Endomorphismes semi-simples

Soit E un espace vectoriel sur un corps k, de dimension finie n. On dit qu'un endomorphisme $u \in L(E)$ est semi-simple si et seulement si tout sous-espace u-stable $F \subset E$ possède un supplémentaire u-stable. Nous utiliserons cette notion surtout lorsque le corps de base k est parfait, ce qui veut dire par définition que k est soit de caractéristique 0, soit de caractéristique p > 0 avec un endomorphisme de Frobenius surjectif.

Exemples de corps parfaits : les corps de caractéristique 0, les corps finis, les corps algébriquement clos.

Exemples de corps non parfaits : corps de fractions rationnelles en une ou plusieurs indéterminées sur un corps de carcactéristique p > 0, typiquement, $\mathbb{F}_p(X)$.

Théorème : Soient les conditions :

- (i) u est semi-simple.
- (ii) le polynôme minimal de u est produit de polynômes irréductibles distincts.
- (iii) u est diagonalisable sur une clôture algébrique de k.

Alors (i) \iff (ii) \iff (iii), et si k est parfait les trois conditions sont équivalentes.

Lemme: Soit u un endomorphisme et $\mu_u = P_1^{\alpha_1} \dots P_r^{\alpha_r}$ la décomposition de son polynôme minimal en facteurs irréductibles. Soit $E_i = \ker(P_i^{\alpha_i}(u))$. Pour tout sous-espace vectoriel $F \subset E$ qui est u-stable, on a $F = \oplus F \cap E_i$.

Preuve : Il est clair que les espaces $F \cap E_i$ sont en somme directe. Il suffit de voir qu'ils engendrent F. Or pour $x \in F$, on peut écrire $x = x_1 + \cdots + x_r$ avec $x_i \in E_i$. On utilise le fait que les projecteurs $\pi_i \colon E \to E_i$, $x \mapsto x_i$, sont des polynômes en u. Alors si F est stable par u, il est stable par π_i , donc $x_i = \pi_i(x) \in F$ et c'est gagné.

Preuve du théorème :

 $[i \Rightarrow ii]$ Soit u semi-simple. Supposons que la décomposition du polynôme minimal μ_u contient un facteur carré : $\mu_u = P^2Q$. On va montrer que (PQ)(u) = 0 ce qui contredira le fait que le polynôme minimal de u est P^2Q . Soit $F = \ker(P(u))$ et S un supplémentaire u-stable de F. Soit a = (PQ)(u), alors :

- a est nul sur F puisque $a = (QP)(u) = Q(u) \circ P(u)$.
- a est nul sur S. En effet si $y \in S$, on a $a(y) \in F$ puisque $P(u)[a(y)] = (P^2Q)(u)(y) = 0$ et $a(y) \in S$ puisque S est stable par u, donc par a qui est un polynôme en u. Donc $a(y) \in F \cap S$, donc a(y) = 0 car $F \cap S = 0$, cqfd.

En conclusion a=0, d'où la contradiction cherchée, donc il n'y pas de facteur carré dans μ_n .

 $[ii \Leftarrow i]$ Réciproquement supposons que $\mu_u = P_1 \dots P_r$ avec tous les P_i irréductibles distincts. Soit F un sous-espace stable, on va lui construire un supplémentaire stable. Soit $E_i = \ker(P_i(u))$. D'après le lemme on a $F = \oplus F \cap E_i$ de sorte que si pour chaque i on construit un supplémentaire stable pour $F \cap E_i$ dans E_i , par somme on aura un supplémentaire pour F dans E. Comme $\mu_{u_{1E_i}} = P_i$, on se ramène ainsi au cas où $\mu_u = P$ est irréductible.

Si F = E on a un supplémentaire stable G = 0 est c'est fini. Sinon, il existe $x \in E - F$. Considérons le morphisme de k-algèbres $\varphi \colon k[X] \to E$ défini par

$$Q \mapsto Q(u)(x)$$

On note $G_x = \{Q(u)(x), Q \in k[X]\}$ son image, et P_x le polynôme unitaire générateur de son noyau. On va montrer que $F \cap G_x = 0$. Ceci fait, en itérant on construira $G_{x'}, G_{x''}, \ldots$ et le supplémentaire cherché sera $G_x \oplus G_{x'} \oplus G_{x''} \ldots$

Par définition de $\mu_u = P$ on a $P_x|P$ donc ils sont égaux puisque P est irréductible. Soit $y \in F \cap G_x$, que l'on peut écrire sous la forme y = Q(u)(x). J'affirme que P|Q de sorte que y = 0, ce qui conclura à $F \cap G_x = 0$. En effet, si P ne divise pas Q alors ces polynômes sont premiers entre eux, choisissons une relation de Bézout UP + VQ = 1. L'image par φ de cette relation de Bézout donne, dans E:

$$U(u)[\underbrace{P(u)(x)}_{=0}] + V(u)[\underbrace{Q(u)(x)}_{y}] = x$$

Or $V(u)(y) \in F$ car F est stable sous u. Ceci contredit le choix de $x \in E - F$.

 $[iii \Leftarrow ii]$ Le polynôme minimal est inchangé par extension du corps de base, donc si u est diagonalisable sur une clôture algébrique \overline{k} de k, alors μ_u est scindé dans \overline{k} à racines simples et distinctes. A fortiori, comme polynôme à coefficients dans k, il est sans facteur carré.

 $\exists ii \Leftarrow iii}$ lorsque k est parfait. Montrons d'abord que le polynôme dérivé μ' est non nul. Dans le cas contraire, ceci veut dire que c'est un polynôme en X^p i.e. $\mu_u(X) = F(X^p)$. Comme k est parfait, tous les coefficients de P sont des puissances p-èmes et donc $F(X^p) = (G(X))^p$. Ceci contredit le fait que μ_u est sans facteur carré. Il en résulte que $\mu'_u \neq 0$, et donc le pgcd de μ_u et μ'_u comme polynômes à coefficients dans \overline{k} est égal à 1. Le pgcd est inchangé par extension du corps de base (ce fait est, par exemple, un corollaire du calcul du pgcd par l'algorithme d'Euclide), donc finalement μ_u est sans facteur carré, c'est-à-dire produit de polynômes irréductibles distincts de k[X].

Contre-exemple 1 : Soit le corps non parfait $k = \mathbb{F}_2(T)$, corps des fractions rationnelles en l'indéterminée T sur \mathbb{F}_2 . Considérons l'espace vectoriel $E = k^2$ et l'endomorphisme

$$u = \left(\begin{array}{cc} 1 & T+1 \\ 1 & 1 \end{array}\right) .$$

Le polynôme caractéristique de u est $\chi_u(X) = X^2 + T$ (attention : 1 = -1 dans k). Ce polynôme est irréductible, car T n'est pas un carré dans k, donc u est un endomorphisme semi-simple. Supposons que u est diagonalisable sur une clôture algébrique \overline{k} de k. Soit α une racine de χ_u dans \overline{k} , on a $\chi_u(X) = (X + \alpha)^2$. Donc u est semblable dans \overline{k} à l'homothétie α Id, et domme les homothéties commutent à toutes les matrices, il s'ensuit qu'en fait $u = \alpha$ Id. Ceci n'est pas le cas, donc u n'est pas diagonalisable sur \overline{k} .

Contre-exemple 2: Voici une métode plus facile, et plus conceptuelle aussi, pour donner un contre-exemple. Soit A une algèbre unitaire et associative sur un corps k, et $\operatorname{End}_k(A)$ l'anneau des endomorphismes de k-espace vectoriel. Pour tout $a \in A$, on note $G_a : A \to A$ l'endomorphisme de multiplication à gauche par a, tel que $G_a(x) = ax$. On vérifie alors

facilement qu'en associant à a le morphisme G_a on définit un morphisme injectif de k-algèbres $A \hookrightarrow \operatorname{End}_k(A)$. Si A est de dimension finie n, l'algèbre $\operatorname{End}_k(A)$ est isomorphe à l'algèbre des matrices carrées (n, n).

Soit le corps des fractions rationnelles $k = \mathbb{F}_p(T)$, soit le corps $A = k[U]/(U^p - T)$ et u l'image de l'indéterminée U dans A. Le polynôme minimal de $u \in \operatorname{End}_k(A) \simeq \operatorname{M}_p(k)$ est $X^p - T$, qui est irréductible, donc u est semi-simple. En revanche, il n'est pas diagonalisable sur une clôture algébrique \overline{k} , car son polynôme minimal a une seule racine α dans \overline{k} et u n'est pas une homothétie.

La décomposition u = d + n dite de Jordan-Dunford, valable pour un endomorphisme dont le polynôme caractéristique est scindé, s'étend comme suit.

Proposition: Soit k un corps parfait et soit $u \in L(E)$ un endomorphisme quelconque. Alors il existe un couple (s, n) unique avec

- (1) u = s + n,
- (2) s semi-simple et n nilpotent,
- (3) sn = ns.

Le cas particulier $k = \mathbb{R}$ est le plus important pour nous. Démontrons le résultat dans ce cas particulier très simple. On peut plonger $M_n(\mathbb{R})$ dans $M_n(\mathbb{C})$ et pour tout endomorphisme a, représenté par une matrice complexe dans une base fixée, notons \overline{a} l'endomorphisme représenté par la matrice dont les coefficients sont les complexes conjugués. La proposition dit juste ceci : on peut écrire la décomposition u = d + n dans \mathbb{C} . On a $\overline{u} = u$ et comme $\overline{u} = \overline{d} + \overline{n}$, par unicité de la décomposition de Dunford on a $\overline{d} = d$, $\overline{n} = n$. Donc d et n sont en fait à coefficients dans \mathbb{R} . Clairement d est semi-simple, on a donc la décomposition cherchée.

Preuve: La démonstration utilise un peu de théorie de Galois. Soit K le corps de décomposition du polynôme caractéristique μ_u . Comme k est parfait, c'est une extension galoisienne de k. Soit G le groupe de Galois de K sur k. Si on choisit une base de E alors $L(E \otimes_k K)$ s'identifie à l'anneau des matrices (n,n) à coefficients dans K. Via cette identification, le groupe G agit sur $L(E \otimes_k K)$ en agissant sur les coefficients des matrices. La théorie de Galois nous dit que $k = K^G$, et donc les éléments de $L(E \otimes_k K)$ fixés par G sont les éléments de L(E).

Sur K, on peut écrire la décomposition u = d + n où d et n sont dans $L(E \otimes_k K)$. Pour tout $\sigma \in G$, on a $u^{\sigma} = u$ car $u \in L(E)$. Or on peut écrire $u^{\sigma} = d^{\sigma} + n^{\sigma}$. Il est facile (immédiat!) de voir que d^{σ} est diagonalisable et n^{σ} est nilpotent, donc par unicité de la décomposition d + n on doit avoir $d^{\sigma} = d$ et $n^{\sigma} = n$. Ainsi d et n sont fixes sous G, donc dans L(E). On pose s = d qui est bien semi-simple (puisque diagonalisable lorsqu'on passe sur K). Sur k, on a la décomposition u = s + n souhaitée.

Contre-exemple 3 : Nous reprenons la méthode du contre-exemple 2. Soit $k = \mathbb{F}_p(T)$ et l'algèbre $A = k[U,V]/(U^p - T,V^p)$ qui n'est pas un corps. Soient u,v les images de U,V dans A. On vérifie que u est semi-simple de polynôme minimal irréductible $X^p - T$, u + v est semi-simple de polynôme minimal $X^p - T$ également, et v est nilpotent de polynôme minimal X^p . Ainsi on a u = (u + v) - v ce qui met en défaut l'unicité de la décomposition s + n.

Bibliographie:

[BMP] Beck, Malick, Peyré, Objectif Agrégation, H & K. Précisément : Application 4.32 p. 160, exercice 4.23 p. 229 et exercice 6.8 p. 324.

[FGN2] FRANCINOU, GIANELLA, NICOLAS, Exercices de mathématiques d'oraux X-ENS : Algèbre, Tome 2, p. 122, Cassini.

[Gou] GOURDON, Les Maths en tête, Mathématiques pour M', Ellipses.