Homographies et birapport

Exercice 1 (Le groupe des homographies.) On appelle homographie une application du plan complexe dans lui-même de la forme $h(z) = \frac{az+b}{cz+d}$, où a,b,c,d sont quatre complexes tels que $ad-bc \neq 0$.

- (1) Indiquez l'ensemble de définition et l'image d'une homographie.
- (2) Montrez qu'une homographie se prolonge de manière naturelle en une bijection de $\mathbb{P}^1(\mathbb{C})$ dans $\mathbb{P}^1(\mathbb{C})$.

Dorénavant, par le terme d'homographie, on entendra une transformation $h: \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ de la forme précédente.

- (3) Montrez que l'ensemble \mathcal{H} des homographies possède une structure naturelle de groupe et que ce groupe est engendré par les similitudes directes et par l'application $z \mapsto 1/z$.
- (4) À la matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on associe l'homographie $h(z) = \frac{az+b}{cz+d}$. Montrez que ceci définit un morphisme de groupes $\operatorname{GL}_2(\mathbb{C}) \to \mathcal{H}$. Déterminez son image et son noyau.

Exercice 2 (Le birapport.)

(1) Soient a, b, c dans $\mathbb{P}^1(\mathbb{C})$ distincts. Montrez qu'il existe une unique homographie h envoyant a, b, c sur $0, 1, \infty$. On supposera pour simplifier qu'aucun des points a, b, c n'est égal au point à l'infini.

Soient a, b, c, d quatre éléments de $\mathbb{P}^1(\mathbb{C})$ dont les trois premiers sont distincts. La valeur $h(d) \in \mathbb{P}^1(\mathbb{C})$, où h est l'homographie de la question précédente, est appelée le birapport de a, b, c, d et notée [a, b, c, d].

- (2) Soit $z \in \mathbb{P}^1(\mathbb{C})$. Calculez $[0, 1, \infty, z]$.
- (3) Montrez que le birapport est invariant par homographie, c'est-à-dire que si f est une homographie, alors [f(a), f(b), f(c), f(d)] = [a, b, c, d]. (Considérez l'homographie hf^{-1} où h est l'homographie de la première question.)
- (4) Donnez une formule pour le birapport [a, b, c, d].

Exercice 3 (Symétries du birapport.) Soient a, b, c, d quatre éléments de $\mathbb{P}^1(\mathbb{C})$ dont les trois premiers sont distincts.

- (1) Montrez que [c,d,a,b] = [a,b,c,d]. (Considérez l'homographie $\frac{[a,b,c,d]}{h}$ où h est l'unique homographie qui envoie a,b,c sur $0,1,\infty$.)
- (2) Montrez que $[a,d,c,b]=[a,b,c,d]^{-1}$. (Considérez l'homographie $\frac{1}{[a,b,c,d]}\,h$.)
- (3) Montrez que [b, a, c, d] = 1 [a, b, c, d]. (Considérez l'homographie...)

Exercice 4 Montrez qu'une application $f: \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ qui laisse invariant le birapport de quatre points est une homographie.

Exercice 5 (Cercles de $\mathbb{P}^1(\mathbb{C})$.) Dans $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$, la réunion d'une droite de \mathbb{C} et du point ∞ est appelée un cercle de $\mathbb{P}^1(\mathbb{C})$ passant par ∞ . La famille des cercles de $\mathbb{P}^1(\mathbb{C})$ est donc constituée des cercles passant par ∞ , que l'on vient de définir, et des cercles ne passant pas par l'infini, qui sont les cercles ordinaires dans \mathbb{C} . Cette terminologie est justifiée par le fait que la projection stéréographique envoie les cercles tracés sur la sphère S^2 sur les cercles de $\mathbb{P}^1(\mathbb{C})$ au sens où l'on vient de les définir. Dans cet exercice, on souhaite démontrer que les homographies préservent la famille des cercles de $\mathbb{P}^1(\mathbb{C})$, et en application, donner une condition de cocyclicité.

- (1) On veut montrer que $h(\mathcal{C})$ est un cercle de $\mathbb{P}^1(\mathbb{C})$, pour tout cercle \mathcal{C} de $\mathbb{P}^1(\mathbb{C})$ et pour toute homographie h. Montrez qu'il suffit d'établir ce résultat pour h(z) = 1/z, ce que l'on supposera dans la suite.
- (2) Montrez qu'on peut se ramener au cas où \mathcal{C} est symétrique par rapport à l'axe réel. (Poser $g(z) = e^{i\theta}z$ et calculer ghg.)
- (3) Montrez que $h(\mathcal{C})$ est un cercle, en distinguant quatre cas :

$$\infty \not\in \mathbb{C} \text{ et } 0 \in \mathbb{C} \quad ; \quad \infty \in \mathbb{C} \text{ et } 0 \not\in \mathbb{C} \quad ; \quad \infty \not\in \mathbb{C} \text{ et } 0 \not\in \mathbb{C} \quad ; \quad \infty \in \mathbb{C} \text{ et } 0 \in \mathbb{C}.$$

(Méfiez-vous car le centre de $h(\mathcal{C})$ n'est pas forcément l'image par h du centre de \mathcal{C} .)

(4) Montrez que quatre nombres complexes a, b, c, d sont cocycliques ou alignés ssi leur birapport est réel.