Automorphismes du groupe des quaternions

On note \mathbb{H} le groupe des quaternions. C'est un groupe d'ordre 8, engendré par deux éléments i et j dont on note k le produit, possédant un seul élément central non trivial noté -1, avec une multiplication déterminée par les formules

$$i^2 = j^2 = k^2 = -1$$
 ; $ij = -ji = k$; $ik = -ki = -j$; $jk = -kj = i$.

On peut construire facilement ce groupe comme sous-groupe de $GL_4(\mathbb{R})$ ou du groupe symétrique \mathfrak{S}_8 .

Exercice 1 Pour être bien à l'aise avec H, montrez que :

- (1) \mathbb{H} possède un unique élément d'ordre 2, qui est -1.
- (2) Le centre de \mathbb{H} est $Z = \{1, -1\}$.
- (3) Tout $x \in \mathbb{H} Z$ est d'ordre 4 et vérifie $x^2 = -1$.
- (4) Le quotient \mathbb{H}/Z est isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$.
- (5) Tous les sous-groupes de H sont distingués.

Exercice 2 Dans cet exercice, on constate que pour le groupe $V = (\mathbb{Z}/2\mathbb{Z})^2$, les trois structures ensembliste, de groupe, de \mathbb{F}_2 -espace vectoriel, ont essentiellement les mêmes automorphismes.

- (1) Soit p un nombre premier et G un groupe abélien tel que pour tout $x \in G$, on a px = 0. Montrez qu'il existe une unique structure de \mathbb{F}_p -espace vectoriel sur G compatible avec sa loi de groupe abélien. Déduisez-en que $\operatorname{Aut}(G)$ est le groupe linéaire $\operatorname{GL}(G)$ des automorphismes de G vu comme \mathbb{F}_p -espace vectoriel.
- (2) Notons 0 l'élément neutre de $V = (\mathbb{Z}/2\mathbb{Z})^2$. Pour tout automorphisme $f: V \to V$, on note f' la bijection induite par f sur $V = \{0\}$. Montrez que le morphisme

$$\operatorname{Aut}(V) \to \mathfrak{S}_{V-\{0\}} \simeq \mathfrak{S}_3 \quad , \quad f \mapsto f'$$

est un isomorphisme.

Exercice 3 Soit G un groupe, Z son centre, $c:G\to \operatorname{Aut}(G)$ le morphisme qui à g associe la conjugaison $c_g:x\mapsto gxg^{-1}$. On rappelle que l'image de c est le sous-groupe distingué $\operatorname{Int}(G)\lhd\operatorname{Aut}(G)$ des automorphismes intérieurs et que c induit un isomorphisme $G/Z\simeq\operatorname{Int}(G)$. On note $V=\mathbb{H}/Z\simeq\operatorname{Int}(\mathbb{H})$.

- (1) Décrivez les automorphismes intérieurs de H.
- (2) Montrez que tout automorphisme $f: \mathbb{H} \to \mathbb{H}$ vaut l'identité sur le centre. Montrez que le morphisme induit $\overline{f}: V \to V$ est l'identité si et seulement si f est intérieur.

(3) Soit σ une permutation de l'ensemble $\{i, j, k\}$. Montrez qu'il existe un unique automorphisme f_{σ} de \mathbb{H} qui envoie i sur $\sigma(i)$ et j sur $\sigma(j)$. En considérant les permutations $\sigma=(ij)$ et $\tau=(ijk)$ et les automorphismes f_{σ} et f_{τ} , montrez que la suite

$$1 \longrightarrow V \xrightarrow{c} \operatorname{Aut}(\mathbb{H}) \xrightarrow{f \mapsto \overline{f}} \operatorname{Aut}(V) \longrightarrow 1$$

est exacte et scindée, c'est-à-dire que $\operatorname{Aut}(\mathbb{H})$ est produit semi-direct $V \rtimes \operatorname{Aut}(V)$.

(4) Montrez que le groupe symétrique \mathfrak{S}_4 est un produit semi-direct $(\mathbb{Z}/2\mathbb{Z})^2 \rtimes \mathfrak{S}_3$ et que c'est le seul avec un 3-Sylow non distingué. Déduisez-en que $\operatorname{Aut}(\mathbb{H}) \simeq \mathfrak{S}_4$.

Exercice 4 Soit $f \in Aut(\mathbb{H})$. Montrez que f est déterminé par f(i) et f(j). Montrez qu'on dispose d'au plus 6 choix pour f(i), puis d'au plus 4 choix pour f(j). Déduisez-en que n'importe quelle façon de faire ces choix définit un automorphisme.

Exercice 5 Voici une présentation un peu plus conceptuelle de l'isomorphisme $\operatorname{Aut}(\mathbb{H}) \simeq \mathfrak{S}_4$. On considère l'ensemble des parties à trois éléments $x = \{\epsilon_1 i, \epsilon_2 j, \epsilon_3 k\}$ où les signes $\epsilon_i \in \{\pm 1\}$ sont variables ; cet ensemble est de cardinal 8. On considère ensuite l'ensemble X des paires $y = \{x, -x\}$, de cardinal 4.

- (1) Montrez qu'un automorphisme de \mathbb{H} permute X.
- (2) Montrez que le morphisme $\operatorname{Aut}(\mathbb{H}) \to \mathfrak{S}_X$ est injectif.
- (3) Déduisez-en que $Aut(\mathbb{H}) \simeq \mathfrak{S}_4$.