# Packing of Rigid Spanning Subgraphs and Spanning Trees

Joseph Cheriyan Olivier Durand de Gevigney Zoltán Szigeti \*

September 14, 2012

#### Abstract

We prove that every  $(6k+2\ell,2k)$ -connected simple graph contains k rigid and  $\ell$  connected edge-disjoint spanning subgraphs. This implies a theorem of Jackson and Jordán [4] and a theorem of Jordán [6] on packing of rigid spanning subgraphs. Both these results are generalizations of the classical result of Lovász and Yemini [9] saying that every 6-connected graph is rigid for which our approach provides a transparent proof. Our result also gives two improved upper bounds on the connectivity of graphs that have interesting properties: (1) every 8-connected graph packs a spanning tree and a 2-connected spanning subgraph; (2) every 14-connected graph has a 2-connected orientation.

### 1 Definitions

Let G = (V, E) be a graph. We will use the following connectivity concepts. G is called **connected** if for every pair u, v of vertices there is a path from u to v in G. G is called k-edge-connected if G - F is connected for all  $F \subseteq E$  with  $|F| \leq k - 1$ . G is called k-connected if |V| > k and G - X is connected for all  $X \subset V$  with  $|X| \leq k - 1$ . For a pair of positive integers (p, q), G is called (p, q)-connected if G - X is (p - q|X|)-edge-connected for all  $X \subset V$ . By Menger theorem, G is (p, q)-connected if and only if for every pair of disjoint subsets X, Y of V such that  $Y \neq \emptyset$ ,  $X \cup Y \neq V$ ,

$$d_{G-X}(Y) \ge p - q|X|. \tag{1}$$

For a better understanding we mention that G is (6,2)-connected if G is 6-edge-connected, G-v is 4-edge-connected for all  $v \in V$  and G-u-v is 2-edge-connected for all  $u, v \in V$ . It follows from the definitions that k-edge-connectivity is equivalent to (k,k)-connectivity. Moreover, since loops and parallel edges do not play any role in vertex connectivity, every k-connected graph contains a (k,1)-connected simple spanning subgraph. Note also that (k,1)-connectivity implies (k,q)-connectivity for all  $q \geq 1$ . (Remark that this connectivity concept

<sup>\*</sup>partially supported by the TEOMATRO grant ANR-10-BLAN 0207  $\,$ 

is (very slightly) different from the one introduced by Kaneko and Ota [7] since p is not required to be a multiple of q.)

Let D=(V,A) be a directed graph. D is called **strongly connected** if for every ordered pair  $(u,v) \in V \times V$  of vertices there is a directed path from u to v in D. D is called k-arc-connected if G-F is strongly connected for all  $F \subseteq A$  with  $|F| \le k-1$ . D is called k-connected if |V| > k and G-X is strongly connected for all  $X \subset V$  with  $|X| \le k-1$ .

For a set X of vertices and a set F of edges, denote  $G_F$  the subgraph of G on vertex set V and edge set F, that is  $G_F = (V, F)$  and E(X) the set of edges of G induced by X. Denote  $\mathcal{R}(G)$  the **rigidity matroid** of G on ground-set E with rank function  $r_{\mathcal{R}}$  (for a definition we refer the reader to [9]). For  $F \subseteq E$ , by a theorem of Lovász and Yemini [9],

$$r_{\mathcal{R}}(F) = \min \sum_{X \in \mathcal{H}} (2|X| - 3), \tag{2}$$

where the minimum is taken over all collections  $\mathcal{H}$  of subsets of V such that  $\{E(X) \cap F, X \in \mathcal{H}\}$  partitions F.

**Remark 1.** If  $\mathcal{H}$  achieves the minimum in (2), then each  $X \in \mathcal{H}$  induces a connected subgraph of  $G_F$ .

We will say that G is **rigid** if  $r_{\mathcal{R}}(E) = 2|V| - 3$ .

### 2 Results

Lovász and Yemini [9] proved the following sufficient condition for a graph to be rigid.

**Theorem 1** (Lovász and Yemini [9]). Every 6-connected graph is rigid.

Jackson and Jordán [4] proved a sharpenning of Theorem 1.

**Theorem 2** (Jackson and Jordán [4]). Every (6,2)-connected simple graph is rigid.

Jordán [6] generalized Theorem 1 and gave a sufficient condition for the existence of a packing of rigid spanning subgraphs.

**Theorem 3** (Jordán [6]). Let  $k \ge 1$  be an integer. Every 6k-connected graph contains k edge-disjoint rigid spanning subgraphs.

The main result of this paper contains a common generalization of Theorems 2 and 3. It provides a sufficient condition to have a packing of rigid spanning subgraphs and spanning trees.

**Theorem 4.** Let  $k \geq 1$  and  $\ell \geq 0$  be integers. Every  $(6k + 2\ell, 2k)$ -connected simple graph contains k rigid spanning subgraphs and  $\ell$  spanning trees pairwise edge-disjoint.



Figure 1: A (6,3)-connected non-rigid graph G=(V,E). The collection  $\mathcal{H}$  of the four grey vertex-sets partitions E. Hence, by (2),  $\mathcal{R}_G(E) \leq \sum_{X \in \mathcal{H}} (2|X|-3) = 4(2 \times 8 - 3) = 52 < 53 = 2 \times 28 - 3 = 2|V| - 3$ . Thus G is not rigid. The reader can easily check that G is (6,3)-connected.

Note that in Theorem 2, the connectivity condition is the best possible since there exist non-rigid (5,2)-connected graphs (see [9]) and non-rigid (6,3)-connected graphs, for an example see Figure 1.

Let us see some corollaries of the previous results. Theorem 4 applied for k=1 and  $\ell=0$  provides Theorem 2. Since 6k-connectivity implies (6k,2k)-connectivity of a simple spanning subgraph, Theorem 4 implies Theorem 3.

One can easily derive from the rank function of  $\mathcal{R}(G)$  that rigid graphs with at least 3 vertices are 2-connected (see Lemma 2.6 in [5]). Thus, Theorem 4 gives the following corollary.

**Corollary 1.** Let  $k \geq 1$  and  $\ell \geq 0$  be integers. Every  $(6k + 2\ell, 2k)$ -connected simple graph contains k 2-connected and  $\ell$  connected edge-disjoint spanning subgraphs.

Corollary 1 allows us to improve two results of Jordán. The first one deals with the following conjecture of Kriesell, see in [6].

Conjecture 1 (Kriesell). For every positive integer  $\lambda$  there exists a (smallest)  $f(\lambda)$  such that every  $f(\lambda)$ -connected graph G contains a spanning tree T for which G - E(T) is  $\lambda$ -connected.

As Jordán pointed out in [6], Theorem 3 answers this conjecture for  $\lambda = 2$  by showing that  $f(2) \leq 12$ . Corollary 1 applied for k = 1 and  $\ell = 1$  directly implies that  $f(2) \leq 8$ .

**Corollary 2.** Every 8-connected graph G contains a spanning tree T such that G - E(T) is 2-connected.

The other improvement deals with the following conjecture of Thomassen [10].

**Conjecture 2** (Thomassen [10]). For every positive integer  $\lambda$  there exists a (smallest)  $g(\lambda)$  such that every  $g(\lambda)$ -connected graph G has a  $\lambda$ -connected orientation.

By applying Theorem 3 and an orientation result of Berg and Jordán [1], Jordán proved in [6] the conjecture for  $\lambda=2$  by showing that  $g(2)\leq 18$ . Corollary 1 allows us to prove a general result that implies  $g(2)\leq 14$ . For this purpose, we use a result of Király and Szigeti [8].

**Theorem 5** (Király and Szigeti [8]). An Eulerian graph G = (V, E) has an Eulerian orientation D such that D - v is k-arc-connected for all  $v \in V$  if and only if G - v is 2k-edge-connected for all  $v \in V$ .

Corollary 1 and Theorem 5 imply the following corollary which gives the claimed bound for k = 1.

**Corollary 3.** Every simple (12k+2,2k)-connected graph G has an orientation D such that D-v is k-arc-connected for all  $v \in V$ .

Proof. Let G = (V, E) be a simple (12k + 2, 2k)-connected graph. By Theorem 5 it suffices to prove that G contains an Eulerian spanning subgraph H such that H - v is 2k-edge-connected for all  $v \in V$ . By Corollary 1, G contains 2k 2-connected spanning subgraphs  $H_i = (V, E_i), i = 1, \ldots, 2k$  and a spanning tree F pairwise edge-disjoint. Define  $H' = (V, \bigcup_{i=1}^{2k} E_i)$ . For all  $i = 1, \ldots, 2k$ , since  $H_i$  is 2-connected,  $H_i - v$  is connected; hence H' - v is 2k-edge-connected for all  $v \in V$ . Denote T the set of vertices of odd degree in H'. We say that F' is a T-join if the set of odd degree vertices of  $G_{F'}$  coincides with T. It is well-known that the connected graph F contains a T-join. Thus adding the edges of this T-join to H' provides the required spanning subgraph of G.

Finally we mention that the following conjecture of Frank, that would give a necessary and sufficient condition for a graph to have a 2-connected orientation, would imply that  $g(2) \leq 4$ .

Conjecture 3 (Frank [3]). A graph has a 2-connected orientation if and only if it is (4,2)-connected.

# 3 Proofs

To prove Theorem 4 we need to introduce two other matroids on the edge set E of G. Denote  $\mathcal{C}(G)$  the **circuit matroid** of G on ground-set E with rank function  $r_{\mathcal{C}}$  given by (3). Let n be the number of vertices in G, that is n = |V|. For  $F \subseteq E$ , denote  $c(G_F)$  the number of connected components of  $G_F$ , it is well known that,

$$r_{\mathcal{C}}(F) = n - c(G_F). \tag{3}$$

To have k rigid spanning subgraphs and  $\ell$  spanning trees pairwise edgedisjoint in G, we must find k basis in  $\mathcal{R}(G)$  and  $\ell$  basis in  $\mathcal{C}(G)$  pairwise disjoint. To do that we will need the following matroid. For  $k \geq 1$  and  $\ell \geq 0$ , define  $\mathcal{M}_{k,\ell}(G)$  as the matroid on ground-set E, obtained by taking the matroid union of k copies of the rigidity matroid  $\mathcal{R}(G)$  and  $\ell$  copies of the circuit matroid  $\mathcal{C}(G)$ . Let  $r_{\mathcal{M}_{k,\ell}}$  be the rank function of  $\mathcal{M}_{k,\ell}(G)$ . By a theorem of Edmonds [2], for the rank of matroid unions,

$$r_{\mathcal{M}_{k,\ell}}(E) = \min_{F \subseteq E} kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus F|. \tag{4}$$

In [6], Jordán used the matroid  $\mathcal{M}_{k,0}(G)$  to prove Theorem 3 and pointed out that using  $\mathcal{M}_{k,\ell}(G)$  one could prove a theorem on packing of rigid spanning subgraphs and spanning trees. We tried to fulfill this gap by following the proof of [6] but we failed. To achieve this aim we had to find a new proof technique. Let us first demonstrate this technique by giving a transparent proof for Theorems 1 and 2.

Proof of Theorem 1. By (2), there exists a collection  $\mathcal G$  of subsets of V such that  $\{E(X), X \in \mathcal G\}$  partitions E and  $r_{\mathcal R}(E) = \sum_{X \in \mathcal G} (2|X|-3)$ . If  $V \in \mathcal G$  then  $r_{\mathcal R}(E) \geq 2|V|-3$  hence G is rigid. So in the following we may assume that  $V \notin \mathcal G$ .

Let  $\mathcal{H} = \{X \in \mathcal{G} : |X| \geq 3\}$  and  $F = \bigcup_{X \in \mathcal{H}} E(X)$ . We define, for  $X \in \mathcal{H}$ , the border of X as  $X_B = X \cap (\bigcup_{Y \in \mathcal{H} - X} Y)$  and the proper part of X as  $X_I = X \setminus X_B$  and  $\mathcal{H}' = \{X \in \mathcal{H} : X_I \neq \emptyset\}$ .

Since every edge of F is induced by an element of  $\mathcal{H}$ , for  $X \in \mathcal{H}'$ , by definition of  $X_I$ , no edge of F contributes to  $d_{G-X_B}(X_I)$ ; and for a vertex  $v \in V - V(\mathcal{H})$ , no edge of F contributes to  $d_G(v)$ . Thus, since for  $X \in \mathcal{H}'$ ,  $X_I \neq \emptyset$  and  $X_I \cup X_B = X \neq V$ , by 6-connectivity of G, we have  $|E \setminus F| \geq \frac{1}{2}(\sum_{X \in \mathcal{H}'} d_{G-X_B}(X_I) + \sum_{v \in V - V(\mathcal{H})} d_G(v)) \geq \frac{1}{2}(\sum_{X \in \mathcal{H}'} (6 - |X_B|) + \sum_{v \in V - V(\mathcal{H})} 6) \geq 3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3(|V| - |V(\mathcal{H})|).$ 

Since for  $X \in \mathcal{H} \setminus \mathcal{H}'$ ,  $|X_B| = |X| \ge 3$ , we have  $\sum_{X \in \mathcal{H}} (2|X| - 3) = \sum_{X \in \mathcal{H}} 2|X| - 3|\mathcal{H}| + 3|\mathcal{H}'| - 3|\mathcal{H}'| \ge \sum_{X \in \mathcal{H}} 2|X| - \sum_{X \in \mathcal{H} \setminus \mathcal{H}'} |X_B| - 3|\mathcal{H}'|$ .

Since G is simple, by Remark 1 every  $X \in \mathcal{G}$  of size 2 induces exactly one edge. Hence, by the above inequalities, we have  $\sum_{X \in \mathcal{G}} (2|X|-3) = \sum_{X \in \mathcal{H}} (2|X|-3) + |E \setminus F| \ge \sum_{X \in \mathcal{H}} 2|X| - \sum_{X \in \mathcal{H}} |X_B| + 3(|V|-|V(\mathcal{H})|) = (\sum_{X \in \mathcal{H}} 2|X_I| + \sum_{X \in \mathcal{H}} |X_B| - 2|V(\mathcal{H})|) + (|V|-|V(\mathcal{H})|) + 2|V| \ge 2|V|.$ 

To see the last inequality, let  $v \in V(\mathcal{H})$ . Then  $v \in V$  and hence  $n-|V(\mathcal{H})| \geq 0$ . If v belongs to exactly one  $X' \in \mathcal{H}$ , then  $v \in X_I'$ ; so v contributes 2 in  $\sum_{X \in \mathcal{H}} 2|X_I|$ . If v belongs to at least two  $X', X'' \in \mathcal{H}$ , then  $v \in X_B'$  and  $v \in X_B''$ ; so v contributes at least 2 in  $\sum_{X \in \mathcal{H}} |X_B|$  and hence  $\sum_{X \in \mathcal{H}} 2|X_I| + \sum_{X \in \mathcal{H}} |X_B| - 2|V(\mathcal{H})| \geq 0$ .

Hence  $2|V|-3 \ge r_{\mathcal{R}}(E) \ge 2|V|$ , a contradiction.

Proof of Theorem 2. Note that in the lower bound on  $|E \setminus F|$ ,  $d_{G-X_B}(X_I) \ge 6 - |X_B|$  can be replaced by  $d_{G-X_B}(X_I) \ge 6 - 2|X_B|$ , and the same proof works. This means that instead of 6-connectivity, we used in fact (6, 2)-connectivity.

Proof of Theorem 4. Suppose that there exist integers  $k, \ell$  and a graph G = (V, E) contradicting the theorem. We use the matroid  $\mathcal{M}_{k,\ell}$  defined above. Choose F a smallest-size set of edges that minimizes the right hand side of (4). By (2), we can define  $\mathcal{H}$  a collection of subsets of V such that  $\{E(X) \cap F, X \in \mathcal{H}\}$  partitions F and  $r_{\mathcal{R}}(F) = \sum_{X \in \mathcal{H}} (2|X| - 3)$ . Since G is a counterexample and by (2) and (3),

$$k(2n-3) + \ell(n-1) > r_{\mathcal{M}_{k,\ell}}(E) = k \sum_{X \in \mathcal{H}} (2|X|-3) + \ell(n-c(G_F)) + |E \setminus F|.$$
 (5)

By  $k \geq 1$ , G is connected, thus, by (5),  $V \notin \mathcal{H}$ . Recall the notations, for  $X \in \mathcal{H}$ ,  $X_B = X \cap (\bigcup_{Y \in \mathcal{H} - X} Y)$  and  $X_I = X \setminus X_B$  and the definition  $\mathcal{H}' = \{X \in \mathcal{H}\}$ 

 $\mathcal{H}: X_I \neq \emptyset$ . Denote  $\mathcal{K}$  the set of connected components of  $G_F$  intersecting no set of  $\mathcal{H}'$ . By Remark 1, for  $X \in \mathcal{H}'$ , X induces a connected subgraph of  $G_F$ , thus a connected component of  $G_F$  intersecting  $X \in \mathcal{H}'$  contains X and is the only connected component of  $G_F$  containing X. So by definition of  $\mathcal{K}$ ,

$$|\mathcal{H}'| \ge c(G_F) - |\mathcal{K}|. \tag{6}$$

Let us first show a lower bound on  $|E \setminus F|$ .

Claim 1. 
$$|E \setminus F| \ge k \left( 3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|\mathcal{K}| \right) + \ell c(G_F).$$

*Proof.* For  $X \in \mathcal{H}'$ ,  $X_I \neq \emptyset$  and  $X_I \cup X_B = X \neq V$ . Thus by  $(6k + 2\ell, 2k)$ -connectivity of G, for  $X \in \mathcal{H}'$  and for  $K \in \mathcal{K}$ ,

$$d_{G-X_B}(X_I) \ge (6k+2\ell)-2k|X_B|,$$
 (7)

$$d_G(K) \geq 6k + 2\ell. \tag{8}$$

Since every edge of F is induced by an element of  $\mathcal{H}$  and by definition of  $X_I$ , for  $X \in \mathcal{H}'$ , no edge of F contributes to  $d_{G-X_B}(X_I)$ . Each  $K \in \mathcal{K}$  is a connected component of the graph  $G_F$ , thus no edge of F contributes to  $d_G(K)$ . Hence, by (7), (8), (6) and  $\ell \geq 0$ , we obtain the required lower bound on  $|E \setminus F|$ ,

$$|E \setminus F| \geq \frac{1}{2} \left( \sum_{X \in \mathcal{H}'} d_{G-X_B}(X_I) + \sum_{K \in \mathcal{K}} d_G(K) \right)$$

$$\geq \frac{1}{2} \left( (6k + 2\ell) |\mathcal{H}'| - 2k \sum_{X \in \mathcal{H}'} |X_B| + (6k + 2\ell) |\mathcal{K}| \right)$$

$$\geq k \left( 3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|\mathcal{K}| \right) + \ell \left( |\mathcal{H}'| + |\mathcal{K}| \right)$$

$$\geq k \left( 3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|\mathcal{K}| \right) + \ell c(G_F).$$

Claim 2.  $\sum_{X \in \mathcal{H} \setminus \mathcal{H}'} |X_B| \ge 3(|\mathcal{H}| - |\mathcal{H}'|).$ 

*Proof.* By definition of  $\mathcal{H}'$ ,  $X_B = X$  for all  $X \in \mathcal{H} \setminus \mathcal{H}'$ . So to prove the claim it suffices to show that every  $X \in \mathcal{H}$  satisfies  $|X| \geq 3$ . Suppose there exists  $Y \in \mathcal{H}$  such that |Y| = 2. By Remark 1 and since G is simple, Y induces exactly one edge e. Define F'' = F - e and  $\mathcal{H}'' = \mathcal{H} - Y$ . Note that  $\{E(X) \cap F'', X \in \mathcal{H}''\}$  partitions F'', hence by (2) and the choice of  $\mathcal{H}$ ,

$$r_{\mathcal{R}}(F'') \le \sum_{X \in \mathcal{H}''} (2|X| - 3) = r_{\mathcal{R}}(F) - (2|Y| - 3) = r_{\mathcal{R}}(F) - 1.$$
 (9)

Note also that  $c(G_{F''}) \geq c(G_F)$ , thus by (3) and  $\ell \geq 0$ ,

$$\ell r_{\mathcal{C}}(F'') \le \ell r_{\mathcal{C}}(F).$$
 (10)

Since |F''| < |F|, the choice of F implies that F'' doesn't minimizes the right hand side of (4). Hence by (9), (10), the definition of F'', |Y| = 2, and  $k \ge 1$ , we have the following contradiction:

$$0 < \left(kr_{\mathcal{R}}(F'') + \ell r_{\mathcal{C}}(F'') + |E \setminus F''|\right) - \left(kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus F|\right)$$

$$= k\left(r_{\mathcal{R}}(F'') - r_{\mathcal{R}}(F)\right) + \ell\left(r_{\mathcal{C}}(F'') - r_{\mathcal{C}}(F)\right) + \left(|E \setminus F''| - |E \setminus F|\right)\right)$$

$$\leq -k + 0 + |\{e\}|$$

$$< 0.$$

To finish the proof we show the following inequality with a simple counting argument.

Claim 3. 
$$2|\mathcal{K}| + \sum_{X \in \mathcal{H}} 2|X_I| + \sum_{X \in \mathcal{H}} |X_B| \ge 2n$$
.

*Proof.* Let  $v \in V$ . If v belongs to no  $X \in \mathcal{H}$ , then  $\{v\} \in \mathcal{K}$  and v contributes 2 in  $2|\mathcal{K}|$ . If v belongs to exactly one  $X' \in \mathcal{H}$ , then  $v \in X_I'$  and v contributes 2 in  $\sum_{X \in \mathcal{H}} 2|X_I|$ . If v belongs to at least two  $X', X'' \in \mathcal{H}$ , then  $v \in X_B', v \in X_B''$  and v contributes at least 2 in  $\sum_{X \in \mathcal{H}} |X_B|$ . The claim follows.

Thus we get, by Claims 1, 2 and 3,

$$k \sum_{X \in \mathcal{H}} (2|X| - 3) + |E \setminus F| + \ell(n - c(G_F))$$

$$\geq k \sum_{X \in \mathcal{H}} 2|X| - 3k|\mathcal{H}| + k \left(3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|\mathcal{K}|\right) + \ell c(G_F) + \ell(n - c(G_F))$$

$$\geq k \left(\sum_{X \in \mathcal{H}} 2|X| - 3|\mathcal{H}| + 3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|\mathcal{K}|\right) + \ell n$$

$$\geq k \left(\sum_{X \in \mathcal{H}} 2|X| - \sum_{X \in \mathcal{H}} |X_B| + 2|\mathcal{K}|\right) + \ell n$$

$$\geq k \left(2|\mathcal{K}| + \sum_{X \in \mathcal{H}} 2|X_I| + \sum_{X \in \mathcal{H}} |X_B|\right) + \ell n$$

$$\geq 2kn + \ell n.$$

By  $k \ge 1$  and  $\ell \ge 0$ , this contradicts (5).

Remark that the proof actually shows that if G is simple and  $(6k + 2\ell, 2k)$ -connected and if  $F \subseteq E$  is such that  $|F| \le 3k + \ell$ , then  $G' = (V, E \setminus F)$  contains k rigid spanning subgraphs and  $\ell$  spanning trees pairwise edge disjoint.

# References

[1] A. R. Berg and T. Jordán. Two-connected orientations of eulerian graphs. Journal of Graph Theory, 52(3):230–242, 2006.

- [2] J. Edmonds. Matroid partition. In *Mathematics of the Decision Science Part 1*, volume 11, pages 335–345. AMS, Providence, RI, 1968.
- [3] A. Frank. Connectivity and network flows. In *Handbook of combinatorics*, pages 117–177. Elsevier, Amsterdam, 1995.
- [4] B. Jackson and T. Jordán. A sufficient connectivity condition for generic rigidity in the plane. *Discrete Applied Mathematics*, 157(8):1965–1968, 2009.
- [5] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations of graphs. *Journal of Combinatorial Theory, Series B*, 94(1):1 29, 2005.
- [6] T. Jordán. On the existence of k edge-disjoint 2-connected spanning subgraphs. *Journal of Combinatorial Theory, Series B*, 95(2):257–262, 2005.
- [7] A. Kaneko and K. Ota. On minimally  $(n, \lambda)$ -connected graphs. Journal of Combinatorial Theory, Series B, 80(1):156 171, 2000.
- [8] Z. Király and Z. Szigeti. Simultaneous well-balanced orientations of graphs. J. Comb. Theory Ser. B, 96(5):684–692, 2006.
- [9] L. Lovász and Y. Yemini. On generic rigidity in the plane. *J. Algebraic Discrete Methods*, 3(1):91–98, 1982.
- [10] C. Thomassen. Configurations in graphs of large minimum degree, connectivity, or chromatic number. Annals of the New York Academy of Sciences, 555(1):402–412, 1989.