Une équation différentielle quaternionique

Ce résultat peut faire l'objet d'un développement dans les leçons : Endomorphismes diagonalisables, et Exponentielle de matrices. Applications. Il faut aimer les calculs...

Théorème: Soit \mathbb{H} l'algèbre des quaternions, et q un quaternion pur de norme 1. Les fonctions $f: \mathbb{R} \to \mathbb{H}$ de classe C^1 et vérifiant f'(t) = qf(t) sont les fonctions de la forme :

$$f(t) = (\cos(t) + q\sin(t))f(0)$$

Preuve : Le calcul usuel pour montrer que les solutions de l'équation proposée sont de la forme $f(t) = \exp(qt)f(0)$ est de poser $g(t) = \exp(-qt)f(t)$ et de vérifier que g'(t) = 0. Cela fonctionne ici, mais comme \mathbb{H} n'est pas commutatif il faut prendre soin de préciser que q et $\exp(-qt)$ commutent :

$$g'(t) = -q \exp(-qt)f(t) + \exp(-qt)qf(t) = 0 \qquad \text{car } f' = qf.$$

Pour calculer l'exponentielle on utilise le plongement $\mathbb{H} \subset M_2(\mathbb{C})$ donné dans [Perrin] :

$$\phi \colon \mathbb{H} \stackrel{\sim}{\longrightarrow} \left\{ \ M(a,b) = \left(\begin{array}{cc} a & -\overline{b} \\ b & \overline{a} \end{array} \right) \text{ avec } a,b \in \mathbb{C} \ \right\}$$

via $q = \alpha + \beta i + \gamma j + \delta k \mapsto M(\alpha + \beta i, \gamma - \delta i)$. Ce plongement est continu puisqu'en dimension finie, toutes les applications linéaires sont continues (ici entre deux \mathbb{R} -EV). Il en résulte que $\exp(\phi(qt)) = \phi(\exp(qt))$. Notons $q = \beta i + \gamma j + \delta k$ notre quaternion pur, et

$$M = \phi(q) = \begin{pmatrix} \beta i & -\gamma - \delta i \\ \gamma - \delta i & -\beta i \end{pmatrix}$$

son image dans $M_2(\mathbb{C})$. Pour calculer $\exp(tM)$, étudions d'abord M. On a $\operatorname{tr}(M)=0$ et $\det(M)=\beta^2-(-\delta^2-\gamma^2)=|q|^2=1$ donc le polynôme caractéristique est $\chi_M=X^2+1$. D'après Cayley-Hamilton on a $(M-i\operatorname{Id})(M+i\operatorname{Id})=0$ et donc

$$(M+i\operatorname{Id})\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} (\beta+1)i\\\gamma-\delta i \end{pmatrix}$$
 resp. $(M-i\operatorname{Id})\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} (\beta-1)i\\\gamma-\delta i \end{pmatrix}$

est un vecteur propre pour la valeur propre i resp. -i. Observons que l'un de ces vecteurs est nul si $\gamma - \delta i = 0$, car alors $\beta = \pm 1$. Mais dans ce cas $q = \pm i$ et le calcul de exp est connu ; on suppose donc désormais $\omega := \gamma - \delta i \neq 0$. On prend la matrice de passage

$$P = \left(\begin{array}{cc} (\beta+1)i & (\beta-1)i \\ \omega & \omega \end{array}\right)$$

et pour calculer P^{-1} on va utiliser Cayley-Hamilton là encore. On a $\operatorname{tr}(P) = (\beta + 1)i + \omega$ et $\det(P) = 2i\omega \operatorname{donc} \chi_P = X^2 - ((\beta + 1)i + \omega)X + 2i\omega$. On en tire $P(P - ((\beta + 1)i + \omega)\operatorname{Id}) = -2i\omega \operatorname{donc}$

$$P^{-1} = \frac{-1}{2i\omega} \left(P - ((\beta + 1)i + \omega) \operatorname{Id} \right) = \frac{-1}{2i\omega} \left(\begin{array}{cc} -\omega & (\beta - 1)i \\ \omega & -(\beta + 1)i \end{array} \right)$$

On a $P^{-1}MP = \operatorname{diag}(i,-i)$ donc $\exp(tM) = P\operatorname{diag}(e^{it},e^{-it})P^{-1}$, le calcul donne

$$\exp(tM) = \frac{-1}{2i\omega} \begin{pmatrix} \omega[-(\beta+1)ie^{it} + (\beta-1)ie^{-it}] & * \\ \omega^2[-e^{it} + e^{-it}] & * \end{pmatrix}$$

Le calcul des coefficients * n'est pas nécessaire puisqu'on sait que $\exp(tM) \in \mathbb{H}$, donc ces coefficients sont les conjugués ad hoc. En simplifiant ces expressions et en repassant dans \mathbb{H} on trouve $\exp(tq) = \cos(t) + q\sin(t)$ d'où le résultat.