3. Applications affines; groupe affine

- Prop Soient \mathcal{E}, \mathcal{F} deux espaces affines de directions \mathcal{E}, \mathcal{F} et S oit $f: \mathcal{E} \to \mathcal{F}$ une application. Alors LCSSE:
 - (1) il existe une application linéaire $\varphi: E \to F$ telle que $f(A+u) = f(A)+\varphi(u)$, $\forall A \in \mathcal{E}, u \in E$.
 - (2) il existe A ∈ E tel que l'application φ_A: E → F est lineaire μ → f(A) f(A+u)
 - (3) pour tout AEE, l'application φ_A est linéaire.

Dém: laissée en exercice 🛭

Déf Dn appelle application affine une application $f: E \to F$ vérifiant les conditions de la proposition. L'application $\varphi: E \to F$ est applée partie linéaire (ou l<u>inéarisée</u>) de f et notée lin(f).

Proposition Soit f: E → F une appl. affine de partie linéaire φ: E → F Alors f est injective, resp. surjective, resp brijective, ssi φ l'est.

Dém Faisons par exemple l'injectivité et laissons le reste | au lecteur | à la lectrice (cocher la case)

Si f est injective, soit $u \in E$ tel que $\varphi(u) = 0$. Soit $A \in E$ quelonque. On a $f(A+u) = f(A) + \varphi(u) = f(A)$ donc A + u = A (par injectivité) donc u = 0 car l'action est libre donc φ injective

Si φ est injective, soient A_1 BEE tels que f(A) = f(B). Posons $u = \overline{AB}$. Alors $f(A) = f(B) = f(A+u) = f(A) + \varphi(u)$ donc $\varphi(u) = 0$ (action libre) donc u = 0 (injection)

donc B = A + u = A

Exemples 1) Translations de vecteur u E E:

- 2) $E = E = \text{espace affine associé à (ou: sous-jacent à) un espace vectoriel E. Alors les applications affines <math>f: E \to E$ sont les appl. de la forme f(x) = a(x) + b avec $a \in GL(E)$ et $b \in E$. (une appl. linéaire) (un vecteur)
- 3) Homothéties de rapport $\lambda \neq 0$ et centre O: c'est l'application $h = h_0$: $E \rightarrow E$ définie par $h(M) = \int_{0}^{L} unique point <math>N \in Z$ $\int_{0}^{L} N$ $\int_{0}^{L} due \ \overrightarrow{ON} = \lambda \overrightarrow{OM}$ $\int_{0}^{L} M$ $\int_{0}^{L} M$

Exercice Soient & (4,4) & (9,4), g deux applications afines.

- (1) Montrer que la composée gof est affine, de partie linéaire 40 q.
- (2) Montrerque si f est bijective, sa bijection réciproque f' est affine de partie linéaire q'.
- Déf soit \mathcal{E} un espace affine de direction E. On appelle groupe affine de \mathcal{E} et on note $GA(\mathcal{E})$ le groupe des applications affines bijectives $f: \mathcal{E} \to \mathcal{E}$.

Prop Avec les mêmes notations:

- (1) l'ensemble T(E) des translations de E est un sous-groupe distingué de GA(E), isomorphe à E
- (2) le morphisme lin: $GA(E) \rightarrow GL(E)$ est sujedif de noyau T(E), $f \mapsto \varphi = lin(f)$ autrement dit on a une suite exacte $1 \rightarrow T(E) \rightarrow GA(E) \rightarrow GL(E) \rightarrow 1$.
- (3) Pour tout choix de point $A \in \mathcal{E}$, les transformations affines qui fixent A forment un sous-groupe de GA(E) qui s'identifie au groupe linéaire $GL(\mathcal{E}_A)$ du vectorialisé en A. Ce sous groupe est isomorphe à GL(E) et on a une décomposition en produit semi-direct $GA(Z) = T(E) \times GL(\mathcal{E}_A)$.

Dém Il est établidans l'exercice ci-dessus que l'application lin est un morphisme de groupes. Vérifiens que son royau est T(E). Un étérment f du noyau est une appl. affine de partie linéaire ide c'est-à-dire que f(A+u)=f(A)+u, VAEE, uEE. Le vecteur

uo: = A frAj

ne dépend pas de A, can si B & Z est un autre point, S i l'on pose $u = \overline{AB}$ on a $f(B) = f(A+u) = f(A)+u = A+u_0+u = B+u_0$ ce qui montre que $\overline{BF(B)} = u_0$, comme annoncé. Et on amontré d'ailleurs que $f(B) = B+u_0$ pour tout B, i.e. $f = \tau_u \in T(E)$. Réciproquement $T(E) \subset \ker(\lim)$ est évident, finalement T(E) est égal au noyau et en particulier c'est un sous-groupe distingué de GA(E). Maintenant fixons $A \in E$ et notons

 $G_A = \{ f \in GA(\xi), f(A) = A \} = \{ f \in GA(\xi), f(A+u) = A + \varphi(u) \}$ le stabilisateur de A dans $GA(\xi)$.

On voit que lin: $G_A \rightarrow GL(E)$, $f \mapsto \varphi$ est un isomorphisme d'inverse $GL(E) \rightarrow G_A$, $\varphi \mapsto l'unique f$ telle que $f(A+u) = A+\varphi(u)$. $(\forall A, u)$

En particulier lin: $GA(E) \rightarrow GL(E)$ est surjective. Le fait que G_A s'identifie à $GL(E_A)$ est clair. Il ne reste qu'à démontrer la structure de produit Semi-direct:

 $T(\Sigma) \cap G_A = 1$ si $f \in G_A$ on a $f(A+u) = A + \varphi(u)$ pour tous A, u. Si de plus $f \in T(\Sigma)$ on a $\varphi = iA$. Donc f = iA.

T(2). G_A =GA(E) soit $f \in GA(E)$; on a $f(A+u) = f(A) + \varphi(u)$. Soit $u_0 := \overline{Af(A)}$ et $\tau_0(M) = M + u_0$ translation devecteur u_0 . Alors $\tau_0(A) = f(A)$, donc $g := \tau_0^{-1}$ of fixe Ac'ext-ai-dire $g \in G_A$. Ainsi $f = \tau_0 g \in T(E)G_A$

- On complète un peu notre liste d'exemples d'applications affines en introduisant les projections:
- Lemme soient \mathcal{F} , \mathcal{G} deux sous-espaces affines (SEA) de \mathcal{F} . Si $\mathcal{E} = \mathcal{F} \oplus \mathcal{G}$ est somme directe des directions de \mathcal{F} et \mathcal{G} , alors $\mathcal{F} \cap \mathcal{G}$ est $\mathcal{E} \cap \mathcal{G}$ point \mathcal{F} .
- Dem soient A∈F, B∈g et u=ĀB. Ecrivons u=V+w∈ F⊕G.

 Alors B=A+u=A+v+w donc J=A+v=B-w∈g

 donc il existe un point C∈Fng. Si C, C'sont tous deux

 dans fng, le vecteur u= CC' appartient à fet à G

 donc est nul. Ainsi C'=C

 donc est nul. Ainsi C'=C
- Prop soient F, g deux SEA de directions F, G to E=F&G.

 Pour tout MEE on note $\pi(M)$ le point (qui existe et est unique par le lemme) intersection de F et du SEA g' parallèle à g et contenant M. Alors $\pi: E \to E$ est une application affine appelée projection sur F parallèlement à g.
- Dém Soit AEF. Soit p: E E la proj sur F parallélement à E = F & G.

 Montrer que 7 (M) = A + p (AM) &

 Pour terminer cette Section nous mentionnons quelques

 propriétés (pas très surprenantes) qui expriment les relations
 entre applications affines et sous-espaces affines:
- Prop (1) l'image d'un SEA par une application affine est un SEA (2) la préimage d'un SEA par une application affine est vide ou un SEA.
- Dém exercice... Pour (2) on notera simplement qu'il peut arriver qu'une préimage soit vide, par exemple si F, F' sont deux SEA disjoints la préimage de F' par une projection $\pi: \mathcal{E} \to \mathcal{E}$ sur f comme dans la pup précédente!