Feuille d'exercices 2

Exercice 1 - Anneaux finis

- (1) Donnez un exemple d'anneau fini non commutatif.
- (2) Soient A un anneau fini et $x \in A$. Montrez que les conditions suivantes sont équivalentes : x est inversible à gauche ; régulier à gauche ; inversible à droite ; régulier à droite.
- (3) Montrer qu'un anneau fini intègre est un corps.

Exercice 2 - L'anneau $\mathscr{C}(\mathbb{R},\mathbb{R})$

Quels sont les éléments inversibles et réguliers de $\mathscr{C}(\mathbb{R},\mathbb{R})$?

Exercice 3 - Un calcul d'inverse

- (1) Rappeler quel est l'inverse de 1-T dans l'anneau des séries formelles $\mathbb{Z}[[T]]$.
- (2) Soit A un anneau et $a, b \in A$. Montrez que si 1 ab est inversible, alors 1 ba l'est également.

Exercice 4 - Morphisme de Frobenius

Soient p un nombre premier et A un anneau commutatif tel que $p.1_A = 0$.

- (1) Montrez que px = 0 pour tout $x \in A$.
- (2) Montrez que dans A, les coefficients binomiaux $\binom{p}{i}$ sont nuls pour 0 < i < p.
- (3) Montrez que l'application $F:A\longrightarrow A, x\longmapsto x^p$ est un endomorphisme d'anneaux. Que vaut-il dans le cas où $A=\mathbb{Z}/p\mathbb{Z}$?

Exercice 5 - Idempotents et produits

Un élément e d'un anneau commutatif A est dit idempotent si $e^2=e$.

- (1) Soit A un anneau intègre. Quels sont les idempotents de A?
- (2) Soit $(A_i)_{i\in I}$ une famille d'anneaux. Quels sont les idempotents de $\prod_{i\in I} A_i$? Et si tous les A_i sont intègres?
- (3) Quels sont les idempotents de $\mathbb{Z}/12\mathbb{Z}$? De $\mathscr{C}(\mathbb{R},\mathbb{R})$?
- (4) Montrez que si e est idempotent, alors (1-e) est idempotent. Montrez que l'idéal (e) = eA est un anneau unitaire d'élément unité e, puis que l'application

$$\begin{array}{ccc} A & \longrightarrow & eA \times (1-e)A \\ x & \mapsto & (ex, (1-e)x) \end{array}$$

est un isomorphisme d'anneaux. Quel est son inverse?

Exercice 6 - Algèbre des quaternions de Hamilton

Soit k un corps. On appelle k-algèbre un anneau A muni d'une structure de k-espace vectoriel telle que la multiplication $m: A \times A \to A$ est k-bilinéaire. L'algèbre des matrices $M_n(k)$, ou si $k = \mathbb{R}$ l'anneau de fonctions $\mathscr{C}(\mathbb{R}, \mathbb{R})$, sont des exemples. On appelle morphisme de k-algèbres un morphisme d'anneaux qui est k-linéaire.

(1) Pour tout $a \in A$, notons $\gamma_a : A \to A$, $x \mapsto ax$ la multiplication à gauche par a. Montrez que γ_a est un endomorphisme k-linéaire et que l'application $\gamma : A \to \operatorname{End}_k(A)$, $a \mapsto \gamma_a$ est un morphisme injectif de k-algèbres. (On désigne par $\operatorname{End}_k(A)$ l'algèbre des endomorphismes du k-espace vectoriel A.)

On définit l'algèbre des quaternions $\mathbb{H} = \mathbb{R}1 \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$ comme étant le \mathbb{R} -espace vectoriel de dimension 4 sur \mathbb{R} avec pour multiplication l'application \mathbb{R} -bilinéaire pour laquelle 1 est élément neutre définie par :

$$i^2 = j^2 = k^2 = -1$$
 ; $ij = -ji = k$; $ik = -ki = -j$; $jk = -kj = i$.

On admet que cette multiplication munit H d'une structure de R-algèbre associative.

- (2) Donnez les images de i et j par l'application $\gamma : \mathbb{H} \to \operatorname{End}_{\mathbb{R}}(\mathbb{H}) \simeq \mathcal{M}_4(\mathbb{R})$. Déduisez-en une autre manière de définir \mathbb{H} , dans laquelle l'associativité de la multiplication est « évidente ». Quelles sont les caractéristiques de \mathbb{H} qui ne sont pas évidentes, dans cette présentation?
- (3) Pour tout quaternion q=a+bi+cj+dk, on pose $\overline{q}=a-bi-cj-dk$ que l'on appelle le conjugué de q. Montrez que la conjugaison est un anti-automorphisme involutif de \mathbb{R} -algèbres. Montrez que $q\in\mathbb{R}$ ssi $\overline{q}=q$.

On note \mathbb{R} le sous-espace vectoriel de \mathbb{H} engendré par 1; on appelle quaternions réels ses éléments. On note P le sous-espace vectoriel de \mathbb{H} engendré par i,j,k; on appelle quaternions imaginaires purs ses éléments.

- (4) Montrez que le centre de \mathbb{H} est \mathbb{R} .
- (5) Montrez que les conditions suivantes sont équivalentes : q est réel ; $\overline{q} = q$; $q^2 \in \mathbb{R}_{\geq 0}$. (L'ordre de \mathbb{R} ne s'étend pas à \mathbb{H} et il est donc plus prudent de noter $q \in \mathbb{R}_{\geq 0}$ que $q \geq 0$.)
- (6) Montrez que les conditions suivantes sont équivalentes : q est imaginaire pur ; $\overline{q}=-q$; $q^2\in\mathbb{R}_{\leq 0}$.
- (7) On définit la norme d'un quaternion q par $N(q) = q\overline{q}$. Vérifiez que $N(q) \in \mathbb{R}$, $N(\overline{q}) = N(q)$, et N(q) = 0 si et seulement si q = 0. Montrez que \mathbb{H} est une algèbre à division.
- (8) Résolvez dans $\mathbb H$ l'équation $x^2=-1$. Qu'en déduisez-vous pour la factorisation des polynômes à coefficients dans $\mathbb H$?
- (9) Existe-t-il sur H une (ou des) structure(s) de C-algèbre?

Exercice 7 - Unités et éléments nilpotents d'un anneau de polynômes Soit A est un anneau commutatif.

- (1) Montrer que, pour $a \in A^*$ et $n \in Nil(A)$, $a + n \in A^*$.
- (2) Montrer que Nil(A[X]) = Nil(A)[X].

(3) Montre que $A[X]^* = A^* + X \operatorname{Nil}(A)[X]$.

Exercice 8 - Caractérisation de l'intégrité

Soit A un anneau commutatif distinct de $\{0\}$, $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{F}_2[X]/(X^2)$. Montrer que s'équivalent :

- (1) A est intègre ;
- (2) tout polynôme unitaire de degré n a au plus n racines ;
- (3) tout polynôme unitaire de degré 2 a au plus 2 racines ;

Étudier les cas $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{F}_2[X]/(X^2)$.

Exercice 9 - Anneaux tels que $a^3 = a$

Soit A un anneau tel que $a^3 = a$, pour tout $a \in A$. On se propose d'établir que A est commutatif.

- (1) Montrer que $6A = \{0\}$.
- (2) Montrer que 2A et 3A sont des idéaux bilatères de A vérifiant 2A+3A=A et $2A\cap 3A=\{0\}$. En déduire qu'on peut supposer soit $2A=\{0\}$, soit $3A=\{0\}$.
- (3) Si $2A = \{0\}$, montrer que $a^2 = a$, pour tout $a \in A$, et conclure.
- (4) Si $3A = \{0\}$, conclure en s'intéressant à $(a+b)^3$ et $(a-b)^3$.

Exercice 10 - Image d'un idéal

Soit $f: A \longrightarrow B$ un morphisme d'anneaux.

- (1) L'image directe d'un idéal de A est-elle un idéal de B? Et si f est supposé surjectif?
- (2) Montrer que l'image réciproque d'un idéal premier de B est un idéal premier de A.
- (3) Montrer que l'image réciproque d'un idéal maximal de B est un idéal maximal de A, lorsque f est supposé surjectif. Donner un contre-exemple lorsque f n'est pas surjectif.
- (4) En déduire que, pour un idéal I de A, $\pi:A\longrightarrow A/I$ induit une bijection entre les idéaux (resp. premiers, resp. maximaux) de A qui contiennent I et les idéaux (resp. premiers, resp. maximaux) de A/I.

Exercice 11 - Radical de Jacobson

Soit A un anneau commutatif. On appelle $radical\ de\ Jacobson\ de\ A$, noté Rad(A), l'intersection des idéaux maximaux de A.

- (1) Montrer que $Rad(A) = \{a \in A \mid \forall b \in A, 1 ab \in A^*\}.$
- (2) Montrer que $Rad(A/Rad(A)) = \{0\}.$

Exercice 12

Soit A un anneau commutatif.

- (1) Soit \mathfrak{P} un idéal premier de A et I_1, \ldots, I_n des idéaux de A. Montrer que si \mathfrak{P} contient le produit $I_1 \ldots I_n$, alors il contient l'un des I_k .
- (2) Montrer que si I est un idéal non premier de A, il existe des idéaux I_1 et I_2 de A distincts de I tels que $I \subset I_1, I \subset I_2$ et $I_1I_2 \subset I$.