Soit k un corps et V un sous-k-espace vectoriel de dimension finie de l'espace des fonctions de k dans k. Montrez qu'il existe des réels x_1, \ldots, x_n tels que l'application $f \mapsto (f(x_1), \ldots, f(x_n))$ réalise un isomorphisme $V \simeq k^n$.

Pour $x \in k$, notons e_x la forme linéaire d'évaluation des fonctions en x. Il suffit de montrer que les e_x engendrent V^* , car alors on pourra en extraire une base e_{x_1}, \ldots, e_{x_n} de V^* et ceci répondra à la question. (Pourquoi ?)

Il s'agit de montrer que pour toute forme $\varphi \in V^*$, il existe x_1, \ldots, x_n et $\lambda_1, \ldots, \lambda_n$ tels que $\varphi = \sum_{j=1}^n \lambda_j e_{x_j}$. Si on fixe une base f_1, \ldots, f_n de V, cette égalité est équivalente aux n égalités $\varphi(f_i) = \sum_{j=1}^n \lambda_j f_i(x_j)$. À leur tour, ces n égalités sont équivalentes à l'égalité matricielle $\Phi = A\Lambda$ où Φ est le vecteur colonne des $\varphi(f_j)$, Λ est la matrice carrée des $f_i(x_j)$, et Λ est le vecteur colonne des λ_j . Il suffit donc de trouver x_1, \ldots, x_n tels que Λ est inversible, car alors les λ_j seront uniquement déterminés et le problème sera résolu.

Montrons par récurrence que pour tout $k \leq n$ il existe x_1, \ldots, x_k tels que la matrice carrée de taille k en haut à gauche de A est inversible. Pour k = 1 c'est clair ; supposons l'hypothèse vraie au rang k - 1. Si pour tout $x_k \in k$ le déterminant de taille k est nul, on développe ce déterminant par rapport à la dernière colonne, il vient :

$$m_{k,k}f_k(x_k) - m_{k-1,k}f_{k-1}(x_k) + \dots + (-1)^{k-1}m_{1,k}f_1(x_k) = 0$$
,

où $m_{i,j}$ est le mineur adéquat. Comme $m_{k,k} \neq 0$ par hypothèse, ceci montre que f_k est combinaison linéaire de f_1, \ldots, f_{k-1} , ce qui est impossible puisque f_1, \ldots, f_n est une base de V. Par contraposée, il existe x_k tel que la matrice carrée de taille k en haut à gauche de A est inversible.

Pour k = n, ceci montre que A est inversible. On peut donc poser $\Lambda = A^{-1}\Phi$ et on a alors $\varphi = \sum_{j=1}^{n} \lambda_{j} e_{x_{j}}$.