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Abstract. In this paper we use numerical semigroups (specifically, those of
dimension 2) to give an easy formula for the number of integral points inside
a right–angled triangle with rational vertices. This is the basic case for com-

puting the number of integral points inside a rational (not necessarily convex)
polygon.

1. Introduction: From polygons to triangles

Throughout this paper we will call a point P ∈ R2 integral if its coordinates lie
in Z2, and similarly P will be called rational if P ∈ Q2.

The problem of computing the set of integral points inside plane bodies has a
long and rich story. A milestone in this story is Pick’s Theorem [10], from the late
years of the 19th century, stating that, if S is a polygon such that all of its vertices
are integral, and int(S) and ∂S are, respectively, its interior and its boundary, let

A(S) = the area of S

I(S) = #
(

Z2 ∩ int(S)
)

B(S) = #
(

Z2 ∩ ∂S
)

And then

A(S) = I(S) +
B(S)

2
− 1.

Our aim in this paper is to give a result (in some sense in the spirit of this
theorem) to compute the number of integral points of polygons (not necessarily
convex) defined by rational vertices.

The first important point here is that, in order to compute the number of integral
points of such a polygon, it suffices with two kinds of bodies: rectangles and right
triangles of a particular type. Of course, one may argue that rectangles can be easily
turned into right triangles, but as for counting points is concerned, our rectangles
will be enough and more appropriate.

We will call this reduction process rectangulation (not in a retaliation sense).

From now on, a rectangle whose sides are parallel to the coordinate axes will
be called a stable rectangle. Similarly, a right triangle whose orthogonal sides are
parallel to the coordinate axes will be called a stable right triangle.
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1.1. Rectangulation Step 1: The tangram. Assume we are given a polygon S
with rational coefficients {P1, ..., Pr}. For each Pi let us draw two lines, parallel to
the coordinate axes.

For each intersection between one of these lines and ∂S we add a virtual vertex.
The point is that this process gets S divided into convex sets, say C1, ..., Ct, inside
stable rectangles R1, ..., Rt (pretty much like in a tangram puzzle). The vertices of
these convex sets are vertices of ∂S (either real o virtual ones).

Mind that these convex sets might as well be empty.

Now, inside every stable rectangle Ri the complementary set of each Ci is a
union of (at most 4) stable right triangles and (at most 2) stable rectangles. Some
examples are:

Computing the number of integral points inside a stable rectangle is very easy.

Lemma 1. Let α1 < β1, α2 < β2 be rationals. Let R ⊂ R2 be the stable rectangle

with vertices (α1, α2) and (β1, β2). Then

#
(

R ∩ Z2
)

= (⌊β1⌋ − ⌈α1⌉+ 1) (⌊β2⌋ − ⌈α2⌉+ 1)

And so it is, if necessary, counting the number of points on a precise side of it.
This leaves us with the problem of counting the number of integral points inside a
stable right rectangle.
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Eventually we will also have to keep track of the number of points in the hy-
pothenuse of the triangle, should these points be removed from the counting.

But note that, if our polygon is a convex one, other than an obtuse triangle, the
tangram gives us a union of stable sets (either rectangles or right triangles). In this
case it will be much faster to compute directly the number of integral points inside
each piece of the tangram, instead of the complementary sets.

1.2. Rectangulation Step 2: Adjusting the triangles. So now our original
problem is reduced to that of counting the integral points inside a triangle T defined
by rational vertices:

A = (α, β), B = (α, γ), C = (δ, β),

and we can assume, up to symmetry, α < γ, β < δ. Furthermore, it is clear that,
as for counting integral points is concerned, we can substitute

α 7−→ ⌈α⌉, β 7−→ ⌈β⌉,

and the number of integral points does not change by traslations of integral vectors,
hence we can in fact assume A = (0, 0).

Instead of giving coordinates to our new B and C we will write the hypothenuse
of T as

ax+ by = c,

where we can assume a, b, c ∈ Z, gcd(a, b, c) = 1. That is, B = (0, c/b), C = (c/a, 0).
This form is not still optimal for our purposes.

We would like to assume gcd(a, b) = 1. In order to do that, mind that there are
two possibilities:

(1) gcd(a, b) = 1. No further actions required.
(2) gcd(a, b) = d > 1. As gcd(d, c) = 1 clearly there are no integral points

in the hypothenuse, as any such point (x, y) must verify ax + by ∈ Zd.
Therefore the number of integral points in T is the same if we replace T by
the closest stable right triangle to T with at least some chance to have one
integral point in the hypothenuse. This is the triangle T ′ defined by

ax+ by = c′,

where c′ = ⌊c/d⌋d. And therefore #(T ∩Z2) can be computed counting the
number of integral points in the stable triangle defined by

a

d
x+

b

d
y =

c′

d
=
⌊ c

d

⌋

.
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The main result of this paper is then concerned with the previous situation.

Theorem 2. Let a < b be coprime integers, c ∈ Z. Consider the following set:

T =
{

(y1, y2) ∈ Z2
≥0 | ay1 + by2 ≤ c

}

.

Then

#T = −
ab

2
k2 +

a+ b+ 1 + 2c

2
k +

⌊ c−kab

b ⌋
∑

i=0

(⌊

c− kab− ib

a

⌋

+ 1

)

where k = ⌊c/(ab)⌋.

Before going down to prove this result, we will have a quick look at the history
of this problem (and other related ones) and also a short review of the numerical
semigroup tools we will need for the proof.

2. A little bit of history

The question of counting lattice (in particular integral) points inside a right
triangle has a long and interesting story. As early as 1922 Hardy and Littlewood
[5] studied the problem of right triangles defined by the coordinate axes and a
hypotenuse with irrational slope.

In the following years, the interest for the subject did not decline. See, for in-
stance [13], or also [3] where the so–called Ehrhart quasi–polynomials appear for
the first time, an almost ubiquous tool nowadays. But in recent times, impres-
sive advances in computational combinatorics and the ever–increasing amount of
applications to other branches of mathematics have made lattice–point counting a
fruitful and dynamic research field.

A very good and comprehensive introduction to the subject, with a good share
of deep results is [2] where, in particular, you can find a formula to compute the
number of integral points inside a right triangle (Theorem 2.10). The formula is
quite different from ours (in particular, it uses either n–th primitive roots of unity
or Fourier–Dedekind sums).

We may mention here an interesting generalization of our problem. Let us call
a right tetrahedron the convex set of Rn

≥0 limited by the coordinate hyperplanes
and a hyperplane a1x1 + ... + anxn = 1, with ai ∈ R. The question of counting
(more precisely, bounding) the number of points in n–dimensional right tetrahedra
has been a subject of study of S.S.T. Yau and some of his collaborators [6, 7, 8, 15,
16, 17, 18], a research that produced the so–called GLY conjecture (named after its
creators, A. Granville, K.P. Lin and S.S.T. Yau).

GLY Conjecture.– Assume n ≥ 3 and let a1 ≥ ... ≥ an ≥ 1 be real numbers. we
define

P (a1, ..., an) =

{

(x1, ..., xn) ∈ Zn
>0 |

x1

a1
+ ...+

xn

an
≤ 1

}

.

Then:

• (Weak estimate) We have

n! ·#P (a1, ..., an) ≤ (a1 − 1)...(an − 1),

with equality if and only if an = 1.
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• (Strong estimate) Given n, there is a constant C(n) such that, for an ≥
C(n) we have

n! ·#P (a1, ..., an) ≤ An
n + (−1)

Sn−1
1

n
An

n−1 +
n−1
∑

l=2

(−1)l
Sn−1
l

(

n− 1
l − 1

)An−1
n−l ,

where Sn−1
l are the Stirling numbers, and Al

i are polynomials in a1, ..., al
with degree i.

The weak version was finally proved by Yau and Zhang [19]. In the same paper,
the authors claim the strong version has been checked computationally up to n = 10.
The fact is the conjecture might be checked for a particular n, but the state–of–
the–art has not changed since. According to the authors, the case n = 10 took
weeks to be completed.

This result came handy to the first and third author in [9]. Please note that the
GLY conjecture only applies to n ≥ 3.

3. An interlude on numerical semigroups

This paper relies on numerical monoids (or semigroups) as a fundamental tool.
A numerical monoid is a very special kind of semigroup that can be thought of as
a set

〈 a1, ..., ak 〉 = {λ1a1 + ...+ λkak | λi ∈ Z≥0} , with gcd(a1, ..., ak) = 1.

This object has been thoroughly studied in the last years, when a significant
number of problems concerning the description of these semigroups and some of its
more interesting invariants have been tackled. Unless otherwise stated, all proofs
which are not included can be found in [4, 12].

Given a numerical monoid S, there are some invariants which will be of interest
for us. The most relevant will be the set of gaps, noted G(S), and defined by

G(S) = Z≥0 \ S,

which is a finite set. Its cardinal will be noted g(S) and its maximum f(S), the
so–called Frobenius number.

The Apéry set of S with respect to an element a ∈ S can be defined as

Ap(S, a) = {0, w0, ..., ws−1}

where wi is the smallest element in S congruent with i modulo s.

Example.– Let S = 〈7, 9, 11, 15〉. Some of the Apéry sets associated to its gener-
ators are:

Ap(S, 7) = {0, 9, 11, 15, 20, 24, 26}

Ap(S, 15) = {0, 7, 9, 11, 14, 16, 18, 20, 21, 23, 25, 27, 28, 32, 34}

In particular, for monoids with two generators, the invariants g(S) and f(S) and
the relevant Apéry sets are fully determined.

Lemma 3. Let S = 〈 a1, a2 〉. Then

g(S) =
1

2
(a1 − 1)(a2 − 1)

f(S) = (a1 − 1)(a2 − 1)− 1

Ap(S, ai) = {0, aj , 2aj , ..., (ai − 1)aj}
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4. The number of integral points inside a right triangle

Let us consider then a stable right triangle determined by the positive coordinate
axes and the line

ax+ by = c, a, b, c ∈ Z and gcd(a, b) = 1,

where we will assume a < b, with no loss of generality.
Take the set:

T =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c

}

and let us define the numerical monoid associated to our triangle as S = 〈a, b〉. S
therefore verifies that its Frobenius number is f(S) = ab− (a+ b).

Let us perform the following partition on our set T :

B0 =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c, 0 ≤ x < b

}

B1 =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c, b ≤ x < 2b

}

...
...

Bi =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c, ib ≤ x < (i+ 1)b

}

...
...

Bk =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c, kb ≤ x

}

where k = ⌊c/(ab)⌋.

As our aim is to find #T , and it is plain that:

#T = #B0 +#B1 + ...+#Bk−1 +#Bk,

we can reduce our problem to that of finding #Bi, for i = 0, ..., k.

Lemma 4. Under the previous assumptions, if k > 0,

#B0 =
a+ b− ab+ 1

2
+ c

Proof. We will actually show that

S ∩ [0, c]
1:1
←→ B0.

Given a pair (x, y) ∈ B0 we quickly have an associated element in S ∩ [0, c],
mainly n = ax+ by.
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In the same way, given n ∈ S∩ [0, c] it is clear that we must have a representation
n = ax+ by and we can in fact assume 0 ≤ x < b (if otherwise, we can move part
of ax into the by summand until x < b).

Let us assume that we have such a representation (that is, with 0 ≤ x < b) and
we will prove that then the pair (x, y) must be unique, which will establish the
bijection. Should we have

n = ax0 + by0 = ax1 + by1, with 0 < x0, x1 < b,

we must have

a(x0 − x1) = b(y1 − y0)

and, as gcd(a, b) = 1, this means b|(x1 − x0), which in turn implies x0 = x1.
Note that k > 0 is equivalent to c ≥ ab, which also yields c > f(S). Therefore,

after Lemma 3,

#B0 = #
(

S ∩ [0, c]
)

= #
(

S ∩ [0, f(S)]
)

+ c− f(S)

=
ab− (a+ b) + 1

2
+ c−

(

ab− (a+ b)
)

=
a+ b− ab+ 1

2
+ c.

�

Simple as it is, this case is the basic argument for the whole process. Now, if
we want to compute #B1, we just move our triangle, so that (b, 0) is now at the
origin. Similarly, the line ax+ by = c is moved, as in the picture:

So, with a little abuse of notation, let us redefine:

B1 =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c1, 0 ≤ x < b

}

where c1 = c− ab (obviously this only makes sense if c > ab). Assuming k > 1 we
have, following the same way:

#B1 = #(S ∩ [0, c1]) = #
(

S ∩ [0, c− ab]
)

=
ab− (a+ b) + 1

2
+ c− ab− (ab− (a+ b) + 1)

=
a+ b− 3ab+ 1

2
+ c.
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We can of course go along the same lines for computing #Bi for i = 1, ...k − 1,
where k = ⌊c/(ab)⌋, rewriting ci = c− iab, whenever c > iab and we will find:

#Bi = #(S ∩ [0, ci]) = #
(

S ∩ [0, c− iab]
)

=
ab− (a+ b) + 1

2
+ c− iab− (ab− (a+ b))

=
(a+ b)− (1 + 2i)ab+ 1

2
+ c

We have then arrived at the nutshell of the problem: the set Bk. After we have
moved it to the origin, we have our renamed Bk:

Bk =
{

(x, y) ∈∈ Z2
≥0 | ax+ by ≤ ck

}

.

Now we might have ck < ab− (a+ b). So we cannot proceed in the same way as
before. We do know ck = c − kab, that is, ck = c mod ab, and from Lemma 3 we
also know:

Ap(S, a) = {0, b, 2b, ..., (a− 1)b}

and therefore

{w ∈ Ap(S, a) | w ≤ ck} =
{

ib
∣

∣

∣
i = 0, 1, ...,

⌊ck
b

⌋}

On the other hand, if i ∈ {0, ..., ⌊γk/b⌋}, we have

ib+ ja ≤ ck ⇐⇒ j ≤

⌊

ck − ib

a

⌋

,

and then

S ∩ [0, ck] = {ib+ ja ≤ ck | i, j ∈ Z≥0}

=

{

ib+ ja
∣

∣

∣
i ∈
{

0, ...,
⌊γk
b

⌋}

, j ≤

⌊

ck − ib

a

⌋}

=

⌊ck/b⌋
∑

i=0

(⌊

ck − ib

a

⌋

+ 1

)

Adding up all of these computations, we arrive to our result. In the previous
conditions:

#T = #B0 +#B1 + ...+#Bi + ...+#Bk−1 +#Bk

=

(

a+ b− ab+ 1

2
+ c

)

+ ...+

(

(a+ b)− (1 + 2i)ab+ 1

2
+ c

)

+

+...+

⌊ck/b⌋
∑

i=0

(⌊

ck − ib

a

⌋

+ 1

)

=

k−1
∑

i=0

(

(a+ b)− (1 + 2i)ab+ 1

2
+ c

)

+

⌊ck/b⌋
∑

i=0

(⌊

ck − ib

a

⌋

+ 1

)

= −
ab

2
k2 +

a+ b+ 1 + 2c

2
k +

⌊ c−kab

b ⌋
∑

i=0

(⌊

c− kab− ib

a

⌋

+ 1

)

where k = ⌊c/(ab)⌋. This proves Theorem 2.
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A (maybe) simpler way to express the previous formula is using the Euclidean
division: c = q · ab+ r. Under this circumstance,

#T = −
ab

2
q2 +

a+ b+ 1 + 2c

2
q +

⌊r/b⌋
∑

i=0

(⌊

r − ib

a

⌋

+ 1

)

.

Example. Let us do a simple example to illustrate the process, considering the
stable triangle defined by the line 3x+ 7y = 46.

Following Theorem 2:

# T = −
3 · 7

2
k2 +

3 + 7 + 1 + 2 · 46

2
· k +

⌊ 46−k·3·7

7 ⌋
∑

i=0

(⌊

46− k · 3 · 7− i · 7

3

⌋

+ 1

)

where k =
⌊

46
3·7

⌋

= 2, that is

# T = −
3 · 7

2
22 +

3 + 7 + 1 + 2 · 46

2
· 2 +

⌊ 46−2·3·7

7 ⌋
∑

i=0

(⌊

46− 2 · 3 · 7− i · 7

3

⌋

+ 1

)

=

= −42 + 103 + 2 = 61 + 2 = 63.

Let us see the actual counting:

In the picture we have put different symbols for the different sets Bj , following
the process. Round points correpond to B0. There are 41 of them, as predicted by
the formula:

#B0 =
a+ b− ab+ 1

2
+ c =

3 + 7− 3 · 7 + 1

2
+ 46 = 41.

Crossed points correspond to points in B1:

#B1 =
a+ b− 3ab+ 1

2
+ c =

3 + 7− 3 · 3 · 7 + 1

2
+ 46 = 20.

And finally the square points are those of B2:

#B2 =

⌊ ck

b ⌋
∑

i=0

(⌊

ck − ib

a

⌋

+ 1

)

=

⌊

46− 42

3

⌋

+ 1 = 2.

Finally, back to our original problem of computing the number of integral points
inside a convex polygon, we might have to compute the number of points in the
hypothenuse (in order to remove them from the triangle, should it be part of a
complementary set).
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In order to do this, note that the number of integral points in the line ax+by = c
is precisely, the number of representations of c inside the monoid S = 〈a, b〉. This
number is known as the denumerant of c in S [12].

It is easy to see that this denumerant have to be either ⌊c/(ab)⌋ or ⌊c/(ab)⌋+1,
that is, k or k+1 in our previous setting, assumed c ∈ S (obviously it is 0 otherwise).
This is because c (or ci) must be representable and from Lemma 4 there must exist
exactly one representation whose coefficients are in B0 (respectively Bi). This holds
true for B0,...,Bk−1 but not necessarily for Bk (because ck might not be in S), hence
the two possible cases.

More precisely, we have the following result (see [11] for the original proof in
Romanian, [1] for a shorter and easier one):

Theorem 5. Under the previous asumptions, let a′ and b′ be the only integers

veryfing

0 < a′ < b, a · a′ = −c mod b

0 < b′ < a, b · b′ = −c mod a

Then the denumerant of c in S is given by

d(c; a, b) =
c+ a · a′ + b · b′

ab
− 1

5. Applications

The result on rational polygons and its reduction to rectangles and right triangles
could be generalized to an n–dimensional set–up. However, the actual formulas are
not easy enough so as to give a tight result. We give a first idea on how this
could be done by computing the number of points in a stable right tetrahedron
(the definition is the obvious one).

Theorem 6. Let T (a1, a2, a3, b) ⊂ R3 be the tetrahedron defined by

T (a1, a2, a3, b) = {(x1, x2, x3) | xi ≥ 0, a1x1 + a2x2 + a3x3 = b}

where we are assuming a1 < a2 < a3, gcd(a1, a2) = 1.
For i = 0, ..., ⌊b/a3⌋ define qi and ri by the Euclidean division:

b− a3i = qi(a1a2) + ri.

Then

#
(

T (a1, a2, a3, b) ∩ Z3
)

=

⌊b/a3⌋
∑

i=0

(

−
ab

2
q2i +

a+ b+ 1 + 2(b− a3i)

2
qi +

+

⌊ri/b⌋
∑

j=0

(⌊

ri − ja2
a1

⌋

+ 1

)

)

.

Proof. The formula is just the result of adding the number of points in every right
triangle T (a1, a2, a3, b) ∩ {x3 = i} for i = 0, ..., ⌊b/a3⌋. �
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The condition gcd(a1, a2) = 1 can obviously be substituted by gcd(a1, a3) = 1 or
gcd(a2, a3) = 1 if necessary. If none of this conditions is met, like in the tetrahedron
defined by

6x1 + 10x2 + 15x3 = 21,

for instance, then some of the right triangles have to be adjusted as we did at the
end of section 1. This is not a difficulty when programming, so to say, but the
general formula gets a lot messier.

This result can be handy when trying to compute the denumerant function we
introduced above.

Easy as it is to define, the denumerant is a very elusive function which has proved
elusive to compute even in cases with 3 generators (see [12, Chapter 4]). With the
previous result one can give a formula, not very sophisticated though. Simply note
that

d (a; a1, a2, a3) = #
{

(x1, x2, x3) ∈ Z≥0 | a1x1 + a2x2 + a3x3 = a
}

= #
(

T (a1, a2, a3, a) ∩ Z3
)

−#
(

T (a1, a2, a3, a− 1) ∩ Z3
)

.

And then, from the previous result, one can obtain the desired formula.
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[4] Garćıa–Sánchez, P.A.; Rosales, J.C.: Numerical semigroups. Springer, 2009.

[5] Hardy, G. H.; Littlewood, J. E.: Some problems of Diophantine approximation: The lattice-
points of a right-angled triangle. Abh. Math. Sem. Univ. Hamburg 1 (1922) 211–248.

[6] Lin, K.P.; Yau, S.T.: Analysis of sharp polynomial upper estimate of number of positive
integral points in 4–dimensional tetrahedra. J. Reine Angew. Math. 547 (2002) 191–205.

[7] Lin,K.P.; Yau, S.T.: Analysis of sharp polynomial upper estimate of number of positive
integral points in 5–dimensional tetrahedra. J. Number Theory 93 (2002) 207–234.

[8] Lin, K.P.; Yau, S.S.T.: Counting the number of integral points in general n–dimensional

tetrahedra and Bernoulli polynomials. Canad. Math. Bull. 24 (2003) 229–241.
[9] Márquez–Campos, G.; Tornero, J.M.: Characterization of gaps and elements of a numerical

semigroup using Groebner bases. To appear in Proceedings of the V Jornadas de Teoŕıa de
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