Feuille d'exercices 2 : (indications de) correction

Exercice 2

Soient f, g des fonctions continues de \mathbb{R} dans \mathbb{R} . Si fg = 1, alors pour tout $x \in \mathbb{R}$ on a f(x)g(x) = 1 donc $f(x) \neq 0$. Réciproquement si $f(x) \neq 0$ pour tout x alors la fonction $x \mapsto 1/f(x)$ est bien définie et continue sur \mathbb{R} , donc c'est un inverse pour f dans $A = \mathscr{C}(\mathbb{R}, \mathbb{R})$. Ainsi les inversibles de A sont les fonctions qui ne s'annulent pas.

Cherchons les éléments réguliers de A. Supposons qu'il existe un ouvert U tel que la restriction de f à U soit nulle : $f|_U=0$. On peut alors construire une fonction continue g, non nulle en un point x intérieur à U mais nulle hors de U (une fonction en cloche). On a donc fg=0 alors que $g\neq 0$ donc f est diviseur de 0. Inversement, si pour tout ouvert $U\subset \mathbb{R}$ il existe $y\in U$ tel que $f(y)\neq 0$, montrons que f ne divise pas 0. Supposons que fg=0. S'il existe x tel que $g(x)\neq 0$, alors par continuité il existe un voisinage $U\ni x$ tel que g ne s'annule pas sur g. Comme par hypothèse il existe $g\in U$ tel que g0, alors g1 n'est pas nulle en g2, contradiction. Donc g3 en conclusion : les éléments réguliers de g3 sont les fonctions g3 dont l'ensemble des zéros g3 est d'intérieur vide.

Exercice 5

- (1) Les idempotents sont 0 et 1.
- (2) Les idempotents de $\prod A_i$ sont les familles (e_i) avec $e_i \in A_i$ idempotent. Si chaque A_i est intègre, ce sont les familles de 0 et 1.
- (3) D'après le th. des restes chinois on a $\mathbb{Z}/12\mathbb{Z} \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. Les idempotents du premier facteur sont 0, 1 et les idempotents du second facteur également. Pour les exprimer dans $\mathbb{Z}/12\mathbb{Z}$, on choisit un couple de Bézout (u,v)=(-1,1) pour (3,4) ce qui fournit l'isomorphisme inverse $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$, $(x,y) \mapsto 4x-3y$. Les images dans $\mathbb{Z}/12\mathbb{Z}$ des 4 idempotents trouvés ci-dessus sont 0,9,4,1.
- (4) Il n'y a pas de grande difficulté. L'isomorphisme inverse est $(ex, (1-e)y) \mapsto ex + (1-e)y$.

Exercice 12

- (1) Supposons que \mathfrak{P} ne contient aucun des I_k , i.e. pour tout k il existe $i_k \in I_k \setminus \mathfrak{P}$. Alors $i_1 \dots i_k \in I_1 \dots I_k \setminus \mathfrak{P}$. Par contraposée, on a le résultat demandé.
- (2) Si I n'est pas premier, il existe x, y n'appartenant pas à I tels que $xy \in I$. Les idéaux $I_1 = I + (x)$ et $I_2 = I + (y)$ répondent à la question.