Feuille d'exercices 3

Exercice 1 Soient k un corps, A une k-algèbre de dimension finie et $G = A^{\times}$ le groupe de ses éléments inversibles. On considère le morphisme injectif de k-algèbres $\gamma : A \hookrightarrow \operatorname{End}_k(A)$ qui envoie a sur l'endomorphisme linéaire γ_a de multiplication à gauche par a (le morphisme γ est aussi appelé représentation régulière gauche). On note det : $\operatorname{End}_k(A) \to k$ le déterminant, et on considère le morphisme composé det $\circ \gamma : A \to k$ que l'on note encore det par abus.

(1) Soit $a \in A$. Montrez que $a \in G$ si et seulement si $\det(a) \in k^{\times}$. (Pour le sens difficile, on pourra utiliser le théorème de Cayley-Hamilton dans $\operatorname{End}_k(A)$.)

On suppose que $k = \mathbb{R}$ ou \mathbb{C} et on munit A de la topologie induite par sa structure d'espace vectoriel.

- (2) Justifiez que la multiplication $m: A \times A \to A$ est continue.
- (3) Déduisez de (1) et (2) que si G est commutatif, A est commutative.

On peut montrer que ce résultat est vrai pour tout corps k.

Exercice 2 Soit $f: A \to B$ un morphisme d'anneaux commutatifs et J un idéal de B. Vrai ou faux :

- (1) Si J est premier, $f^{-1}(J)$ est premier.
- (1) Si J est maximal, $f^{-1}(J)$ est maximal.

Exercice 3 Soit A un anneau. Quels sont les endomorphismes du A-module à gauche A? du A-module à droite A?

Exercice 4 Soient A un anneau et M un A-module à gauche. Décrire $\operatorname{Hom}_A(A, M)$.

Exercice 5 Soit A un anneau et I un idéal à gauche. Quand le A-module à gauche A/I est-il libre ?

Exercice 6 Soient A un anneau et M un A-module à gauche. On appelle dual (A-linéaire) de M le groupe abélien $M^* = \operatorname{Hom}_A(M, A)$.

- (1) Pour $A = \mathbb{Z}$, quel est le dual de \mathbb{Z} ? de $\mathbb{Z}/2\mathbb{Z}$? de \mathbb{Q} ? Pour $A = \mathbb{Z}/2\mathbb{Z}$, quel est le dual de $\mathbb{Z}/2\mathbb{Z}$?
- (2) On voudrait munir M^* d'une structure de A-module. Pour cela, on propose les quatre recettes suivantes :
 - (i) à $\varphi \in M^*$ et $\lambda \in A$ on associe $\lambda \varphi : M \to A$ donné par $x \mapsto \lambda \varphi(x)$;

- (ii) à $\varphi \in M^*$ et $\lambda \in A$ on associe $\lambda \bullet \varphi : M \to A$ donné par $x \mapsto \varphi(\lambda x)$;
- (iii) à $\varphi \in M^*$ et $\lambda \in A$ on associe $\varphi \lambda : M \to A$ donné par $x \mapsto \varphi(x)\lambda$;
- (iv) à $\varphi \in M^*$ et $\lambda \in A$ on associe $\varphi \bullet \lambda : M \to A$ donné par $x \mapsto \varphi(x\lambda)$.

Ces recettes ont-elles toutes un sens ? Sont-elles vraiment différentes ? Lesquelles donnent-elles bien une structure de A-module sur M^* ? De quel bord politique ?

Exercice 7 Soient A un anneau et M un A-module à gauche non nul.

- (1) Montrer qu'il existe un idéal à gauche $I \subseteq A$ et un morphisme injectif de A/I dans M.
- (2) Montrer qu'il n'existe aucune application \mathbb{Z} -linéaire non nulle de \mathbb{Q} vers un quotient de \mathbb{Z} .

Exercice 8 - Théorèmes d'isomorphisme

Soit N un sous-module d'un A-module M et $\pi: M \longrightarrow M/N$ la projection canonique.

- (1) Montrer que $P \mapsto \pi^{-1}(P)$ établit une bijection croissante entre les sous-modules de M/N et les sous-modules de M contenant N et donner sa réciproque.
- (2) Montrer que cette bijection transforme sommes et intersections en sommes et intersections.
- (3) Montrer que, pour des sous-modules $N \subset L_2 \subset L_1 \subset M$, $(L_1/N)/(L_2/N) \simeq L_1/L_2$.
- (4) Montrer que si P est un sous-module de M, $N/(N \cap P) \simeq (N+P)/P$.