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Abstract

We give new positive results on the long-standing open problem of geometric covering de-
composition for homothetic polygons. In particular, we prove that for any positive integer k,
every finite set of points in R3 can be colored with k colors so that every translate of the nega-
tive octant containing at least k6 points contains at least one of each color. The best previously
known bound was doubly exponential in k. This yields, among other corollaries, the first poly-
nomial bound for the decomposability of multiple coverings by homothetic triangles. We also
investigate related decomposition problems involving intervals appearing on a line. We prove
that no algorithm can dynamically maintain a decomposition of a multiple covering by intervals
under insertion of new intervals, even in a semi-online model, in which some coloring decisions
can be delayed. This implies that a wide range of sweeping plane algorithms cannot guarantee
any bound even for special cases of the octant problem.
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1 Introduction and Main Results

We study coloring problems for hypergraphs induced by simple geometric objects. Given a family
of convex bodies in Rd, a natural colorability question that one may consider is the following: is it
true that for any positive integer k, every collection of points P ⊂ Rd can be colored with k colors
so that any element of the family containing at least p(k) of them, for some function p(k), contains
at least one of each color? This question has been investigated previously for convex bodies in the
plane such as halfplanes and translates of a convex polygon.

Octants in three-space. In this paper, we give a polynomial upper bound on p(k) when the family
under consideration is the set of translates of the three-dimensional negative octant {(x, y, z) ∈ R3 :
x 6 0, y 6 0, z 6 0}. The best previously known bound is due to Keszegh and Pálvölgyi, and is
doubly exponential in k [19].

Theorem 1. There exists a constant a < 6 such that for any positive integer k, every finite set P of
points in R3 can be colored with k colors so that every translate of the negative octant containing at
least ka points of P contains at least one of each color.

A dual version of the above problem sometimes referred to as covering decomposability can be
stated as follows: Given a collection C of convex bodies, we wish to color them with k colors so
that any point of Rd covered by at least p(k) of them, for some function p(k), is covered by at least
one of each color. In the primal setting with respect to octants we can replace the point set P with a
set C of positive octants with apices in P. Then the primal value of P coincides with the dual value
of C. Since clearly the dual problem is equivalent if we pick negative instead of positive octants,
we have:

Corollary 2. There exists a constant a < 6 such that for any positive integer k, every finite set P of
translates of the negative octant can be colored with k colors so that every point of R3 contained in at
least ka octants of P is contained in at least one of each color.

The next corollary is obtained by observing that the intersections of a set of octants with a plane
in R3 that is not parallel to any axis form a set of homothetic triangles (see Figure 1(a)).

Corollary 3. There exists a constant a < 6 such that for any positive integer k, every finite set P of
homothetic triangles in the plane can be colored with k colors so that every point contained in at least
ka triangles of P is contained in at least one of each color.

Finally, using standard arguments, the latter result can be extended to infinite sets, and cast as
a covering decomposability statement.

Corollary 4. There exists a constant a < 6 such that for any positive integer k, every locally finite
ka-fold covering of the plane by homothetic triangles is decomposable into k coverings

The proof of Theorem 1 is given in Section 2.

Intervals, bottomless rectangles, and sweeping algorithms. It is well-known that a theorem
similar to Corollary 4 holds for the simpler case of intervals on the real line. Rado [29] observed
that every k-fold covering of the real line by intervals can be decomposed into k coverings.

In the second part of the paper, we study the problem of maintaining a covering decomposition
of a set of intervals under insertion. In this problem, we are given a positive integer k, a collection
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(a) From octants to triangles.
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(b) From octants to bottomless rect-
angles.

Figure 1: Special cases of the octant coloring problem.

of intervals on the real line, and for each such interval a real number representing an insertion time.
This collection represents a set of intervals that evolves over time, in which the intervals present
at time x are exactly those whose insertion time is at most x. We can now wonder whether there
exists a function p(k) such that the following holds: there exists a k-coloring of the intervals in the
collection S such that, at any time, any point that is covered by at least p(k) intervals present at that
time is covered by at least one of each color.

This can be conveniently represented in the plane by representing each interval [a, b] with in-
sertion time t as an axis-aligned rectangle with vertex coordinates (a,−t), (b,−t), (b,−∞), (a,−∞),
hence viewing time as going downward in the vertical direction. We refer to such rectangles, with
a bottom edge at infinity, as bottomless rectangles. Now the k-coloring must be such that every
point p ∈ R2 that is contained in at least p(k) such rectangles must be contained in at least one of
each color. Hence the problem is actually about decomposition of coverings by bottomless rectangles.
We illustrate this point of view in Figure 2. Also note that bottomless rectangles can be seen as
degenerate homothetic triangles, which we will make use of for Corollary 7.

We now observe that bottomless rectangles can be formed by intersecting a negative octant with
a vertical plane, as depicted on Figure 1(b). Hence we can formulate a new corollary of our main
Theorem.

Corollary 5. There exists a constant a < 6 such that for any positive integer k, every finite set P of
bottomless rectangles in the plane can be colored with k colors so that every point contained in at least
ka rectangles of P is contained in at least one of each color. Equivalently, every collection of intervals,
each associated with an insertion time, can be k-colored so that at any time, every point covered by at
least ka intervals present at this time is covered by at least one of each color.

With respect to the model of intervals with insertion times it is natural to ask whether it is
possible to maintain a covering decomposition of a set of intervals under insertion, without knowing
the future insertions in advance. In Section 3, we answer this question in the negative.

More precisely, we rule out the existence of a semi-online algorithm:
A semi-online k-coloring algorithm must consider the intervals in their order of insertion time.

At any time, an interval in the sequence either has one of the k colors, or is left uncolored. Any
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Figure 2: Intervals under insertion and bottomless rectangles.

interval can be colored at any time, but once an interval is assigned a color, it keeps this color
forever.

A semi-online k-coloring algorithm is said to be colorful of value d if it maintains at all times
that the colors that are already assigned are such that any point contained in at least d intervals is
contained in at least one of each of the k colors.

In order to obtain that there are no colorful semi-online algorithms of bounded value, we will
indeed prove a stronger statement concerned with a class of semi-online algorithms with respect to
the less restrictive problem of proper colorings. We call a semi-online k-coloring algorithm proper of
value d if it maintains at all times that the colors that are already assigned are such that any point
contained in at least d intervals is contained in at least two of different color. Our theorem says that
for all natural numbers k, d, there is no semi-online proper k-coloring algorithm of value d, or in
other words:

Theorem 6. For all natural numbers k, d, there is no semi-online algorithm that k-colors intervals
under the operation of inserting intervals, so that at any time, every point covered by at least d intervals
is covered by at least two of distinct colors.

Since any semi-online colorful coloring algorithm clearly also is proper, we obtain that also for
colorful colorings there exist no semi-online algorithms of bounded value.

Note that in the bottomless rectangle model a colorful coloring semi-online algorithm corre-
sponds to sweeping the set of rectangles top to bottom with a line parallel to the x-axis and assign-
ing colors irrevocably to already swept rectangles such that at any time every point contained in d
of the already swept ones is contained in at least one of each color. Similarly, one can define sweep-
ing line algorithms for coloring homothetic triangles, and sweeping plane algorithms for octants.
Since bottomless rectangles can be viewed as special case of either we can resume:

Corollary 7. For all natural numbers k, d, there is no sweeping line (plane) coloring algorithm such
that for any set of bottomless rectangles, or triangles, or octants, at any time every point contained in
d of the already swept ranges is contained in at least one of each color.

Since for octants primal and dual problem are equivalent by Corollary 7 no such sweeping plane
algorithm exists for the primal octant problem either.

We remark that Corollary 7 is in contrast with another recent result in [5], which deals with
the primal version of the problem. It can be expressed as coloring points appearing on a line in
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such a way that at all times any interval containing p(k) points contains one point of each color, or
equivalently, coloring point sets in the plane such that every bottomless rectangle containing p(k)
points contains a point of each color. In [5] it is shown that in this case a linear upper bound on p(k)
can be achieved with a semi-online coloring algorithm or equivalently a sweeping line algorithm.

Previous Results

The covering decomposition problem was first posed by János Pach in the years 1980-1986 [22, 23].
This was originally motivated by the problem of determining the densities of the densest k-fold
packings and the thinnest k-fold coverings of the plane with a given plane convex body (see Sec-
tion 2.1 in [8] for a complete historical account). In particular, he posed the following problem:

Is it true that for any plane convex polygon C and for any integer k, there exists an integer
p = p(C, k) such that every p-fold covering of the plane with homothetic copies of C can be decomposed
into k coverings?

Our contribution is a first step forward in the positive direction, since it shows that p(C, k) = O(k6)
provided that C is a triangle and the covering is locally finite (Corollary 4). To our knowledge, this
is the first polynomial bound for covering decomposability of homothetic copies of a polygon, as all
previously known such bounds apply either to halfplanes or translates of a polygon.

Tremendous progress has been made recently in understanding the conditions for the existence
of a function p(k) for a given range space, that is, geometric hypergraphs induced by a family
of bodies in Rd. Linear upper bounds have been obtained for halfplanes [4, 31], and translates
of a convex polygon in the plane [32, 27, 3, 15]. A restricted version of this problem involving
unit balls is shown to be solvable using the probabilistic method in the well-known book from
Alon and Spencer [2]. The function p(k) has been proved not to exist for range spaces induced
by concave polygons [28], axis-aligned rectangles [12, 24], lines in R2, and discs [26]. Note that
the indecomposability results for axis-aligned rectangles imply the same for orthants in R4, since
arbitrary such rectangles can be formed by intersecting four-dimensional orthants with a well-
chosen plane in R4.

Previous results on octants.

Pálvölgyi proved the indecomposability of coverings by translates of a convex polyhedron in R3 [28].
His proof, however, does not hold for unbounded polyhedra with three facets. This prompted the
first author of the current manuscript to pose the problem of decomposability of coverings by oc-
tants. This was solved by Keszegh and Pálvölgyi, who showed that p(2) 6 12 in this case [18].
Since we will reuse this theorem in our proof, it is worth reproducing it here.

Theorem 8 ([18]). There exists a constant c 6 12 such that every finite collection P ⊂ R3 of points
can be 2-colored so that every negative octant containing at least c points of P contains at least one of
each color.

In the past two years, the above result was improved and generalized. First, Keszegh and
Pálvölgyi proved that Theorem 8 implies that p(k) is bounded for every k [19]. Note that this is not
obvious, as one could well imagine that for some range spaces, p(2) is bounded, but not p(k) for
some k > 2. Their upper bound on p(k), however, is doubly exponential in k. In particular, their
proof implies p(k) 6 122

k
.
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Later, the current authors gave a polynomial upper bound on p(k), but restricted to the special
case of homothetic triangles in the plane [9]. The proof uses a new technique involving recoloring
each color class of a k-coloring with two colors in order to obtain a 2k-coloring.

Finally, in May 2013, an unpublished manuscript from Keszegh and Pálvölgyi was communi-
cated to us by János Pach, in which an improved polynomial upper bound was given for the same
special case of homothetic triangles [20]. This improvement makes use of a lemma stating the
so-called self-coverability property of triangles.

We managed to harness the power of these observations for the general case of octants. In
particular, we reuse the recoloring algorithm given from [9] in Lemma 10, and also give a three-
dimensional generalization of the self-coverability lemma of [20] in the form of Lemma 9.

Previous results on online coloring problems and proper colorings of geometric hypergraphs.

Semi-online algorithms have proved to be useful in an interesting special case of the problem with
octants, in which all points considered in Theorem 1 lie on a vertical plane. This setting can be
thought of as points appearing on a line, and we want to color the points with k colors such that
at any time, any set of p(k) consecutive points contains at least one of each color. This problem
has been studied by a number of authors, whose results were compiled in a joint paper [5]. In
particular, they showed that under this restriction, we have 1.6k 6 p(k) 6 3k−2. The upper bound
is achieved using a semi-online algorithm, that does not require the knowledge of the future point
insertions, and never recolors a point. This also amounts to coloring primal range spaces induced
by bottomless rectangles with a sweeping line algorithm.

In contrast to our negative result about semi-online algorithms, a larger class of algorithms
called quasi-online has led to a short proof that p(2) = 3 in the setting corresponding to our Corol-
lary 5, see [17], and is indeed also used to obtain Theorem 8 in [18].

Clearly, colorful 2-colorings and proper 2-colorings coincide, but also for a larger number of
colors proper colorings of geometric hypergraphs have been considered in the primal and dual
setting. There are results for bottomless rectangles [16], halfplanes [14, 16], octants [10], rectan-
gles [12, 1, 24], and discs [26, 30].

Similarly to our Theorem 6 Keszegh, Lemons, and Pálvölgyi consider online proper coloring
algorithms (points must be colored on arrival). While it is easy to see that there is an optimal
online algorithm to color points such that quadrants are colorful, they show that there are no
online proper coloring algorithms of bounded value in the primal setting of bottomless rectangles
and octants. Instead they measure the quality of online algorithms as a function of the input
size [17].

In another vein, Bar-Noy, Cheilaris, Olonetsky, and Smorodinsky [7, 6] considered conflict-free
colorings in an online setting. There, the problem is to maintain that every d-covered point p is
covered by one interval whose color is unique among all intervals covering p.

Other related results.

In 2010, Kasturi Varadarajan gave a feasibility result for the fractional set cover packing problem
with fat triangles (Corollary 2 in [33]). This problem can be seen as a fractional variant of the
covering decomposition problem. This result involves the construction of so-called quasi-uniform ε-
nets. This construction was recently improved by Chan, Grant, Könemann, and Sharpe [11]. These
results are essentially motivated by the design of improved approximation algorithms for geometric
versions of the weighted set cover problem. However, they can also be seen as an intermediate
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step between the problem of finding small ε-nets and the covering decomposition problem, which
involves partitioning a set into ε-nets (see our conclusion for a discussion on this relation).

2 Proof of Theorem 1

In what follows, we will use the shorthand notation [n] = {1, 2, . . . , n}, for a positive integer n. We
will refer to the three coordinates of a point p as px, py, and pz, respectively. The negative octant
with apex (px, py, pz) ∈ R3 is the set {(x, y, z) ∈ R3 : x 6 px, y 6 py, z 6 pz}. Similarly the positive
octant of (px, py, pz) is {(x, y, z) ∈ R3 : x > px, y > py, z > pz}. For convenience we also allow the
coordinates of an apex to be equal to∞. In what follows, an octant will generally be considered to
be negative, unless explicitly stated otherwise. For two points p, q ∈ R3, we say that p dominates q
whenever the negative octant with apex p contains q, or, equivalently, whenever p is greater than
q coordinate-wise. We say that a set of points P ⊂ R3 is independent whenever no point in P is
dominated by another. Finally, we say that a point set is in general position whenever no two points
have the same x, y, or z-coordinates. By a standard perturbation argument it suffices to prove
Theorem 1 for point sets in general position.

Lemma 9. For every finite independent set P ⊂ R3 in general position, there exists a collection N of
negative octants such that:

(i) |N | = 2|P|+ 1,
(ii) the octants in N do not contain any point of P in their interior,

(iii) all points of R3 that do not dominate any point in P are contained in
⋃N .

Proof. Let n = |P|. We prove the lemma by induction on n. For n = 0 we take the negative octant
covering the whole space with apex (∞,∞,∞). For n > 1 we consider the points of N in order
of increasing z-coordinates. Let us denote them by p1, p2, . . . , pn in this order. Note that since P is
independent, we have pi,x < pj,x or pi,y < pj,y for every i, j ∈ [n] such that j < i.

Suppose, for the sake of induction, that there exists such a collection Nn−1 for the first n − 1
points of P. We then consider the next point pn and construct a new collection Nn. We do this
in three steps. First, we include in Nn all the octants of Nn−1 that do not contain pn. Then for
each octant Q′ ∈ Nn−1 such that pn ∈ Q′, we let Q be the octant having the same apex as Q′,
but with its z-coordinate changed to pn,z. We add each such octant Q to Nn. Finally, we add two
new octants to Nn. The first octant, Ln (for left) will have the point (pn,x, y,∞) as apex, where
y = min({pj,y : 1 6 j < i, pj,x < pn,x} ∪ {∞}). The second, Bn (for bottom), will have the point
(x, pn,y,∞) as apex, where x = min({pj,x : 1 6 j < i, pj,y < pn,y} ∪ {∞}). See Figure 2 for an
illustration.

The first property on the cardinality of Nn holds by construction, as we add exactly two octants
at each iteration. The second property can be checked as follows. First, by the induction hypothesis,
octants in Nn−1 avoid p1, . . . , pn−1. Those octants from Nn−1 which avoid pn were copied to Nn

and others have their z-coordinate modified in a way to avoid pn. Finally, the two new octants Ln

and Bn have their interiors disjoint from P by definition and the fact that P is independent.
In order to verify the third property, let us consider a point p′ that is not dominating any point

of P. First suppose that p′z < pn,z. By induction, there exists an octant in Nn−1 containing p′. This
octant is either contained in Nn, or has its counterpart in Nn with a modified z-coordinate. In both
cases, p′ is covered by this octant in Nn. Now suppose that p′z > pn,z. We can further suppose that
p′ neither belongs to Ln nor to Bn. Then either p′x > x, or p′y > y, where x and y are the two values
used to define Ln and Bn. Let us suppose that p′x > x, the other case being symmetric. Let pj , j < n,
be the point realizing the minimum in the definition of x. We must have p′y < pj,y, as otherwise p′
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Figure 3: Octants Ln and Bn in the proof of Lemma 9.

would dominate pj . Then p′ must be covered by an octant Q ∈ Nn−1 whose y-coordinate is smaller
than pj,y, as otherwise Q would contain pj . But by definition pj,y < pn,y, hence Q does not contain
pn and therefore also belongs to Nn. In all cases, p′ is contained in an octant of Nn and the third
property holds.

Note that the upper bound on the size of N in Lemma 9 is tight.
In order to prove our main theorem, we will use Theorem 8, due to Keszegh and Pálvölgyi. We

proceed to describe a coloring algorithm that achieves the bound of Theorem 1. We do this in two
steps. First, we consider the case where the points to color form an independent set.

Lemma 10. Let c be a constant satisfying the property in Theorem 8. For any positive integer k, every
finite independent set P ⊂ R3 in general position can be colored with k colors so that every negative
octant containing at least cklog2(2c−1) points of P contains at least one of each color.

Proof. For k = 2, we know there exists a 2-coloring of P satisfying the property of Theorem 8.
Suppose now, as an induction hypothesis, that we have a k-coloring φ of P such that every octant
containing at least p(k) points contains at least one of each color. Label the colors of φ by 1, . . . , k.

We now describe a 2k-coloring φ′. For i ∈ [k], let Pi = φ−1(i) be the set of points with color
i. We know from Theorem 8 that there exists a 2-coloring φi : Pi → {i′, i′′} of Pi such that every
octant containing at least c points of Pi contains at least one of each color i′ and i′′. We now define
φ′ as the 2k-coloring obtained by partitioning each color class in this way. We now claim that the
coloring φ′ is such that any octant containing at least (2c − 1)p(k) points contains at least one of
each of the 2k colors.

For the sake of contradiction, let Q be an octant containing at least (2c− 1)p(k) points of P, but
not any point of color i′ in φ′. Let PQ ⊆ P be the set of points contained in Q. If Q does not contain
any point of color i′, it means that it contains at most c− 1 points of φ−1(i). Let Pi = φ−1(i) ∩ PQ
be the points of color i in φ contained in Q.

From Lemma 9 and the fact that PQ ⊂ P is an independent set, we know there exists a collection
N of at most 2(c− 1) + 1 = 2c− 1 octants whose interiors do not contain any point of Pi, but that
collectively cover all points of PQ \ Pi. Indeed, after intersecting with Q we can assume that N
covers precisely PQ \ Pi and no other point of P.

Hence from the pigeonhole principle, one of the octantsN ∈ N contains at least d((2c−1)p(k)−
(c − 1))/(2c − 1)e = (2c − 1)p(k)/(2c − 1) = p(k) points of PQ in its interior, but no point of Pi.
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From the general position assumption, we can find an octant contained in N that contains exactly
p(k) points of PQ, but no point of Pi. But this is a contradiction with the induction hypothesis,
since this octant should have contained a point of color i in φ.

It remains to solve the following recurrence, with starting value p(2) = c:

p(2k) 6 (2c− 1)p(k)

p(k) 6 c(2c− 1)dlog2 ke−1

< cklog2(2c−1)

We now describe our algorithm for coloring an arbitrary set of points in general position. This
requires a new definition.

Given an set P of points in general position in R3, the outer layer of P is the subcollection of
points of P that are not dominating any other point of P. In general, we define the ith layer Li of
P as its outer layer for i = 1, and as the outer layer of P \⋃16j<i Lj for i > 1. By definition each
layer is an independent set of points.

Lemma 11. Let c be a constant satisfying the property in Theorem 8. For any positive integer k,
every finite set P ⊂ R3 in general position can be colored with k colors so that every negative octant
containing at least c(k − 1)klog2(2c−1) points of P contains at least one of each color.

Proof. We will color the points of P by considering the successive layers one by one, starting with
the outer layer. For each layer Li, we do the following:

• precolor the points of Li with colors in [k], as is done in Lemma 10,

• for each point p ∈ Li:

– consider the set of points Dp = {q ∈ P : q dominated by p};
– if p is precolored with a color that is not used for any point in Dp then this color is the

final color of p;

– otherwise pick any color not present on points in Dp and color p with it; if all k colors
are used within Dp, leave p uncolored.

The main observation here is that although the recoloring step harms the validity of the coloring
within a single layer, it is globally innocuous, since any octant containing the point p in the ith layer
also contains all the points in Dp, from the previous layers. Note that each point in the ith layer
must dominate at least one point from each i − 1 earlier layers. This forces the invariant that any
octant containing a point of the ith layer contains points with at least i distinct colors. In particular,
any octant containing a point of the kth layer will contain all the colors.

The analysis is now straightforward. Suppose that an octant contains at least c(k− 1)klog2(2c−1)

points. If it contains a point of the kth layer, then it contains all k colors. Otherwise, it must
contain points of at most k − 1 layers, and from the pigeonhole principle, it contains at least
c(k − 1)klog2(2c−1)/(k − 1) = cklog2(2c−1) points in a single layer. Then the precoloring of this single
layer guarantees each octant of size at least cklog2(2c−1) to be colorful.

Now Theorem 1 follows by replacing c by 12 in the expression of Lemma 11, yielding a ' 5.58.
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3 Proof of Theorem 6

Proof of Theorem 6. We say that a point of the real line is d-covered, if it is contained in exactly d
so far presented intervals. We shall define for every d and n an adversarial strategy S(d, n) for
presenting intervals such that the following is true:

(i) Every semi-online proper k-coloring algorithm of value at most d executed against S(d, n)
yields k points p1, . . . , pk such that for i = 1, . . . , k point pi is eventually covered by exactly ti
intervals, all of which have color i, and

(ii) t1 + . . .+ tk > n.

Clearly, if for some semi-online k-coloring algorithm A there is a point eventually covered by
at least d intervals, all of which have the same color, then the value of A is at least d + 1. Thus if
S(d, kd) exists and satisfies (i) and (ii), then there is no semi-online k-coloring algorithm of value
at most d, which proves the theorem.

We prove the existence of S(d, n) by double-induction on d and n. Strategies S(d, 0) are vacuous
as (i) and (ii) for n = 0 hold for the empty set of intervals and any set of k distinct points p1, . . . , pk.
We define S(d, n), for n > 0, once we have defined S(d− 1, k(d− 1)) and S(d, n− 1).

Before continuing let us present the following useful claim.

Claim. Given a set I of intervals already presented and any I ′ ⊂ I with I ′ ∩ J = ∅ for all J ∈ I \ I.
If S(d − 1, k(d − 1)) exists we can present the intervals of S(d − 1, k(d − 1)) inside I ′ forcing any
semi-online algorithm of value at most d to color I.

Proof. We present the intervals for S(d − 1, k(d − 1)) completely inside I ′. If the algorithm does
not color I then it can be seen as a k-coloring algorithm of value at most d − 1 executed against
S(d−1, k(d−1)). We already know that no such algorithm and therefore every k-coloring algorithm
of value at most d has to color interval I.

Now, we are ready to define S(d, n) for n > 0. First present two families of intervals, both
realizing strategy S(d, n − 1), disjointly next to each other. By (i) there exist two sets of k points
each, p1, p2, . . . , pk and p′1, . . . , p

′
k, and non-negative integers t1, . . . , tk, t′1, . . . , t

′
k such that pi is

ti-covered and all its intervals are colored with i and also p′i is t′i-covered and all its intervals are
colored with i, for every i = 1, . . . , k. Moreover, by (ii) we have t1+. . .+tk > n and t′1+. . .+t

′
k > n.

If there exists some i ∈ {1, . . . , k} with ti 6= t′i then the sequence of maxima mi = max(ti, t
′
i)

satisfies m1 + . . . +mk > n + 1. Thus, taking for each i ∈ {1, . . . , k} the point from {pi, p′i} that
corresponds to the larger value of ti, t′i, we obtain a set of k points satisfying (i) and (ii).

S(d, n− 1) S(d, n− 1) S(d− 1, k(d− 1))

I

Figure 4: Defining strategy S(d, n) once S(d− 1, k(d− 1)) and S(d, n− 1) are defined, in the case
ti = t′i for all i ∈ {1, . . . , k}.

Hence we assume without loss of generality that ti = t′i for all i ∈ {1, . . . , k}. Then we present
one additional interval I that contains all the points p′1, . . . , p

′
k but none of the points p1, . . . , pk.

Moreover, I is chosen big enough so that there exists some I ′ ⊂ I that is disjoint from all the other
intervals presented so far. We present the intervals realizing strategy S(d − 1, k(d − 1)) inside I ′,
forcing I to be colored, see Figure 4. Let j be the color of I. Then p′j is now contained in exactly

10



t′j + 1 intervals all of which are colored with j. Thus ({p1, . . . , pk} \ pj) ∪ p′j is a set of k points
satisfying (i) and (ii), which concludes the proof.

Discussion and Open Problems

A well-studied problem in discrete geometry is to identify properties of range spaces, or geometric
hypergraphs, that allow one to find small ε-nets. It is known, for instance, that range spaces of
bounded VC-dimension have ε-nets of size O(1ε log

1
ε ) (See for instance Chapter 10 in Matoušek’s

lectures [21]).
The coloring problem that we consider can be cast as the problem of partitioning a point set

into k ε-nets for ε = p(k)/n. In fact, it is one of the negative result for covering decomposition that
formed the basis of a construction from Pach and Tardos for proving superlinear lower bounds on
the size of ε-nets [25]. One can realize that if p(k) = O(k) for a given range space, it implies that
this range space also has ε-nets of size O(1/ε). The latter is known to hold for range spaces induced
by octants [13]. Whether p(k) = O(k) for octants is therefore an interesting open problem.

Naturally, many other intermediate open questions lie in the way of a general answer to Pach’s
problem on cover-decomposability of homothetic convex polygons. For instance, what can we say
about homothetic squares?

Another interesting open question concerns the primal problem, in which points are colored
with k-colors such that every region containing p(k) points contains a point of each color. We have
shown that if regions are octants, then no semi-online algorithm can prove p(k) <∞, while for bot-
tomless rectangles the best-known bound p(k) 6 3k− 2 is achieved by a semi-online algorithm [5].
It is open whether some semi-online algorithm can prove p(k) <∞ for homothetic triangles.
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[25] János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. In Proc.
Symposium on Computational Geometry (SoCG), pages 458–463, 2011.
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[32] Gábor Tardos and Géza Tóth. Multiple coverings of the plane with triangles. Discrete &
Computational Geometry, 38(2):443–450, 2007.

13



[33] Kasturi Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Proceedings
of the 42nd ACM symposium on Theory of computing, Proc. ACM Symposium on Theory of
Computing (STOC), pages 641–648, 2010.

14


