Somme des traces dans une représentation

Exercice. Soit $\rho: G \to \operatorname{GL}(V)$ une représentation d'un groupe fini G dans un espace vectoriel complexe de dimension finie V. Montrez que la quantité $\sum_{g \in G} \operatorname{tr}(g)$ est un entier relatif.

Solution. Nous utiliserons le fait suivant.

Lemme. Si $d \mid n$, le morphisme $(\mathbb{Z}/n\mathbb{Z})^{\times} \to (\mathbb{Z}/d\mathbb{Z})^{\times}$ est surjectif.

Preuve. Traitons d'abord le cas où $n=p^{\alpha}$ est puissance d'un nombre premier p. Alors $d=p^{\beta}$ pour un certain $\beta \leqslant \alpha$, et la classe de $e \in \mathbb{Z}$ modulo p^{β} est inversible si et seulement si e est premier à p, si et seulement si la classe de e modulo p^{α} est inversible. Ceci montre le lemme dans ce cas. En général, soient $n=\prod_{p}p^{\alpha_{p}}$ et $d=\prod_{p}p^{\beta_{p}}$ les décompositions en facteurs premiers, avec $\beta_{p} \leqslant \alpha_{p}$. Le théorème des restes chinois donne des isomorphismes

$$(\mathbb{Z}/n\mathbb{Z}) \simeq \prod (\mathbb{Z}/p^{\alpha_p}\mathbb{Z})^{\times} \quad , \quad (\mathbb{Z}/d\mathbb{Z}) \simeq \prod (\mathbb{Z}/p^{\beta_p}\mathbb{Z})^{\times}$$

par lesquels l'application de réduction $\pi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to (\mathbb{Z}/d\mathbb{Z})^{\times}$ est le produit des applications $\pi_p: (\mathbb{Z}/p^{\alpha_p}\mathbb{Z})^{\times} \to (\mathbb{Z}/p^{\beta_p}\mathbb{Z})^{\times}$. Le résultat se déduit alors du cas particulier.

Passons à l'exercice proprement dit.

Première solution. Notons g au lieu de $\rho(g)$, pour simplifier. Soit n le cardinal de G. Comme $g^n=1$ pour tout $g\in G$, on obtient $g^n=$ id dans $\mathrm{GL}(V)$ donc toutes les valeurs propres de g sont des racines n-ièmes de l'unité. Notons μ_n (resp. μ_n^{\times}) l'ensemble des racines (primitives) n-ièmes de l'unité dans \mathbb{C} . Notons $m_g(\lambda)$ la multiplicité de λ dans le spectre de g; on convient que $m_g(\lambda)=0$ si λ n'est pas valeur propre. On a alors :

$$\sum_{g \in G} \operatorname{tr}(g) = \sum_{g \in G} \sum_{\lambda \in \mu_n} m_g(\lambda) \lambda = \sum_{\lambda \in \mu_n} \sum_{g \in G} m_g(\lambda) \lambda = \sum_{d \mid n} \sum_{\lambda \in \mu_d^{\times}} \left(\sum_{g \in G} m_g(\lambda) \right) \lambda.$$

Montrons que, pour $\lambda \in \mu_d^{\times}$, la quantité $N(\lambda) := \sum_{g \in G} m_g(\lambda)$ ne dépend que de d. En effet, si $\lambda, \mu \in \mu_d^{\times}$ alors il existe un entier i premier à d tel que $\mu = \lambda^i$. D'après le lemme ci-dessous, on peut choisir i premier à n et dans ce cas, l'application $g \mapsto g^i$ est une bijection de G, d'inverse $g \mapsto g^j$ où j est un inverse de i modulo n. Comme par ailleurs $m_{g^i}(\lambda^i) \geqslant m_g(\lambda)$, on a :

$$N(\lambda) = \sum_{g \in G} m_g(\lambda) \leqslant \sum_{g \in G} m_{g^i}(\lambda^i) = \sum_{g \in G} m_{g^i}(\mu) = \sum_{g \in G} m_g(\mu) = N(\mu).$$

Par symétrie, on a aussi $N(\mu) \leq N(\lambda)$ donc finalement ces quantités sont égales à un entier N_d ne dépendant que de d. Alors :

$$\sum_{g \in G} \operatorname{tr}(g) = \sum_{d \mid n} \sum_{\lambda \in \mu_{\lambda}^{\times}} N_d \lambda = \sum_{d \mid n} N_d \sum_{\lambda \in \mu_{\lambda}^{\times}} \lambda$$

On reconnaît que $\sum_{\lambda \in \mu_d^{\times}} \lambda$ est l'opposé du coefficient de $X^{\varphi(d)-1}$ dans le polynôme cyclotomique Φ_d . Or on sait que $\Phi_d \in \mathbb{Z}[X]$, donc ce coefficient est entier relatif et on a terminé.

Deuxième solution, sur une idée de Lionel Fourquaux. Comme G est d'ordre n, la formule $i.g:=g^i$ définit une action du groupe $U=(\mathbb{Z}/n\mathbb{Z})^\times$ sur G par bijections. Pour montrer que $\sum_{g\in G}\operatorname{tr}(g)$ est entier, il suffit de montrer que chaque somme $\sum_{g\in\omega}\operatorname{tr}(g)$, portant sur les éléments d'une orbite ω pour l'action ci-dessus, est un entier. Supposons que ω est l'orbite d'un élément $\gamma\in G$ d'ordre d. Le stabilisateur H de γ est l'ensemble des $i\in(\mathbb{Z}/n\mathbb{Z})^\times$ tels que $\gamma^i=\gamma$, c'est-à-dire tels que d divise i-1, ou encore que i est congru à 1 modulo d. Autrement dit, H est le noyau du morphisme de réduction $(\mathbb{Z}/n\mathbb{Z})^\times \to (\mathbb{Z}/d\mathbb{Z})^\times$. Comme H est distingué, le groupe quotient U/H agit sur ω qui devient alors une orbite libre sous ce groupe, c'est-à-dire que l'application $U/H \to \omega$, $i \mapsto \gamma^i$ est une bijection. Comme le morphisme de réduction $(\mathbb{Z}/n\mathbb{Z})^\times \to (\mathbb{Z}/d\mathbb{Z})^\times$ est surjectif (par le lemme), le quotient U/H s'identifie à $(\mathbb{Z}/d\mathbb{Z})^\times$. Ces réflexions montrent que :

$$\sum_{g \in \omega} \operatorname{tr}(g) = \sum_{i \in (\mathbb{Z}/d\mathbb{Z})^{\times}} \operatorname{tr}(\gamma^{i}).$$

Comme les γ^i commutent entre eux, ils sont simultanément diagonalisables. Après diagonalisation, un élément de la diagonale est un $\lambda \in \mu_e^{\times}$ avec $e \mid d$. La somme sur i nous mène à considérer $\sum_{i \in (\mathbb{Z}/d\mathbb{Z})^{\times}} \lambda^i$, qui est égale à :

$$\operatorname{card}\left(\ker((\mathbb{Z}/d\mathbb{Z})^{\times} \to (\mathbb{Z}/e\mathbb{Z})^{\times})\right) \times \sum_{j \in (\mathbb{Z}/e\mathbb{Z})^{\times}} \lambda^{j}.$$

Enfin on note que $\sum_{j \in (\mathbb{Z}/e\mathbb{Z})^{\times}} \lambda^{j}$ est un coefficient du polynôme cyclotomique Φ_{e} , donc c'est un entier. Ceci termine la démonstration.

Troisième solution, sur une idée de Pierre Charollois. Cette solution est à la fois la plus simple et celle qui donne le résultat le plus précis. Notons $\Delta = \sum_{g \in G} \rho(g)$, ou plus simplement $\Delta = \sum_{g \in G} g$, la somme des endomorphismes de V associés aux éléments de G par la représentation. Le carré de cet endomorphisme vaut :

$$\Delta^2 = \left(\sum_{h \in G} h\right) \left(\sum_{k \in G} k\right) = \sum_{h,k \in G} hk = n \sum_{g \in G} g = n\Delta$$

puisque le nombre de couples (h,k) tels que hk=g est égal à n. Ainsi Δ est annulé par le polynôme $X^2-nX=(X-n)X$, donc les facteurs irréductibles de son polynôme minimal sont dans la liste $\{X-n,X\}$. Son polynôme caractéristique, qui possède les mêmes facteurs irréductibles, est donc de la forme $(X-n)^iX^{d-i}$ où $d=\dim(V)$ est le degré (ou dimension) de la représentation, et $0\leqslant i\leqslant d$. La trace est l'opposé du coefficient de X^{d-1} dans ce polynôme, c'est-à-dire :

$$\sum_{g \in G} \operatorname{tr}(g) = \operatorname{tr}(\Delta) = in.$$

On voit ainsi que $\sum_{g \in G} \operatorname{tr}(g)$ est en fait un entier naturel, divisible par le cardinal de G.