Chapitre 3: Limites, dérivées, étude de fonction

Limite

Exercice 3.1. Décrivez le comportement limite des fonctions numériques d'une variable réelle, données par les formules suivantes, de chaque côté de la valeur de x indiquée.

(a)
$$\exp\left(\frac{1}{x}\right)$$
, $x = 0$ (b) $\exp\left(\frac{|x|}{x}\right)$, $x = 0$ (c) $\frac{\sqrt{x^2 - 2x + 1}}{x - 1}$, $x = 1$.

(a) $\lim_{x\to 0^+} = +\infty$, $\lim_{x\to 0^-} = 0$, faire aussi limite en $\pm\infty$, dessiner graphe. (b) (c) $=\frac{|x-1|}{x-1}$

Exercice 3.2. Prouvez par encadrement (théorème des gendarmes) que la valeur de chacune des limites suivantes est zéro.

(a)
$$\lim_{x\to 0} |x| \sin\left(\frac{1}{x}\right)$$
, (b) $\lim_{x\to +\infty} e^{-x} \cos(x)$, (c) $\lim_{x\to 1} |x-1| \cos\left(\frac{1}{x-1}\right)$, (d) $\lim_{x\to +\infty} \exp(\sin(x)-x)$.

Exercice 3.3. Évaluez les limites suivantes

(a)
$$\lim_{x\to 2} \frac{x^2 - 4x + 4}{x^2 - 4}$$
, (b) $\lim_{x\to 0} \frac{\exp(2x) - 1}{\exp(x) - 1}$, (c) $\lim_{x\to 0} \frac{\sqrt{1 - 2x^2} - \sqrt{1 + 2x^2}}{x^2}$,

(d)
$$\lim_{x \to +\infty} \frac{x^2 + 2\sqrt{x} + \sqrt[3]{x}}{\sqrt{x} - 1 - x^2}$$
, (e) $\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 3x + 5}}{x - 4}$, (f) $\lim_{x \to +\infty} \frac{x + 2}{x^2 \ln x}$

(g)
$$\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x+2}$$
 (h) $\lim_{x \to +\infty} \frac{\ln(x+2)}{\sqrt{x}}$ (i) $\lim_{x \to +\infty} \left(\frac{x+1}{x}\right)^x$

(a)
$$=\frac{x-2}{x+2} \to 0$$
, (b) $=\lim_{t\to 1} \frac{t^2-1}{t-1} = \lim_{t\to 1} t+1$, (c) $=\lim_{x\to 0} \frac{(\sqrt{1-2x^2}-\sqrt{1+2x^2})(\sqrt{1-2x^2}+\sqrt{1+2x^2})}{x^2(\sqrt{1-2x^2}+\sqrt{1+2x^2})} = \frac{1}{x^2}$

 $\lim_{x\to 0} \frac{-4x^2}{x^2(\sqrt{1-2x^2}+\sqrt{1+2x^2})} = -2$ – une meilleure solution aurait été par développement limité. (d)

$$\lim_{x\to +\infty} \frac{1+2x^{-3/2}+x^{-5/3}}{x^{-3/2}-x^{-2}-1} = -1, \quad \text{(e) } \lim_{x\to -\infty} \frac{x\sqrt{2+\frac{3}{x}+\frac{5}{x^2}}}{x(1-\frac{4}{x})} = \sqrt{2} \quad \text{(f) Pour } x>e, \text{ on a } \ln(x)>1,$$

donc $\frac{x+2}{x^2\ln(x)} < \frac{x+2}{x^2} = \frac{1+\frac{2}{x}}{x}$. Par gendarmes, $\lim_{x\to+\infty} = 0$ (g) $= \lim_{t\to+\infty} \frac{e^t}{t^2+2} = +\infty$ par croissance comparée (h) = 0 par croissance comparée (justification rigoureuse?) (i) Cette question utilise la dérivée de la fonction $\ln!$ C'est $= \lim_{x\to+\infty} \exp(x \cdot \ln(1+\frac{1}{x})) = \exp(\ln'(1)) = \exp(1) = e$

Exercice 3.4. Utilisez un changement de variable pour évaluer les limites suivantes :

(a)
$$\lim_{x \to 1} \frac{\sin(\ln(x))}{\ln(x)}$$
, (b) $\lim_{x \to 0_+} \frac{\sqrt{2x}}{\sin(\sqrt{2x})}$, (c) $\lim_{x \to 0} \frac{x}{\arcsin(x)}$, (d) $\lim_{x \to -\infty} \frac{\arcsin(\exp(x))}{\exp(x)}$.

Faire cet exo après avoir expliqué que $\sin(x)/x \xrightarrow{x \to 0} 1!$

Définition de la dérivée

Exercice 3.5. Utiliser directement la définition de la dérivée (en tant que limite) pour calculer la dérivée de la fonction $f(x) = \sqrt{x}$. $\frac{\sqrt{x+t}-\sqrt{x}}{t} = \frac{(\sqrt{x+t}-\sqrt{x})(\sqrt{x+t}+\sqrt{x})}{t\cdot(\sqrt{x+t}+\sqrt{x})} = \frac{t}{t\cdot(\sqrt{x+t}+\sqrt{x})} \xrightarrow{t\to 0} \frac{1}{2\sqrt{t}}$

Opérations algébriques de la dérivée

Exercice 3.6. Pour chacune des fonctions données par les formules suivantes :

(a)
$$8x^{3/4}$$

(b)
$$xe^{\frac{1}{x}}$$

(c)
$$e^x \sin(x)$$

(d)
$$\frac{1-4x}{x^{2/3}}$$

(a)
$$8x^{3/4}$$
 (b) $xe^{\frac{1}{x}}$ (c) $e^x \sin(x)$ (d) $\frac{1-4x}{x^{2/3}}$ (e) $3^x \sin(x)$

- (i) donner un sous-ensemble du domaine de définition ou la fonction en question est dérivable et
- (ii) utiliser les règles concernant la dérivée d'une somme, d'un produit, et d'un quotient pour trouver la dérivée.

(a) Pour
$$x > 0, \frac{3}{2} \frac{1}{\sqrt[4]{x}},$$

(b) pour
$$x \neq 0$$
, $(1 - \frac{1}{x})e^{\frac{1}{x}}$,

(a) Pour
$$x > 0$$
, $\frac{3}{2} \frac{1}{\sqrt[4]{x}}$, (b) pour $x \neq 0$, $(1 - \frac{1}{x})e^{\frac{1}{x}}$, (c) pour $x \in \mathbb{R}$, $e^x(\sin(x) + \cos(x))$,

(d) pour
$$x > 0$$
, $-\frac{4}{3}x^{-\frac{2}{3}} - \frac{2}{3}x^{-\frac{5}{3}}$

(d) pour
$$x > 0$$
, $-\frac{4}{3}x^{-\frac{2}{3}} - \frac{2}{3}x^{-\frac{5}{3}}$ (e) pour $x \in \mathbb{R}$, $3^x \cdot (\ln(3) \cdot \sin(x) + \cos(x))$

Exercice 3.7. En utilisant toutes les règles à votre disposition, trouver la dérivée de chacune des fonctions données par les formules suivantes :

(a)
$$\cos(\sqrt{x})$$

(b)
$$\sqrt{x + e^x}$$

(c)
$$\cos(x \cdot \ln(x))$$

(d)
$$2^{-x}$$

(e)
$$\ln(\ln(\ln(x)))$$

(f)
$$\ln(x\sin(x))$$
 (g) $2^{x\cdot\sin(x)}$

(g)
$$2^{x \cdot \sin(x)}$$

(a)
$$\frac{-\sin(\sqrt{x})}{2\sqrt{x}}$$
,

(b)
$$\frac{1+e^x}{\sqrt{x+e^x}}$$
,

$$x \cdot \ln(x) \cdot (1 + \ln(x)),$$

$$\mathrm{d}) - \ln(2) \cdot 2^{-x},$$

(a)
$$\frac{-\sin(\sqrt{x})}{2\sqrt{x}}$$
, (b) $\frac{1+e^x}{\sqrt{x+e^x}}$, (c) $\sin(x \cdot \ln(x)) \cdot (1+\ln(x))$, (d) $-\ln(2) \cdot 2^{-x}$, (e) $\frac{1}{\ln(\ln(x)) \cdot \ln(x) \cdot x}$,

(f)
$$\frac{1}{x} + \frac{\cos(x)}{\sin(x)}$$

(f)
$$\frac{1}{x} + \frac{\cos(x)}{\sin(x)}$$
, (g) $2^{x \cdot \sin(x)} \cdot \ln(2) \cdot (\sin(x) + x \cos(x))$

Règle de l'Hôpital

Exercice 3.8. Utilisez la règle de l'Hôpital pour trouver les valeurs des limites suivantes :

(a)
$$\lim_{x \to 0} \left(\frac{1}{\sin(x)} - \frac{1}{\tan(x)} \right)$$
, (b) $\lim_{x \to 0} \frac{x}{1 - \sqrt{1 - x}}$, (c) $\lim_{x \to 0} \left(\frac{1}{\sin(x)} - \frac{1}{x} \right)$,

(b)
$$\lim_{x \to 0} \frac{x}{1 - \sqrt{1 - x}}$$
,

(c)
$$\lim_{x \to 0} \left(\frac{1}{\sin(x)} - \frac{1}{x} \right),$$

(d)
$$\lim_{x \to 0} \frac{1 - \cos(ax)}{x^2}$$
,

(d)
$$\lim_{x \to 0} \frac{1 - \cos(ax)}{x^2}$$
, (e) $\lim_{x \to 0} \frac{\sin(x) - x + \frac{x^3}{6}}{x^5}$, (f) $\lim_{x \to 0} \frac{((1+x)^{12} - 1)\sin x}{1 - \cos x}$.

(f)
$$\lim_{x\to 0} \frac{((1+x)^{12}-1)\sin x}{1-\cos x}$$
.

(a) =
$$\lim_{x \to 0} \frac{1 - \cos(x)}{\sin(x)} = 0$$
, (b) = 2,

(b)
$$= 2$$
,

(a) =
$$\lim \frac{1-\cos(x)}{\sin(x)} = 0$$
, (b) = 2, (c) Appliquer la règle deux fois. = $\lim \frac{1-\cos(x)}{\sin(x)+x\cos(x)} = \lim \frac{1-\cos(x)}{\sin(x)+x\cos(x)} = \lim \frac{1-\cos(x)}{\sin(x)} = \lim \frac{1-\cos(x)}{\sin(x)$

$$\lim \frac{\sin(x)}{2\cos(x) - x\sin(x)} = 0, \quad \text{(d) Appliquer la règle deux fois.} = \lim \frac{a\sin(ax)}{2x} = \lim \frac{a^2\cos(ax)}{2} = \frac{a^2}{2}, \quad \text{(e)}$$

Appliquer la règle cinq fois.
$$=\frac{1}{120}$$
, (f) Appliquer la règle deux fois. $=24$.

Extrémum

Exercice 3.9. Soit $f(x) = |x^2 - 4|$.

- (a) Déterminer les points critiques de f (c.à.d. les points où f' est définie et vaut 0).
- (b) Déterminer les minima, maxima locaux et globaux de f(x).

Exercice 3.10. Déterminer (s'ils existent) les minima, maxima locaux et globaux de

(a)
$$(x^2 - 1)^2$$
 (b) $x^2 \exp(-x^2)$

(a) Minima globaux $f(\pm 1)=0$, max local f(0)=1, (b) $f'(x)=2x(1-x^2)e^{-x^2}$ Max globaux $f(\pm 1)=e^{-1}$, min global f(0)=0. $\lim_{x\to\pm\infty}f(x)=0$.

Exercice 3.11. Pour chacune des fonctions numériques données par les formules et les domaines de définitions ci-dessous, trouver les maxima et minima locaux et globaux.

(a)
$$x^2 + 2x - 3$$
, $-2 \le x \le 2$
 (b) $\frac{2x+1}{x^2+2}$, $-3 \le x \le 3$

(a) Max local f(-2) = -3, min global en f(-1) = -4, max global f(2) = 5. (b) $f'(x) = -2\frac{(x-1)(x+2)}{(x^2+1)^2}$. Max local $f(-3) = \frac{-5}{11}$, min global $f(-2) = -\frac{1}{2}$, max global f(1) = 1, min local $f(3) = \frac{7}{11}$.

Accroissements finis

Exercice 3.12. Pour $n \ge 0$ un entier, on considère $f(x) = x^n$. Soient a,b deux réels avec a < b. (a) On suppose que n = 2. Déterminer l'ensemble des $c \in]a,b[$ tels que $f'(c) = \frac{f(b)-f(a)}{b-a}$.

 $2c = \frac{b^2 - a^2}{b - a} = a + b \text{ donc } c = \frac{a + b}{2}.$

(b) Traiter le cas n quel conque. $c = \sqrt[n-1]{\frac{b^n - a^n}{n(b-a)}}$

Exercice 3.13. Soit $f(x) = \arctan(x)$, a = 0, b = 1. Déterminer si il existe $c \in]a,b[$ (et le cas échéant le déterminer) tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

$$c = \sqrt{\frac{4}{\pi} - 1}$$

Fonctions convexes, fonctions concaves, inégalités

Exercice 3.14. Que dire d'une fonction à la fois convexe et concave sur un intervalle? Attention pas d'hypothèse de dérivabilité.

Exercice 3.15. Après avoir déterminé son ensemble de définition, montrez que $f(x) = \ln(1 + e^x)$ est convexe, puis déterminez ses éventuelles asymptotes avant de tracer son graphe. Asymptotes y = 0 en $-\infty$. En $+\infty$, asymptote y = x car $\ln(1 + e^x) - x = \ln(1 + e^x) - \ln(e^x) = \ln(\frac{1 + e^x}{e^x}) \longrightarrow 0$

Exercice 3.16. (a) Montrez, à l'aide d'une propriété de convexité, que

$$\forall x \geqslant 0, \quad e^x \geqslant 1 + x.$$

(b) Démontrez que la fonction $f(x) = e^x - 1 - x - \frac{x^2}{2} - \frac{x^3}{6}$ est convexe, et tracez l'allure de son graphe.

Exercice 3.17. Démontrer l'inégalité suivante :

$$\forall x \geqslant 0, \quad \ln(1+x) \geqslant x - \frac{x^2}{2}$$

Etude complète de fonction

Exercice 3.18. Etudier et tracer le graphe des fonctions données par les formules :

(a)
$$f(x) = \frac{x}{\ln x}$$
 (b) $f(x) = \ln(e^x + e^{-x})$ (c) $f(x) = \arcsin\left(\frac{2x}{1+x^2}\right)$

(d)
$$f(x) = \arctan\left(\frac{\sqrt{1-x^2}}{x}\right)$$
 (e) $f(x) = \frac{\ln(x)}{x^2}$

(a) $f'(x) = \frac{\ln(x) - 1}{\ln^2(x)}$, $f''(x) = \frac{2 - \ln(x)}{x \cdot \ln^3(x)}$. Minimum local f(e) = e. Convexe en $]1, e^2[$, concave ailleurs. (b) $f'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. Asymptotes |x| quand $x \to \pm \infty$. (c) Continue mais pas dérivable en ± 1 . $f' = \pm \frac{2}{1 + x^2}$, avec signe + si $x \in]-1,1[$ et signe - si $x \in \setminus [-1,1]$. $f''(x) = \mp \frac{4x}{(1 + x^2)^2}$ (d) Défini sur $[-1,0[\cup]0,1]$. $f'(x) = \frac{-1}{\sqrt{1-x^2}}$ (e) $f'(x) = \frac{1-2\ln(x)}{x^3}$, $f''(x) = \frac{-5+6\ln(x)}{x^4}$. Max $f(\sqrt{e}) = \frac{1}{2e}$. Concave pour $x \in]0, e^{\frac{5}{6}}[$

Asymptotes

Exercice 3.19. Etudier l'existence d'une asymptote oblique en $+\infty$ des graphes des fonctions données par les formules

(a)
$$f_1(x) = 2x + \sqrt{x}$$
 (b) $f_2(x) = xe^{\frac{1}{x}}$ (c) $f_4(x) = x \cdot \sin(x)$

(d)
$$f_5(x) = 3x + \sin(x)$$
 (e) $f_6(x) = x + \frac{\sin(x)}{x}$ (f) $\sqrt{x^2 + x}$

(a) Bien expliquer que $f_1(x)/x \to 2$, donc une asymptote éventuelle devrait être de la forme 2x+b. Or $f_1(x)-2x \to +\infty$. (b) Asymptote x+1. En effet, $\lim_{x\to +\infty} xe^{\frac{1}{x}}-x=\lim_{t\to 0^+} \frac{e^t-1}{t}=\exp'(0)=1$. (c) Non, car $f_4(x)/x$ ne converge pas. (d) Non, car $f_5(x)/x \to 3$, donc asymptote devrait être de la forme y=3x+b. (e) Asymptote y=x. (f) Asymptote $y=x+\frac{1}{2}$, car $\sqrt{x^2+x}-\sqrt{x^2}=\frac{x}{\sqrt{x^2+x}+\sqrt{x^2}}\to \frac{1}{2}$. (Pour $x\to -\infty$, asymptote $|x|-\frac{1}{2}$.)