

Théorie des Groupes et Géométrie

Contrôle Continu n°2 Une heure

Il n'est pas nécessaire de faire l'intégralité du contrôle pour avoir la note maximale.

Tous les documents sont interdits.

Questions de cours	6pts
Soit k un corps et $n \ge 1$ un entier.	1
1. Soient D, D' deux droites distinctes du plan projectif $k\mathbb{P}^2$. Montrer que D et D' se rencontrent en un unique point.	1pt
On suppose maintenant k fini.	
2. Donner et démontrer une formule donnant le nombre de points de l'espace projectif $k\mathbb{P}^n$ de dimension n .	1pt
3. Donner et démontrer une formule donnant le nombre de droites du plan projectif $k\mathbb{P}^2$.	2pts
4. Donner et démontrer une formule donnant l'ordre de $\mathrm{GL}_n(k)$.	1pt
5. Donner et démontrer une formule donnant l'ordre de $\operatorname{PGL}_n(k)$. (On admettra que le centre de $\operatorname{GL}_n(k)$ est formé des matrices scalaires inversibles.)	1pt
Exercice 1	5pts
Exercice 1 Soit $q \ge 2$ une puissance d'un nombre premier et soit \mathbb{F}_q le corps de cardinal q .	$5 \mathrm{pts}$
Soit $q \geqslant 2$ une puissance d'un nombre premier et soit \mathbb{F}_q le corps de cardinal q . 1. Construire un morphisme injectif $\varphi : \mathrm{PGL}_2(\mathbb{F}_q) \to \mathfrak{S}_{q+1}$. Indication : on pourra s'inspirer	5pts 1pt
Soit $q \geqslant 2$ une puissance d'un nombre premier et soit \mathbb{F}_q le corps de cardinal q . 1. Construire un morphisme injectif $\varphi : \mathrm{PGL}_2(\mathbb{F}_q) \to \mathfrak{S}_{q+1}$. Indication : on pourra s'inspirer	
 Soit q ≥ 2 une puissance d'un nombre premier et soit F_q le corps de cardinal q. Construire un morphisme injectif φ : PGL₂(F_q) → S_{q+1}. Indication : on pourra s'inspirer de l'exercice précédent. On suppose maintenant q = 5. En déduire proprement que PGL₂(F₅) est isomorphe à S₅. On pourra utiliser librement le 	
 Soit q ≥ 2 une puissance d'un nombre premier et soit F_q le corps de cardinal q. Construire un morphisme injectif φ : PGL₂(F_q) → S_{q+1}. Indication : on pourra s'inspirer de l'exercice précédent. On suppose maintenant q = 5. En déduire proprement que PGL₂(F₅) est isomorphe à S₅. On pourra utiliser librement le résultat suivant¹ : tout sous-groupe d'indice n de S_n est isomorphe à S_{n-1}. En déduire qu'il existe un sous-groupe de S₆ isomorphe à S₅ qui n'est pas conjugué au 	1pt

Notation pour l'exo 2 et l'exo 3. Soient A, B, C trois points distincts alignés d'un plan affine sur un corps k.

- On note $\frac{AC}{AB}$ l'unique élément $\lambda \in k \setminus \{0,1\}$ tel que l'homothétie h de centre A et de rapport λ vérifie h(B)=C.
- On complète le plan affine en un plan projectif. Soit $\mathcal{D}=(AB)\cup\{\infty_{(AB)}\}$ la droite projective d'hyperplan affine la droite (AB) et de point à l'infini $\infty_{(AB)}$. Si $D\in\mathcal{D}$, le birapport [A,B,C,D] est le point $f(D)\in k\mathbb{P}^1=k\cup\{\infty\}$ où $f:\mathcal{D}\to k\mathbb{P}^1$ est l'(unique) homographie qui envoie A sur ∞ , B sur 0 et C sur 1.

3pts

Soient A, B, C et D quatre points distincts alignés d'un plan affine.

1. Montrer que :

2pts

$$[A, B, C, D] = \frac{AC}{AD} \times \frac{BD}{BC}$$

2. Montrer que :

1pt

$$[A, B, C, \infty_{(AB)}] = \frac{CA}{CB}$$

Exercice 3

9pts

Soit ABC un triangle d'un plan projectif. Soient d', d'' deux droites quelconques ne passant pas par A, B ou C. On note $A' = (BC) \cap d', B' = (CA) \cap d', C' = (AB) \cap d'$ et $A'' = (BC) \cap d'', B'' = (CA) \cap d'', C'' = (AB) \cap d''$.

1. Faire un dessin.

1pt

3pts

3pts

2. Montrer que :

$$[A, B, C', C''] \times [B, C, A', A''] \times [C, A, B', B''] = 1$$

Indication : on pourra faire en sorte que les droites d' et d'' soient parallèles puis utiliser

le théorème de Thalès et l'exo 2.

3. En déduire le Théorème de Menelaüs - sens direct et en faire un dessin :

Soit ABC un triangle d'un plan affine. Soient $A' \in (BC)$, $B' \in (CA)$, $C' \in (AB)$ avec

$$\frac{A'B}{A'C} \times \frac{B'C}{B'A} \times \frac{C'A}{C'B} = 1$$

 $\{A, B, C\} \cap \{A', B', C'\} = \emptyset$. Si les points A', B' et C' sont alignés alors on a l'égalité :

4. À l'aide du Théorème de Menelaüs - sens direct, montrer la réciproque du Théorème de Menelaüs - sens direct : si $\frac{A'B}{A'C} \times \frac{B'C}{B'A} \times \frac{C'A}{C'B} = 1$ alors A', B' et C' sont alignés. 2pts

^{1.} Cf. exo 3, CC1 ou exo 17, TD 1