TD - Feuille 1

Exercice 1 Soit k un corps et $f: \mathbb{A}^2_k \to \mathbb{A}^1_k$ le morphisme défini par $f(x,y) = y^2 - x^3$.

- (1) Calculez Ω_f^1 et reliez-le à $\Omega_{\mathbb{A}_h^1/k}^1$ et $\Omega_{\mathbb{A}_h^2/k}^1$.
- (2) Soit C = V(f). Calculez $\Omega^1_{C/k}$ et reliez-le à $\Omega^1_{\mathbb{A}^2_*/k}$.

Exercice 2 Soit ℓ/k une extension finie de corps. En utilisant des sous-extensions monogènes, montrez que $\Omega^1_{\ell/k} = 0$ si et seulement si ℓ/k est séparable.

Exercice 3 Soit E un espace vectoriel de dimension n+1 sur un corps k et $\mathbb{P}(E)$ l'espace projectif correspondant (notation de Grothendieck).

(1) Rappelez la définition de $\mathbb{P}(E)$ comme schéma, et la propriété universelle qu'il vérifie.

On souhaite établir la suite exacte d'Euler :

$$0 \to \Omega^1_{\mathbb{P}(E)/k}(1) \to E \otimes \mathcal{O}_{\mathbb{P}(E)} \to \mathcal{O}(1) \to 0$$

où $E \otimes \mathcal{O}_{\mathbb{P}(E)} \to \mathcal{O}(1)$ est l'application d'évaluation. On pose $\mathcal{K} = \ker(E \otimes \mathcal{O}_{\mathbb{P}(E)} \to \mathcal{O}(1))$, on fixe une base x_0, \ldots, x_n de E, et on note $x_{k/i} = \frac{x_k}{x_i}$, pour $k \neq i$, les coordonnées affines sur l'ouvert standard $U_i = \{x_i \neq 0\}$.

(2) Que mettre à la place de * pour définir sur U_i un morphisme $\varphi_i:\Omega^1_{\mathbb{P}(E)/k}(1)\to\mathcal{K}$ par

$$\sum_{k \neq i} dx_{k/i} \otimes g_k \mapsto x_0 \otimes \frac{g_0}{x_i} + \dots + x_{i-1} \otimes \frac{g_{i-1}}{x_i} + x_i \otimes * + x_{i+1} \otimes \frac{g_{i+1}}{x_i} + \dots + x_n \otimes \frac{g_n}{x_i} ?$$

(3) Vérifiez que les morphismes φ_i se recollent en un isomorphisme $\Omega^1_{\mathbb{P}(E)/k}(1) \to \mathcal{K}$ sur X.

Exercice 4 Soit \mathcal{F} un faisceau localement libre de rang r sur un schéma X et σ une section de $H^0(X,\mathcal{F})\otimes \mathcal{O}_X$ sur un ouvert U. Sous l'hypothèse que l'image de σ dans \mathcal{F} est nulle, on souhaite lui associer une section $d\sigma$ de $\Omega^1_X\otimes \mathcal{F}$. Pour cela, on écrit $\sigma=\sigma_1\otimes f_1+\cdots+\sigma_n\otimes f_n$. Puis sur des ouverts assez petits qui recouvrent U, on prend une trivialisation locale de \mathcal{F} et on différentie les coordonnées de σ dans cette trivialisation ; précisément, localement

$$\mathcal{F}_{|V} = \mathcal{O}_V t_1 \oplus \cdots \oplus \mathcal{O}_V t_r$$
 , $\sigma_i = \sigma_{i1} t_1 \oplus \cdots \oplus \sigma_{ir} t_r$

et on pose

$$d_V \sigma = \sum_{i=1}^n d\sigma_{i1} \otimes f_i t_1 \oplus \cdots \oplus \sum_{i=1}^u d\sigma_{ir} \otimes f_i t_r .$$

Montrez que les d_V se recollent en une section bien définie $d\sigma$ de $\Omega_X^1 \otimes \mathcal{F}$. (Commencez par le cas r = 1.) Utilisez ceci pour retrouver la suite exacte d'Euler de l'exercice précédent.