L'exponentielle de $SO_n(\mathbb{R})$ est surjective

Théorème: L'exponentielle $\mathfrak{so}_n(\mathbb{R}) \to \mathrm{SO}_n(\mathbb{R})$ est surjective.

Nous allons d'abord décrire l'algèbre de Lie $\mathfrak{so}_n(\mathbb{R})$, puis démontrer le théorème après deux lemmes. La démonstration repose sur deux choses : on traite d'abord le cas n=2, puis on s'y ramène en utilisant la réduction d'une isométrie en une matrice diagonale par blocs avec pour blocs des matrices de rotations planes.

Lemme 1: $\mathfrak{so}_n(\mathbb{R})$ est la sous-algèbre de Lie de $\mathfrak{gl}_n(\mathbb{R}) = \mathrm{M}_n(\mathbb{R})$ formée des matrices antisymétriques.

Preuve: L'algèbre de Lie de $SO_n(\mathbb{R})$ est la même que celle de $O_n(\mathbb{R})$. Soient $S_n \subset M_n(\mathbb{R})$ l'espace vectoriel des matrices symétriques, et $f: M_n(\mathbb{R}) \to S_n$ définie par $f(M) = {}^tMM - \mathrm{Id}$. On a $O_n(\mathbb{R}) = \{M \in M_n(\mathbb{R}), f(M) = 0\}$. Donnons le calcul avec les deux descriptions de l'algèbre de Lie.

Dans la première méthode on montre que f est une submersion en l'identité puis $\mathfrak{so}_n(\mathbb{R}) = \ker(d_{\mathrm{Id}}f)$. Or $f(\mathrm{Id}+H) = (\mathrm{Id}+^tH)(\mathrm{Id}+H) - \mathrm{Id} = {}^tH + H + {}^tHH$ de sorte que $d_{\mathrm{Id}}f(H) = {}^tH + H$. Ainsi $d_{\mathrm{Id}}f: \mathrm{M}_n(\mathbb{R}) \to S_n$ est surjective, puisque $A \in S_n$ est l'image de (1/2)A, donc f est une submersion au voisinage de l'identité. On trouve bien $\mathfrak{so}_n(\mathbb{R}) = \ker(d_{\mathrm{Id}}f) = \mathrm{l'ensemble}$ des matrices antisymétriques.

Dans la deuxième méthode on dit que $\mathfrak{so}_n(\mathbb{R})$ est l'ensemble des $H \in \mathcal{M}_n(\mathbb{R})$ telles que $\exp(uH) \in \mathcal{O}_n(\mathbb{R})$ pour tout $u \in \mathbb{R}$ (je note u au lieu de t pour ne pas risquer de confusion avec la transposition). Ceci s'exprime par

$$^{t} \exp(uH) \exp(uH) = \exp(u^{t}H) \exp(uH) = \text{Id}, \forall u \in \mathbb{R}.$$

Les DL à l'ordre 1 en u sont donc égaux de part et d'autre, d'où $\operatorname{Id} + u({}^{t}H + H) = \operatorname{Id}$. Il s'ensuit que ${}^{t}H + H = 0$, cqfd.

Pour toute \mathbb{R} -algèbre unitaire, associative, de dimension finie A, et $x \in A$, on note $\exp_A(x)$ la somme de la série normalement convergente $\sum_{n\geq 0} x^n/n!$.

Lemme 2: Soit $f: A \to B$ un morphisme d'algèbres unitaires, associatives, de dimension finie. Alors pour tout $x \in A$ on a $f(\exp_A(x)) = \exp_B(f(x))$.

Preuve : Comme f est un morphisme d'algèbres on a $f(\sum_{n=0}^{N} x^n/n!) = \sum_{n=0}^{N} f(x)^n/n!$. De plus f est continue comme toute application linéaire entre espaces vectoriels de dimension finie, donc en passant à la limite on trouve le résultat.

Preuve du théorème : Nous prouvons d'abord le cas n=2. Toute matrice de $SO_2(\mathbb{R})$ est une matrice de rotation de la forme

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Introduisons la matrice:

$$I = \left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight) \in \mathfrak{so}_2(\mathbb{R}) \; .$$

Comme $I^2 = -1$, l'expression f(a+bi) = a+bI (on note a au lieu de a Id) définit un morphisme de \mathbb{R} -algèbres $f: \mathbb{C} \to M_2(\mathbb{R})$. Le résultat en découle puisque d'après le lemme 2,

$$\exp(\theta I) = \exp(f(\theta i)) = f(\exp_{\mathbb{C}}(\theta i)) = f(\cos(\theta) + i\sin(\theta)) = \cos(\theta) + \sin(\theta)I = R_{\theta}$$
.

Pour n quelconque, on utilise la réduction des matrices orthogonales. Pour toute matrice $M \in SO_n(\mathbb{R})$ il existe une matrice orthogonale $P \in O_n(\mathbb{R})$ telle que PMP^{-1} soit de la forme diagonale par blocs suivante :

$$\operatorname{diag}(\operatorname{Id}_r, R_{\theta_1}, \dots, R_{\theta_s})$$
.

D'après le cas n=2 c'est donc l'exponentielle de la matrice diagonale par blocs

$$\operatorname{diag}(0_r, \theta_1 I, \dots, \theta_s I)$$
,

qui est antisymétrique. Comme l'exponentielle respecte la conjugaison, M est donc l'exponentielle de la matrice

$$P^{-1} \operatorname{diag}(0_r, \theta_1 I, \dots, \theta_s I) P$$
.

Comme P est orthogonale, il est immédiat de vérifier que cette matrice est encore antisymétrique.

Corollaire : $SO_n(\mathbb{R})$ est connexe par arcs.

Preuve: C'est l'image par une application continue de $\mathfrak{so}_n(\mathbb{R})$ qui est un espace vectoriel, donc connexe par arcs.

Remarque: Dans le calcul de $\mathfrak{so}_n(\mathbb{R})$ utilisant la submersion $f: \mathrm{M}_n(\mathbb{R}) \to S_n$ (lemme 1), il faut bien prendre garde que pour avoir $d_{\mathrm{Id}}f$ surjective, l'espace d'arrivée doit être S_n et non $\mathrm{M}_n(\mathbb{R})$.

Bibliographie:

[MT] MNEIMNÉ, TESTARD, Introduction à la théorie des groupes de Lie classiques, Hermann.