Packing of Rigid Spanning Subgraphs and Spanning Trees

Joseph Cheriyan
Olivier Durand de Gevigney
Zoltán Szigeti *

September 14, 2012

Abstract

We prove that every $(6 k+2 \ell, 2 k)$-connected simple graph contains k rigid and ℓ connected edge-disjoint spanning subgraphs. This implies a theorem of Jackson and Jordán [4] and a theorem of Jordán [6] on packing of rigid spanning subgraphs. Both these results are generalizations of the classical result of Lovász and Yemini [9] saying that every 6 -connected graph is rigid for which our approach provides a transparent proof. Our result also gives two improved upper bounds on the connectivity of graphs that have interesting properties: (1) every 8 -connected graph packs a spanning tree and a 2 -connected spanning subgraph; (2) every 14 -connected graph has a 2 -connected orientation.

1 Definitions

Let $G=(V, E)$ be a graph. We will use the following connectivity concepts. G is called connected if for every pair u, v of vertices there is a path from u to v in G. G is called k-edge-connected if $G-F$ is connected for all $F \subseteq E$ with $|F| \leq k-1 . G$ is called k-connected if $|V|>k$ and $G-X$ is connected for all $X \subset V$ with $|X| \leq k-1$. For a pair of positive integers $(p, q), G$ is called $(\boldsymbol{p}, \boldsymbol{q})$-connected if $G-X$ is $(p-q|X|)$-edge-connected for all $X \subset V$. By Menger theorem, G is (p, q)-connected if and only if for every pair of disjoint subsets X, Y of V such that $Y \neq \emptyset, X \cup Y \neq V$,

$$
\begin{equation*}
d_{G-X}(Y) \geq p-q|X| . \tag{1}
\end{equation*}
$$

For a better understanding we mention that G is $(6,2)$-connected if G is 6 -edgeconnected, $G-v$ is 4-edge-connected for all $v \in V$ and $G-u-v$ is 2-edgeconnected for all $u, v \in V$. It follows from the definitions that k-edge-connectivity is equivalent to (k, k)-connectivity. Moreover, since loops and parallel edges do not play any role in vertex connectivity, every k-connected graph contains a $(k, 1)$-connected simple spanning subgraph. Note also that $(k, 1)$-connectivity implies (k, q)-connectivity for all $q \geq 1$. (Remark that this connectivity concept

[^0]is (very slightly) different from the one introduced by Kaneko and Ota [7] since p is not required to be a multiple of q.)

Let $D=(V, A)$ be a directed graph. D is called strongly connected if for every ordered pair $(u, v) \in V \times V$ of vertices there is a directed path from u to v in D. D is called k-arc-connected if $G-F$ is strongly connected for all $F \subseteq A$ with $|F| \leq k-1 . D$ is called k-connected if $|V|>k$ and $G-X$ is strongly connected for all $X \subset V$ with $|X| \leq k-1$.

For a set X of vertices and a set F of edges, denote $\boldsymbol{G}_{\boldsymbol{F}}$ the subgraph of G on vertex set V and edge set F, that is $G_{F}=(V, F)$ and $\boldsymbol{E}(\boldsymbol{X})$ the set of edges of G induced by X. Denote $\mathcal{R}(\boldsymbol{G})$ the rigidity matroid of G on ground-set E with rank function $\boldsymbol{r}_{\mathcal{R}}$ (for a definition we refer the reader to [9]). For $F \subseteq E$, by a theorem of Lovász and Yemini [9],

$$
\begin{equation*}
r_{\mathcal{R}}(F)=\min \sum_{X \in \mathcal{H}}(2|X|-3), \tag{2}
\end{equation*}
$$

where the minimum is taken over all collections \mathcal{H} of subsets of V such that $\{E(X) \cap F, X \in \mathcal{H}\}$ partitions F.

Remark 1. If \mathcal{H} achieves the minimum in (2), then each $X \in \mathcal{H}$ induces a connected subgraph of G_{F}.

We will say that G is rigid if $r_{\mathcal{R}}(E)=2|V|-3$.

2 Results

Lovász and Yemini [9] proved the following sufficient condition for a graph to be rigid.

Theorem 1 (Lovász and Yemini [9]). Every 6-connected graph is rigid.
Jackson and Jordán [4] proved a sharpenning of Theorem 1.
Theorem 2 (Jackson and Jordán [4]). Every (6,2)-connected simple graph is rigid.

Jordán [6] generalized Theorem 1 and gave a sufficient condition for the existence of a packing of rigid spanning subgraphs.

Theorem 3 (Jordán [6]). Let $k \geq 1$ be an integer. Every $6 k$-connected graph contains k edge-disjoint rigid spanning subgraphs.

The main result of this paper contains a common generalization of Theorems 2 and 3. It provides a sufficient condition to have a packing of rigid spanning subgraphs and spanning trees.

Theorem 4. Let $k \geq 1$ and $\ell \geq 0$ be integers. Every $(6 k+2 \ell, 2 k)$-connected simple graph contains k rigid spanning subgraphs and ℓ spanning trees pairwise edge-disjoint.

Figure 1: A $(6,3)$-connected non-rigid graph $G=(V, E)$. The collection \mathcal{H} of the four grey vertex-sets partitions E. Hence, by $(2), \mathcal{R}_{G}(E) \leq \sum_{X \in \mathcal{H}}(2|X|-3)=$ $4(2 \times 8-3)=52<53=2 \times 28-3=2|V|-3$. Thus G is not rigid. The reader can easily check that G is $(6,3)$-connected.

Note that in Theorem 2, the connectivity condition is the best possible since there exist non-rigid (5, 2)-connected graphs (see [9]) and non-rigid (6,3)connected graphs, for an example see Figure 1.

Let us see some corollaries of the previous results. Theorem 4 applied for $k=1$ and $\ell=0$ provides Theorem 2. Since $6 k$-connectivity implies ($6 k, 2 k$)connectivity of a simple spanning subgraph, Theorem 4 implies Theorem 3.

One can easily derive from the rank function of $\mathcal{R}(G)$ that rigid graphs with at least 3 vertices are 2 -connected (see Lemma 2.6 in [5]). Thus, Theorem 4 gives the following corollary.

Corollary 1. Let $k \geq 1$ and $\ell \geq 0$ be integers. Every $(6 k+2 \ell, 2 k)$-connected simple graph contains $k 2$-connected and ℓ connected edge-disjoint spanning subgraphs.

Corollary 1 allows us to improve two results of Jordán. The first one deals with the following conjecture of Kriesell, see in [6].

Conjecture 1 (Kriesell). For every positive integer λ there exists a (smallest) $f(\lambda)$ such that every $f(\lambda)$-connected graph G contains a spanning tree T for which $G-E(T)$ is λ-connected.

As Jordán pointed out in [6], Theorem 3 answers this conjecture for $\lambda=2$ by showing that $f(2) \leq 12$. Corollary 1 applied for $k=1$ and $\ell=1$ directly implies that $f(2) \leq 8$.
Corollary 2. Every 8 -connected graph G contains a spanning tree T such that $G-E(T)$ is 2-connected.

The other improvement deals with the following conjecture of Thomassen [10].
Conjecture 2 (Thomassen [10]). For every positive integer λ there exists a (smallest) $g(\lambda)$ such that every $g(\lambda)$-connected graph G has a λ-connected orientation.

By applying Theorem 3 and an orientation result of Berg and Jordán [1], Jordán proved in [6] the conjecture for $\lambda=2$ by showing that $g(2) \leq 18$. Corollary 1 allows us to prove a general result that implies $g(2) \leq 14$. For this purpose, we use a result of Király and Szigeti [8].

Theorem 5 (Király and Szigeti [8]). An Eulerian graph $G=(V, E)$ has an Eulerian orientation D such that $D-v$ is k-arc-connected for all $v \in V$ if and only if $G-v$ is $2 k$-edge-connected for all $v \in V$.

Corollary 1 and Theorem 5 imply the following corollary which gives the claimed bound for $k=1$.

Corollary 3. Every simple $(12 k+2,2 k)$-connected graph G has an orientation D such that $D-v$ is k-arc-connected for all $v \in V$.

Proof. Let $G=(V, E)$ be a simple $(12 k+2,2 k)$-connected graph. By Theorem 5 it suffices to prove that G contains an Eulerian spanning subgraph H such that $H-v$ is $2 k$-edge-connected for all $v \in V$. By Corollary $1, G$ contains $2 k$ 2-connected spanning subgraphs $H_{i}=\left(V, E_{i}\right), i=1, \ldots, 2 k$ and a spanning tree F pairwise edge-disjoint. Define $H^{\prime}=\left(V, \cup_{i=1}^{2 k} E_{i}\right)$. For all $i=1, \ldots, 2 k$, since H_{i} is 2-connected, $H_{i}-v$ is connected; hence $H^{\prime}-v$ is $2 k$-edge-connected for all $v \in V$. Denote T the set of vertices of odd degree in H^{\prime}. We say that F^{\prime} is a \boldsymbol{T}-join if the set of odd degree vertices of $G_{F^{\prime}}$ coincides with T. It is well-known that the connected graph F contains a T-join. Thus adding the edges of this T-join to H^{\prime} provides the required spanning subgraph of G.

Finally we mention that the following conjecture of Frank, that would give a necessary and sufficient condition for a graph to have a 2 -connected orientation, would imply that $g(2) \leq 4$.

Conjecture 3 (Frank [3]). A graph has a 2-connected orientation if and only if it is $(4,2)$-connected.

3 Proofs

To prove Theorem 4 we need to introduce two other matroids on the edge set E of G. Denote $\mathcal{C}(\boldsymbol{G})$ the circuit matroid of G on ground-set E with rank function $\boldsymbol{r}_{\mathcal{C}}$ given by (3). Let n be the number of vertices in G, that is $\boldsymbol{n}=|\boldsymbol{V}|$. For $F \subseteq E$, denote $\boldsymbol{c}\left(\boldsymbol{G}_{\boldsymbol{F}}\right)$ the number of connected components of G_{F}, it is well known that,

$$
\begin{equation*}
r_{\mathcal{C}}(F)=n-c\left(G_{F}\right) \tag{3}
\end{equation*}
$$

To have k rigid spanning subgraphs and ℓ spanning trees pairwise edgedisjoint in G, we must find k basis in $\mathcal{R}(G)$ and ℓ basis in $\mathcal{C}(G)$ pairwise disjoint. To do that we will need the following matroid. For $k \geq 1$ and $\ell \geq 0$, define $\boldsymbol{\mathcal { M }}_{\boldsymbol{k}, \ell}(\boldsymbol{G})$ as the matroid on ground-set E, obtained by taking the matroid union of k copies of the rigidity matroid $\mathcal{R}(G)$ and ℓ copies of the circuit matroid $\mathcal{C}(G)$. Let $\boldsymbol{r}_{\mathcal{M}_{\boldsymbol{k}, \ell}}$ be the rank function of $\mathcal{M}_{k, \ell}(G)$. By a theorem of Edmonds [2], for the rank of matroid unions,

$$
\begin{equation*}
r_{\mathcal{M}_{k, \ell}}(E)=\min _{F \subseteq E} k r_{\mathcal{R}}(F)+\ell r_{\mathcal{C}}(F)+|E \backslash F| \tag{4}
\end{equation*}
$$

In [6], Jordán used the matroid $\mathcal{M}_{k, 0}(G)$ to prove Theorem 3 and pointed out that using $\mathcal{M}_{k, \ell}(G)$ one could prove a theorem on packing of rigid spanning subgraphs and spanning trees. We tried to fulfill this gap by following the proof of [6] but we failed. To achieve this aim we had to find a new proof technique. Let us first demonstrate this technique by giving a transparent proof for Theorems 1 and 2.

Proof of Theorem 1. By (2), there exists a collection \mathcal{G} of subsets of V such that $\{E(X), X \in \mathcal{G}\}$ partitions E and $r_{\mathcal{R}}(E)=\sum_{X \in \mathcal{G}}(2|X|-3)$. If $V \in \mathcal{G}$ then $r_{\mathcal{R}}(E) \geq 2|V|-3$ hence G is rigid. So in the following we may assume that $V \notin \mathcal{G}$.

Let $\mathcal{H}=\{X \in \mathcal{G}:|X| \geq 3\}$ and $F=\bigcup_{X \in \mathcal{H}} E(X)$. We define, for $X \in \mathcal{H}$, the border of X as $X_{B}=X \cap\left(\cup_{Y \in \mathcal{H}-X} Y\right)$ and the proper part of X as $X_{I}=$ $X \backslash X_{B}$ and $\mathcal{H}^{\prime}=\left\{X \in \mathcal{H}: X_{I} \neq \emptyset\right\}$.

Since every edge of F is induced by an element of \mathcal{H}, for $X \in \mathcal{H}^{\prime}$, by definition of X_{I}, no edge of F contributes to $d_{G-X_{B}}\left(X_{I}\right)$; and for a vertex $v \in V-V(\mathcal{H})$, no edge of F contributes to $d_{G}(v)$. Thus, since for $X \in \mathcal{H}^{\prime}$, $X_{I} \neq \emptyset$ and $X_{I} \cup X_{B}=X \neq V$, by 6 -connectivity of G, we have $\mid E \backslash$ $F \left\lvert\, \geq \frac{1}{2}\left(\sum_{X \in \mathcal{H}^{\prime}} d_{G-X_{B}}\left(X_{I}\right)+\sum_{v \in V-V(\mathcal{H})} d_{G}(v)\right) \geq \frac{1}{2}\left(\sum_{X \in \mathcal{H}^{\prime}}\left(6-\left|X_{B}\right|\right)+\right.\right.$ $\left.\sum_{v \in V-V(\mathcal{H})} 6\right) \geq 3\left|\mathcal{H}^{\prime}\right|-\sum_{X \in \mathcal{H}^{\prime}}\left|X_{B}\right|+3(|V|-|V(\mathcal{H})|)$.

Since for $X \in \mathcal{H} \backslash \mathcal{H}^{\prime},\left|X_{B}\right|=|X| \geq 3$, we have $\sum_{X \in \mathcal{H}}(2|X|-3)=$ $\sum_{X \in \mathcal{H}} 2|X|-3|\mathcal{H}|+3\left|\mathcal{H}^{\prime}\right|-3\left|\mathcal{H}^{\prime}\right| \geq \sum_{X \in \mathcal{H}} 2|X|-\sum_{X \in \mathcal{H} \backslash \mathcal{H}^{\prime}}\left|X_{B}\right|-3\left|\mathcal{H}^{\prime}\right|$.

Since G is simple, by Remark 1 every $X \in \mathcal{G}$ of size 2 induces exactly one edge. Hence, by the above inequalities, we have $\sum_{X \in \mathcal{G}}(2|X|-3)=\sum_{X \in \mathcal{H}}(2|X|-$ 3) $+|E \backslash F| \geq \sum_{X \in \mathcal{H}} 2|X|-\sum_{X \in \mathcal{H}}\left|X_{B}\right|+3(|V|-|V(\mathcal{H})|)=\left(\sum_{X \in \mathcal{H}} 2\left|X_{I}\right|+\right.$ $\left.\sum_{X \in \mathcal{H}}\left|X_{B}\right|-2|V(\mathcal{H})|\right)+(|V|-|V(\mathcal{H})|)+2|V| \geq 2|V|$.

To see the last inequality, let $v \in V(\mathcal{H})$. Then $v \in V$ and hence $n-|V(\mathcal{H})| \geq$ 0. If v belongs to exactly one $X^{\prime} \in \mathcal{H}$, then $v \in X_{I}^{\prime}$; so v contributes 2 in $\sum_{X \in \mathcal{H}} 2\left|X_{I}\right|$. If v belongs to at least two $X^{\prime}, X^{\prime \prime} \in \mathcal{H}$, then $v \in X_{B}^{\prime}$ and $v \in X_{B}^{\prime \prime}$; so v contributes at least 2 in $\sum_{X \in \mathcal{H}}\left|X_{B}\right|$ and hence $\sum_{X \in \mathcal{H}} 2\left|X_{I}\right|+$ $\sum_{X \in \mathcal{H}}\left|X_{B}\right|-2|V(\mathcal{H})| \geq 0$.

Hence $2|V|-3 \geq r_{\mathcal{R}}(E) \geq 2|V|$, a contradiction.
Proof of Theorem 2. Note that in the lower bound on $|E \backslash F|, d_{G-X_{B}}\left(X_{I}\right) \geq$ $6-\left|X_{B}\right|$ can be replaced by $d_{G-X_{B}}\left(X_{I}\right) \geq 6-2\left|X_{B}\right|$, and the same proof works. This means that instead of 6 -connectivity, we used in fact $(6,2)$-connectivity.

Proof of Theorem 4. Suppose that there exist integers k, ℓ and a graph $G=$ (V, E) contradicting the theorem. We use the matroid $\mathcal{M}_{k, \ell}$ defined above. Choose F a smallest-size set of edges that minimizes the right hand side of (4). By (2), we can define \mathcal{H} a collection of subsets of V such that $\{E(X) \cap F, X \in \mathcal{H}\}$ partitions F and $r_{\mathcal{R}}(F)=\sum_{X \in \mathcal{H}}(2|X|-3)$. Since G is a counterexample and by (2) and (3),

$$
\begin{equation*}
k(2 n-3)+\ell(n-1)>r_{\mathcal{M}_{k, \ell}}(E)=k \sum_{X \in \mathcal{H}}(2|X|-3)+\ell\left(n-c\left(G_{F}\right)\right)+|E \backslash F| . \tag{5}
\end{equation*}
$$

By $k \geq 1, G$ is connected, thus, by (5), $V \notin \mathcal{H}$. Recall the notations, for $X \in \mathcal{H}$, $X_{B}=X \cap\left(\cup_{Y \in \mathcal{H}-X} Y\right)$ and $X_{I}=X \backslash X_{B}$ and the definition $\mathcal{H}^{\prime}=\{X \in$
$\left.\mathcal{H}: X_{I} \neq \emptyset\right\}$. Denote \mathcal{K} the set of connected components of G_{F} intersecting no set of \mathcal{H}^{\prime}. By Remark 1, for $X \in \mathcal{H}^{\prime}, X$ induces a connected subgraph of G_{F}, thus a connected component of G_{F} intersecting $X \in \mathcal{H}^{\prime}$ contains X and is the only connected component of G_{F} containing X. So by definition of \mathcal{K},

$$
\begin{equation*}
\left|\mathcal{H}^{\prime}\right| \geq c\left(G_{F}\right)-|\mathcal{K}| \tag{6}
\end{equation*}
$$

Let us first show a lower bound on $|E \backslash F|$.
Claim 1. $|E \backslash F| \geq k\left(3\left|\mathcal{H}^{\prime}\right|-\sum_{X \in \mathcal{H}^{\prime}}\left|X_{B}\right|+3|\mathcal{K}|\right)+\ell c\left(G_{F}\right)$.
Proof. For $X \in \mathcal{H}^{\prime}, X_{I} \neq \emptyset$ and $X_{I} \cup X_{B}=X \neq V$. Thus by $(6 k+2 \ell, 2 k)-$ connectivity of G, for $X \in \mathcal{H}^{\prime}$ and for $K \in \mathcal{K}$,

$$
\begin{align*}
d_{G-X_{B}}\left(X_{I}\right) & \geq(6 k+2 \ell)-2 k\left|X_{B}\right| \tag{7}\\
d_{G}(K) & \geq 6 k+2 \ell \tag{8}
\end{align*}
$$

Since every edge of F is induced by an element of \mathcal{H} and by definition of X_{I}, for $X \in \mathcal{H}^{\prime}$, no edge of F contributes to $d_{G-X_{B}}\left(X_{I}\right)$. Each $K \in \mathcal{K}$ is a connected component of the graph G_{F}, thus no edge of F contributes to $d_{G}(K)$. Hence, by (7), (8), (6) and $\ell \geq 0$, we obtain the required lower bound on $|E \backslash F|$,

$$
\begin{aligned}
|E \backslash F| & \geq \frac{1}{2}\left(\sum_{X \in \mathcal{H}^{\prime}} d_{G-X_{B}}\left(X_{I}\right)+\sum_{K \in \mathcal{K}} d_{G}(K)\right) \\
& \geq \frac{1}{2}\left((6 k+2 \ell)\left|\mathcal{H}^{\prime}\right|-2 k \sum_{X \in \mathcal{H}^{\prime}}\left|X_{B}\right|+(6 k+2 \ell)|\mathcal{K}|\right) \\
& \geq k\left(3\left|\mathcal{H}^{\prime}\right|-\sum_{X \in \mathcal{H}^{\prime}}\left|X_{B}\right|+3|\mathcal{K}|\right)+\ell\left(\left|\mathcal{H}^{\prime}\right|+|\mathcal{K}|\right) \\
& \geq k\left(3\left|\mathcal{H}^{\prime}\right|-\sum_{X \in \mathcal{H}^{\prime}}\left|X_{B}\right|+3|\mathcal{K}|\right)+\ell c\left(G_{F}\right) .
\end{aligned}
$$

Claim 2. $\sum_{X \in \mathcal{H} \backslash \mathcal{H}^{\prime}}\left|X_{B}\right| \geq 3\left(|\mathcal{H}|-\left|\mathcal{H}^{\prime}\right|\right)$.
Proof. By definition of $\mathcal{H}^{\prime}, X_{B}=X$ for all $X \in \mathcal{H} \backslash \mathcal{H}^{\prime}$. So to prove the claim it suffices to show that every $X \in \mathcal{H}$ satisfies $|X| \geq 3$. Suppose there exists $Y \in \mathcal{H}$ such that $|Y|=2$. By Remark 1 and since G is simple, Y induces exactly one edge e. Define $F^{\prime \prime}=F-e$ and $\mathcal{H}^{\prime \prime}=\mathcal{H}-Y$. Note that $\left\{E(X) \cap F^{\prime \prime}, X \in \mathcal{H}^{\prime \prime}\right\}$ partitions $F^{\prime \prime}$, hence by (2) and the choice of \mathcal{H},

$$
\begin{equation*}
r_{\mathcal{R}}\left(F^{\prime \prime}\right) \leq \sum_{X \in \mathcal{H}^{\prime \prime}}(2|X|-3)=r_{\mathcal{R}}(F)-(2|Y|-3)=r_{\mathcal{R}}(F)-1 . \tag{9}
\end{equation*}
$$

Note also that $c\left(G_{F^{\prime \prime}}\right) \geq c\left(G_{F}\right)$, thus by (3) and $\ell \geq 0$,

$$
\begin{equation*}
\ell r_{\mathcal{C}}\left(F^{\prime \prime}\right) \leq \ell r_{\mathcal{C}}(F) \tag{10}
\end{equation*}
$$

Since $\left|F^{\prime \prime}\right|<|F|$, the choice of F implies that $F^{\prime \prime}$ doesn't minimizes the right hand side of (4). Hence by (9), (10), the definition of $F^{\prime \prime},|Y|=2$, and $k \geq 1$, we have the following contradiction:

$$
\begin{aligned}
0 & <\left(k r_{\mathcal{R}}\left(F^{\prime \prime}\right)+\ell r_{\mathcal{C}}\left(F^{\prime \prime}\right)+\left|E \backslash F^{\prime \prime}\right|\right)-\left(k r_{\mathcal{R}}(F)+\ell r_{\mathcal{C}}(F)+|E \backslash F|\right) \\
& \left.=k\left(r_{\mathcal{R}}\left(F^{\prime \prime}\right)-r_{\mathcal{R}}(F)\right)+\ell\left(r_{\mathcal{C}}\left(F^{\prime \prime}\right)-r_{\mathcal{C}}(F)\right)+\left(\left|E \backslash F^{\prime \prime}\right|-|E \backslash F|\right)\right) \\
& \leq-k+0+|\{e\}| \\
& \leq 0 .
\end{aligned}
$$

To finish the proof we show the following inequality with a simple counting argument.

Claim 3. $2|\mathcal{K}|+\sum_{X \in \mathcal{H}} 2\left|X_{I}\right|+\sum_{X \in \mathcal{H}}\left|X_{B}\right| \geq 2 n$.
Proof. Let $v \in V$. If v belongs to no $X \in \mathcal{H}$, then $\{v\} \in \mathcal{K}$ and v contributes 2 in $2|\mathcal{K}|$. If v belongs to exactly one $X^{\prime} \in \mathcal{H}$, then $v \in X_{I}^{\prime}$ and v contributes 2 in $\sum_{X \in \mathcal{H}} 2\left|X_{I}\right|$. If v belongs to at least two $X^{\prime}, X^{\prime \prime} \in \mathcal{H}$, then $v \in X_{B}^{\prime}, v \in X_{B}^{\prime \prime}$ and v contributes at least 2 in $\sum_{X \in \mathcal{H}}\left|X_{B}\right|$. The claim follows.

Thus we get, by Claims 1,2 and 3 ,

$$
\begin{aligned}
& k \sum_{X \in \mathcal{H}}(2|X|-3)+|E \backslash F|+\ell\left(n-c\left(G_{F}\right)\right) \\
& \geq k \sum_{X \in \mathcal{H}} 2|X|-3 k|\mathcal{H}|+k\left(3\left|\mathcal{H}^{\prime}\right|-\sum_{X \in \mathcal{H}^{\prime}}\left|X_{B}\right|+3|\mathcal{K}|\right)+\ell c\left(G_{F}\right)+\ell\left(n-c\left(G_{F}\right)\right) \\
& \geq k\left(\sum_{X \in \mathcal{H}} 2|X|-3|\mathcal{H}|+3\left|\mathcal{H}^{\prime}\right|-\sum_{X \in \mathcal{H}^{\prime}}\left|X_{B}\right|+3|\mathcal{K}|\right)+\ell n \\
& \geq k\left(\sum_{X \in \mathcal{H}} 2|X|-\sum_{X \in \mathcal{H}}\left|X_{B}\right|+2|\mathcal{K}|\right)+\ell n \\
& \geq k\left(2|\mathcal{K}|+\sum_{X \in \mathcal{H}} 2\left|X_{I}\right|+\sum_{X \in \mathcal{H}}\left|X_{B}\right|\right)+\ell n \\
& \geq 2 k n+\ell n .
\end{aligned}
$$

By $k \geq 1$ and $\ell \geq 0$, this contradicts (5).
Remark that the proof actually shows that if G is simple and $(6 k+2 \ell, 2 k)$ connected and if $F \subseteq E$ is such that $|F| \leq 3 k+\ell$, then $G^{\prime}=(V, E \backslash F)$ contains k rigid spanning subgraphs and ℓ spanning trees pairwise edge disjoint.

References

[1] A. R. Berg and T. Jordán. Two-connected orientations of eulerian graphs. Journal of Graph Theory, 52(3):230-242, 2006.
[2] J. Edmonds. Matroid partition. In Mathematics of the Decision Science Part 1, volume 11, pages 335-345. AMS, Providence, RI, 1968.
[3] A. Frank. Connectivity and network flows. In Handbook of combinatorics, pages 117-177. Elsevier, Amsterdam, 1995.
[4] B. Jackson and T. Jordán. A sufficient connectivity condition for generic rigidity in the plane. Discrete Applied Mathematics, 157(8):1965-1968, 2009.
[5] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations of graphs. Journal of Combinatorial Theory, Series B, 94(1):1 29, 2005.
[6] T. Jordán. On the existence of k edge-disjoint 2-connected spanning subgraphs. Journal of Combinatorial Theory, Series B, 95(2):257-262, 2005.
[7] A. Kaneko and K. Ota. On minimally (n, λ)-connected graphs. Journal of Combinatorial Theory, Series B, 80(1):156-171, 2000.
[8] Z. Király and Z. Szigeti. Simultaneous well-balanced orientations of graphs. J. Comb. Theory Ser. B, 96(5):684-692, 2006.
[9] L. Lovász and Y. Yemini. On generic rigidity in the plane. J. Algebraic Discrete Methods, 3(1):91-98, 1982.
[10] C. Thomassen. Configurations in graphs of large minimum degree, connectivity, or chromatic number. Annals of the New York Academy of Sciences, 555(1):402-412, 1989.

[^0]: *partially supported by the TEOMATRO grant ANR-10-BLAN 0207

