6. Simplicité de PSL

lors de l'étude des transvections, nous avons souligné le fait classique que les homothéties sont exactement les transformations (\pm 0) réservent toutes les droites : $g \in GL(E)$ t.q. g(D) = D pour toute droite D. En corollaire, elles constituent le centre Z de GL (et celles de dét=1 i.e. $Z(GL) \cap SL$ constituent le centre de SL). Ceû signifie que Z est le noyau de l'action naturelle de GL(E) sur l'ensemble

 $P(E) = \{ droites vectorielles D C E \}.$

Cet ensemble ent appelé espace projectif des droites de E, la lettre «P» est pour projectif et c'est ce lien avec P(E) qui explique la terminologie suivante:

Def $PGL(E) \stackrel{\text{def}}{=} GL(E)/Z(GL(E))$ groupe projectif général linéaire de E, $PSL(E) \stackrel{\text{def}}{=} SL(E)/Z(SL(E))$ groupe projectif Spécial linéaire de E. Ces groupes étant introduits, revenons à la question de la simplicaté qui est l'objet de cette section. On commence par une observation:

Prop soit G un groupe, z soncentre, G' son groupe dérivé.

- (1) Tout sous-groupe de Z est distingué dans G.
- (2) Tout sur-groupe de G est distingué dans G.

Dém (1) si HCZ, pour tous hEH, gEG on a $ghg^{-1}=hEH$. (2) Soit HDG' un sur-groupe de G'. Soit $\pi:G\to G/G'=:G^{ab}$ la projection. On a $H=\pi^{-1}(\pi(H))$ où $\pi(H)\subseteq G^{ab}$ est distingué (comme tout sous-groupe d'un groupe abélien!). Il en découle que H'est distingué dans G 🛭

Exercice démontrer directement que H > G'est distingué, en utilisant le fait que H contient tous les commutateurs.

Remarque a posteriori on verra que pour G = GL(E), sauf dans le cas exceptionnel de $GL_2(\mathbb{F}_3)$, la liste composée des sous groupes de Z et des sur-groupes de G' fournit tous les sous groupes distingués de G.

Revenons à G=GL(E). Nous avons ru qu'il n'est pas simple puisque (sauf exceptions) son groupe dérivé est SL(E). De même, ce dernier n'est pas simple en général puisque Z(SL(E)) ≃ µ(k) ≠1.

Théorème

Le groupe PSL(n, k) est simple, sauf dans les deux cas suivants :

1) $n=2, k=\mathbf{F_2},$

2) $n=2, k=\mathbf{F}_3$.

Nous suivons [Perrin, Cours d'algèbre, Ellipses, Chapitre IV, §4].

Nous donnerons la démonstration dans le cas $n \ge 3$; le cas $n \ge 2$ n'apporte pas véritablement d'idée nouvelle et la lectrice et le lecteur le trouveront exposé en détail dans [Porrin].

Soit E un k-espace vectoriel de dimension n et soit \overline{N} un sous-groupe distingué de PSL(E), non réduit à l'élément neutre. Par image réciproque il lui correspond un sous-groupe distingué N de SL(E), contenant le centre Z de SL(E), et distinct de Z, et il faut montrer que l'on a N=SL(E).

Comme les transvections engendrent SL(E) (cf. 2.11) et sont toutes conjuguées (cf. 2.17), il suffit de montrer que l'une d'elles est dans N.

L'idée est la suivante : on dispose au départ d'un élément $\sigma \in N$, non trivial. On fabrique de nouveaux éléments de N comme commutateurs :

si
$$\tau \in SL(E)$$
, alors $\rho = \sigma(\tau \sigma^{-1} \tau^{-1}) \in N$.

Si τ est une transvection d'hyperplan H, $\sigma\tau\sigma^{-1}$ est une transvection d'hyperplan $\sigma(H)$, donc $\rho = (\sigma\tau\sigma^{-1})\tau^{-1}$ est produit de deux transvections et sera même une transvection si on a $\sigma(H) = H$ et $\rho \neq \mathrm{Id}$. On va donc chercher à construire un élément de N qui laisse globalement invariant un hyperplan.

Précisons maintenant tout cela : soit $\sigma \in N$, $\sigma \notin Z$. Comme σ n'est pas une homothétie, il existe $a \in E$ tel que $b = \sigma(a)$ ne soit pas colinéaire à a. Soit τ une transvection de droite $\langle a \rangle$ et posons $\rho = \sigma \tau \sigma^{-1} \tau^{-1}$. Soit H un hyperplan de E contenant le plan $\langle a,b \rangle$ (il en existe, puisqu'on a $n \geq 3$). On a alors les trois propriétés suivantes :

1) $\rho \in N$ et $\rho \neq Id$,

- 2) $\forall x \in E, \quad \rho(x) x \in H,$
- 3) $\rho(H) = H$.

En effet, il est clair que ρ est dans N. Si on avait $\rho = \operatorname{Id}$, on aurait $\tau = \sigma \tau \sigma^{-1}$, mais ces transvections ont respectivement pour droites $\langle a \rangle$ et $\langle b \rangle$ et on a $\langle a \rangle \neq \langle b \rangle$. Pour le point 2), on remarque (cf. 2.2.5) qu'on a $\rho(x) - x \in \langle a, b \rangle \subset H$ et 3) en résulte aussitôt.

Deux éventualités sont alors possibles :

- a) Il existe une transvection u, d'hyperplan H qui ne commute pas à ρ . Alors, si on pose $v = \rho u \rho^{-1} u^{-1}$, on a $v \in N$, $v \neq \text{Id}$ et v est produit des transvections u^{-1} , d'hyperplan H et $\rho u \rho^{-1}$, d'hyperplan $\rho(H) = H$, donc v est une transvection non triviale de N.
- b) Sinon, ρ commute à toutes les transvections d'hyperplan H. Soit $f \in E^*$ une équation de H et u une transvection de vecteur $c \in H$ qui s'écrit :

$$u(x) = x + f(x)c.$$

On a $\rho u = u\rho$, donc, pour tout x de E:

$$\rho(x) + f(x)\rho(c) = \rho(x) + f(\rho(x))c.$$

Soit $x \notin H$, comme $\rho(x) - x \in H$, on a $f(\rho(x)) = f(x) \neq 0$, d'où $\rho(c) = c$. Mais ceci vaut pour tout $c \in H$, donc on a $\rho|_H = \text{Id}$ et, comme ρ est de déterminant 1, ρ est déjà une transvection.

Dans les deux cas, on voit que N contient une transvection, donc N = SL(E), ce qui achève la démonstration du cas $n \ge 3$.