Feuille d'exercices 1

Exercice 1 - Systèmes de représentants

Dans un ensemble E muni d'une relation d'équivalence \mathscr{R} , on appelle système de représentants $de \mathscr{R}$ une partie $S \subset E$ qui contient exactement un élément de chaque classe d'équivalence.

- (1) Montrez que la restriction à S de la surjection canonique $\pi: E \to E/\mathscr{R}$ est une bijection.
- (2) Montrez que $S = \{2004, -12, -9, 25, 12\}$ est un système de représentants pour la relation de congruence modulo 5 dans \mathbb{Z} . Donnez la table d'addition de $\mathbb{Z}/5\mathbb{Z}$ dans ce système de représentants.
- (3) Donnez un système de représentants pour la relation de colinéarité dans un \mathbb{R} -espace vectoriel de dimension 2.

Exercice 2 - Commutant d'une partie dans un anneau

Soit A un anneau et S une partie de A.

- (1) Montrez que l'ensemble $C_S = \{x \in A : xs = sx \text{ pour tout } s \in S\}$ est un sous-anneau de A.
- On appelle C_S le commutant de S dans A; si S = A, on appelle $C_S = C_A$ le centre de A.
- (2) Soit k un corps (commutatif) et $n \geq 1$ un entier. Calculez le centre de l'anneau des matrices $A = M_n(k)$. (Vous pouvez poser le calcul en utilisant la base de $M_n(k)$ formée des matrices $E_{i,j}$ dont le seul coefficient non nul est celui d'indice (i,j) qui vaut 1, telle que $E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l}$.)

Exercice 3 - Ordre d'un élément

Soit G un groupe et $g \in G$. On appelle ordre de g dans G le plus petit des entiers $n \ge 1$ tels que $g^n = 1$, s'il en existe un, et $+\infty$ sinon.

- (1) Quel est l'ordre de -1 dans $(\mathbb{Q}, +)$? Et dans (\mathbb{Q}^*, \times) ?
- (2) L'élément $g \in G$ étant fixé, montrez que l'application $\mathbb{Z} \to G$, $m \mapsto g^m$ est un morphisme de groupes. Donnez les liens entre son noyau, son image et l'ordre de g.
- (3) Soient $k, n \ge 1$ deux entiers. Calculez l'ordre de la classe \overline{k} dans $\mathbb{Z}/n\mathbb{Z}$ (on pourra commencer par le cas où k et n sont premiers entre eux).

Exercice 4 - Algèbre des quaternions de Hamilton

Dans l'anneau $M_4(\mathbb{R})$ des matrices carrées de taille 4 à coefficients réels, on note 1 la matrice identité et on identifie \mathbb{R} au sous-anneau des matrices d'homothétie. On considère les trois matrices :

$$i = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad j = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \quad k = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

On note \mathbb{H} le sous-anneau de $M_4(\mathbb{R})$ engendré par \mathbb{R} , i et j.

- (1) Montrez que $i^2 = j^2 = k^2 = -1$, ij = -ji = k, ik = -ki = -j, jk = -kj = i.
- (2) Montrez que \mathbb{H} est un sous- \mathbb{R} -espace vectoriel de dimension 4 de $M_4(\mathbb{R})$.
- (3) Pour toute matrice $q \in \mathbb{H}$ de la forme q = a + bi + cj + dk avec a, b, c, d réels, on pose

$$\overline{q} = a - bi - cj - dk.$$

Calculez $q \overline{q}$ et déduisez-en que si $q \neq 0$, alors q est un élément inversible de \mathbb{H} .

Exercice 5 - Groupe opposé, anneau opposé

- (1) Pour tout groupe G, on note G° l'ensemble $G^{\circ} = G$ muni de la multiplication renversée $x \times y := yx$. Montrez que G° est un groupe ; on l'appelle le groupe opposé à G. Montrez que G° est isomorphe à G.
- (2) Pour tout anneau A, on appelle anneau opposé à A et on note A° l'anneau tel que $(A^{\circ}, +) = (A, +)$ muni de la multiplication renversée $x \times y := yx$. Pour un corps k et un entier $n \geq 1$, montrez que $M_n(k)^{\circ}$ est isomorphe à $M_n(k)$.

Exercice 6 - Automorphismes intérieurs

Soit G un groupe. Pour tout $g \in G$, on note $c_g : G \to G$ l'application $x \mapsto gxg^{-1}$.

- (1) Montrez que c_g est un automorphisme du groupe G.
- (2) Montrez que $c: G \to \operatorname{Aut}(G)$ est un morphisme de groupes. Quel est son noyau?
- (3) Montrez que l'image de c est un sous-groupe distingué de $\operatorname{Aut}(G)$. Le morphisme c est-il toujours surjectif ?

Exercice 7 - Groupes sans automorphisme

Soit G un groupe dont le seul automorphisme est l'identité.

- (1) Montrez que G est commutatif.
- (2) Montrez que G peut être muni canoniquement d'une structure d'espace vectoriel sur le corps à 2 éléments \mathbb{F}_2 .
- (3) Montrez que $G \simeq \{1\}$ ou $G \simeq \mathbb{Z}/2\mathbb{Z}$.