$Trouver\ tous\ les\ groupes\ G\ tels\ que\ {\rm Aut}(G)=\{1\}.$

Corrigé au dos. Prière de ne pas le regarder trop vite...

Parmi les automorphismes d'un groupe, il y a toujours les automorphismes intérieurs. Plus précisément, l'ensemble des automorphismes intérieurs forme un sous-groupe distingué de $\operatorname{Aut}(G)$, isomorphe à G/Z(G) où Z(G) est le centre de G. Donc si $\operatorname{Aut}(G) = \{1\}$ alors G = Z(G), c'est-à-dire, G est abélien. On écrit donc G en notation additive.

On observe ensuite que l'application $x \mapsto -x$ est un automorphisme (si G n'est pas abélien, l'application $x \mapsto x^{-1}$ n'est pas un morphisme.) Si $\operatorname{Aut}(G) = \{1\}$, on a donc -x = x pour tout $x \in G$, c'est-à-dire 2x = 0, donc G est un \mathbb{F}_2 -espace vectoriel (en détails : on a une application bien définie $\mathbb{F}_2 \times G \to G$ qui à (n, x) associe nx.) De plus les automorphismes de G comme groupe sont exactement les automorphismes de G comme \mathbb{F}_2 -ev (c'est immédiat à vérifier). Si $\dim_{\mathbb{F}_2}(G) \geq 2$, alors G possède une base ayant deux éléments distincts e_1, e_2 , et on peut définir un automorphisme non trivial qui échange e_1 et e_2 , et fixe tous les autres éléments de la base. Donc si $\operatorname{Aut}(G) = \{1\}$, on doit avoir $\dim_{\mathbb{F}_2}(G) \leq 1$. Si la dimension est 0 on a $G \simeq \{1\}$ et si la dimension est 1 on a $G \simeq \mathbb{Z}/2\mathbb{Z}$. Il est clair que ces deux groupes vérifient $\operatorname{Aut}(G) = \{1\}$.

Conclusion : à isomorphisme près, les deux seuls groupes G tels que $\operatorname{Aut}(G) = \{1\}$ sont $G = \{1\}$ et $G = \mathbb{Z}/2\mathbb{Z}$.