︸
F

+...+︸ ︷︷ ︸
S\F

) cocircuit M


m |R| ≥
⌈
n+d ′

2

⌉
⇒

R covers Sd ′

 (+...+︸ ︷︷ ︸
C+

0...0︸︷︷︸
C0

−...−︸ ︷︷ ︸
C−

)
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Extending balanced oriented matroids
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Signature

The matroid M̃ =M∪ p is determined by the sign of p in the
cocircuits of M: the signature.
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-
-

+

+
+

+ +
+
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Lexicographic extensions

p is a lexicographic extension on [as11 , . . . , a
sd
d ], ai ∈M, sj = ±1

If for every cocircuit C

If Ca1 6= 0, then Cp = s1C a1;

if Ca2 6= 0, then Cp = s2C a2;

. . .

if Cad 6= 0, then Cp = sdC ad .

Any lexicographic extension of a
realizable matroid is realizable:

p = s1a1+εs2a2+ε2s3a3+· · ·+εd−1sdad .

E = [B+,A+,C−]

A B C D E
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Gale sewing

Theorem (P. 2011)

M balanced

p = [as11 , a
s2
2 , . . . , a

sd
d ]

q = [p−, a−1 , . . . , a
−
d−1]

Then M∪ p ∪ q is balanced.
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“Proof”: E = [B+,A+,C−], F = [E−,B−,A−]

A
B
C
D
E
F
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The number of (labeled) lexicographic extensions

S balanced oriented matroid, rank r , n = r + 1 + 2m elements

Lemma

The number of labeled lexicographic extensions of S

`(n, r) ≥ 2 · n!

(n − r + 1)!
.

Trick: count only [a+1 , a
+
2 , . . . , a

+
r ].
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The number of (labeled) balanced configurations

Lemma

The number of labeled balanced configurations of rank r with
n = r + 1 + 2m elements

nb(n, 2m) ≥ n − 1

2
`(n − 2, r) nb(n − 2, 2m − 2).

Corollary

nb(r + 1 + 2m, 2m) ≥
m∏
i=1

(r + 2i)!

(2i)!
.
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The number of (labeled) neighborly polytopes

Trick: Neighborly oriented matroids are rigid: different oriented
matroids have different face lattices. [Shemer’82, Sturmfels’88]

Trick 2:

ln (nb(r + 1 + 2m, 2m)) ≥ ln

(
m∏
i=1

(r + 2i)!

(2i)!

)
=

m∑
i=1

r−1∑
j=0

ln (r + 2i − j)

Trick 3:



Neighborly Many polytopes Balanced Extending Counting Non-realizable

The number of (labeled) neighborly polytopes

Trick: Neighborly oriented matroids are rigid: different oriented
matroids have different face lattices. [Shemer’82, Sturmfels’88]

Trick 2:

ln (nb(r + 1 + 2m, 2m)) ≥ ln

(
m∏
i=1

(r + 2i)!

(2i)!

)
=

m∑
i=1

r−1∑
j=0

ln (r + 2i − j)

Trick 3:



Neighborly Many polytopes Balanced Extending Counting Non-realizable

The number of (labeled) neighborly polytopes

Trick: Neighborly oriented matroids are rigid: different oriented
matroids have different face lattices. [Shemer’82, Sturmfels’88]

Trick 2:

ln (nb(r + 1 + 2m, 2m)) ≥ ln

(
m∏
i=1

(r + 2i)!

(2i)!

)
=

m∑
i=1

r−1∑
j=0

ln (r + 2i − j)

Trick 3:



Neighborly Many polytopes Balanced Extending Counting Non-realizable

The number of (labeled) neighborly polytopes

Theorem (P. 2011)

The number of labeled neighborly polytopes in dimension d with n
vertices fulfills

nb(r + d + 1, d) ≥ (r + d)( r
2
+ d

2 )
2

r (
r
2
)2d ( d

2
)
2

e3
r
2
d
2

,

that is,

nb(n, d) ≥ (n − 1)( n−1
2 )

2

(n − d − 1)( n−d−1
2 )

2

d ( d
2
)
2

e
3d(n−d−1)

4

.
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The number of (labeled) neighborly polytopes

Corollary

If n > 2d, the number of labeled neighborly polytopes in dimension
d with n vertices fulfills

nb(n, d) ≥
(

n − 1√
e3

) d(n−1)
2

.

Corollary

If n < 2d, the number of labeled neighborly polytopes in dimension
d with n vertices fulfills

nb(n, d) ≥
(

n − 1√
e3

) (n−d−1)(n−1)
2

.
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Non-realizable neighborly oriented matroids
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The sewing construction revisited

Flag Strictly increasing sequence of faces
T1 ⊂ T2 ⊂ · · · ⊂ Tk

Universal flag flag where each Tj is a universal face
with 2j vertices.

Universal face F is universal if the contraction P/F
is neighborly.

Sewing Sewing on the flag
T = A1 ⊂ A1 ∪A2 ⊂ A1 ∪A2 ∪A3 ⊂ ...
is the lexicographic extension

[T ] = [A+
1 ,A

−
2 ,A

+
3 , . . . ]
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The extended sewing theorem

Extended sewing [P. 2011]

If

M neighborly oriented matroid

T = {Tj}mj=1 contains a
universal flag

M̃ =M[T ]: sewing through T
Then

M̃ neighborly

and,

T̃ = {T̃j}mj=1 universal flag
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Many non-realizable neighborly oriented matroids

Theorem ([Altshuler’77],[Bokowski, Garms’87])

The neighborly oriented matroid M10
425 of rank 5 with 10 elements

is not realizable.

Theorem ([P. 2011])

There are non-realizable neighborly oriented matroids of rank r
with n elements for any r ≥ 5 and n ≥ r + 5.

Non-realizable neighborly matroids of rank r with n elements

n

r

10, 6

10, 7 11, 7

10, 8 11, 8 12, 8

11, 6 12, 6 13, 6 14, 6 15, 6

12, 7 13, 7 14, 7 15, 7

13, 8 14, 8 15, 8

11, 5 12, 5 13, 5 14, 5 15, 5

...
...

...
...

...
...

· · ·

· · ·

· · ·

· · ·

10, 5
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Many non-realizable neighborly oriented matroids

Theorem ([Altshuler’77],[Bokowski, Garms’87])

The neighborly oriented matroid M10
425 of rank 5 with 10 elements

is not realizable. M10
425 has a universal flag.

Theorem ([P. 2011])

There are non-realizable neighborly oriented matroids of rank r
with n elements for any r ≥ 5 and n ≥ r + 5.

Non-realizable neighborly matroids of rank r with n elements

n

r

10, 6

10, 7 11, 7

10, 8 11, 8 12, 8

11, 6 12, 6 13, 6 14, 6 15, 6

12, 7 13, 7 14, 7 15, 7

13, 8 14, 8 15, 8

...
...

...
...

...
...

· · ·

· · ·

· · ·

· · ·

10, 5 11, 5 12, 5 13, 5 14, 5 15, 5 sewing
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Many non-realizable neighborly oriented matroids

Theorem ([Altshuler’77],[Bokowski, Garms’87])

The neighborly oriented matroid M10
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is not realizable. M10
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A conclusion: primal and dual lexicographic extensions

[Motzkin 1957]

[Grünbaum 1967]

[Barnette 1981] lexicographic extensions

[Shemer 1982] lexicographic extensions

[P. 2011] lexicographic extensions

1 ≤ k ≤ 4n ≤ n
1
2
n ≤ n

1
2
dn ≤ nb(n, d)

≤

n
1
4
dn ≤ p(n, d) ≤ nd2n

[Goodman & Pollack, Alon 1986] lexicographic extensions
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That’s all!

Merci Beaucoup!


