Rotations et homographies

Le thème des deux exercices qui suivent est de décrire un morphisme injectif de groupes $SO_3(\mathbb{R}) \hookrightarrow PGL_2(\mathbb{C})$. Dans le premier exercice, on construit un tel morphisme en utilisant la projection stéréographique $\sigma: S^2 \to \mathbb{P}^1(\mathbb{C})$. Dans le deuxième exercice, on utilise les quaternions. On peut montrer qu'en fait, ces deux constructions sont les mêmes, si l'on identifie correctement les objets de part et d'autre.

Exercice 1 On considère l'espace euclidien $E = \mathbb{R}^3$ identifié à $\mathbb{C} \oplus \mathbb{R}$, sa sphère unité S^2 , et le plan équatorial \mathbb{C} . La projection stéréographique $\sigma: S^2 \to \mathbb{C} \cup \{\infty\} = \widehat{\mathbb{C}}$ est la projection depuis le pôle nord N, définie par $\sigma(M) = (NM) \cap \mathbb{C}$ et $\sigma(N) = \infty$.

(1) On note $(z,t) \in \mathbb{C} \oplus \mathbb{R}$ les coordonnées d'un point $M \in E$. Donnez l'expression de σ et σ^{-1} dans ces coordonnées.

(2) Le plan tangent en un point de S^2 étant orienté par la normale sortante en ce point, on note f_{θ} la rotation de E d'axe [ON) et d'angle θ , et g_{φ} la rotation de E d'axe [Ox) et d'angle φ . Justifiez que $SO_3(\mathbb{R})$ est engendré par les rotations f_{θ} et g_{φ} .

(3) Une rotation $r \in SO_3(\mathbb{R})$ induit une bijection $\widetilde{r} := \sigma^{-1} \circ r \circ \sigma$ de $\mathbb{P}^1(\mathbb{C})$. Calculez \widetilde{f}_{θ} et montrez que

$$\widetilde{g}_{\varphi}(z) = -i \frac{z \cos(\frac{\varphi}{2}) + i \sin(\frac{\varphi}{2})}{z \sin(\frac{\varphi}{2}) - i \cos(\frac{\varphi}{2})}.$$

Déduisez-en que pour tout $r \in SO_3(\mathbb{R})$, la bijection \widetilde{r} est une homographie. Montrez que $r \mapsto \widetilde{r}$ définit un morphisme de groupes injectif $SO_3(\mathbb{R}) \hookrightarrow PGL_2(\mathbb{C})$.

Corrigé. (1) Cf feuille d'exercices sur la droite projective : on avait trouvé

$$\sigma(z,t) = \frac{z}{1-t}$$
 et $\sigma^{-1}(z) = \left(\frac{2z}{|z|^2+1}, \frac{|z|^2-1}{|z|^2+1}\right)$.

(2) Soit r une rotation, x un vecteur directeur de son axe, et ψ son angle. Il existe θ et φ tels que $x = (f_{\theta}g_{\varphi})(N)$. Donc $(f_{\theta}g_{\varphi})^{-1} \circ r \circ (f_{\theta}g_{\varphi})$ est la rotation d'axe [ON) et d'angle ψ , autrement dit, c'est f_{ψ} . Il s'ensuit que $r = (f_{\theta}g_{\varphi}) \circ f_{\psi} \circ (f_{\theta}g_{\varphi})^{-1}$, ce qui démontre que $SO_3(\mathbb{R})$ est engendré par les rotations f_{θ} et g_{φ} .

(3) On a $f_{\theta}(z,t)=(e^{i\theta}z,t)$ d'où $\widetilde{f}_{\theta}(z)=e^{i\theta}z$. C'est une homographie. Passons à g_{φ} : matriciellement, on a

$$Mat(g_{\varphi}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}.$$

Soit $z = a + ib \in \mathbb{C}$, on a

$$g_{\varphi}(\sigma^{-1}(z)) = g_{\varphi}\left(\frac{2a}{a^2 + b^2 + 1}, \frac{2b}{a^2 + b^2 + 1}, \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}\right)$$

$$= \left(\frac{2a}{a^2+b^2+1}, \frac{2b\cos(\varphi) - (a^2+b^2-1)\sin(\varphi)}{a^2+b^2+1}, \frac{2b\sin(\varphi) + (a^2+b^2-1)\cos(\varphi)}{a^2+b^2+1}\right)$$

et on en déduit

$$\begin{split} \widetilde{g}_{\varphi}(z) &= \frac{2a + i(2b\cos(\varphi) - (a^2 + b^2 - 1)\sin(\varphi)}{a^2 + b^2 + 1 - 2b\sin(\varphi) - (a^2 + b^2 - 1)\cos(\varphi)} \\ &= \frac{-2i\left(a\sin(\frac{\varphi}{2}) + i(-b\sin(\frac{\varphi}{2}) + \cos(\frac{\varphi}{2})\right)\left(a\cos(\frac{\varphi}{2}) + i(b\cos(\frac{\varphi}{2}) + \sin(\frac{\varphi}{2})\right)}{2 |a\sin(\frac{\varphi}{2}) + i(b\sin(\frac{\varphi}{2}) - \cos(\frac{\varphi}{2})|^2} \\ &= -i\frac{z\cos(\frac{\varphi}{2}) + i\sin(\frac{\varphi}{2})}{z\sin(\frac{\varphi}{2}) - i\cos(\frac{\varphi}{2})} \; . \end{split}$$

Les rotations f_{θ} et g_{φ} engendrent $SO_3(\mathbb{R})$, elles induisent des homographies de $\mathbb{P}^1(\mathbb{C})$ via σ , donc toute rotation $r \in SO_3(\mathbb{R})$ induit une homographie. Ceci donne un morphisme de groupes injectif $SO_3(\mathbb{R}) \hookrightarrow PGL_2(\mathbb{C})$.

Exercice 2 À venir... Pour la construction de $SO_3(\mathbb{R}) \hookrightarrow PGL_2(\mathbb{C})$ via les quaternions, voir la note sur les sous-groupes finis de $PGL_2(\mathbb{C})$.

Corrigé.