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Abstract

We provide the directed counterpart of a slight extension of Katoh and Tanigawa’s result
[8] on rooted-tree decompositions with matroid constraints. Our result characterizes digraphs
having a packing of arborescences with matroid constraints. It is a proper extension of Edmonds’
result [1] on packing of spanning arborescences and implies – using a general orientation result
of Frank [4] – the above result of Katoh and Tanigawa.

We also give a complete description of the convex hull of the incidence vectors of the matroid-
based packings of arborescences and prove that the minimum cost version of the problem can
be solved in polynomial time.

1 Introduction

Let G = (V,E) be a graph. For a vertex set X of G, E(X) denotes the set of edges of G with
both extremities in X. A tree is a connected cycle free graph. A subgraph H of G is called
spanning if its vertex set V (H) coincides with V.

Our starting point is the following result of Tutte [10] and Nash-Williams [9] on packing of
spanning trees. For a partition P of V, eG(P) denotes the number of edges of G between the
different members of P. We always suppose that the members of P are not empty. Following
Frank [5], G is called k-partition-connected if

eG(P) ≥ k(|P| − 1) for every partition P of V. (1)

Theorem 1.1 (Tutte [10], Nash-Williams [9]). There exist k edge-disjoint spanning trees in a
graph G = (V,E) if and only if G is k-partition-connected.

Let D = (V,A) be a digraph. For a vertex set X of D, we denote by D[X] the induced
subgraph of D on X, we denote by R−

D(X) the set of arcs entering X and we define the in-degree
of X as ρD(X) = |R−

D(X)|. For the sake of convenience, we will not distinguish the vertex v

from the set {v}. We say that a vertex v is reachable from a vertex u in D if there exists a
directed path from u to v in D. We say that D is an r-arborescence if D is a directed tree, r is
a vertex of D of in-degree 0 and all the other vertices of D are of in-degree 1. We note that an
r-arborescence may consist of only the vertex r and no arcs. Note also that an r-arborescence
has a unique vertex of degree 0, namely r. A subgraph H of D is called spanning if its vertex
set V (H) coincides with V. It is well-known that a spanning r-arborescence of D exists if and
only if every non-empty vertex set not containing r has in-degree at least 1.
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The directed counterpart of Theorem 1.1 is the following result of Edmonds [1] on packing
of spanning r-arborescences. Following Frank [5], D is called k-rooted-connected if

ρD(X) ≥ k for all non-empty X ⊆ V \ r. (2)

Theorem 1.2 (Edmonds [1]). There exist k arc-disjoint spanning r-arborescences of a digraph
D = (V,A) if and only if D is k-rooted-connected.

Frank [2] showed how to deduce Theorem 1.1 from Theorem 1.2. He proved that (1) is the
necessary and sufficient condition for the undirected graph G to have an orientation D that
satisfies (2). Then, by Theorem 1.2, D contains k arc-disjoint spanning r-arborescences that
provide the k edge-disjoint spanning trees in G.

A function b : 2Ω → Z is called submodular (respectively intersecting submodular) if for all
X,Y ⊆ Ω (resp. for all X,Y ⊆ Ω that are intersecting),

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

A function p : 2Ω → Z is called supermodular if −p is submodular. Note that the in-degree
function ρD of a digraph D is submodular.

Let M be a matroid on S with rank function rM. It is well-known that rM is monotone
non-decreasing and submodular. A set Q ⊆ S is independent if rM(Q) = |Q|. Recall that every
subset of an independent set is independent. A maximal independent set is a base of M. Each
base has the same size, namely rM(S). Two elements s and s′ of S are called parallel if s and s′ are
independent but {s, s′} is not. M is called a free matroid if each subset of S is independent, that
is the only base is S. For a set Q ⊆ S, we define SpanM(Q) = {s ∈ S : rM(Q ∪ {s}) = rM(Q)}.
The set Q is called a spanning set of M if SpanM(Q) = S.

A matroid-based rooted-graph is a quadruple (G,M,S, π) where G = (V,E) is a graph, M
is a matroid on the set S = {s1, . . . , st} and π is a map from S to V . We may think of π as a
placement of the elements of S at vertices of V and different elements of S may be placed at the
same vertex. The elements {s1, . . . , st} placed at the vertices of V are called the roots. In this
paper t will always denote the size of S. For X ⊆ V , we denote by SX the set π−1(X) that is
the set of roots placed in X. A matroid-based rooted-digraph is defined similarly in which case
the graph is directed.

A rooted-tree is a pair (T, s) where T is a tree and s is an element of S placed at a vertex of
the tree. We say that s is the root of the rooted-tree. We note that the tree may consist of only
one vertex and no edges.

The following definition was introduced by Katoh and Tanigawa [8]. Amatroid-based packing
of rooted-trees of (G,M,S, π) is a set {(T1, s1), . . . , (Tt, st)} (where S = {s1, . . . , st}) of pairwise
edge-disjoint rooted-trees such that for each v ∈ V , the set {si ∈ S : v ∈ V (Ti)} forms a base of
M. Note that the trees are not necessarily spanning and each vertex of G belongs to exactly
rM(S) trees.

•π(s1)
π(s2)

•π(s3)

•

•

•

Figure 1: A matroid-based packing of rooted-trees where the set
of the independent sets of the matroid on S = {s1, s2, s3} is 2S \ S.

The following result characterizes matroid-based rooted-graphs that have a matroid-based
packing of rooted-trees. It will be derived from its directed counterpart (Theorem 1.6) at the
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end of this section. We say that the map π is M-independent if Sv is independent in M for all
v ∈ V. The quadruple (G,M,S, π) is called partition-connected if

eG(P) ≥ rM(S)|P| −
∑

X∈P

rM(SX) for every partition P of V.

Theorem 1.3. Let (G,M,S, π) be a matroid-based rooted-graph. There exists a matroid-based
packing of rooted-trees in (G,M,S, π) if and only if π is M-independent and (G,M,S, π) is
partition-connected.

If M is the free matroid then S is the only base of M so a matroid-based packing of rooted-
trees consists of spanning trees and thus the problem of matroid-based packing of rooted-trees
and that of packing of spanning trees coincide. Hence Theorem 1.3 is a proper extension of
Theorem 1.1. In [8], Theorem 1.3 is implicitly obtained in the proof of the following result.
A rooted-component of (G,M,S, π) is a pair (C, s) where C is a connected subgraph of G and
s ∈ SV (C).

Theorem 1.4 (Katoh and Tanigawa [8]). Let (G,M,S, π) be a matroid-based rooted-graph.
Then (G,M,S, π) can be decomposed into rooted-components (C1, s1), . . . , (Ct, st) such that the
set {si ∈ S : v ∈ V (Ci)} is a spanning set of M for every v ∈ V if and only if (G,M,S, π) is
partition-connected.

Katoh and Tanigawa deduced Theorem 1.4 (and, implicitly, Theorem 1.3) from the following
dual form of its. We show that Theorem 1.3 also implies Theorem 1.5.

Theorem 1.5 (Katoh and Tanigawa [8]). Let (G,M,S, π) be a matroid-based rooted-graph.
Let M be of rank k with rank function rM. Then (G,M,S, π) admits a matroid-based rooted-
tree decomposition if and only if π is M-independent, |E| + |S| = k|V | and |E(X)| + |SX | ≤
k|X| − k + rM(SX) for all non-empty X ⊆ V.

Proof. The necessity of the conditions is pretty straightforward as one can see in [8].
Now suppose that the conditions hold. For every partition P of V , by the inequality applied

forX ∈ P and by |E|+|S| = k|V |, we have eG(P) = |E|−
∑

X∈P |E(X)| ≥ |E|−
∑

X∈P(k|X|−k+
rM(SX)−|SX |) = k|P|−

∑
X∈P rM(SX). Hence (G,M,S, π) is partition-connected. Then, since

π is M-independent, Theorem 1.3 implies that (G,M,S, π) admits a matroid-based packing of
rooted-trees which, by |E| + |S| = k|V |, must be a matroid-based rooted-tree decomposition of
(G,M,S, π).

The main contribution of the present paper is to mimic Frank’s approach (mentioned above
on packing of spanning trees) for matroid-based packing of rooted-trees. We provide the directed
counterpart Theorem 1.6 of Theorem 1.3, a short proof of Theorem 1.6 and we show that it
implies Theorem 1.3 (and hence Theorem 1.4 and Theorem 1.5) via an orientation theorem of
Frank [4].

A rooted-arborescence is a pair (T, s) where T is an r-arborescence for some vertex r and s

is an element of S placed at r. We say that s is the root of the rooted-arborescence (T, s). We
note that a rooted-arborescence may consist of only one vertex and no arcs.

Inspired by the definition of Katoh and Tanigawa, we define an matroid-based packing of
rooted-arborescences of (D,M,S, π) as a set {(T1, s1), . . . , (Tt, st)} (where S = {s1, . . . , st}) of
pairwise arc-disjoint rooted-arborescences such that for each v ∈ V , the set {si ∈ S : v ∈ V (Ti)}
forms a base of M. For a better understanding, let us mention that the rooted-arborescences are
not necessarily spanning and each vertex of D belongs to exactly rM(S) rooted-arborescences.

Our main result is the following theorem. The quadruple (D,M,S, π) is called rooted-
connected if

ρD(X) ≥ rM(S)− rM(SX) for all non-empty X ⊆ V. (3)
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•π(s1)
π(s2)

•π(s3)

•

•

•

Figure 2: A matroid-based packing of rooted-arborescences where the set
of the independent sets of the matroid on S = {s1, s2, s3} is 2S \ S.

Theorem 1.6. Let (D,M,S, π) be a matroid-based rooted-digraph. There exists a matroid-
based packing of rooted-arborescences in (D,M,S, π) if and only if π is M-independent and
(D,M,S, π) is rooted-connected.

If M is the free matroid and π places every element of S at a single vertex r of D then
the problem of matroid-based packing of rooted-arborescences and that of packing of spanning
r-arborescences coincide. Hence Theorem 1.6 is a proper extension of Theorem 1.2.

Let us recall the following general orientation result of Frank [4].

Theorem 1.7 (Frank [4]). Let G = (V,E) be a graph and h : 2V → Z+ an intersecting
supermodular non-negative non-increasing set-function. There exists an orientation D of G

such that ρD(X) ≥ h(X) for all non-empty X ⊂ V if and only if for every partition P of V ,

eG(P) ≥
∑

X∈P

h(X).

Theorem 1.7 immediately implies the following corollary by taking h(X) = rM(S)−rM(SX).

Corollary 1.1. Let (G,M,S, π) be a matroid-based rooted-graph. There exists an orientation D

of G such that (D,M,S, π) is rooted-connected if and only if (G,M,S, π) is partition-connected.

Let us show that Corollary 1.1 and Theorem 1.6 imply Theorem 1.3.

Proof. (of Theorem 1.3) First suppose that there exists a matroid-based packing {(T1, s1), . . . , (Tt, st)}
of rooted-trees in (G,M,S, π). Let D be an orientation of G where each rooted-tree (Ti, si) be-
comes a rooted-arborescence (T ′

i , si). Then {(T ′
1, s1), . . . , (T

′
t , st)} is a matroid-based packing of

rooted-arborescences in (D,M,S, π). By Theorem 1.6, π is M-independent and (D,M,S, π) is
rooted-connected and hence, by Corollary 1.1, (G,M,S, π) is partition-connected.

Now suppose that π is M-independent and (G,M,S, π) is partition-connected. By Corol-
lary 1.1, there exists an orientation D of G such that (D,M,S, π) is rooted-connected. Then, by
Theorem 1.6, there exists a matroid-based packing of rooted-arborescences in (D,M,S, π) which
provides, by forgetting the orientation, a matroid-based packing of rooted-trees in (G,M,S, π).

2 Proof of the main theorem

First we prove the necessity of the conditions.

Proof. (of necessity in Theorem 1.6) Suppose that there exists a matroid-based packing
{(T1, s1), . . . , (Tt, st)} of rooted-arborescences in (D,M,S, π). Let v be an arbitrary vertex of
V and X a vertex set containing v. Then B := {si ∈ S : v ∈ V (Ti)} forms a base of M. Let
B1 = B ∩ SX and B2 = B \ SX . Then, since B1 is independent in M and Sv ⊆ B1, π is M-
independent. Moreover, since rM is monotone, |B1| = rM(B1) ≤ rM(SX). For each root si ∈ B2,

there exists an arc of Ti that enters X. Since the rooted-arborescences are arc-disjoint, we have
ρD(X) ≥ |B2| = |B| − |B1| ≥ rM(S)− rM(SX) that is (D,M,S, π) is rooted-connected.
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Before proving the sufficiency of the conditions we establish a technical claim.

Let us introduce the following definitions. A vertex set X is called tight if ρD(X) = rM(S)−
rM(SX). For vertex sets X and Y , we say that Y dominates X if SX ⊆ SpanM(SY ). Note that
since, for Q ⊆ S, SpanM(SpanM(Q)) = SpanM(Q), domination is a transitive relation. We say
that an arc uv is bad if v dominates u, otherwise it is good. We note that only good arcs uv can
be used in a rooted-arborescence whose root is placed at u, since there must exist s ∈ Su such
that Sv ∪ s is independent in M.

Claim 2.1. Suppose that (D,M,S, π) is rooted-connected. Let X be a tight set and v a vertex
of X.

(a) If Y is a tight set that contains v, then X ∩ Y and X ∪ Y are tight. Moreover, if s ∈
SpanM(SX) ∩ SpanM(SY), then s ∈ SpanM(SX∩Y).

(b) If no good arc exists in D[X], then v dominates X.

Proof. (a) If we have s, then let σ = s, otherwise let σ = ∅. By the monotonicity and the
submodularity of rM, s ∈ SpanM(SX)∩SpanM(SY), the tightness ofX and Y , the submodularity
of ρD, X ∩ Y 6= ∅ and (3), we have rM(SX∩Y ) + rM(SX∪Y ) = rM(SX ∩ SY ) + rM(SX ∪ SY ) ≤
rM((SX∩SY )∪σ)+rM((SX∪SY )∪σ) ≤ rM(SX∪σ)+rM(SY ∪σ) = rM(SX)+rM(SY ) = rM(S)−
ρD(X)+rM(S)−ρD(Y ) ≤ rM(S)−ρD(X∩Y )+rM(S)−ρD(X∪Y ) ≤ rM(SX∩Y )+rM(SX∪Y ).
Hence equality holds everywhere and (a) follows.

(b) Let us denote by Y the set of vertices from which v is reachable in D[X]. We show that
v dominates Y and Y dominates X and then, since domination is transitive, (b) follows.

For all y ∈ Y , there exists a directed path y = vl, . . . , v1 = v from y to v in D[X]. Since no
good arc exists in D[X], Sy = Svl ⊆ · · · ⊆ SpanM(Sv1) = SpanM(Sv). Hence SY =

⋃
y∈Y Sy ⊆

SpanM(Sv) and v dominates Y.
By the definition of Y , every arc of D that enters Y enters X as well. Then, by (3), the

tightness of X and the monotonicity of rM, we have rM(S) − rM(SY ) ≤ ρD(Y ) ≤ ρD(X) =
rM(S)− rM(SX) ≤ rM(S)− rM(SY ). Thus equality holds everywhere and Y dominates X.

Now we can prove the main result.

Proof. (of sufficiency in Theorem 1.6) We prove it by induction on |A|. We have two cases.

Case 1 : No good arc exists. (This contains the case |A| = 0.)
Then {(v, s) : v ∈ V, s ∈ Sv} forms a matroid-based packing of rooted-arborescences in

(D,M,S, π). Indeed, since V is tight, Claim 2.1(b) implies that Sv is a spanning set of M and
hence, since π is M-independent, Sv is a base of M for all v ∈ V .

Case 2 : At least one good arc exists.

For a good arc uv ∈ A and s ∈ Su \Span(Sv), let D
′ = D−uv, S′ the set obtained by adding

a new element s′ to S, M′ the matroid on S′ obtained from M by considering s′ as an element
parallel to s and π′ the placement of S′ in V obtained from π by placing the new element s′ at
v.

•

• • •

• • •

u
π(s)

v

in D

•

• • •

• • •

u
π(s)

v
π(s′)

in D′

Figure 3: Changing rooted-arborescences.
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By the choice of s and since π is M-independent, it follows that π′ is M′-independent. If
the matroid-based rooted-digraph (D′,M′,S′, π′) is rooted-connected, then, by induction, there
exists a matroid-based packing P ′ of rooted-arborescences in (D′,M′,S′, π′). Since s and s′

are parallel in M′, the rooted-arborescences (T, s) and (T ′, s′) of P ′ are vertex disjoint, so
(T ′′, s) = (T ∪ T ′ ∪ uv, s) is a rooted-arborescence. Then (P ′ ∪ {(T ′′, s)}) \ {(T, s), (T ′, s′)} is a
matroid-based packing of rooted-arborescences in (D,M,S, π). Hence the proof of the theorem
is reduced to the proof of the following claim.

Claim 2.2. There exist a good arc uv and s ∈ Su \Span(Sv) such that (D′,M′,S′, π′) is rooted-
connected.

Proof. Assume that the claim is false. Let uv ∈ A be a good arc and s ∈ Su \ Span(Sv). By
assumption, there exists ∅ 6= Xs ⊂ V such that ρD′(Xs) < rM(S)− rM′(S′Xs

). Hence, by (3) and
the monotonicity of rM′ , ρD′(Xs) + 1 ≥ ρD′(Xs) + ρuv(Xs) = ρD(Xs) ≥ rM(S) − rM(SXs

) ≥
rM(S)−rM′(S′Xs

) ≥ ρD′(Xs)+1, so equality holds everywhere and thus uv enters Xs, Xs is tight
in (D,M,S, π) and s ∈ SpanM(SXs

). Hence, by Claim 2.1(a), X = ∪s∈Su\Span(Sv)Xs is tight
and, by v ∈ X, Su = (Su \ Span(Sv)) ∪ (Su ∩ Span(Sv)) ⊆ Span(SX) ∪ Span(SX) = Span(SX).
So we proved that

every good arc uv enters a tight set X that dominates u. (4)

Among all pairs (uv,X) satisfying (4) choose one with X minimal.

Since X dominates u but v does not dominate u, v does not dominate X. Then, by
Claim 2.1(b), there exists a good arc u′v′ in D[X]. Then, by (4), u′v′ enters a tight set Y

that dominates u′. By v′ ∈ X ∩ Y , the tightness of X and Y , u′ ∈ X, Su′ ⊆ SpanM(SY ),
Claim 2.1(a), we have that X ∩ Y is tight and Su′ ⊆ SpanM(SX∩Y ). Since the good arc u′v′

enters the tight set X∩Y that dominates u′ and X∩Y is a proper subset of X (since u′ ∈ X\Y ),
this contradicts the minimality of X.

3 Polyhedral aspects

In this section we study a polyhedron describing the matroid-based packings of rooted-arborescences.

We need the following general result of Frank [3].

Theorem 3.1 (Frank [3]). Let D = (V,A) be a digraph, p : 2V → Z+ a non-negative intersecting
supermodular set-function such that ρD(Z) ≥ p(Z) for every Z ⊆ V . Then the polyhedron
defined by the following linear system is integer:

1 ≥ x(a) ≥ 0 for all a ∈ A,

x(R−
D(X)) ≥ p(X) for all non-empty X ⊆ V.

The following theorem is a corollary of Theorem 1.6 and Theorem 3.1.

Theorem 3.2. Let (D = (V,A),M,S, π) be a matroid-based rooted-digraph where M is of
rank k with rank function rM. There exists a matroid-based packing of rooted-arborescences in
(D,M,S, π) if and only if the polyhedron PM,D defined by the linear system

1 ≥ x(a) ≥ 0 for all a ∈ A, (5)

x(R−
D(X)) ≥ k − rM(SX) for all non-empty X ⊆ V, (6)

x(A) = k|V | − |S| (7)

is not empty. In this case, PM,D is integer and its vertices are the characteristic vectors of the
arc sets of the matroid-based packings of rooted-arborescences in (D,M,S, π).

6



Proof. Suppose there exists a matroid-based packing of rooted-arborescences in (D,M,S, π)
and call A′ ⊆ A its arc set. Let x be the characteristic vector of A′. We have x(A) = |A′| =∑

v∈V ρA′(v) =
∑

v∈V (k − |Sv|) = k|V | − |S| and x(R−
D(X)) = ρA′(X) ≥ k − rM(SX) for all

non-empty X ⊆ V by (3). So x ∈ PM,D.
Now suppose that PM,D is not empty. Since the function k − rM(SX) is non-negative

intersecting supermodular and, by (5) and (6), ρD(X) ≥ k− rM(SX) for all non-empty X ⊆ V ,
Theorem 3.1 implies that the polyhedron P described by (5) and (6) is integer. By (6), for all
x ∈ P ,

x(A) =
∑

v∈V

x(R−
D(v)) ≥

∑

v∈V

(k − rM(Sv)) ≥
∑

v∈V

(k − |Sv|) = k|V | − |S|, (8)

that is, x(A) ≥ k|V |− |S| is a valid inequality for P . Then, by (7), PM,D is a face of the integer
polyhedron P and hence PM,D is also integer. Furthermore, for x ∈ PM,D, equality holds
everywhere in (8), thus, |Sv| = rM(Sv) for all v ∈ V and hence π is M-independent. A vertex
x of PM,D defines an arc set A′ = {a ∈ A, x(a) = 1}. By (6), the matroid-based rooted-digraph
((V,A′),M,S, π) is rooted-connected. Therefore, by Theorem 1.6, there exists a matroid-based
packing of rooted-arborescences in ((V,A′),M,S, π) whose arc set is, by (7), equal to A′, and
the theorem follows.

4 Algorithmic aspects

We use the following theorem proved by Iwata, Fleischer and Fujishige [7] and independently
by Schrijver [11].

Theorem 4.1 (Iwata, Fleischer and Fujishige [7], Schrijver [11]). A submodular function can
be minimized in polynomial time.

In this section we assume that a matroid is given by an oracle for the rank function. The
following theorem is a corollary of Theorem 4.1 and Theorem 1.6.

Theorem 4.2. Let (D,M,S, π) be a matroid-based rooted-digraph. A matroid-based packing
of rooted-arborescences in (D,M,S, π) or a vertex v certifying that π is not M-independent or
a vertex set X certifying that (D,M,S, π) is not rooted-connected can be found in polynomial
time.

Proof. By the submodularity of ρD(X) + rM(SX), Theorem 4.1, using the oracle on M and
Theorem 1.6, we can either find a set violating (3) or a vertex certifying that π is not M-
independent or certify that there exists a matroid-based packing of rooted-arborescences.

In the latter case, a matroid-based packing of rooted-arborescences can be found in polyno-
mial time following the proof of Theorem 1.6. Using the oracle, test whether each arc is bad
or good. When an arc uv is good, for each s ∈ Su \ Span(Sv), determine in polynomial time
whether (D′,M′,S′, π′) is rooted-connected using the submodularity of ρD′(X) + rM′(S′X), the
oracle for the rank function rM′ (that is easily computed from rM) and Theorem 4.1. Either
all arcs are bad or we find a good arc uv and s ∈ Su \ Span(Sv) satisfying Claim 2.2. In the
first case, {(v, s) : v ∈ V, s ∈ Sv} is the required packing. In the second case, it leads to the
computation of a matroid-based packing of rooted-arborescences in (D′,M′, S′, π′) where D′

contains less arcs than D.

By the submodularity of x(R−
D(X)) + rM(SX) and by Theorem 4.1, PM,D can be separated

in polynomial time. Thus, using the ellipsoid method, by Grötschel, Lovász and Schrijver [6],
and by Theorem 4.2, we have the following result.

Theorem 4.3. Let (D,M,S, π) be a matroid-based rooted-digraph and c a cost function on the
set of arcs of D. If there exists a matroid-based packing of rooted-arborescences in (D,M,S, π)
then one of minimum cost can be found in polynomial time.
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5 Final remarks

We finish the paper with a related problem. Given a matroid-based rooted-digraph (D,M,S, π)
where M has rank function rM and a bound b : V → Z, an (M, b)-packing of rooted-
arborescences is a set {(T1, s1), . . . , (T|S|, s|S|)} of pairwise arc-disjoint rooted-arborescences such
that rM({si ∈ S : v ∈ V (Ti)}) ≥ b(v) for all v ∈ V . When b is constant, using Theorem 1.6 and
matroid truncation, one can derive a characterization of matroid-based rooted-digraphs admit-
ting an (M, b)-packing of rooted-arborescences. On the other hand, for general b, the problem
turns out to be NP-complete since it contains the disjoint Steiner arborescences problem that
is to find 2 arc-disjoint r-arborescences both covering a specified subset of vertices.
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