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1. Introduction

An integral gain graph is a graph whose edges are labelled invertibly by integers; that is,
reversing the direction of an edge negates the label (the gain of the edge). The affinographic
hyperplane arrangement that corresponds to an integral gain graph Φ is the set of all hy-
perplanes in Rn of the form xj − xi = g for edges (vi, vj) with gain g in Φ. (See [?, Section
IV.4.1, pp. 270–271] or [?].)

In recent years there has been much interest in real hyperplane arrangements of this type,
such as the Shi arrangement, the Linial arrangement, and the composed-partition or Catalan
arrangement. For all these families, the number of regions and then the characteristic poly-
nomials have been found. For the Shi arrangement, Athanasiadis gives a bijection between
the regions and parking functions.

In this paper, we look at the set of “no broken circuit sets” (nbcs) which are labelled
graphs. We then give some properties which lead to correspondance with some other graph
families : local binary search trees (lbs), alternated trees and rooted trees.

[Date added: 2005 Aug 3]

2. Basic definitions

An integral gain graph Φ = (Γ, ϕ) consists of a graph Γ = (V, E) and an orientable
function ϕ : E → Z, called the gain mapping. “Orientability” means that, if e denotes an
edge oriented in one direction and e−1 the same edge with the opposite orientation, then
ϕ(e−1) = −ϕ(e). For us, we have no loops but multiple edges are permitted. We denote the
vertex set by V = {v1, v2, . . . , vn}. We sometimes use the simplified notations eij for an edge
with endpoints vi and vj, oriented from vi to vj, and geij for such an edge with gain g; that
is, ϕ(geij) = g. (Thus geij is the same edge as (−g)eji.) A circle is a connected 2-regular
subgraph, or its edge set. We may write a circle C as a word e1e2 · · · el; this means that
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the edges are numbered consecutively around C and oriented in a consistent direction. The
gain of C is ϕ(C) := ϕ(e1) + ϕ(e2) + · · · + ϕ(el); this is well defined up to negation, and in
particular it is well defined whether the gain is zero or nonzero. An edge set or subgraph is
called balanced if every circle in it has gain zero. We will consider more specially balanced
circles.

With an order <O on the set of edges E, a “broken circuit” is the set of edges obtained
by deleting the smallest element in a balanced circle. A set of edges N ⊂ E is a “no broken
circuit” (nbc for short) if it contains no briken circuit. This notion from matroid theory (see
[?] for reference), is very important here. We denote N the set of nbcs of the gain graph. It
is well known that this set depends on the choice of the order, but its cardinallity does not.

There is a direct correspondance between integral gain graphs and hyperplane arrange-
ments whose hyperplane equations are of the form xi − xj = g. This correspondance is
simply given by associating to the equation xi − xj = g the edge g(i, j). In fact it is the
original idea which motivated Zaslavsky to define signed graphs and gain graphs.

We can then transpose some ideas or problems from hyperplane arrangements to gain
graphs. We call the Linial gain graph Ln the gain graph on [n] with edges 1(i, j) for all i < j
and similarly the Shi gain graph Sn the gain graph on [n] with edges 1(i, j) and 0(i, j) for
all i < j. They of course correspond to the well studied Shi and Linial arrangements.

3. Tableaux

Definition 1. A tableau T on a set V is given by a fonction hT from V to N such that
h−1

T (0) 6= ∅. The corner of the tableau is the smallest element of highest height.
Let Φ be a connected balanced integral gain graph on a set V of integers. The tableau of the
gain graph, denoted T (Φ), is given by the unique function hT such that for every edge g(i, j),
with i < j, we have hT (j)− hT (i) = g.

We say that a tableau T on V is coherent with a connected gain graph Φ on V if there
is a connected balanced subgraph Φ′ of Φ such that T = T (Φ′). The definition would also
work with a tree instead of a connected balanced subgraph. The question whether a tableau
is coherent with a gain graph would not be studied here but is by itself of interest.

Reciprocally we have the following definition:

Definition 2. Let T be a tableau on a set V of integers and Φ a gain graph also on V . The
subgraph Φ[T ] of Φ defined by T is the gain graph on V whose edges are the edges g(i, j) ,
with i < j, such that hT (j)− hT (j) = g.

Given a tableau T , a gain graph Φ and an order on the edges <O, it defines the set of
nbcs of the subgraph Φ[T ] relatively to the order <O, denoted NO(Φ[T ]). Like always, this
set depends on the choice of the order but its cardinallity does not.

Proposition 3. A tableau T is coherent with a connected gain graph Φ iff Φ[T ] is connected.
�

Definition 4. Given a tableau T on the set V , the order OT on the set V is defined by i <OT
j

iff hT (i) > hT (j) or (hT (i) = hT (j) and i < j). The order OT is extended lexicographically
to the order OT on the edges coherent with the tableau.

Lemma 5. Given an nbc tree A of tableau T with corner c, the forest A \ c is a set of nbcs
of tableaux T1,...,Tk. The orders OTi

are restrictions of the order OT . �
2



Definition 6. Given G a rooted labeled tree with integer values on the edges, the tableau TG

is such that the height function hT verifies if j is the son of i and g is the value on the edge
(i, j) then hT (i)− hT (j) = g.

4. [a, b] complete gain graphs and their NBCS

Let a and b be two relative integers such that a ≤ b. The interval [a, b] is the set {i ∈
Z|a ≤ i ≤ b}. We consider the gain graph Kab

n with vertices labeled by [n] and with all the
edges g(i, j), with i < j and g ∈ [a, b]. These gain graphs are called deformations of the
braid arrangement. Indeed, the braid arrangement corresponds to the special case a = b = 0.
Some other well studied cases are a = −b (catalan), a = b = 1 (Linial) and a = b − 1 = 0
(Shi).

We will describe the set of nbcs of Kab
n [T ] for a given tableau T . The idea is that, as

mentioned above, the tableau T defines the order OT . We will than be able to describe the
set of nbcs coherent with T for the order OT .

Theorem 7. Let a and b such that a + b = r > 0 and T be a tableau on [n] of corner
c. Let Φ be a gain subtree of Kab

n incident to the edges gi(c, vi) and Φi the corresponding
connected components of Φ \ c. The tree Φ is an nbc of Kab

n iff the four following conditions
are respected:

• all the Φi are nbcs;
• if vi < c then gi ∈ [1, b] and vi is the corner of Φi;
• if vi > c and gi ∈ [a, 0] then vi is the corner of Φi;
• if vi < c and gi ∈ [b− r + 1, b] then vi is the smallest (relatively to OT ) element of Φi

smaller than c and h(ci)− h(vi) < r − 1, where ci is the corner of Φi.

Proof. Every thing comes from the choice of the order OT for the vertices and the edges. For
instance, in the first case vi is necessarily the corner of Φi since if not the edge g(c, ci) would
close a balanced circuit in Φ where it would be minimal. The second case is very similar.

The last case is more interesting. Since vi < c we must have gi > 0. But since Φ is a
broken circuit we must have that there is no edge in Φ between c and any vertex of Φi higher
than vi. This implies the rest of the condition.

The other direction is automatic since c is the smallest element for the order OT . �

Remark 8. In the two families a = −b and a = −b + 1 the last case never occurs and we
obtain a simple construction. In the case a = −b + 2, the first interesting family (containing
Linial as first example), the last case can be rephrased by : if the corner ci of Φi verifies
ci > c and the smallest element v of the line just below ci (if this line is not empty) verifies
v < c than Φi can be connected to c with gain b only.

5. [a, b]-gain graphs with a + b = 0 or 1

Definition 9. An (a, b)-rooted labelled tree with n vertices is a rooted tree where the vertices
are labelled from 1 to n and such that each edge of the tree (i, j) where i is the ancestor and
j the descendant is labelled with an integer between

• 1 and b− 1 if i > j and
• −a + 1 and 0 otherwise.

Theorem 10. If b = a or b = a + 1, the (a, b)-NBC trees with n vertices are in bijection
with (a, b)-labelled trees with n vertices.
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Proof. We decompose recursively the (a, b)−NBC trees. Let T be an NBC tree. Let c be
its corner and let c1, c2, . . . , ck be the neighbors of c with gain g1, g2, . . . , gk. Then c is the
root of the (a, b)-labelled tree, c1, c2, . . . , ck are its children and the edges from c to ci get the
label gi. The decomposition continues recursively on the trees with corners c1, c2, . . . , cn.

It is easy to see that when we take off the edges (c, ci) from the (a, b)−NBC tree, we
get a forest of (a, b)−NBC trees, where each ci is in a different tree. To prove that the
decomposition is correct, we have to prove that this forest is a forest of (a, b)−NBC trees
with corners c1, c2, . . . , ck.

Let us suppose that ci is not the corner of its tree. Then there exists v such that h(v) <
h(ci) or h(v) = h(ci) and v < ci. It is easy to check that (c, ci, v) is a broken circuit of T and
this contradicts the fact that T is an (a, b)−NBC tree. �

A direct consequence of our Theorem is that

Corollary 11. If b = a or b = a + 1, the number of regions fab
n is equal to the number of

(a, b)-rooted labelled forest with n vertices.

Theorem 12. [?] The number of regions fab
n is

an(an− 1) . . . (an− n + 2), if b = a;

and
(an + 1)n−1, if b = a + 1.

To finish our proof of Theorem ??, we have to count the number of (a, b)-labelled trees
and (a, b)-labelled forests.

Proposition 13. The number of (a, b)-rooted labelled trees with n vertices is

n−1∏
i=1

((a− b + 1)i + (b− 1)n).

The number of (a, b)-rooted labelled forests with n vertices is

n−1∏
i=1

((a− b + 1)i + (b− 1)n + 1).

Proof. We suppose that a ≥ b−1. The other case is analog. We first enumerate (a, b)-rooted
labelled trees. We split the edges of the trees into two groups :

• The edges with labels −a + 1,−a + 2, . . . ,−b + 1.
• The others.

Suppose that the first group has k edges. They form an increasing forest on n vertices with
k edges, such that the edges can have (a− b+ 1) different labels. The number of such forests
is s(n, n− k)(a− b + 1)k where s(n, k) is the Stirling number of the first kind [?].

The second group is a rooted labelled forest on n vertices with n− k− 1 edges, such that
the edges can have (b − 1) different labels. The two groups have disjoint edges. Therefore
thanks to the Prüfer code [?], we get that the number of (a, b)-rooted labelled trees with n
vertices and k edges in the first group is :

s(n, n− k)(a− b + 1)k((b− 1)n)n−k+1.
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Therefore the number of (a, b)-rooted labelled trees with n vertices is :

n−1∑
k=0

s(n, n− k)(a− b + 1)k((b− 1)n)n−k+1 =
(a− b + 1)n

(b− 1)n

n−1∑
k=0

s(n, n− k)

(
(b− 1)n

a− b + 1

)n−k

=
(a− b + 1)n

(b− 1)n

n−1∏
i=0

(
i +

(b− 1)n

a− b + 1

)

=
n−1∏
i=1

((a− b + 1)i + (b− 1)n).

�

6. lbs trees

We will need in the next section a special family of labelled trees: the locally binary search
trees (lbs for short)which is in correspondance with the nbc of the Linial arrangement.

A local binary search tree on [n] is a labelled binary tree on [n] where the label on a right
(resp. left) son is greater (resp. smaller) then the label on the father. By introducing the
family of left lbs (a llbs tree such that the root has no right son and llbs tree for short), we
get a simple decompositions of a lbs into llbs. In the correspondance between nbc sets and
lbs trees , a maximal nbc set, i.e., a nbc tree, corresponds to a llbs tree and a general nbc,
i.e., a nbc forest which is a union of nbc trees corresponds to a lbs where the Ti correspond to
the llbs of the above decomposition. We will then only have to describe the correspondance
between llbs trees and nbc trees.

A llbs tree A of root r can be also decomposed into the vertex r and a set of llbs trees Ai

of root ri (for 1 ≤ i ≤ k) where r1 is the unique neighbour of r, r2 the unique right neighbour
of r1, and so on. The only conditions are that r1 < r and r1 < r2 < · < rk.

Dually to the decomposition of a lbs tree into llbs trees there is decomposition into rlbs
trees (right lbs trees). In this decomposition, apart from the root the tree is decomposed
in a rlbs tree of root r1 the (left) neighbour of r, and a second rlbs tree of root r2 the left
neighbour of r1, and so on.

There is a straightforward correspondance between the set of llbs trees and rlbs trees. To
go from llbs to rlbs we just need to use the mirror bijection which replace label i by n − i
and left by right.

The set of llbs trees are also in correspondance with the family of alternated trees but we
dont need them here.

7. Linial gain graph

We recall that the Linial gain graph Ln on [n] has vertex set [n] and edges 1(i, j), with
i < j. It corresponds to the Linial arrangement whose hyperplanes have equation xi−xj = 1,
with i < j.

We define by induction the tableau T (L) of a left local binary search tree to get the coming
results. If the tree as one vertex v we have simply h(v) = 1. If the tree has a root r with left
son r1 root of a left local binary search L1, with right son r2 root of a left local binary search
L2,. . . . Then the tableau of L is obtained by merging the tableaux of the Li by taking : if
ri < r then h(ri) = h(r)− 1 and if ri > r then h(ri) = h(r).

5



Theorem 14. For a given tableau T , there is a bijection between the set of nbc trees of the
Linial gain graph Ln of tableau T relatively to the order <T and the llbs of tableau T .

Proof. The tableau T defines the order OT on the vertices which induces the order OT on
the edges.

We describe now an inductive simple two-way construction between the set of nbcs of Ln

of tableau T and the set of left local binary search trees of tableau T .

• From nbc trees to llbs trees: let N be an nbc tree of tableau T . Let c be its corner
and v1 < v2 < · · · < vk the neighbours of c.

We decompose N into smaller nbcs Ni by taking out the vertex c and the edges
adjacent to c. For i ≥ 2, each Ni gives an llbs tree Ai of root ri the corner of Ni (not
necessarily vi). For i = 1, we decompose again N1 into smaller NBCs by removing
the edges (v1, v

′
i) (for 1 ≤ i ≤ `) where v′i > v1. We obtain then ` + 1 NBC trees: N̄1

and the N̄ ′i (for 1 ≤ i ≤ `). These NBC tree correspond to the llbs trees Ā1 and the
Ā′i.

We get then k + ` llbs trees with only one necessarily of root smaller then c.
• From llbsts to nbcts: let S be an lbst. Let r be its root. We take out the root and get

the decomposition into llbs trees Ai of root ri (for 1 ≤ i ≤ k) described above. Each
Ai gives by the inductive construction a NBC tree Ni of corner ri and of subcorner
sri. We need now to connect these NBC trees to the corner r. The NBC trees Ni

such that the sri < r can be directly connected to r by adding the edge (r, ri) if
r > ri or the (r, sri) otherwise. The other Ni which cannot be connected directly to
the corner r are connected to the vertex r1 by adding the edge (r1, ri). We need just
to verify that the constructed tree is indeed a NBC tree relatively to the order O(T ).
This fact is a consequence of the fact that each Ni is a NBC for O(T ) and that the
neighbour of r in the resulting NBC tree are wheter the corner or the subcorner of
their sub NBC tree.

�
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