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Notation

A signed set X is a set X partitioned in two parts (X+,X−), where
X+ is the set of positive elements of X and X− is the set of
negatives elements.

The set X = X+ ∪ X− is the support of X .

We say that X is a restriction of Y if and only if X+ ⊆ Y + and
X− ⊆ Y−. If A is a not signed set and X a signed set then X ∩ A
design the signed set Y with Y + = X+ ∩ A et Y− = X− ∩ A.
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Notation

The opposite of the set X , denoted by −X , is the signed set
defined by (−X )+ = X− and (−X )− = X+.

Generally, given a signed set X and a set A we denote by −AX the
signed set defined by (−AX )+ = (X+ \ A) ∪ (X− ∩ A) and
(−AX )− = (X− \ A) ∪ (X+ ∩ A). We say that the signed set −AX
is obtained by an reorientation of A.
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Circuits

A collection C of signed sets of a finite set E is the set of circuits
of a oriented matroid on E if and only if the following axioms are
verified :

(C0) ∅ 6∈ C,

(C1) C = −C,

(C2) for any X ,Y ∈ C, if X ⊆ Y , then X = Y or X = −Y ,

(C3) for any X ,Y ∈ C,X 6= −Y , and e ∈ X+ ∩ Y−, there exists
Z ∈ C such that Z+ ⊆ (X+ ∪ Y +) \ {e} and
Z− ⊆ (X− ∪ Y−) \ {e}.
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Observations
(a) If sign are not taken into account, (C0), (C2), (C3) are reduced to
the circuits axioms of a nonoriented matroid.

(b) All the objects of a matroid M are also considered as as the objects
of the oriented matroid M, in particular the rank of M is the same as the
rank of M.

(c) Let M be an oriented matroid E and C the collection of circuits. We
clearly have that −AC is the set of circuits of an oriented matroid,
denoted by −AM and obtained from M by a reorientation of A.

(d) Not all matroids are orientables (for instance, F7 is not orientable
[Exercise])

Notation. We may write X = abcde the signed circuit X defined by

X+ = {a, d , e} and X− = {b, c}.
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Oriented graph

Let G be an oriented graph. We obtain the signed circuits from the
cycles of G .

a

c

d

f
b

e

Then,

C = {(abc), (abd), (aef ), (cd), (bcef ), (bdef ),

(abc), (abd), (aef ), (cd), (bcef ), (bdef )}.
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Vector configuration

Let E = {v1, . . . , vn} be a set of vectors that generate the space of
dimension r over an ordered field.

Let us consider a minimal linear dependency

n∑
i=1

λivi = 0

where λi ∈ IR.

We obtain an oriented matroid on E by considering the signed sets
X = (X+,X−) where

X+ = {i : λi > 0} et X− = {i : λi < 0}

for all minimal dependencies among the vi .
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Theory of matroids and applications IV



Vector configuration

Let E = {v1, . . . , vn} be a set of vectors that generate the space of
dimension r over an ordered field.

Let us consider a minimal linear dependency

n∑
i=1

λivi = 0

where λi ∈ IR.

We obtain an oriented matroid on E by considering the signed sets
X = (X+,X−) where

X+ = {i : λi > 0} et X− = {i : λi < 0}

for all minimal dependencies among the vi .
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Example

Let
a b c d e f

A =

 1 1 0 0 1 0
0 1 1 1 0 0
0 0 0 0 1 1


The columns of A correspond to the following vectors

b

f

1

e

1

a

1

c,d
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We can check that the circuits of

b

f

1

e

1

a

1

c,d

are the same as those arising from

a

c

d

f
b

e

For exemple, (abc) correspond to the linear combination
a− b + c = 0 or the circuit (bdef ) correspond to the linear
combination b − d − e + f = 0.
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Configurations of points

Any configuration of points induce an oriented matroid in the
affine space where the signed set of circuits are are the coefficients
of minimal affine dependencies of the form∑

i

λivi = 0 with
∑
i

λi = 0, λi ∈ IR
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a b c d e f

A′ =

(
−1 0 0 3 1 0

0 0 1 0 2 3

)

a b

c

e

f

d

C = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.

For instance, circuit (abd) correspond to the affine dependency
3(−1, 0)t − 4(0, 0)t + 1(3, 0)t = (0, 0)t with 3− 4 + 1 = 0.
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Radon Partitions

There is a natural way to obtain an oriented matroid from a
configuration of points in IRd

If C ∈ C then conv(pos. elements C ) ∩ conv(neg. elements C ) 6= ∅

Example : d = 3.

1 3

2

54
1

2

3

4

5

(+,+,+,+,!)(+,+,+,!,!)

These are called minimal Radon partitions
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Reorientations

Consider the oriented matroid −dM(A′) obtained by reorienting
element d .

C(−dM(A′)) = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.

• −dM(A′) is graphic. Moreover, it correspond to the oriented
matroid

a b

c

e

f

d

under the permutation
σ(a) = b, σ(b) = a, σ(c) = c , σ(d) = d , σ(e) = f , σ(f ) = e.
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Duality

Two signed sets X and Y are called orthogonal, denoted by
X ⊥ Y , if either X ∩ Y = ∅ or X |X∩Y and Y |Y∩X are neither the
same or opposite.

Proposition Let M = (E , C) be an oriented matroid. Then,

1) there is a unique signature of the cocircuits C∗ of M such that
X ⊥ Y for all X ∈ C and Y ∈ C∗

2) C∗ is the set of signed circuits of a matroid, denoted by M∗

3) M∗∗ = M.
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Duality : geometric interpretation

H is a hyperplane of a matroid M = (E , C) of rank r if
r(H) = r − 1 and cl(H) = H.

It is known that D = E \ H is a cocircuit of M.

If M is realizable with points in the space then H is a geometric
hyperplane (generated by the corresponding points). in this case,
the cocircuit D = (D+,D−) is given by

D+ = {e 6∈ H|h(e) > 0} and D− = {e 6∈ H|h(e) < 0}
where h is the linear function with Ker(h) = H.
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Bases and Chirotope

B is the set of bases of an oriented matroid if and only if there is
an application, called chirotope, χ : E r → {+,−, 0} such that

(i) B 6= ∅ ;

(ii) for any B and B ′ in B and e ∈ B \ B ′ there existes f ∈ B ′ \ B
such that B \ e ∪ f ∈ B ;

(iii) {b1, . . . , br} ∈ B if and only if χ(b1, . . . , br ) 6= 0

(iv) χ is alternating, i.e. χ(bσ(1), . . . , bσ(r)) = sign(σ)χ(b1, . . . , br )
for any b1, . . . , br ∈ E for any permutation σ
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(v) (Three-terms Grassmann-Plücker relation )
For any b1, . . . , br , x , y ∈ E , if

χ(x , b2, . . . , br )χ(b1, y , b3, . . . , br ) ≥ 0

and
χ(y , b2, . . . , br )χ(x , b1, b3, . . . , br ) ≥ 0

then
χ(b1, b2, . . . , br )χ(x , y , b3, . . . , br ) ≥ 0.

Remark In the realizable case, axiom (v) is directly verified with the

Grassmann-Plücker’s relation, it is thus a combinatorial reformulation :

det(b1, . . . , br ) · det(b′1, . . . , b
′
r ) =∑

1≤i≤r det(b′i , b2, . . . , br ) · det(b′1, . . . , b
′
i−1, b1, b

′
i+1, . . . , b

′
r ).
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Relation between bases and circuits

It is known that if B is a base and an element g 6∈ B then there is
a unique circuit C in B ∪ {g} [Exercise].

For any two ordered bases of M of the form (e, x2, . . . , xr ) and
(f , x2, . . . , xr ), e 6= f , we have

χ(f , x2, . . . , xr ) = −C (e)C (f )χ(e, x2, . . . , xr )

where C is one of the two opposite signed circuits of M in the set
(e, f , x2, . . . , xr ) and C (e) and C (f ) correspond to the sign of
elements e and f in C respectively.
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Arrangement of pseudospheres

A sphere s of Sd−1 is a pseudo-sphere if s is homeomorphic to
Sd−2 in an homomorphism of Sd−1.

We have two connected components in Sd−1 \ s, each
homeomorphic to the d − 1 dimensional ball (called sides of s).
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Arrangement of pseudo-spheres

A finite collection {s1, . . . , sn} of pseudo-spheres in Sd−1 is an
arrangement of pseudo-spheres if

(PS1) for all A ⊆ E = {1, . . . , n} the set SA = ∩e∈Ase is a
(topological) sphere

(PS2) If SA 6⊆ se for A ⊆ E , e ∈ E and s+
e , s

−
e denotes the two

sides of se then SA ∩ se is a pseudo-sphere of SA having as sides
SA ∩ s+

e and SA ∩ s−e .

We say that the arrangement is signed if for each pseudosphere Se ,
e ∈ E it is chosen a positive and a negative side.
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Theory of matroids and applications IV



Arrangement of pseudo-spheres

A finite collection {s1, . . . , sn} of pseudo-spheres in Sd−1 is an
arrangement of pseudo-spheres if

(PS1) for all A ⊆ E = {1, . . . , n} the set SA = ∩e∈Ase is a
(topological) sphere

(PS2) If SA 6⊆ se for A ⊆ E , e ∈ E and s+
e , s

−
e denotes the two

sides of se then SA ∩ se is a pseudo-sphere of SA having as sides
SA ∩ s+

e and SA ∩ s−e .

We say that the arrangement is signed if for each pseudosphere Se ,
e ∈ E it is chosen a positive and a negative side.
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Topological representation

Topological Representation (Folkman+Lawrence) Any loop-free
oriented matroid of rank d + 1 (up to isomorphism) are in
one-to-one correspondence with arrangements of pseudo-spheres in
Sd (up to topological equivalence).

a

a
b c

d

e

e

d

cb

cocircuit (0,0,-,+,+)

Arrangement of pseudolines
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Acyclic reorientations

An oriented matroid is called acyclic if |C+|, |C−| ≥ 1 for any
circuit C .

An element e of an oriented matroid is called interior if there is a
cycle C = (C+,C−) with C+ = {e}.
Remark Realizable oriented matroids are always acyclic.

Theorem (Las Vergnas 1975, Zaslavsky 1975) The number of
acyclic orientations of M is given by t(M; 2, 0).

Theorem (Las Vergnas 1975, Zaslavsky 1975) The set of acyclic
orientations of M are in bijection with the set of cells of the
corresponding arrangement of pseudospheres.
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Example
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Remark A cell that is bounded by hyperplanes {hi1 , . . . , hik}
correspond to an acyclic reorientation having [n] \ {i1, . . . , ik} as
interior points.
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Theory of matroids and applications IV



Example

1

2 3

4 5

6

1

1

2

2

3

3

4

4

5

5 6

6

123456
1

2 3

4 5
6

12
_

3456
1

2 3

4 5
6

1
_

2
_

3456
1

2 3

4 5
6

1
_

2
_

34
_

56
1

2 3

4 5
6

1
_

2
_

3
_

4
_

56
1

2 3

4 5
6 12

_

34
_

56
1

2 3

4 5
6

12
_

34
_

5
_

6
1

2 3

4 5
6

1234
_

5
_

6
1

2 3

4 5
6 12345

_

6
1

2 3

4 5
6

123
_

4
_

5
_

6
1

2 3

4 5
612

_

3
_

4
_

5
_

6
1

2 3

4 5
6

1
_

2
_

3
_

4
_

5
_

6
1

2 3

4 5
6

Remark A cell that is bounded by hyperplanes {hi1 , . . . , hik}
correspond to an acyclic reorientation having [n] \ {i1, . . . , ik} as
interior points.
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Application 14 : McMullen problem

A projective transformation P : IRd → IRd is such that p(x) = Ax+b
〈c,x〉+δ

where A is a linear transformation of IRd , b, c ∈ IRd and δ ∈ IR such that
at least one of c 6= 0 or δ 6= 0.

P is said permissible for a set X ⊂ IRd iff for all x ∈ X , 〈c , x〉+ δ 6= 0.

McMullen problem Determine the largest integer f (d) such that given
any n points in general position in IRd there is a permissible projective
transformation mapping these points onto the vertices of a convex
polytope.

Oriented matroid version (Cordovil, Silva 1985) Determine the largest
integer g(d) such that given any uniform oriented matroid M of rank r on
g elements there is an acyclic orientation of M having no interior points.
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J.L. Raḿırez Alfonśın IMAG, Université de Montpellier

Theory of matroids and applications IV



Application 14 : McMullen problem

A projective transformation P : IRd → IRd is such that p(x) = Ax+b
〈c,x〉+δ

where A is a linear transformation of IRd , b, c ∈ IRd and δ ∈ IR such that
at least one of c 6= 0 or δ 6= 0.

P is said permissible for a set X ⊂ IRd iff for all x ∈ X , 〈c , x〉+ δ 6= 0.

McMullen problem Determine the largest integer f (d) such that given
any n points in general position in IRd there is a permissible projective
transformation mapping these points onto the vertices of a convex
polytope.

Oriented matroid version (Cordovil, Silva 1985) Determine the largest
integer g(d) such that given any uniform oriented matroid M of rank r on
g elements there is an acyclic orientation of M having no interior points.
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Application 13 : McMullen problem

Theorem (Larman 1972) 2d + 1 ≤ f (d) ≤ (d + 1)2 for any d ≥ 2

Conjecture (Larman 1972) f (d) = 2d + 1 for any d ≥ 2 and
proved for d = 2, 3.

Theorem (Las Vergnas 1985) f (d) ≤ d(d + 1)/2 for any d ≥ 2.

Theorem (Forge, Las Vergnas, Schuchert 2001) Conjecture true for
d = 4.

Theorem (R.A. 2001) f (d) ≤ 2d + dd2 e for any d ≥ 2.
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Lawrence oriented matroid

A Lawrence oriented matroid M of rank r on the E = {1, . . . , n},
r ≤ n, is a uniform oriented matroid obtained as the union of r
uniform oriented matroids M1, . . . ,Mr of rank 1 on (E , <).

The chirotope χ corresponds to some Lawrence oriented matroid
MA if and only if there exists a matrix A = (aij)1≤i≤r ,1≤j≤n with
entries from {+1,−1} where the i th-row is given by χ(Mi ), and
thus,

χ(B) =
r∏

i=1

aiji

where B is an ordered r -tuple j1 ≤ . . . ≤ jr elements of E .
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Lawrence oriented matroid
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Matrix A arising a Lawrence oriented matroid M =
n⋃

i=1
Mi .
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Reorientation
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Reorientation of element 6 arising a Lawrence oriented matroid
−6M.
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Top and Bottom Travels
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We define Top Travel [TT ] and the Bottom Travel [BT ] on the
entries of A, both formed by horizontal and vertical movements.
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Theory of matroids and applications IV



Acyclic and interior points

TT ends at last column TT and BT parallel at column c

c

c

• MA is acyclic iff TT arrives at the last column of A.

• c is interior in MA iff TT and BT are parallel at column c .
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MA is acyclic and 4, 5 and 6 are interior elements.
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Chessboard
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Chessboard of matrix A invariant under reorientations

The upper bound f (d) ≤ 2d + dd2 e, d ≥ 2 comes from chessboard
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Spatial graphs

A spatial representation of a graph G is an embedding of G in IR3

where the vertices of G are points and edges are represented by
simple Jordan curves.

Spatial representation of K5
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Linear spatial representations

A spatial representation is linear if the curves are line segments

Let m(L) be the smallest integer such that any spatial linear
representation of Kn with n ≥ m(L) contains cycles isotopic to L
The stick number of a link L is the smallest number of sticks
needed to realize L

T(5,2)
Figure-eightTrefoil

Hopf link 41
221

2

T F8
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Some values of m(L)

Theorem m(22
1) = 6
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Application 15 : values of m(L)

Theorem m(22
1) = 6

Theorem (R.A. 1998, 2000, 2009)
m(TorT ∗) = 7, m(42

1) > 7, m(F8) > 8, m(T (5, 2)) > 8
(By using Radon partition arising from oriented matroids of rank 4
and some computer verification)
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Isotopy Conjecture

Isotopy Conjecture for Oriented Matroid (Ringel 1956) The
realization space over the real number field of an oriented matroid
is path-connected. In other words, can one given realization of M
be continuously deformed, through realizations, to another given
one ?

Theorem (White 1989) Provide a nonuniform counterexample of
rank 3 on 42 points.

Theorem (Jaggi, Mani-Levitska, Sturmfels, White 1989) Provide a
uniform counterexample of rank 3 on 17 points.

Theorem (Richter 1989) The realization spaces of all realizable
uniform oriented matroids of rank 3 and at most 9 elements are
contractible.
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Universality Theorem

A basic primary semialgebraic set is the (real) solution set of an arbitrary
finite system of polynomial equations and strict inequalities with integer
coefficients.

A stable equivalence is a strong type of arithmetic and homotopy
equivalence between two semialgebraic sets.

Remark Two stably equivalent semialgebraic sets have the same number
of components, they are homotopy equivalent, and either both or neither
of them have rational points.

A realization space of an oriented matroid with chirotope χ, denoted by
R(χ) is the set of all realizations of χ.

Mnëv’s Universality Theorem (1988) For every basic primary

semialgebraic set V defined over Z there is a chirotope χ of rank 3 such

that V and R(χ) are stably equivalent.
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Proof based in the algebra of throws

K.G.C. von Staudt (1857) introduced a geometric construction
based on the cross-ratio, for adding and multiplying points in the
projective line.

y

xa b a+b

l

1

1

a b ab x

y

For any line l parallel to x do not depend of the choice of 1
(meeting at infinity)

By using this, polynomial algebraic relations can be translated into
corresponding point-and-line configurations.
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Some consequences of the universality theorem

• The isotopy problem has a (very) negative solution even for
uniform matroids of rank 3.

• (Shor 1991) The realizability problem for oriented matroids is
NP-hard.

• The realizability problem for oriented matroids is ∃R-hard.

• (Bokowski, Sturmfels 1989) Realizability of rank 3 oriented
matroids cannot be characterized by excluding a finite set of
forbidden minors.

• For every finite simplicial complex ∆, there is an oriented
matroid whose realization space is homotopy equivalent to ∆.
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Strong geometry

p

Two configurations of points having the same oriented matroid

Gros, R.A. (2025) introduced a new oriented matroid M∧(X )
arising from the set of lines spanned by X .
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Strong geometry

Let X be a n-uple of points in the space.

We define the strong geometry associated to X , denoted by
SGeom(X ), as the structure composed by M(X ) and M∧(X ).

Strong geometries encode nicely the combinatorics of the cells of
the arrangement of the spanned lines.

Theorem (Gros, R.A. 2025) Any basic primary semialgebraic set V
is stable equivalent to the realization space of a strong matroid.
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