

Mathématiques 1 pour ISTIC

Controle continu (durée deux heures) (le 26/10/2017)

Nom:	Prénom :	${\bf Groupe:}$	

Documents, téléphones et calculatrices interdits

Exercice 1. Question de cours. (1 pt) Soit $r \in \mathbb{R}_+$ et $\theta \in \mathbb{R}$. Quelle est la forme algébrique du nombre complexe $z = r e^{i\theta}$?

z =

1.1) (1 pt) Ecrire sous sa forme algébrique le nombre complexe qui est de module 2 et d'argument $\pi/3$.

z =

1.2) (1 pt) Ecrire sous sa forme algébrique le nombre complexe $z=(3+6\,i)/(3-4\,i).$ z=

Exercice 2. Question de cours. (1 pt) Soit z = a + ib avec $(a,b) \in \mathbb{R}^2$. Comment se calcule le module de z élevé au carré?

$$|z|^2 =$$

2.1) (2 pts) Donner la forme exponentielle des nombres complexes suivants :

$$u = \frac{\sqrt{6} - i\sqrt{2}}{2} = \qquad \qquad v = 1 - i =$$

2.2) (1 pt) Donner la forme exponentielle du nombre complexe w=u/v suivant :

$$w = \frac{u}{v} =$$

Exercice 3. Question de cours. (1 pt) Soit n un entier non nul. Indiquer ci-dessous quelles sont les n racines $n^{\text{ième}}$ de l'unité :

3.1) (1 pt) Déterminer les formes exponentielles, notées u_j avec $j \in \{0, 1, 2\}$, associées aux racines cubiques du nombre complexe 2 - 2i.

$$u_0 = u_1 = u_2 = u_2 = u_3 = u_4 = u_5 = u_5$$

3.2) (1 pt) Exprimer $u_0^2 = u_0 \times u_0$ en fonction de u_1 et de u_2 .

$$u_0^2 =$$

Exercice 4. Question de cours. (2 pts) On considère le polynôme suivant :

$$P(X) := X^3 - 2 X^2 - 11 X + 12 \in \mathbb{R}[X].$$

Soit $x \in \mathbb{R}$. Que signifie l'affirmation selon laquelle "x est racine de P mais n'est pas une racine double de P"?

- 4.1) (1 pt) Parmi les valeurs $\{-2,-1,0,1,2\}$, laquelle (notée x_1) est racine de P ? $x_1=$
- 4.2) (1 pt) Effectuer la division de P(X) par $X-x_1$ et afficher le résultat :

$$Q(X) := P(X)/(X - x_1) =$$

4.3) (1 pt) Déterminer les racines x_2 et x_3 de Q(X):

$$x_2 = x_3 = x_3$$

Exercice 5. Question de cours. (1 pt) Donner un exemple de polynôme $P(X) \in \mathbb{R}[X]$ de degré 2 qui n'est pas un produit de deux facteurs linéaires, c'est à dire un produit de deux polynômes de degré 1 choisis dans $\mathbb{R}[X]$.

$$P(X) =$$

5.1) (1 pt) Soient $b \in \mathbb{R}$ et $c \in \mathbb{R}$. En effectuant la division euclidienne du polynôme $A(X) := X^4 + X^2 + b X + c$ par $B(X) := X^2 + X + 1$, déterminer le quotient Q(X) et le reste R(X).

$$Q(X) = R(X) =$$

5.2) (1 pt) Déterminer b et c de façon à ce que A(X) soit divisible par B(X).

$$b = c = c$$

Exercice 6. On considère les fonctions :

$$f: \mathcal{D}(f) \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = \frac{5x^2 + x - 4}{x^2 - 1},$ $g: \mathcal{D}(g) \longrightarrow \mathbb{R}$
 $x \longmapsto g(x) = \frac{5x - 4}{x - 1}.$

6.1) (1 pt) Quels sont les domaines de définition $\mathcal{D}(f)$ et $\mathcal{D}(g)$ des fonctions f et g ?

$$\mathcal{D}(f) = \mathcal{D}(g) =$$

6.2) (1 pt) Montrer que f est la restriction de g à $\mathcal{D}(f)$, c'est à dire que f(x) = g(x) pour tout $x \in \mathcal{D}(f)$.

6.3) (2 pts) Déterminer les images Im(g) et Im(f) de g et de f.

$$Im(g) = g(\mathcal{D}(g)) = Im(f) = f(\mathcal{D}(f)) =$$