Corrigé du TD 1

Théorème 1 Soit A un anneau næthérien, alors l'anneau de polynômes A[X] est næthérien.

Preuve : Soit $I \subset A[X]$, nous allons montrer qu'il est de type fini. Soit f_1 un polynôme de plus petit degré dans I. Par récurrence, tant que $(f_1, \ldots, f_k) \neq I$, on choisit un f_{k+1} de degré minimal dans $I \setminus (f_1, \ldots, f_k)$. Ce procédé s'arrête, ou non. Soit $a_k X^{d_k}$ le terme dominant de f_k , alors comme A est nœthérien, l'idéal engendré par tous les a_k peut être engendré par un nombre fini d'entre eux, disons a_1, \ldots, a_m . Montrons que $I = (f_1, \ldots, f_m)$. Si ce n'est pas le cas, notre procédé fournit un f_{m+1} . Or on a $a_{m+1} = u_1 a_1 + \cdots + u_m a_m$ pour certains $u_k \in A$. Considérons le polynôme

$$g = (u_1 f_1 X^{d_{m+1} - d_1} + \dots + u_m f_m X^{d_{m+1} - d_m}) - f_{m+1}$$

On voit que $\deg(g) < \deg(f_{m+1})$, et que $g \in I \setminus (f_1, \ldots, f_m)$. Ceci contredit le choix de f_{m+1} .

Corollaire 2 Soit A næthérien, alors toute A-algèbre de type fini est næthérienne.

On fait une récurrence sur le nombre d'indéterminées et on utilise le fait (évident) qu'un quotient d'un anneau nœthérien est nœthérien.

Remarque: Dans un anneau A, le radical d'un idéal I est l'idéal noté \sqrt{I} constitué des éléments de A qui ont une puissance dans I. Le radical de I est aussi égal à l'intersection des idéaux premiers $\binom{1}{I}$ qui contiennent I. Ainsi, $V(I) = V(\sqrt{I})$. On en déduit aussi que $V(I) \subset V(J)$ équivaut à $\sqrt{I} \supset \sqrt{J}$, en effet seul le sens direct n'est pas facile, or si $V(I) \subset V(J)$, alors tout premier qui contient I contient I, donc $\bigcap_{p \supset I} p \subset \bigcap_{p \supset I} p$ car l'intersection de droite porte que un ensemble de premiers plus grand.

Exercice 3 Supposons X irréductible. Alors si $xy \in \sqrt{0}$, pour tout $p \subset A$ premier, on a $x \in p$ ou $y \in p$. Ainsi $X = V(x) \cup V(y)$. Comme X est irréductible, V(x) = X ou V(y) = X. Si V(x) = X par exemple, alors tout premier contient x, donc $x \in \cap p = \sqrt{0}$. Ceci montre que $\sqrt{0}$ est premier, donc $A_{\text{réd}}$ est intègre.

Réciproquement, si $X = V(I) \cup V(J)$, alors tout premier p contient IJ, donc $IJ \subset \sqrt{0}$. Comme $\sqrt{0}$ est premier par hypothèse, on en déduit que $I \subset \sqrt{0}$ ou $J \subset \sqrt{0}$, donc V(I) = X ou V(J) = X, donc X est irréductible.

Exercice 4 (1) Soit $V(I_1) \supset V(I_2) \supset V(I_3) \supset \ldots$ une suite décroissante de fermés. Comme $V(I) = V(\sqrt{I})$, on peut supposer que les I_k sont des idéaux radicaux (c'est-à-dire égaux à leur propre radical). Alors la chaîne décroissante ci-dessus est équivalente à $I_1 \subset I_2 \subset I_3 \subset \ldots$ Comme A est nœthérien, cette chaîne est stationnaire, donc la chaîne de fermés de départ aussi.

(2) Soit E l'ensemble des Y qui n'ont pas de décomposition en réunion d'un nombre fini de fermés irréductibles. Si $E \neq \emptyset$, on choisit $\mathcal{Y}_1 \in E$. Si \mathcal{Y}_1 n'est pas minimal pour l'inclusion, on choisit $\mathcal{Y}_2 \subset \mathcal{Y}_1$, etc. Comme X est nœthérien, la suite ainsi construite est stationnaire en $\mathcal{Y}_k = \mathcal{Y} \in E$. Comme \mathcal{Y} n'est pas irréductible (étant dans E) on a $\mathcal{Y} = Z \cup Z'$ avec $Z, Z' \neq \mathcal{Y}$, donc $Z, Z' \notin E$, donc Z et Z' sont réunion d'un nombre fini de fermés irréductibles, donc \mathcal{Y} aussi, contradiction.

Exercice 5 (1) On va montrer que les idéaux premiers minimaux de $A = k[x, y, z]/(y^2 - xz, z^2 - y^3)$ sont $I_1 = (y, z)$ et $I_2 = (y - x^2, z - x^3)$. En effet, si (x, y, z) est un k-point de Spec(A), alors les équations impliquent que $z^2 = yxz$. Si z = 0, alors y = 0 et x est arbitraire, donc, l'ensemble $Y_1 = \{(x, 0, 0) \mid x \in k\}$ est inclus dans Spm(A). Si $z \neq 0$, alors z = xy et $xz = y^2$. D'où y = z/x et

 $^{^{1}\}mathrm{On}$ dit parfois simplement premierau lieu d' $id\acute{e}al$ premier.

 $z^2/x^2 = xz$, donc $z = x^3$ et $y = x^2$. Cela montre que l'ensemble algébrique $Y_2 = \{(x, x^2, x^3) \mid x \in k\}$ est inclus dans $\mathrm{Spm}(A)$. Les quotients A/I_i sont isomorphes à k[t], donc I_i est premier. On a verifié que $Y_1 \cup Y_2 = \mathrm{Spm}(A)$ comme ensembles. Comme Y_i est irréductible de dimension 1 et $Y_1 \cap Y_2 = \{0\}$, cela implique que Y_1, Y_2 sont les composantes irréductibles de $\mathrm{Spec}(A)$.

(2) On a f(x,y,z)=x pour $(x,y,z)\in Y_2$ et f(x,y,z)=0 pour $(x,y,z)\in Y_1$. Donc, f est bien défini au niveau ensembliste : en l'unique point d'intersection, les deux valeurs de f coïncident. Supposons que $g\in A$ et si $(x,y,z)\in \mathrm{Spm}(A)$ avec $x\neq 0$, alors g(x,y,z)=y/x comme fonctions. Alors, il existe b>0 tel que $x^b(xg-y)$ appartient à l'idéeal (y^2-xz,z^2-y^3) , soit

$$x^{b}(xg - y) = (y^{2} - xz)p + (z^{2} - y^{3})q$$

En posant z=0 on obtient l'égalité de polynômes dans k[x,y]

$$x^{b}(xg(x,y,0) - y) = y^{2}p(x,y,0) - y^{3}q(x,y,0)$$

Donc, il existe $h \in k[x, y]$ tel que $xg(x, y, 0) - y = y^2h$. Posant x = 0, on obtient $-y = y^2h(0, y)$ dans k[y], contradiction.

Exercice 6 Soit X espace topologique séparé et irréductible. Si $x, y \in X$ et $x \neq y$ alors il y a deux ouvert $x \in U \subset X$ et $y \in V \subset X$ tel que $U \cap V = \emptyset$, contradiction. Donc, X est un point (s'il est non vide).

Soit X un espace topologique irréductible, $U \subset X$ un ouvert non vide. Soit $\overline{U} \subset X$ l'adhérence de U, alors Y = X - U est fermé et $Y \cup \overline{U} = X$, donc $\overline{U} = X$. En particulier, si $U, V \subset X$ sont deux ouverts non vides, $U \cap V \neq \emptyset$.

Soit X un espace irréductible, $U \subset X$ un ouvert non vide. Supposons que U n'est pas irréductible, alors il y a deux ouverts non vides $U_1, U_2 \subset U$ tel que $U_1 \cap U_2 = \emptyset$. Mais les U_i sont aussi ouverts dans X, contradiction. Donc, U est irréductible.

Si X est un espace topologique et $Y \subset X$ est une partie irréductible, alors \overline{Y} est aussi irréductible. En effet, si $Y_1 \subset Y_2 = \overline{Y}$ est une décomposition de Y en une réunion de deux fermés, alors les $Y_i \cap Y$ sont fermés dans Y et leur réunion contient Y, donc pour i = 1 ou 2 on a $Y \subset Y_i$, mais alors $\overline{Y} \subset Y_i$.

Exercice 7 Pour (i) \Rightarrow (ii) : si $A \simeq A_1 \times A_2$, alors $I = A_1 \times \{0\}$ et $J = \{0\} \times A_2$ sont des idéaux et $X \simeq V(I) \sqcup V(J)$ (vérifiez-le) n'est pas connexe.

Pour (ii) \Rightarrow (iii) : si $e \in A$ est un idempotent distinct de 0 et 1, alors f = 1 - e l'est aussi, et ef = 0. Considérons le morphisme $i: A \to A/(e) \times A/(f)$. On vérifie que le morphisme $j: A/(e) \times A/(f) \to A$, qui envoie $(\overline{a}_1, \overline{a}_2)$ sur $a_1f + a_2e$, est bien défini et est un isomorphisme inverse pour f.

Pour (iii) \Rightarrow (i): supposons que X est non connexe, donc réunion disjointe de deux fermés stricts $V(I) \sqcup V(J)$ où $I, J \neq A$. On a I+J=A, car sinon I+J serait inclus dans un idéal maximal p qui appartiendrait donc à V(I) et à V(J). On voit aussi que $I \cap J$ est nilpotent, car pour tout idéal premier p, on a $p \supset I$ ou $p \supset J$, donc $p \supset I \cap J$ dans tous les cas; ainsi $I \cap J$ est dans l'intersection de tous les idéaux premiers, i.e. le nilradical. De I+J=A on tire une écriture i+j=1, et il existe n tel que $(ij)^n=0$. En prenant les puissances n-ièmes on obtient $i^n+j^n+x=1$ où x est nilpotent. Donc u=1-x est inversible, et il est alors facile de vérifier que $e:=u^{-1}i^n$ est idempotent. Par ailleurs e est distinct de 0 et 1 car $I,J\neq A$.

Exercice 8 Les idéaux premiers miniaux de $k[x, y, z]/(x^2 - yz, xz - x)$ sont (x, y) et (x, z) et $(z - 1, x^2 - y)$. Les composantes irréductibles de Y s'intersectent, donc Y est connexe.

Théorème 9 Soit A un anneau et $S \subset A$ une partie multiplicative, c'est-à-dire telle que $1 \in S$ et $x, y \in S \Rightarrow xy \in S$. Alors il existe un anneau noté $S^{-1}A$ (ou parfois A_S) et un morphisme $f: A \to S^{-1}A$, vérifiant la propriété universelle suivante : pour tout morphisme d'anneaux $g: A \to B$ tel que g(s) est inversible pour tout $s \in S$, il existe un unique morphisme $\widetilde{g}: S^{-1}A \to B$ tel que $g = \widetilde{g}f$.

L'anneau $S^{-1}A$ est appelé localisé de A par rapport à S, ou l'anneau de fractions à dénominateurs dans S.

Exercice 10 (1) Soit $S^{-1}A$ le quotient de l'ensemble des couples $(a, s) \in A \times S$ pour la relation d'équivalence

$$(a,s) \sim (a',s') \iff \exists t \in S, \ t(s'a - sa') = 0.$$

(si on écrit simplement (s'a - sa') = 0, la relation obtenue n'est pas transitive). La classe de (a, s) est notée a/s, et on munit $S^{-1}A$ d'une structure d'anneau en posant

$$\frac{a}{s} + \frac{a'}{s'} = \frac{s'a + sa'}{ss'} \qquad \text{et} \qquad \frac{a}{s} \frac{a'}{s'} = \frac{aa'}{ss'} \ .$$

Le morphisme canonique $f: A \to S^{-1}A$ envoie a sur a/1. Le reste est laissé en exercice.

Le noyau de $f: A \to S^{-1}A$ est l'ensemble des éléments de A qui sont annulés par un élément de S. (2) Tout idéal $J \subset S^{-1}A$ est de la forme $S^{-1}I$, si on pose $I = f^{-1}(J)$. Il est alors clair que si A est nœthérien, alors $S^{-1}A$ est nœthérien.

(3) Dans le cas des idéaux premiers, il est facile de voir que les deux applications suivantes sont inverses l'une de l'autre :

Attention : en général, la partie $\{p \in \text{Spec}(A), p \cap S = \emptyset\}$ n'est ni ouverte, ni fermée dans X = Spec(A).

Remarque: Étant donné un A-module M et $S \subset A$ une partie multiplicative, il y a un localisé $S^{-1}M$ qui vérifie la propriété que vous imaginez. La preuve ci-dessus marche quasiment mot pour mot.

Exercice 11 Premier exemple, le corps des fractions K d'un anneau intègre A est le localisé par rapport à la partie $S = A \setminus \{0\}$. En général, si A n'est pas intègre, on peut définir l'anneau total des fractions qui est le localisé $S^{-1}A$ où S est l'ensemble des éléments non diviseurs de S de S

Deuxième exemple, le cas où S est « de type fini » i.e. engendré par un nombre fini d'éléments f_1, \ldots, f_n . En géométrie, cela correspond à l'immersion ouverte du lieu où les fonctions f_i ne s'annulent pas dans X.

Enfin, si $S = A \setminus p$, où p est premier, on note $A_p := S^{-1}$ et on l'appelle le localisé de A en p. En géométrie, il correspond à l'anneau des germes de fonctions sur X = Spec(A) au point p.

Théorème 12 Soit A un anneau et $I \subset A$ un idéal. Soit M un A-module fini. Si M = IM, alors il existe $a \in A$ avec $a \equiv 1 \mod I$, tel que aM = 0.

Preuve : Soient m_1, \ldots, m_r des générateurs de M, et soit le vecteur colonne

$$\mathfrak{m} = \left(\begin{array}{c} m_1 \\ \vdots \\ m_r \end{array}\right) \in M^r$$

Par hypothèse, pour tout k il existe une écriture $m_k = i_{k,1}m_1 + \cdots + i_{k,r}m_r$. Ceci peut se réécrire $P \cdot \mathfrak{m} = 0$, où $P = \operatorname{Id} - (i_{k,l})$ est une matrice (r,r): ceci a bien un sens si on voit $\operatorname{GL}_r(A)$ comme agissant sur M^r . En multipliant P à gauche par la transposée de sa comatrice, on en déduit que $\det(P) \cdot \mathfrak{m} = 0$. Donc $a = \det(P)$ annule chaque m_k , donc il annule M. Comme de plus $P \equiv \operatorname{Id} \operatorname{modulo} I$, on a bien $a \equiv 1 \mod I$.

Corollaire 13 Soit A local d'idéal maximal m. Soit M un A-module fini. Si M=mM, alors M=0. Immédiat en prenant I=m.

Exercice 14 Les morphismes canoniques α, γ proviennent du fait que $f \notin p$, et les morphismes β, δ sont les morphismes de réduction modulo l'idéal maximal pA_p . (Notez que de manière générale, pour M un A-module et $I \subset A$ un idéal, on a $M \otimes_A A/I \simeq M/IM$.) Fixons une fois pour toutes une base e_1, \ldots, e_n du $A[\frac{1}{f}]$ -module libre $A[\frac{1}{f}]^n$. Les images des e_i dans $(A_p)^n$ et $k(p)^n$ donnent des bases dans ces modules libres ; on les notera encore e_i quand il n'y aura pas de confusion possible.

- (1) le morphisme $M_p \to M \otimes k(p) \simeq M_p/pM_p$ est surjectif. On peut donc choisir un relevé $x_i \in M_p$ de chaque $\varphi(e_i)$ (il faudrait écrire $(\varphi\beta\alpha)(e_i)...$). Ceci définit un morphisme $\psi\colon (A_p)^n \to M_p$ par $\psi(e_i) = x_i$. Soit $K = \operatorname{coker}(\psi)$. Comme le produit tensoriel est exact à droite (i.e. il préserve les $\operatorname{coker}(\psi)$, on a $K \otimes k(p) \simeq \operatorname{coker}(\psi \otimes k(p)) = \operatorname{coker}(\varphi) = 0$. Par Nakayama, K = 0 donc ψ est surjectif.
- (2) On a $x_i = \frac{m_i}{s_i}$ avec $m_i \in M$ et $s_i \in A$, $s_i \notin p$. Posons $f = s_1 \dots s_n$, il est clair que x_i provient d'un élément $y_i \in M[\frac{1}{f}]$ (qui s'écrit encore $y_i = \frac{m_i}{s_i}$, avec les abus de notations évidents). Donc on peut définir $\chi: A[\frac{1}{f}]^n \to M[\frac{1}{f}]$ par $\chi(e_i) = y_i$.
- (3) Soient μ_1, \ldots, μ_r des générateurs de M, alors leurs images dans $M[\frac{1}{f}]$ engendrent ce dernier. On note encore μ_k (au lieu de $\mu_k/1$) les images dans $M[\frac{1}{f}]$ (et dans M_p). Il suffira que μ_i soit dans l'image de χ pour que χ soit surjectif. Or, comme ψ est surjectif, on peut écrire dans M_p

$$\mu_k = \psi\left(\sum_{i=1}^n \frac{a_{k,i}}{t_{k,i}} e_i\right)$$

Concluons: pour tout q dans l'ouvert U = D(f), en tensorisant par le corps résiduel k(q) on voit que $\chi \otimes k(q)$ est surjectif, donc $d(q) = \dim_{k(q)}(M \otimes_A k(q)) \leq n$. Par conséquent $\{p \in \operatorname{Spec}(A); d(p) \leq n\}$ est ouvert, donc $\{p \in \operatorname{Spec}(A); d(p) \geq n+1\}$ est fermé, ce qu'on voulait.

Exercice 15 Le fait que les trois anneaux soient nœthériens et intègres est connu. De plus A_1 et A_3 sont locaux car ce sont des localisés en un idéal premier, et A_2 est local d'idéal maximal (x), comme il est bien connu. Enfin les idéaux maximaux sont clairement principaux.

Montrons que les idéaux d'un anneau de valuation discrète général A, d'idéal maximal m=(x), sont les idéaux (x^k) , $k \geq 0$. Soit $I \subset A$ un idéal. Soit $i \in I$, comme $I \subset m$ et que A est nœthérien, il est facile de voir qu'il existe un entier n maximal tel que $i=x^nu$. Alors $u \not\in m$ donc il est inversible. On montre ensuite facilement que $I=(x^k)$ où k est l'entier minimal intervenant dans une telle écriture pour les $i \in I$.

Exercice 16 On peut prendre par exemple M=K, on a alors $M\otimes k=M/mM=0$, mais $M\neq 0$. On peut même avoir $M\otimes_A K=0$, en prenant par exemple M=K/R où l'inclusion de modules $R\subset K$ est simplement l'inclusion comme sous-anneau. Vérifiez qu'alors $M\otimes_A K=0$ et $M\otimes k=0$.

En termes géométriques, ceci vous dit qu'il existe des faisceaux quasi-cohérents non nuls sur des schémas, dont toutes les fibres sont nulles. Attention : ici, fibre s'entend au sens $\otimes k(x)$ et non $\otimes \mathcal{O}_{X,x}$; il y a parfois cette ambigüité de langage. Par ailleurs, on peut montrer que si les fibres au sens $\otimes \mathcal{O}_{X,x}$ sont toutes nulles, alors le faisceau est nul.