Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	00000

Many neighborly polytopes and oriented matroids

Arnau Padrol Universitat Politècnica de Catalunya

22 March 2012 TEOMATRO

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	
Outline					

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1 Neighborly polytopes and oriented matroids
- 2 The number of polytopes
- 3 Balanced oriented matroids
- 4 Extending balanced oriented matroids
- 5 Counting
- 6 Non-realizable neighborly oriented matroids

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	00000
Neighborl	y polytopes	and orier	nted matro	oids	

1 Neighborly polytopes and oriented matroids

- 2 The number of polytopes
- 3 Balanced oriented matroids
- 4 Extending balanced oriented matroids
- **5** Counting
- 6 Non-realizable neighborly oriented matroids

sherica mations as an angements of pseudonenin

An arrangement of pseudohemispheres ...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

... some of its covectors...

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
●00000	00	0000	0000	00000	00000
Oriented	matroids a	s arrangem	nents of p	seudohem	ispheres

... is realizable

(ロ)、

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
0●0000	00	0000	0000	00000	00000
Face latti	ces				

Acyclic Matroid (+, +, ..., +) is a covector. Face 0's of a non-negative covector. Vertex, Edge, Facet Face of dim 0, 1, d - 1. Face lattice Partially ordered set of faces (\subseteq). Polytope Realizable acyclic matroid.

Image: A matrix and a matrix

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
0●0000	00	0000	0000	00000	00000
Face latti	ces				

Acyclic Matroid (+, +, ..., +) is a covector. Face 0's of a non-negative covector. Vertex, Edge, Facet Face of dim 0, 1, d - 1. Face lattice Partially ordered set of faces (\subseteq). Polytope Realizable acyclic matroid.

A polytope "is" the face lattice of a realizable oriented matroid Combinatorially equivalent isomorphic face lattices.

Oriented Matroid isomorphic oriented matroid.

Labeled- same oriented matroids/face lattices.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000●00	00	0000	0000	00000	00000
Some na	atural questio	ons			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

How many faces can a (realizable) oriented matroid have?

Question

How many (realizable) oriented matroids are there?

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000●00	00	0000	0000	00000	00000
Some nat	tural questio	ons			

Question

How many faces can a (realizable) oriented matroid have?

Question

How many (realizable) oriented matroids are there?

Question

How many realizable oriented matroids with maximal number of faces are there?

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	
Neighbor	ly, polar-to-	neighborh	y and cycli	c	

Definition (Neighborly oriented matroid)

A rank *r* oriented matroid is *neighborly* if for every $|F| \le \frac{r-1}{2}$, $(\underbrace{0...0}_{F} \underbrace{+...+}_{S \setminus F})$ is a cocircuit.

Definition (Neighborly arrangement)

An arrangement of pseudohemispheres on \mathbb{S}^d is *neighborly* if every $\leq \frac{d}{2}$ spheres intersect in a face.

Definition ((Polar-to-)neighborly polytope)

A *d*-polytope *P* is (*polar-to-*)neighborly if every $\leq \frac{d}{2}$ facets intersect in a face.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
○○○○○●	00	0000	0000	00000	00000
Neighborl	y polytopes				

Cyclic polytopes are neighborly.

Definition (Cyclic polytopes $C_d(n)$)

Moment curve
$$\gamma : t \mapsto (t, t^2, \dots, t^d)$$

Cyclic polytope $C_d(n) = \text{conv} \{\gamma(t_1), \dots, \gamma(t_n)\}$
 $t_1 < t_2 < \dots < t_n$

Theorem (Upper bound theorem [McMullen '70] [Stanley '72])

The number of i-dimensional faces of an oriented matroid of rank r with n elements is maximal for neighborly matroids.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000		0000	0000	00000	00000
The nur	nber of polyt	opes			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1 Neighborly polytopes and oriented matroids
- 2 The number of polytopes
- Balanced oriented matroids
- 4 Extending balanced oriented matroids
- 5 Counting
- 6 Non-realizable neighborly oriented matroids

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	●○	0000	0000	00000	00000
The nur	nber of neigł	borly pol	ytopes		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 めへで

▲日 ▲ ● ▲ ● ▲ ● ▲ ● ▲ ● ● ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(approximate behaviors when n >> d)

・ロト・西ト・西ト・日・ ウヘぐ

・ロト・西ト・西ト・日・ ウヘぐ

・ロト・西ト・西ト・西・ うんぐ

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	⊙●	0000	0000	00000	
Many n	eighborly poly	vtopes			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem ([Shemer 1982])

Using sewing construction:

 $\operatorname{nb}(n,d) \geq 2^{c_d n \log n},$

where $c_d \rightarrow \frac{1}{2}$ when $d \rightarrow \infty$.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	⊙●	0000	0000	00000	
Many no	eighborly pol	ytopes			

Theorem ([Shemer 1982])

Using sewing construction:

 $\operatorname{nb}(n,d) \geq 2^{c_d n \log n},$

where $c_d \rightarrow \frac{1}{2}$ when $d \rightarrow \infty$.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00		0000	00000	00000
Balance	d oriented m	atroids			

- Neighborly polytopes and oriented matroids
- 2 The number of polytopes
- 3 Balanced oriented matroids
- 4 Extending balanced oriented matroids
- **5** Counting
- 6 Non-realizable neighborly oriented matroids

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	●000	0000	00000	00000
Vectors					

A vector (circuit) is a (minimal) covering of \mathbb{S}^d .

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	●000	0000	00000	00000
Vectors					

A vector (circuit) is a (minimal) covering of \mathbb{S}^d . + - + + - 0

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	●000	0000	00000	00000
Vectors					

A vector (circuit) is a (minimal) covering of \mathbb{S}^d . + - 0 + - 0

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	00●0	0000	00000	00000
Balanced	Matroids				

A uniform oriented matroid is *balanced* if for every cocircuit

 $|C^+| = |C^-| (\pm 1).$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	○○○●	0000	00000	
Neighborl	y and balanc	ed orien	ted matro	ids	

Theorem ([Sturmfels'88])

 \mathcal{M} is uniform and neighborly $\Leftrightarrow \mathcal{M}^*$ is uniform and balanced.

$$\begin{pmatrix} |F| \leq \lfloor \frac{r-1}{2} \rfloor \\ \Rightarrow \\ (\underbrace{0...0}_{F} + ... +) \text{ cocircuit } \mathcal{M} \\ (\underbrace{|R| \geq \left\lceil \frac{n+d'}{2} \right\rceil} \\ \Rightarrow \end{pmatrix}$$

$$R$$
 covers $\mathbb{S}^{d'}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Neighborly 000000	Many polytopes	0000	0000	00000	Non-realizable
Extendin	ng balanced o	oriented n	natroids		

- 1 Neighborly polytopes and oriented matroids
- 2 The number of polytopes
- 3 Balanced oriented matroids
- 4 Extending balanced oriented matroids
- 5 Counting
- 6 Non-realizable neighborly oriented matroids

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	•000	00000	00000
Signature					

The matroid $\tilde{\mathcal{M}} = \mathcal{M} \cup p$ is determined by the sign of p in the cocircuits of \mathcal{M} : the *signature*.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	•000	00000	00000
Signature					

The matroid $\tilde{\mathcal{M}} = \mathcal{M} \cup p$ is determined by the sign of p in the cocircuits of \mathcal{M} : the *signature*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	○●○○	00000	00000
Lexicogra	phic extensi	ons			

If for every cocircuit C

- If $C_{a_1} \neq 0$, then $C_p = s_1 C a_1$;
- if $C_{a_2} \neq 0$, then $C_p = s_2 C a_2$;

• . . .

• if $C_{a_d} \neq 0$, then $C_p = s_d C a_d$.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	○●○○	00000	00000
Lexicogra	phic extensi	ons			

If for every cocircuit C

- If $C_{a_1} \neq 0$, then $C_p = s_1 C a_1$;
- if $C_{a_2} \neq 0$, then $C_p = s_2 C a_2$;

• . . .

• if $C_{a_d} \neq 0$, then $C_p = s_d C a_d$.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	○●○○	00000	00000
Lexicogra	phic extensi	ons			

If for every cocircuit C

- If $C_{a_1} \neq 0$, then $C_p = s_1 C a_1$;
- if $C_{a_2} \neq 0$, then $C_p = s_2 C a_2$;

• . . .

• if $C_{a_d} \neq 0$, then $C_p = s_d C a_d$.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	○●○○	00000	00000
Lexicogra	phic extensi	ons			

If for every cocircuit C

- If $C_{a_1} \neq 0$, then $C_p = s_1 C a_1$;
- if $C_{a_2} \neq 0$, then $C_p = s_2 C a_2$;

• . . .

• if $C_{a_d} \neq 0$, then $C_p = s_d C a_d$.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	○●○○	00000	00000
Lexicogra	phic extensi	ons			

If for every cocircuit C

- If $C_{a_1} \neq 0$, then $C_p = s_1 C a_1$;
- if $C_{a_2} \neq 0$, then $C_p = s_2 C a_2$;

• . . .

• if
$$C_{a_d} \neq 0$$
, then $C_p = s_d C a_d$.

Any lexicographic extension of a realizable matroid is realizable:

$$p = s_1 a_1 + \varepsilon s_2 a_2 + \varepsilon^2 s_3 a_3 + \dots + \varepsilon^{d-1} s_d a_d.$$

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	○○●○	00000	00000
Gale sew	/ing				

Theorem (P. 2011)

• \mathcal{M} balanced • $p = [a_1^{s_1}, a_2^{s_2}, \dots, a_d^{s_d}]$ • $q = [p^-, a_1^-, \dots, a_{d-1}^-]$ Then $\mathcal{M} \cup p \cup q$ is balanced.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	00000
Counting					

- Neighborly polytopes and oriented matroids
- 2 The number of polytopes
- Balanced oriented matroids
- 4 Extending balanced oriented matroids

5 Counting

6 Non-realizable neighborly oriented matroids

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	•0000	
The numb	per of (labe	led) lexic	ographic e	xtensions	

S balanced oriented matroid, rank r, n = r + 1 + 2m elements

Lemma

The number of labeled lexicographic extensions of S

$$\ell(n,r) \geq 2 \cdot \frac{n!}{(n-r+1)!}.$$

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	•0000	00000
The num	per of (lab	eled) lexico	ographic e	xtensions	

S balanced *oriented matroid*, rank r, n = r + 1 + 2m elements

Lemma

The number of labeled lexicographic extensions of S

$$\ell(n,r) \geq 2 \cdot \frac{n!}{(n-r+1)!}.$$

Trick: count only $[a_1^+, a_2^+, ..., a_r^+]$.

Neighborly	Many polytop	es Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	00000
The num	ber of (abeled) bala	nced confi	gurations	

Lemma

The number of labeled balanced configurations of rank r with n = r + 1 + 2m elements

$$nb(n, 2m) \ge \frac{n-1}{2} \ell(n-2, r) nb(n-2, 2m-2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Neighborly 000000	Many polytope 00	Balanced	Extending 0000	Counting ⊙●○○○	Non-realizable
The num	ber of (I	abeled) bala	nced confi	gurations	

Lemma

The number of labeled balanced configurations of rank r with n = r + 1 + 2m elements

$$nb(n, 2m) \ge \frac{n-1}{2} \ell(n-2, r) nb(n-2, 2m-2).$$

Corollary

$$\mathsf{nb}(r+1+2m,2m) \ge \prod_{i=1}^{m} \frac{(r+2i)!}{(2i)!}.$$

Neighborly	Many polytope	s Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00●00	
The numb	ber of (l	abeled) neigł	borly poly	/topes	

Trick: Neighborly oriented matroids are rigid: different oriented matroids have different face lattices. [Shemer'82, Sturmfels'88]

Trick: Neighborly oriented matroids are rigid: different oriented matroids have different face lattices. [Shemer'82, Sturmfels'88]

Trick 2:

$$\ln\left(\mathsf{nb}(r+1+2m,2m)\right) \ge \ln\left(\prod_{i=1}^{m} \frac{(r+2i)!}{(2i)!}\right) = \sum_{i=1}^{m} \sum_{j=0}^{r-1} \ln\left(r+2i-j\right)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Trick: Neighborly oriented matroids are rigid: different oriented matroids have different face lattices. [Shemer'82, Sturmfels'88]

Trick 2:

$$\ln\left(\operatorname{nb}(r+1+2m,2m)\right) \ge \ln\left(\prod_{i=1}^{m}\frac{(r+2i)!}{(2i)!}\right) = \sum_{i=1}^{m}\sum_{j=0}^{r-1}\ln\left(r+2i-j\right)$$

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	00000
The num	ber of (labe	eled) neigł	borly poly	/topes	

Theorem (P. 2011)

The number of labeled neighborly polytopes in dimension d with n vertices fulfills

$$\mathsf{nb}(r+d+1,d) \geq rac{(r+d)^{\left(rac{r}{2}+rac{d}{2}
ight)^2}}{r^{\left(rac{r}{2}
ight)^2}d^{\left(rac{d}{2}
ight)^2}\mathrm{e}^{3rac{r}{2}rac{d}{2}}},$$

that is,

$$\mathsf{nb}(n,d) \geq rac{(n-1)^{\left(rac{n-1}{2}
ight)^2}}{(n-d-1)^{\left(rac{n-d-1}{2}
ight)^2}d^{\left(rac{d}{2}
ight)^2}\mathrm{e}^{rac{3d(n-d-1)}{4}}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Neighborly 000000	Many polytopes	Balanced 0000	Extending 0000	Counting 0000●	Non-realizable
The num	ber of (la	abeled) neigh	borly poly	ytopes	

Corollary

If n > 2d, the number of labeled neighborly polytopes in dimension d with n vertices fulfills

$$\mathsf{nb}(n,d) \ge \left(\frac{n-1}{\sqrt{\mathrm{e}^3}}\right)^{\frac{d(n-1)}{2}}$$

.

Corollary

If n < 2d, the number of labeled neighborly polytopes in dimension d with n vertices fulfills

$$\mathsf{nb}(n,d) \ge \left(\frac{n-1}{\sqrt{\mathrm{e}^3}}\right)^{\frac{(n-d-1)(n-1)}{2}}$$

000000	00	0000	0000	00000	00000
NI	1				

Non-realizable neighborly oriented matroids

- Neighborly polytopes and oriented matroids
- 2 The number of polytopes
- Balanced oriented matroids
- 4 Extending balanced oriented matroids
- 5 Counting
- 6 Non-realizable neighborly oriented matroids

Flag Strictly increasing sequence of faces $T_1 \subset T_2 \subset \cdots \subset T_k$ Universal flag flag where each T_j is a universal face with 2j vertices. Universal face F is universal if the contraction P/Fis neighborly.

Sewing Sewing on the flag $\mathcal{T} = A_1 \subset A_1 \cup A_2 \subset A_1 \cup A_2 \cup A_3 \subset ...$ is the lexicographic extension

$$[\mathcal{T}] = [A_1^+, A_2^-, A_3^+, \dots]$$

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable		
000000	00	0000	0000	00000	○●○○○		
The extended cowing theorem							

Extended sewing [P. 2011]

lf

- \mathcal{M} *neighborly* oriented matroid
- $\mathcal{T} = \{T_j\}_{j=1}^m$ contains a *universal flag*
- $\tilde{\mathcal{M}} = \mathcal{M}[\mathcal{T}]$: sewing through \mathcal{T}

Then

• $\tilde{\mathcal{M}}$ neighborly

and,

•
$$\tilde{\mathcal{T}} = \{\tilde{T}_j\}_{j=1}^m$$
 universal flag

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000		0000	0000	00000	00●00
Many nor	n-realizable n	eighborly	oriented r	natroids	

Theorem ([Altshuler'77],[Bokowski, Garms'87])

The neighborly oriented matroid M_{425}^{10} of rank 5 with 10 elements is not realizable.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	00●00
Many non	n-realizable n	eighborly o	oriented n	natroids	

Theorem ([Altshuler'77],[Bokowski, Garms'87])

The neighborly oriented matroid M_{425}^{10} of rank 5 with 10 elements is not realizable. M_{425}^{10} has a universal flag.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	00●00
Many no	on-realizable	neighborly	oriented	matroids	

Theorem ([Altshuler'77],[Bokowski, Garms'87])

The neighborly oriented matroid M_{425}^{10} of rank 5 with 10 elements is not realizable. M_{425}^{10} has a universal flag.

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	00●00
Many no	on-realizable	neighborly	oriented	matroids	

Theorem (**[P. 2011]**)

There are non-realizable neighborly oriented matroids of rank r with n elements for any $r \ge 5$ and $n \ge r + 5$.

[Goodman & Pollack, Alon 1986][/]lexicographic extensions

Neighborly	Many polytopes	Balanced	Extending	Counting	Non-realizable
000000	00	0000	0000	00000	0000●
That's al	!				

Merci Beaucoup!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ