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Abstract

In this paper, we characterize the graphs G that are the retracts of Cartesian products

of chordal graphs. We show that they are exactly the weakly modular graphs that do

not contain K2,3, the 4-wheel minus one spoke W−

4
, and the k-wheels Wk (for k ≥ 4) as

induced subgraphs. We also show that these graphs G are exactly the cage-amalgamation

graphs as introduced by Brešar and Tepeh Horvat (2009); this solves the open question

raised by these authors. Finally, we prove that replacing all products of cliques of G

by products of Euclidean simplices, we obtain a polyhedral cell complex which, endowed

with an intrinsic Euclidean metric, is a CAT(0) space. This generalizes similar results

about median graphs as retracts of hypercubes (products of edges) and median graphs

as 1-skeletons of CAT(0) cubical complexes.

1 Introduction

Median graphs constitute one of the most important classes of graphs investigated in metric

graph theory and occur in different areas of discrete mathematics, metric geometry, and

computer science. Median graphs and related median structures (median algebras and median

complexes) have many nice properties and admit numerous characterizations. All median

structures are intimately related to hypercubes: median graphs are isometric subgraphs of

hypercubes; in fact, by a classical result of Bandelt [1] they are the retracts of hypercubes into

which they embed isometrically. It was also shown by Isbell [25] and van de Vel [33] that every

finite median graph G can be obtained by successive applications of gated amalgamations

from hypercubes, thus showing that the only prime median graph is the two–vertex complete

graph K2 (a graph with at least two vertices is said to be prime if it is neither a Cartesian

product nor a gated amalgam of smaller graphs). A related construction of median graphs

via convex expansions is given in [27, 28]. Median graphs also have a remarkable algebraic

structure, which is induced by the ternary operation on the vertex set that assigns to each

triplet of vertices the unique median vertex, and their algebra can be characterized using
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four natural axioms [7, 25] among all discrete ternary algebras. Finally, it was shown in

[16, 29] that the cubical complexes derived from median graphs by replacing graphic cubes

by solid cubes are exactly the CAT(0) cubical complexes. Thus, due to a result of Gromov

[22], median complexes can be characterized as simply connected cubical complexes with

triangle-free links of vertices. For more detailed information about median structures, the

interested reader can consult the survey [6] and the books [19, 24, 28, 34].

This structure theory of graphs based on two fundamental operations, viz., Cartesian

multiplication and gated amalgamation, was further elaborated for more general classes of

graphs. Some of the results for median graphs have been extended to quasi-median graphs

introduced by Mulder [28] and further studied in [8, 10, 35]: quasi-median graphs are pre-

cisely the weakly modular graphs not containing induced K2,3 and K4 − e; they can also be

characterized as the retracts of Hamming graphs (Cartesian products of complete graphs)

and can be obtained from complete graphs by Cartesian products and gated amalgamations.

More recently, Bandelt and Chepoi [3, 4, 5] presented a similar decomposition scheme of

weakly median graphs and characterized the prime graphs with respect to this decomposi-

tion: the hyperoctahedra and their subgraphs, the 5-wheel W5, and the 2-connected plane

triangulations in which all inner vertices have degrees ≥ 6. Using these results and a result

of Chastand [13, 14], they further showed that weakly median graphs are the retracts of the

Cartesian products of their primes and presented an axiomatic characterization of underlying

weakly median algebras. The extensive research on generalizations of median graphs leads

to a general framework for the study of classes of graphs, closed for Cartesian products and

gated amalgamations, proposed in [9, 13, 14].

In this paper, we continue this line of research and characterize the graphs G which are

retracts of Cartesian products of chordal graphs. We show that they are exactly the weakly

modular graphs which do not contain K2,3, W
−
4

and the k-wheels Wk for k ≥ 4 as induced

subgraphs. We establish that these graphs G are exactly the cage-amalgamation graphs as

introduced by Brešar and Tepeh Horvat [11], i.e. the graphs which can be obtained via

successive gated amalgamations from Cartesian products of chordal graphs; this solves the

open question raised in [11]. This result along with definitions and preliminary observations

is presented in the next section, while its proof is the contents of Section 3. Finally in Section

4 we show that replacing all products of cliques of G by products of Euclidean simplices,

we will obtain a polyhedral cell complex which, endowed with an intrinsic l2-metric, is a

CAT(0) space. This generalizes similar results about median graphs as retracts of hypercubes

(products of edges) and median graphs as 1-skeletons of CAT(0) cubical complexes.

2 Preliminaries and the characterizations

In this section we present all the necessary definitions and preliminary results so that at the

end we formulate two characterizations of the retracts of products of chordal graphs.

All graphs G = (V,E) occurring in this paper are undirected, connected, and without

loops or multiple edges. The distance d(u, v) between two vertices u and v is the length of

2



v wv w

u u

⇒

x

z z

x

v w v w

u u

⇒

k k k k k k k kk − 1k − 1

Figure 1: Triangle and quadrangle conditions

a shortest (u, v)-path, and the interval I(u, v) between u and v consists of all vertices on

shortest (u, v)-paths, that is, of all vertices (metrically) between u and v: I(u, v) = {x ∈

V : d(u, x) + d(x, v) = d(u, v)}. An induced subgraph of G (or the corresponding vertex

set A) is called convex if it includes the interval of G between any pair of its vertices. An

induced subgraph H of a graph G is said to be gated if for every vertex x outside H there

exists a vertex x′ (the gate of x) in H such that each vertex y of H is connected with x

by a shortest path passing through the gate x′ (i.e., x′ ∈ I(x, y)). The smallest convex (or

gated, respectively) subgraph containing a given subgraph S is the convex hull (or gated hull,

respectively) of S. A graph G = (V,E) is isometrically embeddable into a graph H = (W,F )

if there exists a mapping ϕ : V → W such that dH(ϕ(u), ϕ(v)) = dG(u, v) for all vertices

u, v ∈ V . A retraction ϕ of H is an idempotent nonexpansive mapping of H into itself, that

is, ϕ2 = ϕ : W → W with d(ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈ W. The subgraph of H

induced by the image of H under ϕ is referred to as a retract of H.

A graph G is a gated amalgam of two graphs G1 and G2 if G1 and G2 are (isomorphic to)

two intersecting gated subgraphs of G whose union is all of G. The Cartesian product [24]

G = G1� . . .�Gn of n graphs G1, . . . , Gn has the n-tuples (x1, . . . , xn) as its vertices (with

vertex xi from Gi) and an edge between two vertices x = (x1, . . . , xn) and y = (y1, . . . , yn)

if and only if, for some i, the vertices xi and yi are adjacent in Gi, and xj = yj for the

remaining j 6= i. Obviously, dG(u, v) =
∑n

i=1
dGi

(ui, vi) for any two vertices u = (u1, . . . , un)

and v = (v1, . . . , vn) of G. In regard to a decomposition scheme involving multiplication and

amalgamation, a graph with at least two vertices is said to be prime if it is neither a Cartesian

product nor a gated amalgam of smaller graphs. For instance, the only prime median graph

is the two-vertex complete graph K2 [25, 33] and the prime quasi-median graphs are exactly

the complete graphs [8, 25].

A graph G is weakly modular [2, 15] if its distance function d satisfies the following triangle

and quadrangle conditions (see Figure 1):
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Figure 2: The complete bipartite graph K2,3, the wheel W5, and the almost-wheel W−
5
.

Triangle condition: for any three vertices u, v, w with 1 = d(v,w) < d(u, v) = d(u,w) there

exists a common neighbor x of v and w such that d(u, x) = d(u, v) − 1.

Quadrangle condition: for any four vertices u, v, w, z with d(v, z) = d(w, z) = 1 and 2 =

d(v,w) ≤ d(u, v) = d(u,w) = d(u, z) − 1, there exists a common neighbor x of v and w such

that d(u, x) = d(u, v) − 1.

A weakly median graph is a weakly modular graph in which the vertex x defined in the

triangle and quadrangle conditions is always unique. Equivalently, weakly median graphs

can be defined as the weakly modular graphs in which each triplet of vertices has a unique

quasi-median. Median graphs are the bipartite weakly median graphs and, equivalently, can

be defined as the graphs in which each triplet of vertices u, v, w has a unique median vertex,

i.e., |I(u, v) ∩ I(u,w) ∩ I(v,w)| = 1. Bridged graphs constitute another important subclass

of weakly modular graphs. Recall that a graph is called bridged [17, 18, 31] if it does not

contain any isometric cycle of length greater than 3, or alternatively, if the closed neighborhood

N [A] = A ∪ {y ∈ V : y is adjacent to some x ∈ A} of every convex set A of G is convex.

Chordal graphs constitute the most famous subclass of bridged graphs. A graph is said to

be chordal if it does not contain induced cycles of length greater than 3. In this paper we

will investigate the finite graphs G which are obtained from Cartesian products of chordal

graphs via gated amalgamations. These graphs have been introduced by Brešar and Tepeh

Horvat [11] and called cage-amalgamation graphs. More precisely, the Cartesian products of

connected cutvertex-free chordal graphs were called in [11] cages, and the graphs that can be

obtained by a sequence of gated amalgamations from cages were called cage-amalgamation

graphs. It can be easily shown that cage-amalgamation graphs are weakly modular graphs

and that they do not contain induced K2,3, wheels Wk, and almost-wheels W−
k (the wheel

Wk is a graph obtained by connecting a single vertex - the central vertex - to all vertices of

the k-cycle; the almost wheel W−
k is the graph obtained from Wk by deleting a spoke (i.e., an

edge between the central vertex and a vertex of the k-cycle), see Figure 2 for examples). It

was conjectured in [11] that in fact this list of forbidden subgraphs completely characterizes

the cage-amalgamation graphs. The main result of our paper proves this conjecture (in fact,

we note that just W−
4

suffices in the list of forbidden almost wheels):

Theorem 1. For a finite graph G = (V,E), the following conditions are equivalent:
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(i) G is a retract of the Cartesian product of chordal graphs;

(ii) G is a weakly modular graph not containing induced K2,3, W−
4

and wheels Wk, for

k ≥ 4;

(iii) G is a cage-amalgamation graph, i.e., it can be obtained by successive applications of

gated amalgamations from Cartesian products of 2-connected chordal graphs and K2’s.

The proof of this theorem is provided in the following section. The most difficult part of

the proof is the implication (ii)⇒(iii), which we establish in two steps. First, we show that

if G is a weakly modular graph not containing induced K2,3, wheels Wk, and almost wheels

W−
k for k ≥ 3, then all its prime graphs are 2-connected chordal graphs or a K2. In the

second part, using the techniques developed in [3], we show that G can be obtained via gated

amalgamations from Cartesian products of prime graphs.

3 Proof of Theorem 1

The implication (i)⇒(ii) is obvious: chordal graphs are weakly modular and do not contain

induced K2,3, wheels Wk, and almost wheels W−
k (k ≥ 4). Weakly modular graphs are closed

by taking Cartesian products. If a Cartesian product of k graphs H1, . . . ,Hk contains an

induced K2,3,Wk, or W−
k , then necessarily this graph occurs in one of the factors Hi. As a

consequence, Cartesian products H = H1� · · ·�Hk of chordal graphs do not contain induced

K2,3,Wk, and W−
k . If G is a retract of H = H1� · · ·�Hk, then G is an isometric subgraph of

H and therefore G does not contain induced K2,3,Wk, and W−
k either. It remains to notice

that triangle and quadrangle conditions are preserved by Cartesian products and retractions,

thus G is a weakly modular graph, establishing that (i)⇒(ii).

The implication (iii)⇒(i) is a particular case of Theorem 1 and Corollary 4 of [4] (the

proof of Corollary 4 also follows from a more general result of Chastand [14]). By Theorem

1 of [4] any cage-amalgamation graph G embeds isometrically into the Cartesian product

H = H1� · · ·�Hk of its prime graphs. Corollary 4 of [4] then shows that there exists a

retraction from H to G, establishing (iii)⇒(i).

The proof of the implication (ii)⇒(iii) is the main contribution of this section. We start

with the lemma which shows that only W−
4

suffices in the list of forbidden almost wheels.

Lemma 1. Let G be a weakly modular graph without induced W4 and W−
4
. Then G does not

contain an induced W−
n for n > 4.

Proof. Suppose by way of contradiction that W−
n is an induced subgraph of G and suppose

that G does not contain any induced W−
k for any 3 < k < n. Let (x1, x2, . . . , xn, x1) be the

outer cycle C of W−
n and consider a vertex c adjacent to all vertices of C except x1. We apply

the triangle condition to the triple x1, x2, xn−1 and find a vertex a ∈ N(x1)∩N(x2)∩N(xn−1).

Note that if a ∼ c, then x1, x2, c, xn, a induce a W4 if a is adjacent to xn or a W−
4

otherwise.

Assume now that a 6∼ c. If n = 5, then the vertices x4, a, x2, c, x3 induce either a W4
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if x3 is adjacent to a, or a W−
4

otherwise. Now, if n ≥ 6, the subgraph induced by the

vertices a, x2, x3, . . . , xn−1, c is isomorphic to one of the forbidden induced subgraphs W−
k ,

where k < n, unless a is adjacent to x3, x4, . . . , xn−2. Thus a is adjacent to all vertices of C

except maybe xn. The vertices a, x3, c, xn−1, x4 induce a W4, if n = 6, or a W−
4

otherwise, a

contradiction.

The proof of (ii)⇒(iii) employs the fact that each finite chordal graph admits a perfect

elimination scheme which can be computed by Maximum Cardinality Search algorithm [20,

30, 32]. Running a modification of MCS on the gated hull of a triangle in a graph G satisfying

the condition (ii) of Theorem 1, we show that the level subgraphs returned by MCS are all

convex subgraphs of G. This allows us to show that the gated hull of each triangle of G is a

2-connected chordal graph, thus identifying the prime graphs of G. To show that G can be

obtained from Cartesian products of 2-connected chordal graphs and edges using successive

amalgamations, we adapt the second part of the proof of Theorem 1 of [3].

A simplicial vertex of a graph G is a vertex v such that its neighborhood N(v) = {u ∈

V (G) : u is adjacent to v} induces a complete subgraph of G. A Perfect Elimination Ordering

(PEO) of a graph G = (V,E) with n vertices is a total ordering v1, . . . , vn of its vertices such

that each vi is a simplicial vertex in the subgraphGi induced by the level set Li = {v1, . . . , vi}.

It is well known (see [20]) that a finite graph G admits a perfect elimination ordering if and

only if G is chordal. A PEO of a chordal graph G can be found (in linear time) either using

Lexicographic Breadth-First-Search (LexBFS) [30] or Maximum Cardinality Search (MCS)

introduced by Tarjan and Yannakakis [32]. MCS algorithm works as follows: the first vertex

is chosen arbitrarily, and the (i + 1)-th vertex is the unlabeled vertex that has the largest

number of already numbered neighbors, breaking ties arbitrarily. We will denote by α(v) the

number of v in a total ordering v1, . . . , vn, i.e., if α(v) = i, then v = vi. We start with two

properties of MCS in chordal graphs.

The following result is a part of folklore, and we give its short proof only to make the

paper self-contained.

Lemma 2. Let G be a chordal graph and α an ordering of vertices produced by MCS. If a

vertex z belongs to an induced path between two vertices x, y, then α(z) < max{α(x), α(y)}.

Proof. Assume without loss of generality that α(x) < α(y) and let P be an induced path

between x and y. Suppose by way of contradiction that P contains a vertex z such that

α(z) > α(y) and suppose without loss of generality that z is the vertex of P with the largest

index i = α(z). Then among all vertices of P the vertex z was labeled last. Hence z and its

neighbors z′, z′′ in P all belong to the subgraph Gi. Since z′ and z′′ are not adjacent, z is

not a simplicial vertex of Gi, contradicting the fact that on chordal graphs MCS returns a

perfect elimination ordering.

A minimal (vertex) separator of a graph G = (V,E) is a subset of vertices K of G such

that the subgraph of G induced by V − K contains at least two connected components A
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Figure 3: Illustration of the proof of Lemma 3

and B, and that K is minimal by inclusion with respect to this separating property. Then

K necessarily separates any two vertices x ∈ A and y ∈ B in the sense that all (x, y)-paths

share a vertex with K. It is well-known [20] that any minimal separator K of a chordal graph

G induces a complete subgraph of G and, moreover, K separates two vertices x and y such

that both x and y are adjacent to all vertices of K.

Lemma 3. Let K be a minimal separator of a chordal graph G, let A and B be two connected

components of G−K, and let u ∈ A be a vertex that is adjacent to all vertices of K. Let α

be an ordering of vertices produced by MCS. If α labels some vertex of A before any vertex of

B is labeled, then α labels u before any vertex of B.

Proof. Let a0 ∈ A be the vertex with the smallest index α(a0) among all vertices of A ∪ B.

Since A is connected, we can choose P := (a0, a1, . . . , ak = u) to be a shortest (and therefore

induced) path connecting the vertices a0 and u in A. Suppose by the way of contradiction

that there exists b ∈ B that was labeled before u, i.e. α(b) < α(u), and let b be the first such

vertex with respect to α. Denote by L(x) the set of labeled neighbors of a vertex x at the

moment of time when b was labeled. Let K0 := L(b). Since K separates A from b ∈ B, from

the choice of b and our assumption we conclude that K0 ⊆ K (see also Figure 3).

We assert that for each vertex ai of P , the inequality α(ai) < α(b) holds. Indeed, let t be

an arbitrary vertex in K0 and let Pt := (a0, . . . , ak, t) be the path from a0 to t, obtained from

P by adding t at the end. Since α(u) > α(b) > α(t) by the assumption and α(u) > α(a0)

from the choice of a0, by Lemma 2 the path Pt is not induced. Since P is induced, the only

possible chords on this path are the chords of the form tai, where 0 ≤ i < k. Let it be the

smallest index such that t and ait are adjacent. To avoid induced cycles of length greater than

3 in G, for all j comprised between it+1 and k, the vertices t and aj must be adjacent as well.

Since the subpath (a0, . . . , ait , t) of Pt is induced, by Lemma 2 we infer that all vertices of this

path must be labeled either before t or before a0, but in either case we have α(aj) < α(b) for

all 0 ≤ j ≤ it because α(b) > max{α(t), α(a0)}. Set q = max{it : t ∈ K0}. As a result, we

obtain the following property for the vertices of P : every vertex aj ∈ {a0, . . . , aq} was labeled

before b, i.e., α(aj) < α(b). On the other hand, all vertices aq+1, . . . , ak = u are adjacent
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to all vertices of K0, i.e., K0 ⊆ ∩k
j=q+1

L(aj). We assert that the inclusions K0 ⊆ L(aj),

j = q + 1, . . . , k, are strict. Since aq ∈ L(aq+1), this inclusion is indeed strict for aq+1. Let

ℓ > q + 1 be the smallest index for which L(aℓ) = K0. Then, as L(b) = K0 is a proper

subset of L(aℓ−1), MCS must label aℓ−1 before b, i.e., α(aℓ−1) < α(b). Hence aℓ−1 ∈ L(aℓ), a

contradiction. This implies, in particular, that the vertices aq+1, . . . , ak have been all labeled

by MCS before b, i.e., α(aj) < α(b) for q < j ≤ k. The claimed assertion is thus proven.

Now, since ak = u, this assertion implies that α(u) < α(b), as desired.

For the remainder of this section, let G be a weakly modular graph that does not contain

any of K2,3, Wk, and W−
k , k ≥ 4, as an induced subgraph. We will show that G can be

obtained by a sequence of gated amalgamations from Cartesian products of chordal graphs.

We commence by establishing a number of auxiliary results. A subgraph H of G is said to

be ∆–closed if, for every triangle having two vertices in H, the third vertex belongs to H as

well; then the smallest ∆–closed subgraph containing S is the ∆–closure of S. In order to

check whether a given subgraph of G is convex or gated the following lemma is useful. This

essentially coincides with Theorem 7 of [15] and can be proved quite easily by induction.

Lemma 4. A connected subgraph H of a weakly modular graph G is convex if and only if H

is locally convex, i.e., for every pair of nonadjacent vertices u, v of H all common neighbors

of u and v belong to H whenever at least one common neighbor does. Moreover, a convex

subgraph is gated if and only if it is ∆-closed.

Now we will prove that the gated hull H of each triangle T = {a, b, c} of G is a convex

chordal subgraph of G. For this, we perform a (partial) Maximum Cardinality Search α in G

starting with α(a) = 1, α(b) = 2, α(c) = 3 until the moment when all yet unlabeled vertices

have at most one previously labeled neighbor. Denote by H the subgraph of G induced by

all labeled vertices at the end of the procedure, and let Hi be the subgraph of H induced by

the first i labeled vertices.

Proposition 1. For any i, Hi is a chordal and convex subgraph of G.

Proof. We proceed by induction on i. Clearly, H1,H2, and H3 are all chordal and convex

subgraphs of G. By way of contradiction, assume that for some i ≥ 3, Hi is convex and

chordal but Hi+1 = Hi ∪ {vi+1} is not convex. By Lemma 4, Hi+1 is not locally convex.

Then there exists u ∈ V (Hi) such that dHi+1
(u, vi+1) = dG(u, vi+1) = 2 and two vertices

x ∈ V (Hi), v 6∈ V (Hi) which are both adjacent to u and vi+1. Now, we will prove that any

vertex in Hi, adjacent to vi+1 is also adjacent to v.

Claim 1. N(vi+1) ∩Hi ⊆ N(v).

Proof of Claim 1. Let y ∈ Hi be any neighbor of vi+1 in Hi different from x. From the

definition of the labeling α, we know that such a vertex exists. By induction assumption, Hi

is convex, hence x and y are adjacent because they have a common neighbor vi+1 not in Hi.

First suppose that the vertices u and y are adjacent. To avoid forbidden W−
4

and W4, the
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Figure 4: Different cases in the proof of Claim 1

vertex v must be adjacent to x and to y, and we are done. Thus we may assume that u and

y are not adjacent. We distinguish two cases.

Case 1: v and x are not adjacent.

If v and y are adjacent, then we obtain a forbidden induced W−
4
. Thus we may further

assume that the vertices v and y are not adjacent (see Figure 4, left). By the triangle

condition, there exists a common neighbor t of u, v, and y. Since Hi is convex and t ∈ I(u, y),

necessarily t ∈ V (Hi). To avoid an induced C4 in Hi (which is chordal by the induction

hypothesis) formed by vertices u, t, y, x, the vertex t must be adjacent to x since u is not

adjacent to y. But this leads to a contradiction, since, as v is not adjacent to x and vi+1 is

not adjacent to u, the vertices u, v, vi+1, x, t induce a W−
4

or a W4.

Case 2: v and x are adjacent.

By construction, the graph Hi is 2-connected, thus the vertices u and y can be connected

in Hi by an induced path P that avoids x. Since Hi is chordal and the path P is induced, to

avoid an induced cycle of length ≥ 4 formed by some vertices of P ∪ {x}, the vertex x must

be adjacent to all vertices of P. To avoid a forbidden wheel Wk induced by v, vi+1, x and the

vertices of P, necessarily v or vi+1 is adjacent to some vertex of P . Since P is induced and

Hi is convex, v can be adjacent only with the neighbor u′ of u in P and vi+1 can be adjacent

only with the neighbor y′ of y in P . If u′ 6= y′ (see Figure 4, center) or only one of the

edges vu′ or vi+1y
′ exists, then still we can find there an induced wheel Wk, k ≥ 4. Hence

u′ = y′ and v, vi+1 are both adjacent to u′ = y′ (see Figure 4, right). Since the induced path

P is arbitrary, we infer that each induced path in Hi between u and y is of length 2, and

all common neighbors of u and y are adjacent to both v and vi+1 . As a conclusion, the set

K = {z ∈ Hi : u, y ∈ N(z)} is a minimal (by inclusion) (u, y)-separator of the chordal graph

Hi, and thus is a clique. Both vertices v and vi+1 are adjacent to all vertices of K. Let A

be the connected component of Hi−K containing u, and let B be the connected component

of Hi −K containing y. Suppose that the first vertex of A ∪ B labeled by α belongs to A.

By Lemma 3, u was labeled before any vertex of B. Let b be the first vertex labeled by α

in B. Let L(x) denote the set of labeled vertices at the moment of time when b is labeled.

Then L(b) ⊆ K. Since, K ∪ {u} ⊆ L(v), we obtain a contradiction with the choice of MCS

to label b before v. By symmetry of v and vi+1, a similar contradiction is obtained when the
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first vertex of A ∪B labeled by α belongs to B. This concludes the proof of the claim.

Now, Claim 1 yields N(vi+1) ∩ Hi ⊆ N(v) ∩ Hi. Since u ∈ Hi is adjacent to v but not

to vi+1, we obtain a contradiction with the fact that MCS labels vi+1 before v. Hence Hi+1

is locally convex and, therefore, a convex subgraph of G. It is easy to see that Hi+1 is also

chordal. Indeed, since Hi is convex, the neighborhood of vi+1 in Hi induces a complete

subgraph, thus vi+1 is a simplicial vertex of Hi+1. On the other hand, by the induction

assumption Hi is chordal and therefore the ordering v1, . . . , vi returned by MCS is a perfect

elimination ordering of Hi. As a consequence, v1, . . . , vi, vi+1 is a perfect elimination ordering

of Hi+1, whence Hi+1 is chordal.

Proposition 2. The gated hull of T = {a, b, c} in G is the chordal subgraph H.

Proof. From Proposition 1 and the definition of H (H is the last of the subgraphs Hi) we

infer that H is a chordal convex subgraph of G. H is ∆-closed because every vertex in G−H

has at most one neighbor in H, and, since H is convex, by Lemma 4, H is a gated subgraph

of G. On the other hand, if H = Hk, then for any index i ≤ k, the vertex vi has at least two

neighbors in Hi−1, thus vi belongs to the gated hull of Hi−1. Now, if by induction assumption

Hi−1 is included in the gated hull of the triangle T = {a, b, c}, then vi belongs to this gated

hull as well, whenceHi is contained in the gated hull of T, establishing the induction assertion.

This shows that H is contained in the gated hull of T . Hence, H is indeed the gated hull of

T .

Let uv be an edge in G and, from now on, let H be the gated hull of the graph induced by

{u, v} in G. If uv does not belong to a triangle of G, then {u, v} is convex and ∆-closed, thus

{u, v} itself is a gated set of G. In this case, H is isomorphic to K2 and is clearly chordal. If

u, v lie in a triangle T , then H coincides with the gated hull of T and can obtained by the

(partial) MCS procedure as described above. By Proposition 2, H is chordal as well.

Any gated subset S of G gives rise to a partition Wa (a ∈ S) of the vertex-set of G; viz.,

the fiber Wa of a relative to S consists of all vertices x (including a itself) having a as their

gate in S. For adjacent vertices a, b of S, let Uab be the set of vertices from Wa which are

adjacent to vertices from Wb. Let also Ua = {x ∈ Wa : ∃y 6∈ Wa, xy ∈ E(G)}. By some abuse

of notation, Wa, Ua, and Uab will denote both the sets and the subgraphs induced by these

sets. An example is given in Figure 5.

Lemma 5. Each fiber Wa relative to H is gated. There exists an edge between two distinct

fibers Wa and Wb if and only if a and b are adjacent.

Proof. To show that Wa is gated, sinceWa is connected because I(u, a) ⊂ Wa for any u ∈ Wa,

by Lemma 4 it suffices to prove that Wa is locally convex and ∆-closed. Let x, y ∈ Wa have

a common neighbor z, and, for the purposes of contradiction, suppose that z 6∈ Wa. Hence

z ∈ Wb for some b ∈ V (H) different from a. Since a (resp. b) is the unique vertex that

minimizes the distance from x (resp. z) to H, we infer that d(x, a) = d(z, b) = k and
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Figure 5: The fibers Wa,Wb of the vertices a, b ∈ V (H).

analogously that d(y, a) = d(z, b) = k. We claim that a and b are adjacent. Indeed, since

z ∈ Wb, there must be a shortest path from z to a, going through b. Since d(z, b) = k and

d(z, a) = d(x, a) + 1 = k + 1, we infer d(a, b) ≤ 1 which implies that a and b are adjacent.

By using the quadrangle condition for a, x, y, and z (or, if x and y are adjacent, using

the triangle condition for a, x, and y) we conclude that x and y have a common neighbor t

such that d(a, t) = k− 1. Since t ∈ I(x, a), clearly t ∈ Wa and thus d(b, t) = k. Applying the

quadrangle condition for b, t, z, and x, we infer that t and z have a common neighbor s such

that d(b, s) = k − 1. It is easy to see that t is not adjacent to z and that s is not adjacent to

x and y. Consequently, the vertices x, y, z, s, and t induce a K2,3 if x and y are not adjacent,

or a W−
4

otherwise. This leads to a contradiction. Hence Wa is locally convex and ∆-closed,

whence each fiber Wa is gated.

Now suppose that there exists an edge uv with u ∈ Wa and v ∈ Wb. Since a is the gate of

u in H and b is the gate of v in H, we conclude that d(u, a) + d(a, b) = d(u, b) ≤ 1 + d(v, b)

and d(v, b) + d(b, a) = d(v, a) ≤ 1 + d(u, a). From these two inequalities we deduce that

d(a, b) = 1.

Lemma 6. Let a, b ∈ V (H) be two adjacent vertices. Then Uab = Ua and Uba = Ub.

Proof. If H has only two vertices, the assertion is trivial. Otherwise, since H is a 2-connected

chordal subgraph, there exists a vertex c ∈ V (H) such that a, b, c form a triangle. We first

claim that Uab = Uac. Let x ∈ Uab. Then there exists y ∈ Ub that is adjacent to x and

clearly d(a, x) = d(b, y). Since c ∈ Wc, we have d(c, x) = d(c, y) = k ≥ 2, and by the triangle

condition there exists a common neighbor z of x and y such that d(c, z) = k − 1. It is easy

to see that z ∈ Wc, which implies that x ∈ Uac. By symmetry, we infer that Uab = Uac.

Now, let x ∈ Ua. Then x ∈ Uad for some d ∈ N(a)∩H. Since H is 2-connected and chordal,

there exists a sequence of vertices b = c0, c1, . . . , cm = d of H such that a, ci, and ci+1 form a
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triangle for all i = 0, . . . m−1. By the previous reasoning, this implies that Uab = Uaci = Uad.

In particular, x ∈ Uab, showing that Uab = Ua.

By Lemma 5, we infer that any vertex x ∈ Uab = Ua has exactly one neighbor in Uba = Ub.

Indeed, since each fiber Wb is gated there cannot be a vertex not in Wb adjacent to two

vertices of Wb. This fact combined with Lemma 6 gives rise to the following natural mapping

fab : Ua −→ Ub that maps x ∈ Ua to the neighbor of x in Ub.

Lemma 7. Let a, b be two adjacent vertices of H. Then Ua and Ub are isomorphic subgraphs

of G and fab is an isomorphism between the graphs Ua and Ub.

Proof. Let x, y be two adjacent vertices of Ua, and suppose that their neighbors x′, y′ in Ub are

not adjacent. By Lemma 5 each Wa is gated, thus convex. Since Wb is convex, we infer that

dWb
(x′, y′) = 2. Let z′ ∈ Wb be a common neighbor of x′ and y′. Since d(y, z′) = d(y, x′) = 2,

by the triangle condition we infer that there exists a common neighbor u of y, x′, and z′.

Since Wb is ∆-closed, we conclude that u ∈ Wb. But then y ∈ Ua has two neighbors u and y′

in Ub, which is impossible.

Lemma 8. The subgraphs Ua are gated for all a ∈ V (H) and are mutually isomorphic. Their

union is isomorphic to H�U , where U is any of Ua.

Proof. Since H is connected, from Lemma 7, we immediately infer that the subgraphs Ua are

all mutually isomorphic. Since each fiber Wa is gated, to prove that Ua is gated it suffices to

show that Ua is locally convex and ∆-closed in the subgraph Wa.

Let x, y ∈ Ua be two vertices having a common neighbor z ∈ Ua and suppose that there is

a vertex s ∈ Wa\Ua that is adjacent to both x and y but not to z (the case when s is adjacent

to z is covered by ∆-closedness of Ua established below). Let b be a neighbor of a in H and

let x′, z′, y′ ∈ Ub be the neighbors of x, z, y, respectively. By Lemma 7 we conclude that z′ is

adjacent to x′ and y′ but x′ and y′ are not adjacent. Then d(s, x′) = d(s, y′) = d(s, z′)−1 = 2

and by the quadrangle condition we find that x′, y′ and s have a common neighbor s′. Since

Wb is convex, s
′ ∈ Ub which in turn implies that s ∈ Ua, a contradiction. This shows that Ua

is locally convex.

Let x, y ∈ Ua be two adjacent vertices and suppose that there is a vertex s ∈ Wa \ Ua

adjacent to both x and y. Let b be a neighbor of a in H and let x′, y′ ∈ Ub be the neighbors of

x, y respectively. By Lemma 7, we know that x′ is adjacent to y′. Then d(s, x′) = d(s, y′) = 2

and by the triangle condition we find that x′, y′ and s have a common neighbor s′. Since

N(s) ⊆ Ua, it implies that either x′ or y′ has two neighbors in Ua, a contradiction. This

shows that Ua is ∆-closed. Thus Ua is indeed gated.

The structure of the union of all Ua, a ∈ V (H), is now completely described. Its vertex

set is isomorphic to V (H)× V (U), where U is isomorphic to Ua for any a ∈ V (H). For any

vertices a, c ∈ V (H) and any x ∈ Ua, y ∈ Uc, x is adjacent to y if and only if either a = c

and xy ∈ E(Ua), or a and c are adjacent and y is the unique neighbor of x in Uc. Hence the

union of Ua over all a ∈ V (H) is isomorphic to H�U .
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We collected all results to conclude the proof of the implication (ii)⇒(iii) of Theorem 1.

We proceed by induction on the cardinality of G. First, if H (the gated hull of {u, v} in G) is

equal to whole graph G, then G is chordal, hence G is a cage-amalgamation graph. Therefore,

we can suppose that H is a proper subgraph of G. Now, suppose that for any a ∈ V (H), the

set Wa coincides with Ua. By Lemma 8, G is isomorphic to H�Wa = H�Ua, where H is a

chordal graph. Since Wa has smaller cardinality than G and since Wa is a weakly modular

graph without K2,3, Wk, and W−
k , k ≥ 4 (as a gated subgraph of G), by induction hypothesis

Wa is a cage-amalgamation graph. Since Cartesian products and gated amalgams commute

(see also Lemma 3.1 of [11]), G = H�Wa is a cage-amalgamation graph as well. Finally,

suppose that for some a ∈ V (H) the set Wa − Ua is nonempty. Since Ua is gated and is a

separator of G, we conclude that G is the gated amalgam of Wa and G− (Wa−Ua) along the

common gated subgraph Ua. Since both those graphs Wa and G − (Wa − Ua) have smaller

cardinality that G, they are cage-amalgamation graphs, and thus so is G. This concludes the

proofs of the implication (ii)⇒(iii) and of Theorem 1.

4 The prism complexes of cage-amalgamation graphs

The second result of this paper concerns the geometry of prism complexes derived from

cage-amalgamation graphs. Namely, we show that all complexes endowed with intrinsic l2-

metric are CAT(0) metric spaces. We continue with the definition of piecewise Euclidean cell

complexes and of CAT(0) metric spaces.

A Euclidean cell is a convex polytope in some Euclidean space. By a piecewise Euclidean

(PE) cell complex we will mean a space X formed by gluing together Euclidean cells via

isometries of their faces, together with the decomposition of X into cells. Additionally we

assume that the intersection of two cells is either empty or a single face of each of the cells. If

all cells of X are Euclidean simplexes (respectively, cubes), we will say that X is a simplicial

(respectively, cubical) cell complex. If all cells of X are Euclidean prisms, i.e., Cartesian

products of simplices, then X is called a prism complex; the precise definition is given below.

For a piecewise Euclidean complex X denote by V (X) and E(X) the vertex set and the

edge set of X, namely, the set of all 0-dimensional and 1-dimensional faces of X. The pair

(V (X), E(X)) is called the (underlying) graph or the 1-skeleton of X and is denoted by G(X).

With each simplicial or cubical PE complex X one can associate in a canonical way an

abstract simplicial or cubical complex. Recall that an abstract simplicial complex X is a

collection of sets (called simplices) such that σ ∈ X and σ′ ⊆ σ implies σ′ ∈ X. A cubical

complex X is a set of (graph) cubes of any dimensions which is closed under taking subcubes

and nonempty intersections. Simplices or cubes of the respective complexes are called faces.

The link of a vertex x in a simplicial complex X, denoted link(x,X) is simplicial complex

consisting of all simplexes σ of X such that x /∈ σ and σ together with x defines a simplex

of X. A simplicial complex X is a flag complex (or a clique complex) if any set of vertices is

included in a face of X whenever each pair of its vertices is contained in a face of X (In the

theory of hypergraphs this condition is called conformality). A flag complex can therefore
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be recovered by its underlying graph G(X): the complete subgraphs of G(X) are exactly the

simplices of X. Conversely, for a graph G one can derive a simplicial complex X(G) by taking

all complete subgraphs (simplices) as faces of the complex. Analogously, for a graph G one

can also derive a cubical complex C(G) by taking all induced subhypercubes as faces. If G is a

median graph, then C(G) consists of all hypercubes which are obtained as Cartesian products

of the prime graphs (as we noticed above, they are all two-vertex complete graphs K2). The

simplicial complexes arising as clique complexes of bridged graphs were characterized in [16]

as simply connected simplicial complexes in which the links of vertices do not contain induced

4- and 5-cycles (these complexes have been rediscovered and investigated by Januszkiewicz

and Swiatkowski [26], who called them “systolic complexes” and consider them as simplicial

complexes satisfying combinatorial nonpositive curvature property, see the definition below).

In the context of graphs G obtained via Cartesian products and gated amalgamations

from prime graphs containing cliques of arbitrary size, it is natural to associate to each prime

graph Gi of G a PE simplicial complex X(Gi) obtained by replacing each simplex of the

clique complex of Gi by an Euclidean simplex. Then the prism complex of G is the PE

cell complex H(G) obtained by taking all Hamming subgraphs of G (Cartesian products of

complete subgraphs of prime graphs) and replacing them by respective Euclidean prisms.

Then each face τ of H(G) is the Cartesian product τ = σ1×· · ·×σk, where σi is a simplex of

X(Gi), i = 1, . . . , k. This is consistent with the standard definition of the product of two (or

more) polytopes given on pp. 9-10 of the book of Ziegler [36]: given two polytopes P ⊂ R
n

and Q ⊂ R
m, the product of P and Q is the set P ×Q = {(x, y) : x ∈ P, y ∈ Q}. P ×Q is a

polytope of dimension dim(P )+dim(Q), whose nonempty faces are the products of nonempty

faces of P and nonempty faces of Q. It is well known (see, for example p.110 of [36]) that

the product σ1 × · · · × σk of Euclidean simplices σ1, . . . , σk is a convex polyhedron τ, called

a prism. Notice that if G is a median graph (or more generally, a triangle-free graph), then

the prism complex of G coincides with the cubical complex C(G) defined before.

Let (X, d) be a metric space. The interval between two points x, y of X is the set

I(x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}; for example, in Euclidean spaces, the interval

I(x, y) is the closed line segment having x and y as its endpoints. The space (X, d) is called

Menger-convex if for any two distinct points x, y ∈ X there exists a point z ∈ I(x, y) different

from x, y. A geodesic joining two points x and y from X is the image of a (continuous) map γ

from a line segment [0, 1] ⊂ R to X such that γ(0) = x, γ(1) = y and d(γ(t), γ(t′)) = |t−t′| for

all t, t′ ∈ [0, 1]. The space (X, d) is said to be geodesic if every pair of points x, y ∈ X is joined

by a geodesic (which is necessarily included in I(x, y)) [12]. Every complete Menger-convex

metric space is geodesic [12]. Any finite PE cell complex X can be endowed with an intrinsic

l2-metric [12], transforming X into a complete geodesic space. Suppose that inside every cell

of X the distance is measured according to the Euclidean l2-metric. The intrinsic l2-metric

d2 of X is defined by assuming that the distance between two points x, y ∈ X lying in different

cells equals to the infimum of the lengths of the paths joining them. Here a path in X from x

to y is a sequence P of points x = x0, x1 . . . xm−1, xm = y such that for each i = 0, . . . ,m− 1

there exists a cell τi containing xi and xi+1; the length of P is l(P ) =
∑m−1

i=0
d(xi, xi+1), where
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d(xi, xi+1) is computed inside τi according to the Euclidean l2-metric.

Now, we will briefly review the definitions and some characterizations of CAT(0) metric

spaces (geodesic metric spaces of global nonpositive curvature). This theory originates from

the classical papers of Alexandrov, Busemann, Bruhat, Cartan, Hadamard, Tits, Toponogov

and others. In most generality it has been defined in the seminal paper of Gromov [22].

CAT(0) spaces represent a far-reaching common generalization of Euclidean spaces, classical

real-hyperbolic spaces (which are spaces with negative curvature), and Riemannian manifolds

of strictly negative sectional curvature. CAT(0) spaces play a vital role in modern combi-

natorial group theory, where various versions of hyperbolicity are related to group-theoretic

properties [21, 22]; many arguments in this area have a strong metric graph-theoretic flavor.

For a survey in more depth and background, the reader should refer to the book of Bridson

and Haefliger [12], whose terminology we follow.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three distinct

points in X (the vertices of ∆) and a geodesic between each pair of vertices (the sides of ∆).

A comparison triangle for ∆(x1, x2, x3) is a triangle ∆(x′1, x
′
2, x

′
3) in the Euclidean plane E

2

such that dE2(x′i, x
′
j) = d(xi, xj) for i, j ∈ {1, 2, 3}. A geodesic metric space (X, d) is defined

to be a CAT(0) space [22] if all geodesic triangles ∆(x1, x2, x3) of X satisfy the comparison

axiom of Cartan–Alexandrov–Toponogov (this explains the acronym CAT(0)) :

If y is a point on the geodesic between x1 and x2 in the triangle ∆(x1, x2, x3) and y′ is the

unique point on the line segment [x′1, x
′
2] of the comparison triangle ∆(x′1, x

′
2, x

′
3) such that

dE2(x′i, y
′) = d(xi, y) for i = 1, 2, then d(x3, y) ≤ dE2(x′3, y

′).

This simple axiom turns out to be very powerful, because CAT(0) spaces have many properties

and can be characterized in several natural ways. For example, a geodesic metric space (X, d)

is CAT(0) if and only if the distance function f(t) = d(α(t), β(t)) is convex for any geodesics

α and β. From this property one can immediately conclude that in CAT(0) spaces (like

in bridged graphs) the r–neighborhoods Br(A) = {x : d(x,A) ≤ r} of convex sets A are

convex. The convexity of balls yields that CAT(0) spaces are contractible. The convexity of

the distance function also implies that CAT(0) spaces do not contain isometrically embedded

cycles. Any two points of a CAT(0) space can be joined by a unique geodesic; furthermore,

a PE complex X is CAT(0) if and only if any two points of X can be joined in X by a

unique geodesic. Other characterizations (in particular, via links) and properties of CAT(0)

PE complexes can be found in the book [12]. In the case of cube complexes, Gromov [22]

presented a nice combinatorial characterization of CAT(0) condition: a cube complex X is

CAT(0) if and only if X is simply connected and the links of vertices are flag simplicial

complexes.

Now, we formulate the second result of this paper:

Theorem 2. If G is a cage-amalgamation graph, then any prism complex H(G) derived from

G and equipped with the intrinsic l2-metric d2 is a CAT(0) metric space.

It was already noticed in [16, 23] that clique complexes of chordal graphs lead to CAT(0)
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simplicial complexes. Gromov called them (p.121 of [23]) tree-like polyhedra and also noticed

to be CAT(0). In the rest of this section we prove Theorem 2.

The proof of Theorem 2 uses the decomposition scheme from Theorem 1 and runs in

three steps: first we show that a PE simplicial complex derived from the clique complex of a

chordal graph is CAT(0), then we establish that the prism complex of a Cartesian product

of chordal graphs is CAT(0) as well, and finally we show that gated amalgams of cage-

amalgamation graphs preserve the CAT(0) property of their prism complexes. The proof

employs the following known property of CAT(0) spaces due to Reshetnyak and which is a

particular case of the Basic Gluing Theorem 11.1 of [12]:

Gluing theorem: If (X1, d1) and (X2, d2) are two CAT(0) spaces, Ai is a convex non-empty

subset of (Xi, di), i = 1, 2, and there exists an isometry ϕ between A1 and A2, then the metric

space (X1 ∪X2, d) obtained by gluing X1 and X2 along the sets A1 and A2 is CAT(0).

The metric space (X1 ∪X2, d) is obtained by identifying A1 and A2 according to ϕ and d

is defined to be d1 on X1, d2 on X2, and d(x, y) = inf{d1(x, a) + d2(a, y) : a ∈ A2 = ϕ(A1)}

if x ∈ A1 and y ∈ A2.

We first recall the proof of Corollary 8.4 of [16] showing that any simplicial complex X(G)

derived from the the clique complex of a finite chordal graph G is CAT(0). We recall this

short proof here because the proof of Theorem 2 is based on the same principle. We proceed

by induction on the number of vertices of G. Let x be a simplicial vertex of G. Then x belongs

to the unique maximal by inclusion simplex σ of X(G) induced by x and all its neighbors in

G. Consequently, X(G) can be obtained by gluing σ and X′, where X′ is the subcomplex of

X(G) spanned by the facet σ′ of σ not containing x (i.e., by link(x,X(G)) and the maximal

simplexes of X(G) distinct from σ (in fact, X′ is a simplicial complex derived from the clique

complex of the chordal graph G′ := G− {x}). Since the gluing is performed along a convex

set σ′ of both complexes σ and X′, from the result of Reshetnyak mentioned above we obtain

that X(G) is CAT(0) if and only if σ and X′ are CAT(0). Since X′ = X(G′) and the graph G′

is chordal, by the induction assumption, X′ is CAT(0), and we are done. In view of perfect

elimination schemes of chordal graphs G, X(G) can be written as a directed union
⋃n

i=1
Xi

where Xi = Xi−1 ∪ σi and the simplex σi meets Xi−1 over a single face σ′
i.

Now suppose that G is a cage-amalgamation graph whose prime graphs are the chordal

graphsG1, . . . , Gm. Each of these graphs occurs as a gated subgraph ofG. Let x be a simplicial

vertex of G1. Denote by σx the unique maximal by inclusion simplex of X(G1) induced by

x and all its neighbors in G1 and let σ′
x be the facet of σx not containing the vertex x. For

each vertex a of G1, denote by Wa its fiber in G relative to some copy of the gated subgraph

G1. From Lemma 5, each such fiber Wa is gated. From Lemmas 7 and 8 we conclude that

the boundaries Ua of these fibers Wa are isomorphic gated subgraphs of G. Denote by Hσx

(resp. Hσ′
x
) the prism complexes of the subgraphs of G induced by the unions

⋃
a∈σx

Ua

(resp.
⋃

a∈σ′
x
Ua). Notice that Hσ′

x
is a subcomplex of Hσx and that both Hσ′

x
and Hσx are

subcomplexes of H(G).
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Figure 6: To the proof of Lemma 9

Lemma 9. If p, q are two points of Hσ′
x
, then any geodesic connecting p and q in Hσx is

contained in Hσ′
x
.

Proof. Suppose by way of contradiction that such a geodesic γ(p, q) contains a point in the

set Hσx −Hσ′
x
(see Figure 6 for an illustration). Let π1, . . . , πk be the maximal by inclusion

prisms of Hσx intersected by γ(p, q) labeled in order in which they are traversed by γ(p, q).

Let π′
i be the facet of πi in Hσ′

x
, i.e., π′

i = πi ∩Hσ′
x
. The intersection of any two consecutive

prisms πi and πi+1 is a face τi of each of them. Let τ ′i denote the facet of τi in π′
i (and

π′
i+1). Let ri ∈ γ(p, q) ∩ τi. The orthogonal projection of each prism πi on its facet π′

i is a

non-expansive map fi. Moreover, each point ri is mapped by fi and fi+1 to the same point

r′i belonging to τ ′i . As a result, the length of the path γ′(p, q) between p = r′0 and q = r′k
consisting of line segments connecting the consecutive points p, r′1, r

′
2, . . . , r

′
k−1

, q is at most

the length of γ(p, q). Since p, q ∈ Hσ′
x
and γ(p, q) passes via a point of Hσx −Hσ′

x
, at least

one of the orthogonal projections r′ir
′
i+1

must be strictly smaller than the length of γ(ri, ri+1)

(the portion of γ(p, q) comprised between ri and ri+1), thus γ′(p, q) is strictly shorter than

γ(p, q), completing the proof of the lemma.

Now, by induction on the number of vertices of G, we will establish that if G is a Cartesian

product of chordal graphs G1, . . . , Gm, thenH(G) is CAT(0). This is obviously true if each Gi

is a clique. So, suppose without loss of generality that G1 is not a clique. Let x be a simplicial

vertex of G1. From Lemma 9 we know that the subcomplex Hσ′
x
is convex (with respect to

the d2-metric) in Hσx . Let G′
1 := G1 − {x} and G′ := G′

1�G2� . . .�Gm. By induction

assumption, Hσx and H(G′) are CAT(0) spaces. Since H(G) is obtained by gluing Hσx and
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H(G′) along Hσ′
x
and Hσ′

x
is convex in Hσx , to apply the basic gluing theorem it suffices

to show that Hσ′
x
is convex in H(G′). This is obviously true when G′

1 = σ′
x. Otherwise, G′

1

contains a simplicial vertex y /∈ σ′
x. Let G

′′ = G′
1 −{y} and assume by induction assumption

that Hσ′
x
is convex in H(G′′). Therefore, if Hσ′

x
is not convex in H(G′

1), then we can find two

points p, q ∈ Hσ′
x
and a geodesic γ(p, q) between p and q in H(G′

1) containing at least one

point z ∈ H(G′
1)−H(G′′) = Hσy −Hσ′

y
. Then γ(p, q) contains two points p′, q′ ∈ Hσ′

y
such

that z belongs to the portion γ(p′, q′) of γ(p, q) comprised between p′ and q′. Since γ(p, q) is

a geodesic, necessarily γ(p′, q′) is a geodesic between p′ and q′. This however contradicts the

convexity of Hσ′
y
in Hσy established in Lemma 9. This shows that Hσ′

x
is convex in H(G′)

as well, and therefore we can apply the gluing theorem.

Finally, suppose that a graph G is a gated amalgam of two cage-amalgamation graphs

G′ and G′′ along a gated subgraph G0. Suppose by induction assumption that H(G′) and

H(G′′) are CAT(0) spaces. To use the gluing theorem again, it suffices to show that H(G0)

is convex (with respect to the intrinsic d2-metric) in both H(G′) and H(G′′), say in H(G′).

Lemma 10. If G0 is a gated subgraph of a cage-amalgamation graph G′, then H(G0) is

convex in H(G′).

Proof. We proceed by induction on the number of vertices of G′. Since G0 is different from G′,

there exists a vertex y of G0 that has a neighbor y′ ∈ V (G′)\V (G0). Let H be the gated hull

of the edge yy′. Consider the partition of G′ into fibers Wa with respect to the vertices a of H.

Clearly, the gated subgraph G0 is completely contained in the fiber Wy of y. By Proposition

2, H is either a 2-connected chordal graph or an edge. In both cases, H contains a simplicial

vertex x different from y. Denote by σx the simplex defined by the unique maximal complete

subgraph of H containing x and let σ′
x be the facet of σx not containing the vertex x. Let

D be the subgraph of G′ induced by all vertices not belonging to the fiber Wx. Since x is a

simplicial vertex of H, it can be easily seen that D is an isometric (in fact a convex) subgraph

of G′. D is a cage-amalgamation graph: its prime graphs are the same as those of G′ with
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the single exception that H is replaced by H − {x}. Moreover, G0 is a gated subgraph of

D. Thus, by induction assumption, we can suppose that H(G0) is a convex subcomplex of

H(D). Now, suppose by way of contradiction that H(G0) is not convex in H(G′). Then there

exist two points p, q ∈ H(G0) such that the geodesic γ(p, q) connecting p and q in H(G′) does

not belong to H(G0). Since H(G0) is convex in H(D), γ(p, q) contains at least one point z

not belonging to H(D). Then γ(p, q) necessarily contains two points p′, q′ ∈ Hσ′
x
(where Hσ′

x

is defined as before) such that z belongs to the part γ(p′, q′) of γ(p, q) comprised between

the points p′ and q′. Since γ(p′, q′) is a part of a geodesic, γ(p′, q′) is a geodesic itself. If

γ(p′, q′) (and therefore z) is contained in the subcomplex Hσx of H(Wx), then we obtain a

contradiction with Lemma 9 asserting the convexity of Hσ′
x
in Hσx . Thus we can suppose

that γ(p′, q′) contains some points (say z itself) in H(Wx) −Hσx . Then necessarily γ(p′, q′)

contains two points p′′, q′′ ∈ H(Ux) such that z belongs to the portion γ(p′′, q′′) between p′′

and q′′. Again, γ(p′′, q′′) is a geodesic as a part of a larger geodesic. But this means that

H(Ux) is not a convex subcomplex of H(Wx), contrary to the fact that Ux is a gated subgraph

of a cage-amalgamation graph Wx having less vertices than the graph G′. This contradiction

establishes Lemma 10.

From Lemma 10 we conclude that H(G0) is convex in H(G′) and H(G′′), therefore the

gated amalgamation of G′ and G′′ along G0 translates into gluing two CAT(0) spaces H(G′)

and H(G′′) along a convex subspace H(G0), thus H(G) is CAT(0) by the gluing theorem.

This concludes the proof of Theorem 2.

We conclude the paper with two open questions:

Question 1. Is it true that the graphs G which can be obtained by successive gated amal-

gams from Cartesian products of bridged graphs are exactly the weakly modular graphs not

containing K2,3, the wheels W4 and W5, and the almost wheels W−
k for k ≥ 4?

Question 2. Characterize the triangle-square complexes (i.e., the 2-dimensional complexes

obtained by taking all graph triangles C3 and squares C4 as faces) of cage-amalgamation

graphs and, more generally, of graphs obtained by gated amalgams from Cartesian products

of bridged graphs (i.e, graphs from Question 1)? In particular, is it true that those complexes

are exactly the simply connected triangle-square complexes whose underlying graphs do not

contain K2,3, the wheels Wk, and the almost wheels W−
k for k ≥ 4 in the cage-amalgamation

case and the simply connected triangle-square complexes whose underlying graphs do not

contain K2,3, the wheels W4,W5, and the almost wheels W−
k for k ≥ 4 in the second case? In

other words, is it possible to replace the global metric condition of “weak modularity” by a

topological condition of “simple connectivity”?
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