Les trois exercices qui suivent portent sur le thème suivant : étant donné un endomorphisme f d'un espace vectoriel de dimension finie, le dual d'un sous-espace propre (resp. caractéristique) est-il le sous-espace propre (resp. caractéristique) du dual ? (Ici le dual de f est à comprendre comme le transposé.)

Ceux qui souhaitent faire quelques révisions peuvent faire les trois exercices dans l'ordre, et ceux qui se sentent plus à l'aise peuvent passer directement au troisième.

Ex. 1. Soient k un corps, E un k-espace vectoriel de dimension finie n, et $f \in \mathcal{L}(E)$. Pour toute valeur propre λ de f, soient α sa multiplicité dans le polynôme minimal de f et β sa multiplicité dans le polynôme caractéristique de f. Montrez qu'on peut définir le sous-espace caractéristique $E(\lambda)$ par l'une quelconque des égalités :

- (1) $E(\lambda) = \ker (f \lambda)^{\alpha}$.
- (2) $E(\lambda) = \ker (f \lambda)^{\beta}$.
- (3) $E(\lambda) = \ker (f \lambda)^n$.

Ex. 2. Soient k un corps, E un k-espace vectoriel de dimension finie n, et $f \in \mathcal{L}(E)$. Pour toute valeur propre λ de f, on note $E(\lambda)$, resp. $E[\lambda]$ le sous-espace caractéristique, resp. le sous-espace propre correspondant. Soit $f^* \in \mathcal{L}(E^*)$ le transposé, et $E^*(\lambda)$, $E^*[\lambda]$ les sous-espaces correspondants. Montrez que dim $E^*(\lambda) = \dim E(\lambda)$ et dim $E[\lambda]$.

Ex. 3. Soient k un corps, E un k-espace vectoriel de dimension finie n, et $f \in \mathcal{L}(E)$.

- (1) Montrez que $E = \operatorname{im}(f^n) \oplus \ker(f^n)$.
- (2) Montrez que les morphismes $E^* \to E(\lambda)^*$ et $E^* \to E[\lambda]^*$, obtenus par dualité à partir des inclusions $E(\lambda) \subset E$ et $E[\lambda] \subset E$, sont surjectifs.

On considère les composés $\varphi(\lambda) \colon E^*(\lambda) \to E^* \to E(\lambda)^*$ et $\varphi[\lambda] \colon E^*[\lambda] \to E^* \to E[\lambda]^*$.

- (3) Montrez que $\varphi(\lambda)$ est un isomorphisme.
- (4) Montrez que $\varphi[\lambda]$ est un isomorphisme si et seulement si f est semi-simple en λ (ce qui signifie que la multiplicité de λ dans le polynôme minimal de f est égale à 1, ou encore, que $E(\lambda) = E[\lambda]$).