SL(E) est engendré par les transvections

Je propose ici une (re-)lecture de la démonstration qui est dans [Perrin] du fait que les transvections engendrent SL(E). Je vous conseille d'accompagner les résultats qui suivent de dessins pour bien les comprendre!

Soit E un espace vectoriel de dimension finie sur un corps k. Une transvection est un endomorphisme $u \in SL(E)$ tel que u(t) = t + f(t)a où f est une forme linéaire sur E et $a \in \ker(f)$, $a \neq 0$. L'hyperplan $H = \ker(f)$ est déterminé par u de manière unique.

Théorème: Les transvections engendrent SL(E).

Lemme 1: Soit $x \in E - \{0\}$ et H_1, H_2 hyperplans distincts tels que $x \notin H_1 \cup H_2$. Alors il existe une transvection u telle que u(x) = x et $u(H_1) = H_2$.

Preuve: L'idée est de chercher une transvection u qui fixe x et $H_1 \cap H_2$, c'est-à-dire une transvection d'hyperplan $H = H_1 \cap H_2 + kx$. Il suffit alors de trouver des droites vectorielles ky resp. kz, supplémentaires de $H_1 \cap H_2$ dans H_1 resp. H_2 , avec u(y) = z, pour avoir le résultat. De l'hypothèse sur x il résulte que $H + H_1 = H + H_2 = E$. Soit $z \in H_2 - H$, on peut donc l'écrire

$$z = a + y$$
 avec $a \in H$ et $y \in H_1$.

Soit f la forme linéaire équation de H telle que f(y) = 1: elle existe car $y \notin H$. Soit u la transvection définie par u(t) = t + f(t)a. Alors u(y) = y + a = z et c'est gagné.

Lemme 2: Supposons $\dim(E) \ge 2$ et soient $x, y \in E - \{0\}$. Alors il existe u, produit de une ou deux transvections, tel que u(x) = y.

Preuve: Si x et y ne sont pas colinéaires on peut choisir un hyperplan H contenant y-x mais pas x. On pose a=y-x et u(t)=t+f(t)a où f est une équation de H telle que f(x)=1. On a alors u(x)=x+y-x=y.

Si x et y ne sont pas colinéaires, on choisit un z qui ne leur est pas colinéaire, et d'après ce qui précède il existe deux transvections u_1, u_2 telles que $u_1(x) = z$ et $u_2(z) = y$ donc $u = u_2 \circ u_1$ convient. (C'est ici qu'on utilise dim $(E) \ge 2$.)

Preuve du théorème : On fait une récurrence sur $n = \dim(E)$. Si n = 1 il n'y a rien à démontrer. Si $n \geq 2$, soit $v \in \operatorname{SL}(E)$. Soit $x \in E - \{0\}$, par le lemme 2 quitte à composer avec une ou deux transvections on peut supposer que v(x) = x. Soit ensuite $H \subset E$ un hyperplan tel que $x \notin H$. Alors $x = v(x) \notin v(H)$ donc d'après le lemme 1, quitte à composer avec une autre transvection on peut supposer que v(H) = H. L'hypothèse de récurrence appliquée à $v_{|H}$ nous dit que $v_{|H}$ est un produit de transvections $u_{i,H}$. Chacune de ces transvections s'étend en une unique transvection u_i de E qui fixe x. Comme v(x) = x on obtient que v est le produit des u_i .

Bibliographie:

[Perrin] Perrin, Cours d'Algèbre, Ellipses.