CHAPTER III

Cohomology

In this chapter we define the general notion of cohomology of a sheaf of
abelian groups on a topological space, and then study in detail the coho-
mology of coherent and quasi-coherent sheaves on a noetherian scheme.

Although the end result is usually the same, there are many different ways
of introducing cohomology. There are the fine resolutions often used in
several complex variables—see Gunning and Rossi [1]; the Cech coho-
mology used by Serre [3], who first introduced cohomology into abstract
algebraic geometry; the canonical flasque resolutions of Godement [1]; and
the derived functor approach of Grothendieck [1]. Each is important in its
own way.

We will take as our basic definition the derived functors of the global
section functor (§1, 2). This definition is the most general, and also best
suited for theoretical questions, such as the proof of Serre duality in §7.
However, it is practically impossible to calculate, so we introduce Cech
cohomology in §4, and use it in §5 to compute explicitly the cohomology of
the sheaves O(n) on a projective space P". This calculation is the basis of
many later results on projective varieties.

In order to prove that the Cech cohomology agrees with the derived
functor cohomology, we need to know that the higher cohomology of a
quasi-coherent sheaf on an affine scheme is zero. We prove this in §3 in the
noetherian case only, because it is technically much simpler than the case
of an arbitrary affine scheme ([EGA III, §1]). Hence we are bound to in-
clude noetherian hypotheses in all theorems involving cohomology.

As applications, we show for example that the arithmetic genus of a
projective variety X, whose definition in (I, §7) depended on a projective
embedding of X, can be computed in terms of the cohomology groups
H'(X,0y), and hence is intrinsic (Ex. 5.3). We also show that the arithmetic
genus is constant in a family of normal projective varieties (9.13).
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III Cohomology

Another application is Zariski’s main theorem (11.4) which is important
in the birational study of varieties.

The latter part of the chapter (§8—12) is devoted to families of schemes,
i.e., the study of the fibres of a morphism. In particular, we include a section
on flat morphisms and a section on smooth morphisms. While these can
be treated without cohomology, it seems to be an appropriate place to
include them, because flatness can be understood better using cohomology
9.9).

1 Derived Functors

In this chapter we will assume familiarity with the basic techniques of
homological algebra. Since notation and terminology vary from one source
to another, we will assemble in this section (without proofs) the basic defini-
tions and results we will need. More details can be found in the following
sources: Godement [1, esp. Ch. I, §1.1-1.8, 2.1-2.4, 5.1-5.3], Hilton and
Stammbach [1, Ch. ILIV,IX], Grothendieck [1, Ch. II, §1,2,3], Cartan and
Eilenberg [ 1, Ch. IILV], Rotman [1, §6].

Definition. An abelian category is a category %, such that: for each 4,B €
Ob U, Hom(A4,B) has a structure of an abelian group, and the composi-
tion law is linear; finite direct sums exist; every morphism has a kernel
and a cokernel; every monomorphism is the kernel of its cokernel, every
epimorphism is the cokernel of its kernel; and finally, every morphism
can be factored into an epimorphism followed by a monomorphism.
(Hilton and Stammbach [1, p. 78].)

The following are all abelian categories.
Example 1.0.1. b, the category of abelian groups.

Example 1.0.2. iIRoh(VA), the category of modules over a ring 4 (commutative
with identity as always).

Example 1.0.3. Ab(X), the category of sheaves of abelian groups on a
topological space X.

Example 1.0.4. Mod(X), the category of sheaves of Oy-modules on a ringed
space (X,0y).

Example 1.0.5. Qco(X), the category of quasi-coherent sheaves of (-
modules on a scheme X (II, 5.7).

Example 1.0.6. €ob(X), the category of coherent sheaves of Oy-modules on
a noetherian scheme X (II, 5.7).
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1 Derived Functors

Example 1.0.7. €o})(X), the category of coherent sheaves of ¢);-modules on
a noetherian formal scheme (X,0,) (II, 9.9).

In the rest of this section, we will be stating some basic results of homo-
logical algebra in the context of an arbitrary abelian category. However, in
most books, these results are proved only for the category of modules over
a ring, and proofs are often done by “diagram-chasing”: you pick an element
and chase its images and pre-images through a diagram. Since diagram-
chasing doesn’t make sense in an arbitrary abelian category, the conscientious
reader may be disturbed. There are at least three ways to handle this difficulty.
(1) Provide intrinsic proofs for all the results, starting from the axioms of an
abelian category, and without even mentioning an element. This is cumber-
some, but can be done—see, e.g., Freyd [1]. Or (2), note that in each of the
categories we use (most of which are in the above list of examples), one can
in fact carry out proofs by diagram-chasing. Or (3), accept the “full embed-
ding theorem” (Freyd [1, Ch. 7]), which states roughly that any abelian
category is equivalent to a subcategory of Ab. This implies that any category-
theoretic statement (e.g., the 5-lemma) which can be proved in b (e.g., by
diagram-chasing) also holds in any abelian category.

Now we begin our review of homological algebra. A complex A" in an
abelian category U is a collection of objects A', i € Z, and morphisms
d':A' —» A such that d'*! o d' = 0 for all i. If the objects A’ are specified
only in a certain range, e.g., i = 0, then we set 4' = 0 for all other i. A
morphism of complexes, f:A" — B’ is a set of morphisms f':4' —» B’ for
each i, which commute with the coboundary maps d'.

The ith cohomology object h'(A’) of the complex A" is defined to be
kerd'/imd . If f:A" — B’ is a morphism of complexes, then f induces a
natural map K(f):h'(4) > h(B). If 0 > A4 - B - C - 0 is a short
exact sequence of complexes, then there are natural maps 6':hi(C’) - hit}(A)
giving rise to a long exact sequence

. > h(A) > K(B) > K(C) S htY(4) - ...

Two morphisms of complexes f,g: A" — B’ are homotopic (written f ~ g)
if there is a collection of morphisms k': 4° - B'~! for each i (which need
not commute with the d°) such that f — g = dk + kd. The collection of mor-
phisms, k = (k%) is called a homotopy operator. 1If f ~ g, then f and g induce
the same morphism hi(A’) — h'(B’) on the cohomology objects, for each i.

A covariant functor F:2 — B from one abelian category to another is
additive if for any two objects 4,4’ in A, the induced map Hom(4,4') —
Hom(FA,FA’) is a homomorphism of abelian groups. F is left exact if it is
additive and for every short exact sequence

004 >A4A->4"-0
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III Cohomology

in U, the sequence
0> FA'»> FA —» FA”

is exact in B. If we can write a 0 on the right instead of the left, we say F is
right exact. If it is both left and right exact, we say it is exact. If only the
middle part FA' -» FA — FA" is exact, we say F is exact in the middle.

For a contravariant functor we make analogous definitions. For example,
F: A — B is left exact if it is additive, and for every short exact sequence as
above, the sequence

0> FA”" - FA > FA

is exact in ‘B.

Example 1.0.8. If 2 is an abelian category, and A is a fixed object, then the
functor B - Hom(A4,B), usually denoted Hom(4,"), is a covariant left exact
functor from A to Ub. The functor Hom(-,A4) is a contravariant left exact
functor from A to Ab.

Next we come to resolutions and derived functors. An object I of U is
injective if the functor Hom(-,I) is exact. An injective resolution of an object
A of W is a complex I', defined in degrees i > 0, together with a morphism
¢:A - I°, such that I' is an injective object of A for each i > 0, and such
that the sequence

045" — ...
is exact.

If every object of U is isomorphic to a subobject of an injective object of
A, then we say U has enough injectives. If A has enough injectives, then every
object has an injective resolution. Furthermore, a well-known lemma states
that any two injective resolutions are homotopy equivalent.

Now let U be an abelian category with enough injectives, and let F: 2l — B
be a covariant left exact functor. Then we construct the right derived functors
RF,i > 0, of F as follows. For each object A of 2, choose once and for all
an injective resolution I' of 4. Then we define R'F(A4) = h'(F(I')).

Theorem 1.1A. Let W be an abelian category with enough injectives, and let
F:A — B be a covariant left exact functor to another abelian category B.
Then

(@) For each i > 0, R'F as defined above is an additive functor from A
to B. Furthermore, it is independent (up to natural isomorphism of functors)
of the choices of injective resolutions made.

(b) There is a natural isomorphism F =~ R°F.

(c) For each short exact sequence 0 - A" > A - A” — 0 and for each
i > 0 there is a natural morphism 6':R'F(A") — R'*1F(A"), such that we
obtain a long exact sequence

. - RIF(A’) » R'F(4) » RIF(4") & R*1F(4') > R*F(A) > ... .
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1 Derived Functors

(d) Given a morphism of the exact sequence of (c) to another 0 > B’ —
B — B" — 0, the §’s give a commutative diagram
RiF(A//) E; Ri+1F(A/)
K o U
RIF(BN) i R1+ IF(B/)

(€) For each injective object I of U, and for each i > 0, we have
RF(I) = 0.

Definition. With F: 2 — B as in the theorem, an object J of U is acyclic for
Fif R'F(J) = Oforalli > 0.

Proposition 1.2A. With F: U — B as in (1.1A), suppose there is an exact
sequence

05A4-5J°=>J .

where each J' is acyclic for F,i > 0. (We say J  is an F-acyclic resolution

of A.) Then for each i > O there is a natural isomorphism R'F(A)

H(F(J)).

We leave to the reader the analogous definitions of projective objects,
projective resolutions, an abelian category having enough projectives, and
the left derived functors of a covariant right exact functor. Also, the right
derived functors of a left exact contravariant functor (use projective resolu-
tions) and the left derived functors of a right exact contravariant functor
(use injective resolutions).

Next we will give a universal property of derived functors. For this
purpose, we generalize slightly with the following definition.

Definition. Let 2{ and B be abelian categories. A (covariant) d-functor from
A to B is a collection of functors T = (T?);5,, together with a morphism
8': TY(A") - T**1(A) for each short exact sequence 0 » 4’ - 4 — A” -0,
and each i > 0, such that:

(1) For each short exact sequence as above, there is a long exact sequence
0 - T%A') > TOA) » TUA") 5 TY(A) - ...
> Ti(A) > T(A") S T (A) > T ) > ...
(2) for each morphism of one short exact sequence (as above) into another
0 - B' > B —» B” — 0, the d’s give a commutative diagram
Ti(4") S T \(4)
l ot 5 l
TI(B//) Zs T1+ 1(B').

Definition. The é-functor T = (T%): U — B is said to be universal if, given
any other d-functor T’ = (T""): U — B, and given any morphism of
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IIT Cohomology

functors f°:T° — T'°, there exists a unique sequence of morphisms
fi:T' - T" for each i > 0, starting with the given f°, which commute
with the & for each short exact sequence.

Remark 1.2.1. If F: W — B is a covariant additive functor, then by definition
there can exist at most one (up to unique isomorphism) universal é-functor
T with T® = F. If T exists, the T' are sometimes called the right satellite
functors of F.

Definition. An additive functor F: W — B is effaceable if for each object A
of U, there is a monomorphism u: 4 — M, for some M, such that F(u) =
0. It is coeffaceable if for each A there exists an epimorphism u:P — A
such that F(u) = 0.

Theorem 1.3A. Let T = (T"),5, be a covariant -functor from U to B. If
T' is effaceable for each i > 0, then T is universal.

Proor. Grothendieck [1, II, 2.2.1]

Corollary 1.4. Assume that W has enough injectives. Then for any left exact
functor F: A — B, the derived functors (R'F); , form a universal §-functor
with F =~ ROF. Conversely, if T = (T');s is any universal S-functor,
then T° is left exact, and the T' are isomorphic to R'T® for each i > 0.

PRrOOF. If F is a left exact functor, then the (R'F);», form a é-functor by
(1.1A). Furthermore, for any object 4, let u: A — I be a monomorphism of
A into an injective. Then R'F(I) = 0 for i > 0 by (1.1A), so R'F(u) = 0.
Thus R'F is effaceable for each i > 0. It follows from the theorem that
(R'F) is universal.

On the other hand, given a universal 5-functor T, we have T° left exact
by the definition of d-functor. Since U has enough injectives, the derived
functors RIT° exist. We have just seen that (R‘T°) is another universal
s-functor. Since R°T® = T°, we find R'T® =~ T’ for each i, by (1.2.1).

2 Cohomology of Sheaves

In this section we define cohomology of sheaves by taking the derived
functors of the global section functor. Then as an application of general
techniques of cohomology we prove Grothendieck’s theorem about the
vanishing of cohomology on a noetherian topological space. To begin with,
we must verify that the categories we use have enough injectives.

Proposition 2.1A. If A is a ring, then every A-module is isomorphic to a sub-
module of an injective A-module.

Proor. Godement [1, I, 1.2.2] or Hilton and Stammbach [1, L, 8.3].
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2 Cohomology of Sheaves

Proposition 2.2. Let (X,04) be a ringed space. Then the category Mod(X)
of sheaves of Ox-modules has enough injectives.

PRrROOF. Let # be a sheaf of @x-modules. For each point x € X, the stalk
Z, is an 0, y-module. Therefore there is an injection &, — I, where I, is
an injective ¢, y-module (2.1A). For each point x, let j denote the inclusion
of the one-point space {x} into X, and consider the sheaf & = [[,.x j.(I,)-
Here we consider I, as a sheaf on the one-point space {x}, and j, is the
direct image functor (II, §1).

Now for any sheaf ¥ of @x-modules, we have Hom, (¥.f) =
[] Hom, (%,j,(I,)) by definition of the direct product. On the other hand,
for each point x € X, we have Hom, (%,j,(I,)) = Hom,_,(%,.,],) as one
sees easily. Thus we conclude first that there is a natural morphism of
sheaves of Ox-modules & — ¥ obtained from the local maps &%, — I,. It
is clearly injective. Second, the functor Hom,, (-,.#) is the direct product
over all xeX of the stalk functor ¥+ %, which is exact, followed by
Hom,_,(-,I,), which is exact, since I, is an injective 0, y-module. Hence
Hom(-,.#) is an exact functor, and therefore .# is an injective ¢x-module.

Corollary 2.3. If X is any topological space, then the category Ub(X) of
sheaves of abelian groups on X has enough injectives.

Proor. Indeed, if we let Oy be the constant sheaf of rings Z, then (X,0y) is
a ringed space, and Mod(X) = Ab(X).

Definition. Let X be a topological space. Let I'(X,-) be the global section
functor from Ab(X) to AUb. We define the cohomology functors H'(X,")
to be the right derived functors of I'(X,-). For any sheaf %, the groups
H'(X,%) are the cohomology groups of #. Note that even if X and &
have some additional structure, e.g., X a scheme and % a quasi-coherent
sheaf, we always take cohomology in this sense, regarding & simply as
a sheaf of abelian groups on the underlying topological space X.

We let the reader write out the long exact sequences which follow from
the general properties of derived functors (1.1A).

Recall (II, Ex. 1.16) that a sheaf # on a topological space X is flasque if
for every inclusion of open sets ¥V < U, the restriction map #(U) —» Z(V)
is surjective.

Lemma 2.4. If (X,0y) is a ringed space, any injective Ox-module is flasque.

PrOOF. For any open subset U < X, let Oy, denote the sheaf j,(Ox]y), which
is the restriction of Oy to U, extended by zero outside U (II, Ex. 1.19). Now
let # be an injective Ox-module, and let V = U be open sets. Then we
have an inclusion 0 — Oy, — Oy, of sheaves of Ox-modules. Since . is injec-
tive, we get a surjection Hom(0y,.#) - Hom(0y,#) — 0. But Hom(0y,#) =
J#(U) and Hom(0y,.#) = #(V), so £ is flasque.
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Proposition 2.5. If & is a flasque sheaf on a topological space X, then
H(X,#) = 0 foralli > 0.

Proor. Embed & in an injective object .# of Ab(X) and let 4 be the quotient:
0-F >S5 ->%->0.

Then Z is flasque by hypothesis, .# is flasque by (2.4), and so ¥ is flasque
by (II, Ex. 1.16c). Now since & is flasque, we have an exact sequence
(IL, Ex. 1.16b)

0-TIX,#)->TI'X%) - I(X%) - 0.

On the other hand, since .# is injective, we have H'(X,#) = 0 for i > 0
(1.1Ae). Thus from the long exact sequence of cohomology, we get
HYX,#) = 0 and H'(X,#) ~ H~YX,%) for each i > 2. But ¢ is also
flasque, so by induction on i we get the result. ‘

Remark 2.5.1. This result tells us that flasque sheaves are acyclic for the
functor I'(X,-). Hence we can calculate cohomology using flasque resolu-
tions (1.2A). In particular, we have the following result.

Proposition 2.6. Let (X,0) be a ringed space. Then the derived functors of
the functor I'(X,) from Mod(X) to Wb coincide with the cohomology
functors H'(X,").

Proor. Considering I'(X,-) as a functor from Piod(X) to Ab, we calculate
its derived functors by taking injective resolutions in the category Mod(X).
But any injective is flasque (2.4), and flasques are acyclic (2.5) so this resolu-
tion gives the usual cohomology functors (1.2A).

Remark 2.6.1. Let (X,0y) be a ringed space, and let 4 = I'(X,04). Then
for any sheaf of Oy-modules &, I'(X,% ) has a natural structure of 4-module.
In particular, since we can calculate cohomology using resolutions in the
category Mod(X), all the cohomology groups of # have a natural structure
of A-module; the associated exact sequences are sequences of A-modules,
and so forth. Thus for example, if X is a scheme over Spec B for some ring
B, the cohomology groups of any (y-module & have a natural structure of
B-module.

A Vanishing Theorem of Grothendieck

Theorem 2.7 (Grothendieck [1]). Let X be a noetherian topological space of
dimension n. Then for all i > n and all sheaves of abelian groups F on
X, we have H'(X, %) = 0.

Before proving the theorem, we need some preliminary results, mainly
concerning direct limits. If (&,) is a direct system of sheaves on X, indexed

by a directed set 4, then we have defined the direct limit lim %, (II, Ex. 1.10).
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Lemma 2.8. On a noetherian topological space, a direct limit of flasque
sheaves is flasque.

PROOF. Let (£,) be a directed system of flasque sheaves. Then for any
inclusion of open sets ¥V = U, and for each «, we have Z,(U) - Z,(V) is
surjective. Since m is an exact functor, we get

lim #,(U) - lim Z,(V)

is also surjective. But on a noetherian topological space, lim #,(U) =
(lim #,)(U) for any open set (II, Ex. 1.11). So we have

(lim #,)(U) - (lim #,)(V)

is surjective, and so lim &, is flasque.

Proposition 2.9. Let X be a noetherian topological space, and let (¥,) be a
direct system of abelian sheaves. Then there are natural isomorphisms,
foreachi>0

lim H{(X,#,) - H(X, lim #,).

Proor. For each « we have a natural map &, — lim #,. This induces a
map on cohomology, and then we take the direct limit of these maps. For
i = 0, the result is already known (II, Ex. 1.11). For the general case, we
consider the category ind,(Ub(X)) consisting of all directed systems of
objects of Ab(X), indexed by A. This is an abelian category. Furthermore,
since lim is an exact functor, we have a natural transformation of é-functors

lim H{(X,") » Hi(X,lim ")
—> -

from ind ,(WAH(X)) to Ub. They agree for i = 0, so to prove they are the
same, it will be sufficient to show they are both effaceable for i > 0. For
in that case, they are both universal by (1.3A), and so must be isomorphic.

So let (£,) € ind,(AB(X)). For each a, let %, be the sheaf of discon-
tinuous sections of %, (II, Ex. 1.16¢). Then %, is flasque, and there is a
natural inclusion %, — 4,. Furthermore, the construction of 4, is func-
torial, so the ¢, also form a direct system, and we obtain a monomorphism
u:(#,) - (%,) in the category ind ,(Ub(X)). Now the ¥, are all flasque, so
H'(X,%9,) = 0 for i > 0 (2.5). Thus lim H'(X,%,) = 0, and the functor on
the left-hand side is effaceable for i > - 0. On the other hand, lim %, is also
flasque by (2.8). So Hi(X, lim%,) = Ofori > 0, and we see that the functor
on the right-hand side is also effaceable. This completes the proof.

Remark 2.9.1. As a special case we see that cohomology commutes with
infinite direct sums.

Lemma 2.10. Let Y be a closed subset of X, let & be a sheaf qf abelian
groups on Y,and let j:Y — X be the inclusion. Then H(Y,F) = H'(X,j, %),
where j, Z is the extension of F by zero outside Y (11, Ex. 1.19).
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ProoE. If ¢ is a flasque resolution of & on Y, then j, ¢ is a flasque res-
olution of j,# on X, and for each i, I'(Y,#') =I'(X,j,#'). So we get the
same cohomology groups.

Remark 2.10.1. Continuing our earlier abuse of notation (II, Ex. 1.19), we
often write & instead of j,#. This lemma shows there will be no ambiguity
about the cohomology groups.

Proor oF (2.7). First we fix some notation. If Y is a closed subset of X,
then for any sheaf # on X we let Fy = j (Z|y), where j:Y —» X is the
inclusion. If U is an open subset of X, we let #, = i(F|y), where i:U —
X is the inclusion. In particular, if U = X — Y, we have an exact sequence
(I1, Ex. 1.19)

0->Fy->F >Fy-0.

We will prove the theorem by induction on n = dim X, in several steps.

Step 1. Reduction to the case X irreducible. If X is reducible, let Y be
one of its irreducible components, and let U = X — Y. Then for any &
we have an exact sequence

0-Fy->F >Fy—-0.

From the long exact sequence of cohomology, it will be sufficient to prove
that H'(X,%#y) = 0 and H'(X,#,) = 0 for i > n. But Y is closed and
irreducible, and %, can be regarded as a sheaf on the closed subset U,
which has one fewer irreducible components than X. Thus using (2.10) and
induction on the number of irreducible components, we reduce to the case
X irreducible.

Step . Suppose X is irreducible of dimension 0. Then the only open
subsets of X are X and the empty set. For otherwise, X would have a
proper irreducible closed subset, and dim X would be > 1. Thus I'(X,")
induces an equivalence of categories AUb(X) — Ab. In particular, I'(X,")
is an exact functor, so H{(X,#) = Ofor i > 0, and for all #.

Step 3. Now let X be irreducible of dimension », and let & € Ub(X).
Let B = |Jyex Z(U), and let A4 be the set of all finite subsets of B. For
each o € A, let #, be the subsheaf of # generated by the sections in « (over
various open sets). Then 4 is a directed set, and # = lim #,. So by (2.9),
it will be sufficient to prove vanishing of cohomology for each #,. If o
is a subset of a, then we have an exact sequence

0—>97'—>5‘7a—>g-—>0,

a

where ¥ is a sheaf generated by #(a — ') sections over suitable open sets.
Thus, using the long exact sequence of cohomology, and induction on
#(a), we reduce to the case that & is generated by a single section over
some open set U. In that case & is a quotient of the sheaf Z; (where Z
denotes the constant sheaf Z on X). Letting # be the kernel, we have an
exact sequence

0->R->Zy,—>F > 0.
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2 Cohomology of Sheaves

Again using the long exact sequence of cohomology, it will be sufficient to
prove vanishing for £ and for Z,.

Step 4. Let U be an open subset of X and let # be a subsheaf of Z;.
For each xe U, the stalk £, is a subgroup of Z. If # = 0, skip to Step 5.
If not, let d be the least positive integer which occurs in any of the groups ..
Then there is a nonempty open subset V < U such that |, ~d-Z|, as a
subsheaf of Z|,. Thus %, =~ Z, and we have an exact sequence

0-Zy, >R > R/Z, - 0.

Now the sheaf #/Z, is supported on the closed subset (U — V)~ of X,
which has dimension <n, since X is irreducible. So using (2.10) and the
induction hypothesis, we know H'(X,#/Z,) = 0 for i > n. So by the
long exact sequence of cohomology, we need only show vanishing for Z,,.

Step 5. To complete the proof, we need only show that for any open
subset U < X, we have H(X,Zy;) = Ofori > n. Let Y = X — U. Then
we have an exact sequence

0-Zy>Z->Zy,-0.

Now dim Y < dim X since X is irreducible, so using (2.10) and the in-
duction hypothesis, we have H'(X,Zy) = 0 for i = n. On the other hand,
Z is flasque, since it is a constant sheaf on an'irreducible space (II, Ex. 1.16a).
Hence H(X,Z) = 0 for i > 0 by (2.5). So from the long exact sequence
of cohomology we have H'(X,Z,) = 0 for i > n. qed.

Historical Note: The derived functor cohomology which we defined in
this section was introduced by Grothendieck [1]. It is the theory which is
used in [EGA]. The use of sheaf cohomology in algebraic geometry started
with Serre [3]. In that paper, and in the later paper [4], Serre used Cech
cohomology for coherent sheaves on an algebraic variety with its Zariski
topology. The equivalence of this theory with the derived functor theory
follows from the “theorem of Leray” (Ex. 4.11). The same argument, using
Cartan’s “Theorem B” shows that the Cech cohomology of a coherent
analytic sheaf on a complex analytic space is equal to the derived functor
cohomology. Gunning and Rossi [1] use a cohomology theory computed
by fine resolutions of a sheaf on a paracompact Hausdorff space. The
equivalence of this theory with ours is shown by Godement [1, Thm. 4.7.1,
p. 181 and Ex. 7.2.1, p. 263], who shows at the same time that both theories
coincide with his theory which is defined by a canonical flasque resolution.
Godement also shows [1, Thm. 5.10.1, p. 228] that on a paracompact
Hausdorff space, his theory coincides with Cech cohomology. This provides
a bridge to the standard topological theories with constant coefficients, as
developed in the book of Spanier [1]. He shows that on a paracompact
Hausdorff space, Cech cohomology and Alexander cohomology and singular
cohomology all agree (see Spanier [ 1, pp. 314, 327, 334]).
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The vanishing theorem (2.7) was proved by Serre [3] for coherent sheaves
on algebraic curves and projective algebraic varieties; and later [5] for
abstract algebraic varieties. It is analogous to the theorem that singular
cohomology on a (real) manifold of dimension n vanishes in degrees i > n.

EXERCISES

2.1. (a) Let X = A} be the affine line over an infinite field k. Let P,Q be distinct closed
points of X, and let U = X — {P,Q}. Show that H'(X,Z) # 0.
*(b) More generally, let Y € X = A} be the union of n + 1 hyperplanes in suit-
ably general position, and let U = X — Y. Show that H"(X,Z) # 0. Thus the
result of (2.7) is the best possible.

2.2. Let X = P} be the projective line over an algebraically closed field k. Show that
the exact sequence 0 —» (' - A — A/ — 0 of (II, Ex. 1.21d) is a flasque res-
olution of ¢. Conclude from (I1, Ex. 1.21e) that H(X,() = Ofor all i > 0.

2.3. Cohomology with Supports (Grothendieck [7]). Let X be a topological space, let
Y be a closed subset, and let # be a sheaf of abelian groups. Let I'y(X,% ) denote
the group of sections of & with support in Y (I, Ex. 1.20).

(a) Show that I'y(X,-) is a left exact functor from Ab(X) to Ab.
We denote the right derived functors of I'y(X,-) by Hi(X,-). They are the
cohomology groups of X with supports in Y, and coefficients in a given sheaf.
(b) If 0> F - F - F" >0 is an exact sequence of sheaves, with F' flasque,
show that
0Ty X, 7 )Ty X,F)>Ty(X,#") >0
is exact.
(c) Show that if # is flasque, then HY(X,%#) = 0 for all i > 0.
(d) If # is flasque, show that the sequence

0TIy XF)»T(XF)>T(X -YF)-0

is exact.

(e) Let U= X — Y. Show that for any &, there is a long exact sequence of
cohomology groups

X, F) > HO(U,S*"]U) -

X.#) - H(UF

(f) Excision. Let V be an open subset of X containing Y. Then there are natural
functorial isomorphisms, for all i and &,

HY(X.Z) = HYV.Z|y).

2.4. Mayer-Vietoris Sequence. Let Y,,Y, be two closed subsets of X. Then there is a
long exact sequence of cohomology with supports

-~ Hy, (v (X,7) = Hy(X,7) @ Hy(X,F) > Hy, 1, (X,F) -
> HY L (X, F) > ...

212



3 Cohomology of a Noetherian Affine Scheme

2.5. Let X be a Zariski space (I, Ex. 3.17). Let P € X be a closed point, and let X,
be the subset of X consisting of all points Q € X such that P e {Q}~. We call X,
the local space of X at P, and give it the induced topology. Let j:X, — X be the
inclusion, and for any sheaf # on X, let #, = j*4%. Show that for all i, #, we

have
Hp(X,7) = Hp(X p.Fp).

2.6. Let X be a noetherian topological space, and let {#,},., be a direct system of
injective sheaves of abelian groups on X. Then h_)m S, is also injective. [Hints:
First show that a sheaf .# is injective if and only if for every open set U < X, and
for every subsheaf # < Z,, and for every map f:# — 4, there exists an ex-
tension of f to a map of Z;, — #. Secondly, show that any such sheaf Z is finitely
generated, so any map # — lim %, factors through one of the S.]

2.7. Let S! be the circle (with its usual topology), and let Z be the constant sheaf Z.
(a) Show that H'(S!,Z) = Z, using our definition of cohomology.
(b) Now let # be the sheaf of germs of continuous real-valued functions on S*.
Show that H(S',%) = 0.

3 Cohomology of a Noetherian Affine Scheme

In this section we will prove that if X = Spec A is a noetherian affine
scheme, then H{(X,#) = 0 for all i > 0 and all quasi-coherent sheaves % of
Ox-modules. The key point is to show that if I is an injective 4-module,
then the sheaf T on Spec 4 is flasque. We begin with some algebraic
preliminaries.

Proposition 3.1A (Krull’s Theorem). Let A be a noetherian ring, let M = N
be finitely generated A-modules, and let a be an ideal of A. Then the
a-adic topology on M is induced by the a-adic topology on N. In particular,
for any n > 0, there exists an n’ > n such that "M 2 M N a"N.

PrROOF. Atiyah-Macdonald [1, 10.11] or Zariski-Samuel [ 1, vol. II, Ch. VIII,

Th. 4].

Recall (II, Ex. 5.6) that for any ring A, and any ideal a = A4, and any
A-module M, we have defined the submodule I',(M) to be {m € M|a"m = 0
for some n > 0}.

Lemma 3.2. Let A be a noetherian ring, let a be an ideal of A, and let I be an
injective A-module. Then the submodule J = I',(I) is also an injective
A-module.

Proor. To show that J is injective, it will be sufficient to show that for any
ideal b < A, and for any homomorphism ¢:b — J, there exists a homo-
morphism ¥:4 — J extending ¢. (This is a well-known criterion for an
injective module—Godement [ 1, I, 1.4.1]). Since A is noetherian, b is finitely
generated. On the other hand, every element of J is annihilated by some
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power of a, so there exists an n > 0 such that a"¢(b) = 0, or equivalently,
¢(a"b) = 0. Now applying (3.1A) to the inclusion b < A4, we find that there
is an n' > n such that a"b 2 b n a”. Hence ¢(b n a”) = 0, and so the
map ¢:b — J factors through b/(b n a”). Now we consider the following
diagram:

A———— A" _

-~
~—
RN T~ ’
~ ~
N ~—
o ~—
~o T~
-
~o ~—
~ -~

b—— bj(b N a") J

@

Since I is injective, the composed map of b/(b N a™) to I extends to a map
Y':A/a” — I. But the image of /' is annihilated by a”, so it is contained in
J. Composing with the natural map 4 — A/a", we obtain the required map
Y:A — J extending .

Lemma 3.3. Let I be an injective module over a noetherian ring A. Then for
any f € A, the natural map of I to its localization I ; is surjective.

PROOF. For each i > 0, let b; be the annihilator of f'in 4. Thenb, = b, <
..., and since A4 is noetherian, there is an r such thatb, = b,,;, = ... . Now
let 0:1 — I, be the natural map, and let x € I, be any element. Then by
definition of localization, there is a ye I and an n > 0 such that x = 0(y)/f".
We define a map ¢ from the ideal (f"*") of 4 to I by sending f"*" to f*y.
This is possible, because the annihilator of f"*" is b,,, = b,, and b, anni-
hilates f"y. Since I is injective, ¢ extends to a map y: A — I. Let y(1) = z.
Then f"*'z = f"y. But this implies that 6(z) = 0(y)/f" = x. Hence 0 is
surjective.

Proposition 3.4. Let I be an injective module over a noetherian ring A. Then
the sheaf I on X = Spec A is flasque.

ProOF. We will use noetherian induction on Y = (Supp I)~. See (II, Ex.
1.14) for the notion of support. If Y consists of a single closed point of X,
then I is a skyscraper sheaf (II, Ex. 1.17) which is obviously flasque.

In the general case, to show that I is flasque, it will be sufficient to show,
for any open set U < X, that I'(X,T) —» I'(U,]) is surjective. If Y A U = &,
there is nothing to prove. If Y n U # &, we can find an f € 4 such that
the open set X, = D(f) (II, §2) is contained in U and X, N Y # . Let
Z = X — X, and consider the following diagram:

rx, - rw,n - rx,n
&) K
FZ(X’T) - FZ(U’T)a
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3 Cohomology of a Noetherian Affine Scheme

where I', denotes sections with support in Z (II, Ex. 1.20). Now given a

section s € I'(U, I) we consider its image s’ in F(Xf,l). But F(Xf,I) =1,

(IL, 5.1), so by (3.3), there is a t e I = I'(X, g restricting to s'. Let ¢’ be the

restriction of ¢t to I'(U, 1 ). Thens — t' goesto Oin I'(X ,, ) so it has support

in Z. Thus to complete the proof, it will be sufficient to show that I',(X,I) —
r,U,I)is surjective.

Let J = I'y(X,I). If a is the ideal generated by f, then J = I ,(I) (II,
Ex. 5.6), so by (3.2), J is also an injective A-module. Furthermore, the
support of J is contained in Y N Z, which is strictly smaller than Y. Hence
by our induction hypothesis, J is flasque. Since I'(U, J)=r,Ul) a1,
Ex. 5.6), we conclude that I',(X,I) » I',(U,I) is surjective, as required.

Theorem 3.5. Let X = Spec A be the spectrum of a noetherian ring A. Then
for all quasi-coherent sheaves & on X, and for all i > 0, we have
H(X,#%) = 0.

ProOF. Given &, let M = I'(X,#), and take an injective resolution 0 —
M — I of M in the category of A-modules. Then we obtain an exact
sequence of sheaves 0 — M->TonX Now# =M (IL, 5.5) and each T
is flasque by (3.4), so we can use this resolution of # to calculate cohomology
{(2.5.1). Applying the functor I', we recover the exact sequence of 4-modules
0> M — I'. Hence HYX,#) = M, and H'(X,#) = Ofori > 0.

Remark 3.5.1.This result is also true without the noetherian hypothesis, but
the proof is more difficult [EGA 1II, 1.3.1].

Corollary 3.6. Let X be a noetherian scheme, and let & be a quasi-coherent
sheaf on X. Then & can be embedded in a flasque, quasi-coherent sheuf 4.

Proor. Cover X with a finite number of open affines U; = Spec A4;, and let

Flo, = M; for each i. Embed M, in an injective A module I;. For each i,
let f:U; —> X be the inclusion, and let 4 = @ f,(I,). For each i we have
an injective map of sheaves & \U — I,. Hence we obtaln amap & — f.(I;
Taking the direct sum over i gives a map & — % which is clearly 1n_}ect1ve
On the other hand, for each i, T is flasque (3.4) and quasi-coherent on U,.
Hence f,(I;) is also flasque (I, Ex. 1.16d) and quasi-coherent (I, 5.8). Takmg
the direct sum of these, we see that ¥ is flasque and quasi-coherent.

Theorem 3.7 (Serre [5]). Let X be a noetherian scheme. Then the following
conditions are equivalent

(i) X is affine;
(i) H(X,#) = 0 for all F quasi-coherent and all i > 0;
(iii) HY(X,#) = 0 for all coherent sheaves of ideals 5.

PROOF. (i) = (ii) is (3.5). (ii) = (iii) is trivial, so we have only to prove
(i11) = (i). We use the criterion of (II, Ex. 2.17). First we show that X can
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be covered by open affine subsets of the form X, with f € 4 = I'(X,0y).
Let P be a closed point of X, let U be an open affine neighborhood of P,
and let Y = X — U. Then we have an exact sequence

O‘ﬁqu(P)_)'ﬁY_’k(P)_’Oa

where £y and £y, p, are the ideal sheaves of the closed sets Y and Y U {P},
respectively. The quotient is the skyscraper sheaf k(P) = ¢p/mp at P. Now
from the exact sequence of cohomology, and hypothesis (iii), we get an
exact sequence

I'(X,#y) > [(Xk(P)) — Hl(X9qu{P}) = 0.

So there is an element f € I'(X,.#,) which goes to 1 in k(P), ie., fp =1
(mod my). Since £y S O, we can consider f as an element of A. Then by
construction, we have Pe X, < U. Furthermore, X, = Uy, where fis
the image of f in I'(U,0y), so X [ is affine.

Thus every closed point of X has an open affine neighborhood of the
form X ,. By quasi-compactness, we can cover X with a finite number of
these, corresponding to f;,...,f, € A.

Now by (II, Ex. 2.17), to show that X is affine, we need only verify that
f1,....f. generate the unit ideal in A. We use fi,...,f, to define a map
«:0% — Oy by sending (ay, ...,a,> to Y fia;. Since the X, cover X, this is
a surjective map of sheaves. Let # be the kernel:

0> F - 0S5 04— 0.
We filter & as follows:
F=FnO0y2Fn05'2...2F n0

for a suitable ordering of the factors of @%. Each of the quotients of this
filtration is a coherent sheaf of ideals in @y. Thus using our hypothesis (iii)
and the long exact sequence of cohomology, we climb up the filtration and
deduce that HY(X,#) = 0. But then I'(X,0%) > I'(X,0) is surjective,
which tells us that f}, . . ., f, generate the unit ideal in A. g.ed.

Remark 3.7.1. This result is analogous to another theorem of Serre in
complex analytic geometry, which characterizes Stein spaces by the vanishing
of coherent analytic sheaf cohomology.

EXERCISES

3.1. Let X be a noetherian scheme. Show that X is affine if and only if X ., (11, Ex. 2.3)
is affine. [Hint: Use (3.7), and for any coherent sheaf # on X, consider the filtra-
ton F 2 & -F 2 ¥ .., where A is the sheaf of nilpotent elements
on X.]

3.2. Let X be a reduced noetherian scheme. Show that X is affine if and only if each
irreducible component is affine.
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3 Cohomology of a Noetherian Affine Scheme

3.3. Let A be a noetherian ring, and let a be an ideal of A.
(a) Show that I, (-)(II, Ex. 5.6) is a left-exact functor from the category of 4-modules
to itself. We denote its right derived functors, calculated in Miod(A), by Hi(-).
(b) Now let X = Spec 4, Y = V(a). Show that for any A-module M,

Hi(M) = Hy(X.M),

where Hi(X,-) denotes cohomology with supports in Y (Ex. 2.3).
(c) For any i, show that I (H{(M)) = H\(M).

3.4. Cohomological Interpretation of Depth. If A is a ring, a an ideal, and M an A-
module, then depth, M is the maximum length of an M-regular sequence x,, . . . ,x,,
with all x; € a. This generalizes the notion of depth introduced in (11, §8).

(a) Assume that A is noetherian. Show that if depth, M > 1, then I, (M) =0,
and the converse is true if M is finitely generated. [Hint: When M is finitely
generated, both conditions are equivalent to saying that a is not contained in
any associated prime of M.]

(b) Show inductively, for M finitely generated, that for any n > 0, the following
conditions are equivalent:

(i) depth, M > n;
(ii) H(M) = 0foralli < n.

For more details, and related results, see Grothendieck [7].

3.5. Let X be a noetherian scheme, and let P be a closed point of X. Show that the
following conditions are equivalent:

(i) depth Op = 2;
(i) if U is any open neighborhood of P, then every section of Oy over U — P
extends uniquely to a section of O over U.

This generalizes (I, Ex. 3.20), in view of (II, 8.22A).

3.6. Let X be a noetherian scheme.

(a) Show that the sheaf & constructed in the proof of (3.6) is an injective object in
the category Qco(X) of quasi-coherent sheaves on X. Thus Qco(X) has enough
injectives.

*(b) Show that any injective object of Qco(X) is flasque. [Hints: The method of
proof of (2.4) will not work, because Oy, is not quasi-coherent on X in general.
Instead, use (II, Ex. 5.15) to show that if .# € Qco(X) is injective, and if U = X
is an open subset, then ¥ |v is an injective object of Qco(U). Then cover X
with open affines . . .]

(c) Conclude that one can compute cohomology as the derived functors of I'(X,-),
considered as a functor from Qco(X) to Ab.

3.7. Let A be a noetherian ring, let X = Spec 4, let a = A be an ideal, and let U = X
be the open set X — V(a).
(a) For any A-module M, establish the following formula of Deligne:

I(U,M) = lim Hom(a",M).
(b) Apply this in the case of an injective A-module I, to give another proof of (3.4).
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3.8. Without the noetherian hypothesis, (3.3) and (3.4) are false. Let 4 =k[x4,%;,X,,...]
with the relations x3x, = 0forn=1,2,... . Let I be an injective A-module con-
taining 4. Show that I — I, is not surjective.

4 Cech Cohomology

In this section we construct the Cech cohomology groups for a sheaf of
abelian groups on a topological space X, with respect to a given open
covering of X. We will prove that if X is a noetherian separated scheme,
the sheaf is quasi-coherent, and the covering is an open affine covering,
then these Cech cohomology groups coincide with the cohomology groups
defined in §2. The value of this result is that it gives a practical method for
computing cohomology of quasi-coherent sheaves on a scheme.

Let X be a topological space, and let U = (U;),.; be an open covering
of X. Fix, once and for all, a well-ordering of the index set I. For any
finite set of indices iy, . . . ,i, € I we denote the intersection U;; n ... n U,
by U, ..., ip:

Now let # be a sheaf of abelian groups on X. We define a complex
C'(W, %) of abelian groups as follows. For each p > 0, let

cUug)= [ FWU,. )

ip<...<ip

Thus an element o € CP(U, &) is determined by giving an element

for each (p + 1)-tuple iy < ... < i, of elements of I. We define the co-
boundary map d:C? — CP*! by setting

p+1
— k R
(da)ig,.‘.,ipﬂ = Z (—1) io, ..oy e sip+1lUio, . ipar®
k=0
Here the notation i, means omit i,. Then since o, ;. ... ., 1S an ele-
.......... e

ment of #(U,,, . ;. ... .,.,), We restrict to U, , to get an element
of #(U,, ). One checks easily that d®> = 0, so we have indeed de-
fined a complex of abelian groups.

Remark 4.0.1. If ¢ € CP(U, %), it is sometimes convenient to have the symbol
%, ... ,i, defined for all (p + 1)-tuples of elements of I. If there is a re-
peated index in the set {iy,...,i,}, we define o;;  , = 0. If the indices
are all distinct, we define ;) -, = (—1)a, ai,» Where o is the per-
mutation for which ciy < ... < oi,. With these conventlons one can
check that the formula given above for do remains correct for any (p + 2)-

tuple iy, . . . ,i,+; of elements of I.
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4 Cech Cohomology

Definition. Let X be a topological space and let U be an open covering of
X. For any sheaf of abelian groups & on X, we define the pth Cech
cohomology group of &, with respect to the covering U, to be

HPQLF) = h*(C (U, %)).

Caution 4.0.2. Keeping X and U fixed, f 0 > F' > F > F".» 0 is a
short exact sequence of sheaves of abelian groups on X, we do not in general
get a long exact sequence of Cech cohomology groups. In other words,
the functors H?()\,-) do not form a §-functor (§1). For example, if U consists
of the single open set X, then this results from the fact that the global section
functor I'(X,-) is not exact.

Example 4.0.3. To illustrate how well suited Cech cohomology is for com-
putations, we will compute some examples. Let X = Py, let # be the sheaf
of differentials Q (II, §8), and let U be the open covering by the two open
sets U = A! with affine coordinate x, and ¥V = A! with affine coordinate
y = 1/x. Then the Cech complex has only two terms:

C°’=TI(U,Q) x I'(V,Q)
C'=T(UnVQ.
Now
I(U,Q) = k[x]dx
r(v,Q) =k[y] dy

riunvQ = k[x,i] dx,

and the map d:C° — C! is given by
X=X

1
ye=—
X

1
dy— -2 dx.
So ker d is the set of pairs { f(x)dx,g(y)dy) such that
1 1
fx)= —;Cig (;)
This can happen only if f = g = 0, since one side is a polynomial in x and

the other side is a polynomial in 1/x with no constant term. So H(U,Q) = 0.
To compute H!, note that the image of d is the set of all expressions

(161 + 0 (5)) o
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where f and g are polynomials. This gives the subvector space of k[ x,1/x] dx
generated by all X" dx, neZ, n # — 1. Therefore H'(U,Q) ~ k, generated by
the image of x ! dx.

Example 4.0.4. Let S' be the circle (in its usual topology), let Z be the
constant sheaf Z, and let U be the open covering by two connected open
semi-circles U, V, which overlap at each end, so that U n V consists of two
small intervals. Then

CO=TUZ)xT(VZ)=Z x Z
Cl=I(UnVZ)=Z x Z

and the map d: C® - C* takes {a,b) to (b — a,b — a). Thus HU,Z) = Z
and HU,Z) = Z. Since we know this is the right answer (Ex. 2.7), this
illustrates the general principle that Cech cohomology agrees with the usual
cohomology provided the open covering is taken fine enough so that there
is no cohomology on any of the open sets (Ex. 4.11).

Now we will study some properties of the Cech cohomology groups.

Lemma 4.1. For any X W, % as above, we have ﬁ"(u,f) ~ ['(X,Z).

ProoF. HO(U, %) = ker(d:C°QULZF) » C*AU,F)). If aeC® is given by
{o;€ #(U,)}, then for each i < j, (da); = a; — &;. So do = 0 says the
sections «; and «; agree on U; n U;. Thus it follows from the sheaf axioms
that ker d = I'(X,%).

Next we define a “sheafified” version of the Cech complex. For any
openset V < X, let f:V — X denote the inclusion map. Now given X U, %
as above, we construct a complex €' (U,#) of sheaves on X as follows.
For each p > 0, let

euF) = [ fF

),

Ui,

and define
d:%° - grtl

by the same formula as above. Note by construction that for each p we
have I'(X,4?(U, %)) = CH(U,F).

Lemma 4.2. For any sheaf of abelian groups & on X, the complex € (W, F)
is a resolution of &, ie., there is a natural map &:F — €° such that the
sequence of sheaves

05 ZF 56°WUNF) - (UNF)> ...
is exact.
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ProOF. We define ¢:# — 4° by taking the product of the natural maps
F > f{ZF|v) for iel. Then the exactness at the first step follows from
the sheaf axioms for &.

To show the exactness of the complex €~ for p > 1, it is enough to check
exactness on the stalks. So let x € X, and suppose x € U;. Foreachp > 1,

we define a map
k: P, F), - €7~ (U, F),

as follows. Given a, € ¥7(U,F),, it is represented by a section a €
I'(V,47,%)) over a neighborhood V of x, which we may choose so small
that V < U;. Now for any p-tuple iy < ... < i,_,, we set

(k“)zo ..... ip-1 = %jig, ... ipo1s
using the notational convention of (4.0.1). This makes sense because ¥ N
Uip.. iy =V Uy, . i,_,- Then take the stalk of ko at x to get the

requlred map k. Now one checks that for any p > 1, x e €2,
(dk + kd)(a) = o

Thus k is a homotopy operator for the complex %, showing that the iden-
tity map is homotopic to the zero map. It follows (§1) that the cohomology
groups h?(%,) of this complex are 0 for p > 1.

Proposition 4.3. Let X be a topological space, let W be an open covering,
and let F be a flasque sheaf of abelian groups on X. Then for all p > 0
we have HP(QU, %) = 0.

Proor. Consider the resolution 0 - # — € (U,#) given by (4.2). Since
F is ﬂasque the sheaves ¢7(U, %) are ﬂasque for each p > 0. Indeed, for
any ig, . . . ,ip, F |U AAAAA . 1s a flasque sheaf on Uy, ; ; f, preserves flasque
sheaves (II Ex 1. 16d), "and a product of ﬁasque sheaves is flasque. So by
(2.5.1) we can use this resolution to compute the usual cohomology groups
of #. But # isflasque, so H(X,#) = Ofor p > 0 by (2.5). On the other hand,

the answer given by this resolution is
h(I(X,6'(U,F))) = H (U, F).
So we conclude that H?(U, %) = 0 for p > O.

Lemma 4.4. Let X be a topological space, and W an open covering. Then
for each p = 0 there is a natural map, functorial in F

HP(W, %) > H?(X,F).
PRrROOF. Let 0 - # — £ be an injective resolution of # in Ab(X). Com-
paring with the resolution 0 - % — €' (U, %) of (4.2), it follows from a
general result on complexes (Hilton and Stammbach [1, IV, 4.4]) that there
is a morphism of complexes ¢ '(U,#) — ¢, inducing the identity map on
&, and unique up to homotopy. Applying the functors I'(X,-) and h”,
we get the required map.
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Theorem 4.5. Let X be a noetherian separated scheme, let 2 be an open
affine cover of X, and let & be a quasi-coherent sheaf on X. Then for
all p = 0, the natural maps of (4.4) give isomorphisms

HY W, %) > HY(X,%).
ProoF. For p = 0 we have an isomorphism by (4.1). For the general case,
embed Z in a flasque, quasi-coherent sheaf % (3.6), and let £ be the quotient:
0-F >9->%2-0.

For each iy < ... < i,, the open set U;, _; is affine, since it is an inter-
section of affine open subsets of a separated scheme (II, Ex. 4.3). Since #
is quasi-coherent, we therefore have an exact sequence

0 - F(U,

of abelian groups, by (3.5) or (IL, 5.6). Taking products, we find that the
corresponding sequence of Cech complexes

0 -» C(UF) - C(UZ) » CULRA) — 0

................

is exact. Therefore we get a long exact sequence of Cech cohomology
groups. Since ¥ is flasque, its Cech cohomology vanishes for p > 0 by
(4.3), so we have an exact sequence

0 » HW,#) » H'U,%) - H'U,%) -» H'U,F) - 0

and isomorphisms . .

H(W, %) > H**Y (W, %)
for each p = 1. Now comparing with the long exact sequence of usual
cohomology for the above short exact sequence, using the case p = 0,
and (2.5), we conclude that the natural map

HWF) » H(X,F)
is an isomorphism. But £ is also quasi-coherent (II, 5.7), so we obtain the
result for all p by induction.

EXERCISES

4.1. Let f:X — Y be an affine morphism of noetherian separated schemes (11, Ex. 5.17).
" Show that for any quasi-coherent sheaf # on X, there are riatural isomorphisms
foralli = 0,
H{(X,#) = H(Y,f,%).
[Hinz: Use (11, 5.8).]

4.2. Prove Chevalley’s theorem: Let f:X — Y be a finite surjective morphism of
noetherian separated schemes, with X affine. Then Y is affine.
(a) Let f:X — Y be a finite surjective morphism of integral noetherian schemes.
Show that there is a coherent sheaf .# on X, and a morphism of sheaves
a:0% - f,.M for some r > 0, such that o is an isomorphism at the generic
point of Y.
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(b) For any coherent sheaf # on Y, show that there is a coherent sheaf 4 on X,
and a morphism f: f,% — %" which is an isomorphism at the generic point
of Y. [Hint: Apply #om(-,F) to « and use (II, Ex. 5.17¢).]

(c) Now prove Chevalley’s theorem. First use (Ex. 3.1) and (Ex. 3.2) to reduce to
the case X and Y integral. Then use (3.7), (Ex. 4.1), consider ker f and coker §,
and use noetherian induction on Y.

Let X = A? = Spec k[x,y], and let U = X — {(0,0)}. Using a suitable cover of
U by open affine subsets, show that H(U,0y) is isomorphic to the k-vector space
spanned by {x'y’|i,j < 0}. In particular, it is infinite-dimensional. (Using (3.5),
this provides another proof that U is not affine—cf. (I, Ex. 3.6).)

On an arbitrary topological space X with an arbitrary abelian sheaf %, Cech
cohomology may not give the same result as the derived functor cohomology. But
here we show that for H?, there is an isomorphism if one takes the limit over all
coverings.

(a) Let U = (U;),; be an open covering of the topological space X. A refinement
of W is a covering B = (V}),.;, together with a map A:J — I of the index sets,
such that for each je J, V; © Uy;,. If Bis a refinement of U, show that there
is a natural induced map on Cech cohomology, for any abelian sheaf #, and
for each i,

A HQU,%) - H(B,7).

The coverings of X form a partially ordered set under refinement, so we can
consider the Cech cohomology in the limit
lim A'QL,%).
i
(b) For any abelian sheaf % on X, show that the natural maps (4.4) for each

covering
HUWZF) > H(X,F)

are compatible with the refinement maps above.
(c) Now prove the following theorem. Let X be a topological space, & a sheaf of
abelian groups. Then the natural map

lim H*W,%) - H{(X, %)
T
is an isomorphism. [Hint: Embed & in a flasque sheaf ¢, and let # = 4/#,
so that we have an exact sequence
0-F >%->R-0.
Define a complex D'(U) by
0->CUWF)- CQUY) - DU - 0.

Then use the exact cohomology sequence of this sequence of complexes, and
the natural map of complexes

D) - CUA),

and see what happens under refinement. |
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For any ringed space (X,0y), let Pic X be the group of isomorphism classes of
invertible sheaves (II, §6). Show that Pic X =~ H(X,0%), where 0% denotes the
sheaf whose sections over an open set U are the units in the ring I'(U,0y), with
multiplication as the group operation. [Hint: For any invertible sheaf # on X,
cover X by open sets U; on which . is free, and fix isomorphisms ¢;: 0y, > £y,
Then on U; n Uj;, we get an isomorphism ¢; ' o ¢; of Oy, ., y, with itself. These
isomorphisms give an element of H'(X,0%). Now use (Ex. 4.4).]

Let (X,04) be a ringed space, let .# be a sheaf of ideals with #2 = 0, and let X,
be the ringed space (X,0,/.#). Show that there is an exact sequence of sheaves of
abelian groups on X,

0> S - 0% - 0%, -0,

where 0% (respectively, 0%,) denotes the sheaf of (multiplicative) groups of units
in the sheaf of rings @y (respectively, Oy, ); the map  — 0% is defined by a—
1 + a, and £ has its usual (additive) group structure. Conclude there is an exact
sequence of abelian groups

..> HY{X,#) > PicX » Pic Xy, » H¥(X,#) - ... .

Let X be a subscheme of P? defined by a single homogeneous equation
Sf(xpx15x2) = 0of degree d. (Do not assume f is irreducible.) Assume that (1,0,0)
is not on X. Then show that X can be covered by the two open affine subsets
U=Xn{x; #0}and ¥ = X n {x, # 0}. Now calculate the Cech complex

I'(U,0x) @ I'(V,0x) - I'(U N V,0x)
explicitly, and thus show that
dim Ho(X,0y) = 1,
1
dim HY(X,04) = f(d — 1)d - 2).

Cohomological Dimension (Hartshorne [3]). Let X be a noetherian separated

scheme. We define the cohomological dimension of X, denoted cd(X), to be the

least integer n such that H'(X,#) = 0 for all quasi-coherent sheaves & and all

i > n. Thus for example, Serre’s theorem (3.7) says that cd(X) = 0 if and only

if X is affine. Grothendieck’s theorem (2.7) implies that cd(X) < dim X.

(a) In the definition of cd(X), show that it is sufficient to consider only coherent
sheaves on X. Use (II, Ex. 5.15) and (2.9).

(b) If X is quasi-projective over a field k, then it is even sufficient to consider only
locally free coherent sheaves on X. Use (1, 5.18).

(c) Suppose X hasa coveringbyr + 1open affine subsets. Use Cech cohomology
to show that cd(X) < r.

*(d) If X is a quasi-projective scheme of dimension r over a field k, then X can be
covered by r + 1 open affine subsets. Conclude (independently of (2.7)) that
cd(X) < dim X.

(e) Let Y be a set-theoretic complete intersection (I, Ex. 2.17) of codimension r
in X = P;. Showthatced(X — Y)<r — 1.

Let X = Spec k[x,,x,,x3,x4] be affine four-space over a field k. Let Y; be the
plane x; = x, = Oandlet Y, be the plane x; = x, = 0. ShowthatY = Y, U Y,
is not a set-theoretic complete intersection in X. Therefore the projective closure
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Y in P{ is also not a set-theoretic complete intersection. [Hints: Use an affine
analogue of (Ex. 4.8¢). Then show that H¥(X — Y,0y) # 0, by using (Ex. 2.3)
and (Ex. 2.4). If P = Y, N Y,, imitate (Ex. 4.3) to show H}X — P,0y) # 0.]

*4.10. Let X be a nonsingular variety over an algebraically closed field k, and let & be a
coherent sheaf on X. Show that there is a one-to-one correspondence between
the set of infinitesimal extensions of X by & (IL, Ex. 8.7) up to isomorphism, and
the group H'(X,# @ ), where 7 is the tangent sheaf of X (I1§8). [Hint: Use
(I1, Ex. 8.6) and (4.5).]

4.11. This exercise shows that Cech cohomology will agree with the usual cohomology
whenever the sheaf has no cohomology on any of the open sets. More precisely,
let X be a topological space, # a sheaf of abelian groups and U = (U,) an open
cover. Assume for any finite intersection V = U, -n U, of open sets of the
covering, and for any k > 0, that HX(V,#|,) = 0 Then prove that for all p > 0,
the natural maps

H(W,7)— H/(X, %)
of (4.4) are isomorphisms. Show also that one can recover (4.5) as a corollary of
this more general result.

5 The Cohomology of Projective Space

In this section we make explicit calculations of the cohomology of the
sheaves ((n) on a projective space, by using Cech cohomology for a suitable
open affine covering. These explicit calculations form the basis for various
general results about cohomology of coherent sheaves on projective
varieties.

Let A be a noetherian ring, let S = A[x,,...,x,], and let X = Proj S
be the projective space P!, over A. Let 04(1) be the twisting sheaf of Serre
(IL, §5). For any sheaf of Oy-modules &#, we denote by I'(F) the graded
S-module P, . ; I'(X,Z (n)) (see 11, §5).

Theorem 5.1. Let A be a noetherian ring, and let X = P*,, withr > 1. Then:
(a) the natural map S - I',(Ox) = P,z HAX,0x(n)) is an isomor-
phism of graded S-modules;
(b) H(X,0x(n)) =0 for0 <i <randallnelZ;
(c) H(X,0x(—r — 1)) = A4
(d) The natural map

H%X,04(n)) x H'(X,0x(—n —r — 1)) » H'(X,04(—r — 1)) > 4
is a perfect pairing of finitely generated free A-modules, for each ne Z.

PROOF. Let # be the quasi-coherent sheaf (P, . ; Ox(n). Since cohomology
commutes with arbitrary direct sums on a noetherian topological space
(2.9.1), the cohomology of # will be the direct sum of the cohomology of
the sheaves O(n). So we will compute the cohomology of &, and keep track
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of the grading by n, so that we can sort out the pieces at the end. Note that
all the cohomology groups in question have a natural structure of A-module
(2.6.1).

For each i = 0,...,r, let U; be the open set D (x;,). Then each U, is
an open affine subset of X, and the U; cover X, so we can compute the
cohomology of # by using Cech cohomology for the covering U = (U,),

by (4.5). For any set of indices iy, ...,i,, the open set U  ; is just
D (x, - - - x;,), so by (IL, 5.11) we have

(Ui ...... lp) ; Sxio“‘xi,,’
the localization of S with respect to the element x;, - - - xip. Furthermore,
the grading on # corresponds to the natural gradlng of Sy, ... under

this isomorphism. Thus the Cech complex of & is given by
CULE):T1ISx, = [ISxyxs =+ = Sxo

and the modules all have a natural grading compatible with the grading
on #.

Now HO(X,%) is the kernel of the first map, which is just S, as we have
seen earlier (II, 5.13). This proves (a).

Next we consider H'(X,%). It is the cokernel of the last map in the
Cech complex, which is

We think of S, ..., as a free A-module with basis x¥ - - - x¥, with [; € Z.
The image of d" ™! is the free submodule generated by those basis elements
for which at least one [; > 0. Thus H'(X,%) is a free A-module with basis
consisting of the “negative” monomials

(s ak

Furthermore the grading is given by ) /;. There is only one such monomial
of degree —r — 1, namely x5'--- x, !, so we see that H'(X,0x(—r — 1))
is a free A-module of rank 1. This proves (c).

To prove (d), first note that if n < 0, then H%(X,04(n)) = 0 by (a), and
H'(X,0x(—n — r — 1)) = 0 by what we have just seen, since in that case
—n—r—1> —r — 1, and there are no negative monomials of that
degree. So the statement is trivial for n < 0. For n > 0, H%(X,0y(n)) has
a basis consisting of the usual monomials of degree n, i.e., {xg° - - - x"|m; > 0
and Y m; = n}. The natural pairing with H'(X,0x(—n — r — 1)) into
H'(X,0x(—r — 1)) is determined by

(o ) (g - ) = ot e

I; < 0 for each i}.

s

where I, = —n — r — 1, and the object on the right becomes 0 if any
m; + I; > 0. So it is clear that we have a perfect pairing, under which
xg™ 1.+ x ™1 s the dual basis element of x%° - - - x™.
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It remains to prove statement (b), which we will do by induction on r.
If r = 1 there is nothing to prove, so let r > 1. If we localize the complex
C (U, #) with respect to x,, as graded S-modules, we get the Cech complex

re

{UinU,li =0,. r} By (4.5), this complex gives the cohomology of
F|y, on U, Wthh is 0 for i > 0 by (3.5). Since localization is an exact
functor, we conclude that H'(X,#), = 0 for i > 0. In other words, every
element of H'(X,#), for i > 0, is annihilated by some power of x,.

To complete the proof of (b), we will show that for 0 < i < r, multiplica-
tion by x, induces a bijective map of H'(X, %) into itself. Then it will follow
that this module is 0.

Consider the exact sequence of graded S-modules

0-S(—1)3 8- S/(x,) - 0.
This gives the exact sequence of sheaves
0-0x(-1)> Oy > Oy >0

on X, where H is the hyperplane x, = 0. Twisting by all n € Z and taking
the direct sum, we have

0> F(-1)>F > Fyz -0,

where # 4 = (P,.z Oy(n). Taking cohomology, we get a long exact
sequence

.o H(X,#(-1) » H(X,7) > H(X,F ) >

Considered as graded S-modules, H'(X,#(—1)) is just H'(X,%) shifted
one place, and the map HY(X,%#(—1)) - H(X,#) of the exact sequence
is multiplication by x,.

Now H is isomorphic to Py !, and H{(X,#y) = H'(H,D0yx(n)) by
(2.10). So we can apply our induction hypothesis to &%, and find that
H(X,#y) =0 for 0 <i <r — 1. Furthermore, for i = 0 we have an
exact sequence

0> HX,#(-1)) » HX,#) » HYX,Fy) - O

by (a), since HY(X,# ) is just S/(x,). At the other end of the exact sequence
we have

0-H (X, 7y 5 H(X,F(-1)3 H(X,F) - 0.

Indeed, we have described H"(X,%) above as the free A-module with basis
formed by the negative monomials in x,,...,x,. So it is clear that x, is
surjective. On the other hand, the kernel of x, is the free submodule gen-
erated by those negative monomials x¥...xr with [ = —1. Since
H ™ Y(X,#y) is the free A-module with basis consisting of the negative
monomials in X, ...,x,_;, and § is division by x,, the sequence is exact.
In particular, ¢ is injective.
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Putting these results all together, the long exact sequence of cohomology
shows that the map multiplication by x,: H(X,#(—1)) - H(X,%) is bijec-
tive for 0 < i < r, as required. g.ed.

Theorem 5.2 (Serre [3]). Let X be a projective scheme over a noetherian
ring A, and let Ox(1) be a very ample invertible sheaf on X over Spec A.
Let & be a coherent sheaf on X. Then:

(a) for each i = 0, H(X,%) is a finitely generated A-module;
(b) there is an integer ny, depending on &, such that for each i > 0
and each n > ny, H(X,#(n)) = 0.

PRrOOF. Since Oy(1) is a very ample sheaf on X over Spec A4, there is a closed
immersion i:X — P’, of schemes over A4, for some r, such that Oy(1) =
i*Opr(1)—cf. (II, 5.16.1). If &# is coherent on X, then i, is coherent on
P, (I, Ex. 5.5), and the cohomology is the same (2.10). Thus we reduce to
the case X = P’,.

For X = P, we observe that (a) and (b) are true for any sheaf of the
form Ox(q), g € Z. This follows immediately from the explicit calculations
(5.1). Hence the same is true for any finite direct sum of such sheaves.

To prove the theorem for arbitrary coherent sheaves, we use descending
induction on i. For i > r, we have H(X,#) = 0, since X can be covered
by r + 1 open affines (Ex. 4.8), so the result is trivial in this case.

In general, given a coherent sheaf % on X, we can write & as a quotient
of a sheaf &, which is a finite direct sum of sheaves (0)(g;), for various integers
g; (I1, 5.18). Let £ be the kernel, \

Then £ is also coherent. We get an exact sequence of A-modules
> H(X,6) » H(X,7) > H*" ' (X, %) > ... .

Now the module on the left is finitely generated because & is a sum of 0(g;),
as remarked above. The module on the right is finitely generated by the
induction hypothesis. Since A is a noetherian ring, we conclude that the
one in the middle is also finitely generated. This proves (a).

To prove (b), we twist and again write down a piece of the long exact
sequence

.= H(X,6(n)) » H(X,F(n)) » H*Y(X,R(n)) > ... .

Now for n > 0, the module on the left vanishes because & is a sum of ((q;).
The module on the right also vanishes for n > 0 because of the induction
hypothesis. Hence H(X,#(n)) = 0 for n » 0. Note since there are only
finitely many i involved in statement (b), namely 0 < i < r, it is sufficient
to determine n, separately for each i. This proves (b).

Remark 5.2.1. As a special case of (a), we see that for any coherent sheaf
& on X, I'(X,%#) is a finitely generated A-module. This generalizes, and
gives another proof of (II, 5.19).
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As an application of these results, we give a cohomological criterion
for an invertible sheaf to be ample (I1, §7).

Proposition 5.3. Let A be a noetherian ring, and let X be a proper scheme
over Spec A. Let & be an invertible sheaf on X. Then the following
conditions are equivalent:

(i) & is ample;
(i) For each coherent sheaf & on X, there is an integer n,, depending on
F, such that for eachi > 0 and each n > ny, H(X,% @ £") = 0.

ProoOF. (1) = (ii). If ¥ is ample on X, then for some m > 0, ¥™ is very
ample on X over Spec 4, by (II, 7.6). Since X is proper over Spec 4, it is
necessarily projective (II, 5.16.1). Now applying (5.2) to each of the sheaves
FIFQLF R L ... F ® L™ ! gives (i1). Cf. (I, 7.5) for a similar
technique of proof.

(if) = (i). To show that £ is ample, we will show that for any coherent
sheaf # on X, there is an integer n, such that # ® #" is generated by
global sections for all n > ny. This is the definition of ampleness (11, §7).

Given #, let P be a closed point of X, and let .#, be the ideal sheaf of
the closed subset {P}. Then there is an exact sequence

0> S5HF > F > F Q®kP) -0,
where k(P) is the skyscraper sheaf 0y/#p. Tensoring with £”, we get
0 FHFRQF" > FRL">F QFL"R® k(P) - 0.

Now by our hypothesis (ii), there is an n, such that H'(X,%% ® ") =0
for alln = n,. Therefore

X, @ ") - I'X,7 ® £" ® k(P))

is surjective for all n > n,. It follows from Nakayama’s lemma over the
local ring Op, that the stalk of # ® £" at P is generated by global sections.
Since it is a coherent sheaf, we conclude that for each n > n,, there is an
open neighborhood U of P, depending on n, such that the global sections
of F ® #" generate the sheaf at every point of U.

In particular, taking & = Oy, we find there is an integer n; > 0 and
an open neighborhood V of P such that #™ is generated by global sections
over V. On the other hand, for each r = 0,1,...,n; — 1, the above argu-
ment gives a neighborhood U, of P such that # ® #™*" is generated by
global sections over U,. Now let

Up=VnUyn...nU, ;.

Then over Up, all of the sheaves # ® £", for n > n,, are generated by
global sections. Indeed, any such sheaf can be written as a tensor product

(9'_ ® gng+r) ® (gnl)m

for suitable 0 < r < n,andm = 0.
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Now cover X by a finite number of the open sets U, for various closed
points P, and let the new n, be the maximum of the n, corresponding to
those points P. Then # ® #" is generated by global sections over all of
X, foralln = n,. g.ed.

EXERCISES

5.1. Let X be a projective scheme over a field k, and let & be a coherent sheaf on X.
We define the Euler characteristic of by

AF) = Y(~1)dim, H(X,Z).
If
0 F >F ->F" -0

is a short exact sequence of coherent sheaves on X, show that y(¥#) = y(¥') +
wUF").

5.2. (a) Let X be a projective scheme over a field k, let Ox(1) be a very ample invertible
sheaf on X over k, and let # be a coherent sheaf on X. Show that there is a
polynomial P(z) € Q[z], such that x(#(n)) = P(n) for all ne Z. We call P
the Hilbert polynomial of % with respect to the sheaf Oy(1). [Hints: Use
induction on dim Supp &, general properties of numerical polynomials
(I, 7.3), and suitable exact sequences

0-RZ->F(-1)>F >2-0]

(b) Nowlet X = Pj,andletM = I' (¥),considered asa graded S = k[x,,...,x,]-
module. Use (5.2) to show that the Hilbert polynomial of # just defined is
the same as the Hilbert polynomial of M defined in (I, §7).

5.3. Arithmetic Genus. Let X be a projective scheme of dimension r over a field k. We
define the arithmetic genus p, of X by

pdX) = (=1 ((Ox)—1).

Note that it depends only on X, not on any projective embedding.
(a) If X is integral, and k algebraically closed, show that H(X,04) = k, so that
r-1

pdX) = Y (=1) dim H (X, 0%).

i=0
In particular, if X is a curve, we have

p/X) = dim, HY(X,04).
[Hint: Use (1, 3.4).]
(b) If X is a closed subvariety of P, show that this p,(X) coincides with the one
defined in (I, Ex. 7.2), which apparently depended on the projective embedding.
(c) If X is a nonsingular projective curve over an algebraically closed field k, show
that p,(X) is in fact a birational invariant. Conclude that a nonsingular plane
curve of degree d > 3 is not rational. (This gives another proof of (II, 8.20.3)
where we used the geometric genus.)

5.4. Recall from (II, Ex. 6.10) the definition of the Grothendieck group K(X) of a
noetherian scheme X.
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(a) Let X be a projective scheme over a field k, and let 0,(1) be a very ample
invertible sheaf on X. Show that there is a (unique) additive homomorphism

P:K(X) - Q[z]

such that for each coherent sheaf & on X, P(y(%)) is the Hilbert polynomial
of # (Ex. 5.2).

(b) Nowlet X = P;. Foreachi = 0,1,...,r,let L; be a linear space of dimension
iin X. Then show that

(1) K(X) is the free abelian group generated by {y((OL,.)|i =0,...,r},and
(2) the map P:K(X) — Q[z] is injective.

[Hint: Show that (1) = (2). Then prove (1) and (2) simultaneously, by induc-
tion on r, using (I, Ex. 6.10c).]

Let k be a field, let X = P}, and let Y be a closed subscheme of dimension g > 1,
which is a complete intersection (II, Ex. 8.4). Then:
(a) for all n e Z, the natural map

HX,0x(n)) - HY(Y,04(n))

is surjective. (This gives a generalization and another proof of (I, Ex. 8.4c),
where we assumed Y was normal.)

(b) Y is connected;

(c) H{(Y,0yn)) =0for0<i<gqgandallneZ;

(d) pdY) = dim, H(Y,0y).
[Hint: Use exact sequences and induction on the codimension, starting from
the case Y = X which is (5.1).]

Curves on a Nonsingular Quadric Surface. Let Q be the nonsingular quadric sur-
face xy = zw in X = P} over a field k. We will consider locally principal closed
subschemes Y of Q. These correspond to Cartier divisors on Q by (II, 6.17.1).
On the other hand, we know that Pic Q =~ Z @ Z, so we can talk about the
type (a,b) of Y (I1, 6.16) and (I, 6.6.1). Let us denote the invertible sheaf #(Y) by
Ogla,b). Thus for any ne Z, Oy(n) = Oy(n,n).

(a) Use the special cases (¢,0) and (0,q), with ¢ > 0, when Y is a disjoint union of g

lines P! in Q, to show:

(1) if|a — b| < 1, then H'(Q,04(ab)) = 0;
(2) if a,b < 0, then HY(Q,04(a,b)) = O;
(3) Ifa < —2,then H'(Q,0,(a,0)) # 0.

(b) Now use these results to show:

(1) if Y is a locally principal closed subscheme of type (a,b), with a,b > 0,
then Y is connected;

(2) now assume k is algebraically closed. Then for any a,b > 0, there exists an
irreducible nonsingular curve Y of type (a,b). Use (II, 7.6.2) and (II, 8.18).

(3) an irreducible nonsingular curve Y of type (a,b), a,b > 0 on Q is projec-
tively normal (II, Ex. 5.14) if and only if |a — b| < 1. In particular, this
gives lots of examples of nonsingular, but not projectively normal curves
in P3. The simplest is the one of type (1,3), which is just the rational
quartic curve (I, Ex. 3.18).
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(c) If Y is a locally principal subscheme of type (a,b) in Q, show that p(Y) =
ab — a — b + 1. [Hint: Calculate Hilbert polynomials of suitable sheaves,
and again use the special case (¢,0) which is a disjoint union of g copies of P*.
See (V, 1.5.2) for another method.]

Let X (respectively, Y) be proper schemes over a noetherian ring A. We denote by

& an invertible sheaf.

(a) If.# isample on X, and Y is any closed subscheme of X, then i*.# is ample on
Y, where i: Y — X is the inclusion.

(b) Zisampleon X ifand only if £, = ¥ ® Oy, isampleon X,,.

(¢) Suppose X is reduced. Then & is ample on X if and only if & ® Oy, is
ample on X, for each irreducible component X; of X.

(d) Let f:X — Y be a finite surjective morphism, and let % be an invertible sheaf
on Y. Then £ is ample on Y if and only if f*& is ample on X. [Hints: Use
(5.3) and compare (Ex. 3.1, Ex. 3.2, Ex. 4.1, Ex. 4.2). See also Hartshorne
[5, Ch. 1§4] for more details.]

Prove that every one-dimensional proper scheme X over an algebraically closed

field k is projective.

(a) If X is irreducible and nonsingular, then X is projective by (11, 6.7).

(b) If X is integral, let X be its normalization (IL, Ex. 3.8). Show that X is complete
and nonsingular, hence projective by (a). Let f:X — X be the projection. Let
& be a very ample invertible sheaf on X. Show there is an effective divisor
D =YP;on X with #(D) ~ &, and such that f(P) is a nonsingular point of
X, foreachi. Conclude that thereis an invertible sheaf %, on X with f*%#, =~
&. Then use (Ex. 5.7d), (II, 7.6) and (I, 5.16.1) to show that X is projective.

(¢) If X is reduced, but not necessarily irreducible, let X,,..., X, be the irre-
ducible components of X. Use (Ex. 4.5) to show Pic X — @ Pic X, is sur-
jective. Then use (Ex. 5.7c) to show X is projective.

(d) Finally, if X is any one-dimensional proper scheme over k, use (2.7) and (Ex. 4.6)
to show that Pic X — Pic X, is surjective. Then use (Ex. 5.7b) to show X
is projective.

A Nonprojective Scheme. We show the result of (Ex. 5.8) is false in dimension 2.
Let k be an algebraically closed field of characteristic 0, and let X = P2. Let o
be the sheaf of differential 2-forms (I, §8). Define an infinitesimal extension X’
of X by w by giving the element ¢ € H{(X,w ® ) defined as follows (Ex. 4.10).
Let x¢,x;,x, be the homogeneous coordinates of X, let U,,U,,U, be the standard
open covering, and let &; = (x;/x;)d(x;/x;). This gives a Cech 1-cocycle with
values in Q%, and since dim X = 2, we have o ® 7 =~ Q! (1], Ex. 5.16b). Now
use the exact sequence

.- H'(X,0) » Pic X' > PicX > HYX,w) > ...

of (Ex. 4.6) and show ¢ is injective. We have @ = 0,(—3) by (II, 8.20.1), so
H*(X,w) = k. Since char k = 0, you need only show that §(0(1)) # 0, which can
be done by calculating in Cech cohomology. Since H'(X,w) = 0, we see that
Pic X' = 0. In particular, X" has no ample invertible sheaves, so it is not pro-
jective.

Note. In fact, this result can be generalized to show that for any nonsingular
projective surface X over an algebraically closed field k of characteristic 0, there
is an infinitesimal extension X’ of X by w, such that X' is not projective over k.



6 Ext Groups and Sheaves

Indeed, let D be an ample divisor on X. Then D determines an element c,(D) €
H'(X,Q") which we use to define X', as above. Then for any divisor E on X one
can show that §(#(E)) = (D.E), where (D.E) is the intersection number (Chap-
ter V), considered as an element of k. Hence if E is ample, §(Z(E)) # 0. There-
fore X' has no ample divisors.

On the other hand, over a field of characteristic p > 0, a proper scheme X is
projective if and only if X, is!

5.10. Let X be a projective scheme over a noetherian ring 4, and let #! - %2 - ... >
Z7 be an exact sequence of coherent sheaves on X. Show that there is an integer
ny, such that for all n > n,, the sequence of global sections

I(X,F'n) » T X, FYn) ~ ... > I(X,F'(n)
is exact.

6 Ext Groups and Sheaves

In this section we develop the properties of Ext groups and sheaves, which
we will need for the duality theorem. We work on a ringed space (X,0y),
and all sheaves will be sheaves of ¢y-modules.

If # and ¢ are Ox-modules, we denote by Hom(#,%) the group of O-
module homomorphisms, and by #om(#,%4) the sheaf Hom (11, §5). If
necessary, we put a subscript X to indicate which space we are on:
Hom(#,9). For fixed %, Hom(%,-) is a left exact covariant functor from
Mod(X) to Ub, and Hom(F,") is a left exact covariant functor from Mod(X)
to PWiod(X). Since Wiod(X) has enough injectives (2.2) we can make the follow-
ing definition.

Definition. Let (X,0y) be a ringed space, and let & be an @y-module. We
define the functors Ext{(#,-) as the right derived functors of Hom(Z,"),
and &xt'(Z,") as the right derived functors of #om(F,-).

Consequently, according to the general properties of derived functors
(1.1A) we have Ext® = Hom, a long exact sequence for a short exact sequence
in the second variable, Ext(#,4) = 0 for i > 0, ¢ injective in Mod(X), and
ditto for the &xt sheaves.

Lemma 6.1. If 4 is an injective object of Mod(X), then for any open subset
U < X, S|y is an injective object of Mod(U).

PROOF. Let j: U — X be the inclusion map. Then given an inclusion # < ¥
in Mod(UV), and given a map F — S|y, we get an inclusion jF < j ¥, and
amap ¥ — j(f]|y), where j, is extension by zero (II, Ex. 1.19). But j(#|y)
is a subsheaf of #,so we haveamap j,# — #. Since .f is injective in Mod(X),
this extends to a map of j,% 0 #. Restricting to U gives the required map
of 4 to A|y.
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